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Abstract

This paper presents a general model for determining the optimal decisions
and the corresponding shadow prices associated with a nonrenewable natural
energy resource. The model takes into account the uncertain events of
(a) exhaustion of the resource stock, (b) discovery of an additional stock,
and (c) development of a producible substitute. One decision variable is the
resource consumption rate; this yields utility but hastens exhaustion.
Another, the exploration or research effort rate, incurs costs but expedites
the search or developmental activity. With the objective of maximizing the
expected discounted utility net of costs, dynamic programming methods are used
to characterize the optimal consumption and ekploration policies. Martingale
methods are used to derive a fundamental new characterization of the
stochastic process that represents the price of the natural resource. Several

special cases are examined, and the related literature is reviewed.



Natural Energy Resource Decisions and Prices Involving Uncertainty

by

S. D. Deshmukh and S. R. Pliska

l. Introduction

With the increasing scarcity of natural resources in recent years there
has been a growing interest in problems of optimal management of these
resource stocks. Starting with the classic paper by Hotelling (1931), the
more recent extensive literature on the economics of natural exhaustible
resources is represented by Solow's (1974) exposition of the basic theory,

essays in the 1974 Symposium of the Review of Economic Studies, and the

monograph by Dasgupta and Heal (1978).

In general, however, only a few of the studies have explicitly
incorporated the crucial element of uncertainty in their analyses. These
studies involving uncertainty may be broadly classified into three
categories. Models in the first category are concerned with optimal resource
extraction decisions when the total supply of the resource stock is unknown
and may be suddenly exhausted, as in Kemp (1976,77), Cropper (1976), Loury
(1978), and Gilbert (1978) (or it may be expropriated as in Long (1975)). In
the second category of models the uncertainty is regarding the availability of
new supplies due to discovery of additional resource stocks through search and
exploration. Arrow and Chang (1980) and Deshmukh and Pliska (1980) have
studied optimal consumption and exploration decisions that affect the
uncertain timings and magnitudes of discoveries. (See also MacQueen
(1961,64), Heal (1978) and Pindyck (1980) for related models involving
stochastic discoveries and Pindyck (1978) for the certainty case.) Finally,

the third category of models involves uncertainty on the demand side, namely



about the time at which a perfect producible substitute becomes available so
as to eliminate the dependence of the economy on the natural resource.
Dasgupta and Heal (1974) and Dasgupta and Stiglitz (1981) analyze optimal
extraction decisions when the probability distribution of the uncertain timing
of innovation of a substitute is specified exogenously, while Dasgupta, Heal
and Majumdar (1977) and Kamien and Schwartz (1978) also permit the innovation
process to be controlled through R & D expenditures. (In a related model,
Hoel (1978) assumes that the time of innovation is known but the cost of
producing the substitute is uncertain.)

In all three cases, therefore, the uncertainty is about the time of
occurrence of a particular event: exhaustion, discovery of an additional
stock, or development of a substitute product. Adopting this point of view,
we present in this paper a single model that can capture each kind of
uncertainty. In particular, we provide a stochastic dynamic programming
formulation to analyze optimal decisions regarding extraction (for
consumption) and exploration (to discover new stocks) or research (to develop
a substitute) activities that control these uncertainties over time. We also
study the corresponding resource price prdcess resulting from these
decisions. Finally, within the unifying framework of our model, we present as
special cases a systematic derivation of the results available in the
literature.

The general model is presented in section 2. The optimal decisions and the
price process are studied in sections 3 and 4, respectively. Several special cases
are studied in the four subsequent sections in light of the existing literature,

while the final section concludes with some remarks and possible extensions.



2. The Model

The distinguishing characteristic of a natural energy resource (such as
0il or natural gas) is that it is nonproducible and nonrenewable.
Consequently, the future supply of the resource cannot be determined or
controlled with certainty. In an extreme event, the resource may be
exhausted, thereby imposing a severe hardship on the economy. At the other
extreme, a perfect producible substitute may become available, rendering the
natural resource inessential. Between these possibilities of extremely
unfavorable and favorable events, several interesting random events may
occur. One is the discovery of an additional stock of the same resource and
another (apparently not studied in the literature) is an invention, such as
electric car, that results in a major .change in the demand for the resource.

In this section, we assume, for simplicity and consistency, that only one
type of random event may occur and that it can occur only once. The time at
which the event takes place is a random variable, and its probability
distribution can be controlled through the extraction and exploration rate
decisions. Resource extraction (and consumption) yields social utility but
depletes the stock on hand and hastens exhaustion. On the other hand,
exploration (i.e., searching for more resource or a substitute) involves
search or R & D expenditures but also expedites the occurrence of the
desirable event (i.e., discovery of an additional stock or development of a
producible substitute). The problem then is to determine optimal extraction
and exploration poiicies in face of the uncertain timing of occurrence of the
event of interest.

Let the nonnegative random variable X, denote the state of the natural

resource in the economy at time t > 0. For instance, X, may be the size of



proven reserves on hand at time t or it may represent the cumulative amount
extracted and consumed by t. Suppose the central planner's decision
variable ct€[0;E] denotes the consumption (extraction) rate at which the
resource stock is depleted at time t. This yields a social utility (net of
extraction costs) to the economy at rate U(ct), where the utility
function U(e+) is usually assumed to be increasing and concave with
U(0) = 0 or ==, Denote by a > 0 the rate at which future utilities and costs
are discounted.

While ¢, advances the date of exhaustion, the exploration expenditure
rate e_ e [0, e] expedites the discovery of an additional stock or of a
substitute through search or R & D activities. Let the random variable T
represent the time when the event of interest occurs, and (borrowing
terminology.from reliability theory) let A(x,c,e) denote the hazard rate
(success or failure rate) associated with the event time T, i.e., A(x,c,e) is
the probabilistic rate of occurrence of the event at t, given that
T>¢t, X, =x, ¢g =c and e, = e. Roughly, A(x, ¢, e) dt is the conditional

probability that the event will occur during (t, t+dt), given that it has not

It

occurred by time t, the resource state is Xt x and the consumption and
exploration rate decisions are ¢, = ¢ and e, = e. One may assume that ) 1is
nondecreasing in (c,e) in order to reflect the advancing of exhaustion through
¢ or of discovery through e.

Once the uncertain event occurs at time T, the planner's problem becomes
the relatively easy one of determining the optimal consumption pattern under
certainty. Let W(x) denote the maximum attainable total discounted utility
over [T, =], given Xr = x. For instance, in the event of exhaustion and with

X being the cumulative amount extracted, W = 0. Similarly, with X, as the

resource stock on hand, in the case of discovery of size z, W(x+z) is the



total utility from consuming the stock (x + 2) optimally, as in Hotelling

(1931). 1In the case of a substitute discovery, W(x) is the value of the

optimal program of the substitute production and resource consumption, as in

Dasgupta and Heal (1974). In genefal, we have W(x) > V(x) if the random event

is a favorable one and the reverse inequality holds in the unfavorable case.
In any event, we shall treat W as a specified terminal reward at time

T. The planner's problem is then to determine {(ct,et); 0t (< T} so as to

maximize

E{éTexp(—at) [U(e,) - e, ldt + exp(-aT) W(X)|X =x}.

Let V(x) denote the optimal value of this program starting in the resource

state Xy = X. We now present a formal (as opposed to rigorous) derivation of

the functional equation which V must satisfy. We simultaneously address two

cases; X may be either the stock on hand or the cumulative consumption.
Selection of the constant decisions (c,e) during the interval [O,t]

with t < T, yields net utility [U(c) - e]t, and the resource state changes to

X, = x - ct (if X is the stock on hand) or X, = x +ct (if X is the cumulative

consumption)s Also, the uncertain event occurs in (0,t) with

probability A(x,c,e)t + o(t), (in which case the optimal value from then on is

determined by W(X.)), and with probability [l - A(x,c,e)t] + o(t) the event

does not occur (in which case the optimal value from then on is V(X;)). The

dynamic programming argument then yields
V(x) = tax {{U(c)-e]t + exp (-at)[A(x,c,e)t W(X,) + (1-A(x,c,e)t)V(X,) + o(t)]}
’

Using exp(-at) = l-at + o(t), Xt =x - ct (or Xt = x + ct) and the Taylor's



expansion of V(e) and W(+) around x, dividing by t, and letting t + O yields

the optimality equation

(1) aV(x) = gaé {U(c) - e - cV'(x) + A(x,c,e)[W(x)—V(x)]}, x » 0.

Equation (1) is for the case where X represents the stock on hand, the case we
shall primarily use for expositional continuity. If X is the éumulative
consumption, then V'(x) is replaced by -V'(x).

Under suitable monotonicity and concavity assumptions on U, A, and W, one
may conclude the existénce of a unique solution V of (1) with V satisfying
certain monotonicity and concavity conditions. We shall not present a
rigorous statement and derivation of these results here, since this would be a
lengthy deviation from the objectives of this paper. Also, the methods
involved are similar to those in the literature; see, for example, Deshmukh
and Pliska (1980). Some additional remarks will be made about this later in

this paper.

3. Optimal Decisions

Optimal decision policies c*(-) and e*(-) specify, as functions of the
resource state X, = x at any time t < T, those consumption and exploration
rates c*(x) and e*(x) that attain the maximum in (1). This leads to
characterizations of these optimal policies. Throughout this section, we
shall be dealing with the case where X represents the stock on hand; the case
where X represents the cumulative amount consumed is similar and left to the
reader. Note that under the optimal policies the stochastic

process X = {X_; 0 < t < T} is a Markov process that terminates at T.

t?

By equation (1), the optimal policies satisfy



(2)  aV(x) = U (x) - e (x) - ¢ (V' (x) + A (x)[Wx) - V(x)],
where we have written, for notational simplicity,
3) A = Ax,®), ).

Also, with the constraint that Xt > 0, we require c*(O) = 0. £quation (2) may

also be written in terms of the infinitesimal generator G of the Markov

process X as follows. Define the expected rate of change in the optimal value

V(x) at time t < T when X =x as

6V(x) = lim {E[V(X_, ) [X, = %, c_ = c (x), e, = e ()] - V() }/h,
h+0
that is,
* *
—c (x)V'(x) + X (x)[W(x) - V(x)], x >0
(4) GV(x) = :

AT (0)[W(0) = V(O)], x = 0,

as may be seen by an analysis similar to the one leading up to equation (1).

Thus, we may write equation (2) as
(5) aV(x) = r(x) +GV(x), x » 0,
where

(6) r(x) = U(c*(x)) - e"(x)



is the net utility rate function under the optimal policies. By the theory of
Markov processes, it follows (see Dynkin (1965) or Breiman (1968)) that total
expected discounted utility V(.) following the policy (c*(-), e*(-)) is the
unique solution of (5). Conversely, if V(e) satisfies (5) for some function
r, then V(x) is the total expected discounted return starting in state x if
r(Xt) is the running reward rate function and W(XT) is the terminai return
function.

With these general remarks about the optimal value function V() we may
now study the nature of optimal consumption and exploration policies.
Assuming differentiability of the functions involved, interior optima c*(x)
and e*(x) satisfy the first order conditions

*(X)

' ey X DY
(7)) V'(x) =U'"(c (x)) + e [W(x) = V(x)]

and

X
ax (x)

(8) de

(W(x) - v(x)] = 1.

To interpret these conditions, recall that, if t < T and X, = x, then A*(x) is
the optimal probabilistic rate of occurrence of the event and V(x) is the
optimal expected long run net return over [t,=]. Thus, according to (7),
optimal consumption rate balances the marginal reduction in the long-run
return against the marginal instantaneous utility of consumption plus the
marginal expected rate of change in the long-run return due to possible
occurrence of the event. Similarly, according to (8), optimal exploration
rate balances the latter against the cost of exploration. These conditions

(7) and (8) together with the relevant properties of functions U, A, W and V



then enable us to characterize the structure of the optimal

» » * * -
policies ¢ (+) and e (+) as functions of the resource state x. For example,

- - * 3 . * 3

under appropriate conditions, ¢ (¢) is nondecreasing and e (+) is
nonincreasing, implying greater consumption and less exploration in better
resource states. Finally, since the resource level Xt is a (monotone
nonincreasing) deterministic function of time t as long as t < T, we may also

*
study the trajectory of the optimal consumption c

N and exploration

*
rates e, through time. We shall indicate these results in various special

cases that are analyzed in the subsequent sections.

4. Shadow Prices

As above, let X be the Markov process representing the stock on hand
under the optimal policies. Recalling again that, given t < T and X; = X,
V(x) is the maximum expected discounted net utility to the society
over [t,»), it follows that V'(x), the marginal contribution of an incremental
unit of the resource stock, corresponds to the rent or the imputed (shadow)
price (net of extraction costs) of the resource stock at that time.

Similarly, W'(XT) is the resource price at time T. Thus, upon defining a

process P = {Pt; t > 0} by letting

xp(—at)V'(Xt), t <T
P =
{

XP(-GT)W'(KE), t>T,

it is clear that P should be interpreted as the discounted shadow price

process. (For convenience, we have taken P constant on [T,»)). The purpose
of this section is to show that P can be characterized in a certain way in
terms of martingales. Indeed, under stated conditions, it will be seen that P

actually is a martingale and this result will be shown to have a meaningful



interpretation.

Let G denote the operator defined in terms of differentiable f:[0,~) +E by

~CEEN () + AW (x) - £(x)], x>0
Gf(x) = {

AT(0) W' (0) =~ £(0)], x = 0.

Thus, G is the same as G in equation (4), only that W' is now the terminal reward
instead of W. Moreover, just as in equation (5), f satisfies af = Gf + g if and
only if f is the expecteq discounted reward when g is the reward rate function
and W' is the terminal reward. Therefore, by Dynkin's identity (see Dynkin
(1965), Theorem 5.1 and its corollary) or by working out the conditional
expectations, it is easy to verify that the stochastic process

M= {M;

s t > 0} defined by

ftexp(-as)[af(xs) - Gf(XS)]ds + exp(—at)f(xt), t <T
Mt = 0
éTexp(-as)[af(XS) - Gf(Xs)]ds + exp(—aT)W'(XT), t > T

is a martingale. In particular, taking £ V' gives the following result.

(9) Proposition. The process

P+ ["Mexp(-as)[aV' (X )-GV' (X )]ds
t 0 ] S

is a martingale.
Recalling that a martingale plus a constant (respectively, increasing,

decreasing) process is a martingale (respectively, submartingale,

supermartingale), one immediately obtains the next result.



(10) Corollary. 1If aV'-GV' = 0 (respectively, » 0, < 0), then P is a

martingale (respectively, supermartingale, submartingale).

Thus, the nature of the process P hinges on the sign of aV'-GV'. To
examine this function, we first look at the equation (2) which V satisfies.
Differentiating and collecting terms yields, for x > O,

*
de (x)

*
de &) puree o - v + 2 iy - v
de*

*
#2891 D (i) - v

F)
*
A (x)
ax

aV'(x) =

+

[W(x) - V(x)] + GV'(x).

*
But the first two terms on the right hand side equal zero, because c* and e
satisfy the first order optimality conditions (7) and (8), so for x > 0, it

must be that

*
X (x)

aV'(x) - GV'(x) = X

[W(x) = V(x)].
In a similar way, one can show this same equation holds for x = O.

Consequently, we have derived the following main result of this section.

(%)

(11) Theorem. If %

[W(x) - V(x)] = 0 (respectively, » 0, < 0), then the
discounted shadow price process P is a martingale (respectively,

supermartingale, submartingale).

We should remark that this derivation was made for the case where the
process X represents the stock on hand, but everything remains true with only

two modifications for the case where X represents the cumulative amount



consumed. The first modification is to change the sign of the term c*f' in
the expression for the infinitesimal generator G. The second is to call -P
the discounted shadow price process rather than P. This is because V and W
will now be decreasing functions. Thus, Theorem (11) now becomes:
*
if %%— [W(x) - V(x)] = 0 (respectively, > 0, < 0), then the discounted shadow
price process is a martingale (respectively, submartingale, supermartingale).
In the case where P is a martingale, we have E[V'(Xt)|X0=x] = oot Vi(x),
which is the stochastic analog of the well-known deterministic result
(Hotelling (1931)): the shadow price rises at the rate of discount. The
following sections will shed additional light and interpretation of our

characterization of the discounted shadow price process by examining some

specific cases.

5. Known, Fixed Resource Stock

In the rest of the paper we shall study the optimal value function V, the
optimal policies ¢* and e*, and the discounted shadow price process P for
several special cases. We begin by analyzing the benchmark case of
certainty. In this classic case studied by Hotelling (1931), the given
initial stock XO is to be consumed optimally over [0,») when no additional
stock or a substitute is anticipated, so T = © and A = 0., While the usual
approach to analysis of‘this case employs variational calculus, our optimality

equation (1) specializes to

(12) oV(x) = ng {U(c) - cV'(x)}, x » 0.

It can be shown that, with U concave increasing, the unique solution V is

concave and increasing in resource stock size x. Thus, the shadow price of



the resource, V'(x), is positive and decreasing in the amount on hand. As to
the optimal consumption rate c*(x), an interior optimum in (12) requires
U'(c*(x)) = V'(x). Thus, the marginal utility of consumption is equated with
the marginal worth of unit consumption postponed. Since, by

concavity, U'(e) and V'(e) are decreasing, optimal consumption rate c*(x) is
increasing in the stock size.

By Theorem (l11) and the fact that X = 0, we see that the discounted
shadow price is a martingale. But this case is deterministic, so P is
constant, i.e., the shadow price, V'(Xt), rises at the social rate of
discount o. By the first order optimality condition (7), therefore, the
market price, which is the optimal marginal utility of consumption,
U'(C*(Xt)), also rises at the rate of discount. This is the "fundamental
theorem of economics of exhaustible resources” and has the following economic
interpretation (see Hotelling (1931), Solow (1974)). In the competitive
resource market, equilibrium requires that the resource holders be indifferent
between supplying at different points in time. This requires that the
discounted prices must be the same at each point in time; otherwise profits
could be increased by changing the supply pattern. Alternatively, the
resource stock can be viewed as an asset and the equilibrium in the assets
market requires that all assets yield the same rate of return, equal to the
interest rate a. Hence the value of the resource stock must grow at rate a.
If it grows slower, more will be supplied earlier and the resource will be
exhausted too quickly. If the price grows at a rate faster than a, then it is
better for the suppliers to hold the stock as an investment that yields a rate
of return higher than a«. Finally, if the resource is owned by a monopolist,
the corresponding statement is that his marginal profit must rise at the rate

of interest.



Given the above price dYnamics, the optimal consumption pattern over time
can be derived. Since c*(-) is increasing in the stock size which is
depleting over time (in absence of new discoveries), the optimal consumption
rate declines through time, and under the commonly made assumption
U'(0) = ==, exhaustion occurs only asymptotically. More precisely,
since Pt = exp(-at)U'(;:) is a constant, upon differentiating with respect to

time, one obtains

.*/ * y *
Ct Ct = —a n(Ct),
where n(c) = -c U" (¢)/U'(c) is the elasticity of marginal utility. For example,

- * * -
if U(c) = c(1 €) for 0 < € < 1, then n(c) = € and hence c. = ¢ at/e

y le€s,

optimal consumption decreases exponentially. The initial rate of c; is then
o * *

chosen so that é c, dt = XO, i.e., cy = @ Xo/s.

6. Extraction of Fixed Uncertain Stock

This is the case of optimally "eating a cake of unknown size™ studied by
Kemp (1976,77), Cropper (1976), Loury (1978) and Gilbert (1979). The total
stock size is a random variable S with the distribution function F(+) and the
density function f(+), and no additional discoveriés of the resource or a
substitute are expected. The resource state X, is the cumulative amount
consumed by time t and the "event" corresponds to exhaustion, so
that T = min {t > 0; Xt = S}. In addition, the terminal reward W = 0, and the
only control variable is the consumption rate.

Given X, = x < 8, the failure rate of S is A(x) = f(x)/[1 - F(x)]. 1t
follows that if the consumption rate is ¢, = ¢, then the hazard rate of the

time of exhaustion is cA(x). Thus, the optimality equation (1) specializes to



(13) aV(x) = ng {U(c) + cV'(x) - ca(x) V(x)}, x » 0.

The optimality condition (7) now becomes

(14) = V'(x) = U'(c*(x)) - A(x)V(x), x > O.

Substituting (l4) into the specialization of (2) yields

(15) V(x) = [U(c¥(x)) - ¢ (x)U'(c*(x))]/a, x > O,

By concavity of U, the numerator on the right hand side of (15) is nonnegative
and is interpreted as the consumer surplus (i.e., the difference between the
amount the consumer is willing to pay and what he actually pays). Thus, the
optimal value of the stock is the discounted value of the current consumer
surplus. Combining (14) and (15) yields the following relationship between

the shadow price and the consumption rate when X, = x:

(16) —V'(x) = U'(c (x)) - Ax)[U( (%)) - ¢ (XU (e (x))]/an

To analyze the price process, we make the reasonable assumption that F is an
increasing failure rate distribution, i.e., A'(x) » 0 for all x, so that the
likelihood of immediate exhaustion increases as more resource is consumed.

This would be the case, for example, if S is a uniform random variable.

Ix(x,c,e)

Since X

= cA'(x), W=0, and V » 0, this means by the remark following
Theorem (l1) that the discounted shadow price process is a supermartingale.

In other words, and speaking loosely, the (undiscounted) shadow price is



expected to rise at a rate slower than the rate of discount. In fact, the
price might even fall during intervals of time. By analyzing (16), it can be
shown that the consumption rate must either always fall or first fall and then
rise over time. If the discount rate o is small (i.e., if the society is more
future-oriented), then the consumption rises through time (i.e., it is
postponed). See Kemp (1976), Cropper (1976), and Loury (1978) for details and
additional economic interpretations.

We close this section by considering a special case in which A(x) is a
constant )\ or, equivalently, when the distribution of the resource stock size
is exponential, i.e., F(x) =1 - e_Ax. From the memorylessness property of
the exponential distribution, it is clear that, given no exhaustion yet, the
optimal value V(x) is a constant V independent of the cumulative consumption
x. Hence, (13) becomes o V = M%x {U(c) - CXV} and the optimal cénsumption
rate is a constant ¢* which satisfies U'(c*) = AV. Also V = U(c*)/(a + Ac*),
which is the expected discounted utility from the constant consumption rate c*

until the moment of exhaustion. The resource uncertainty may thus be viewed

*
as raising the discount rate from o to a + Ac .

7. Exploration and Uncertain Discovery of Additional Stock

In the previous section, learning about the uncertain stock size was
accomplished through extraction alone; the probability distribution of the
stock size was then updated over time by merely using the fact that the true
stock has to be at least as lafge as the cumulative amount already
extracted. In this section, exploration is considered as a distinct activity
of learning that involves expenditures to search for and discover the
existence of additional stocks. Pindyck (1978) has considered the exploration

activity under certainty, MacQueen (1961,64) and Heal (1978) have studied



related models involving uncontrolled stochastic discoveries, while Arrow and
Chang (1980) and Deshmukh and Pliska (1980) have analyzed optimal consumption
and exploration decisions when the latter controls the uncertainty about
timings and/or magnitudes of discoveries.

In this section, X; denotes the size of proven reserves on hand at time t
and the "event” refers to the discovery of a new stock. We assume that only
one discovery is possible and it occurs at a random time T which can be
controlled through the exploration expenditure rate e ¢ [0O,e]. The
probabilistic rate of discovery A(e) is (now independent of x and c¢) assumed
to be increasing in e, with A(0) = 0. Let the nonnegative random variable 2
denote the size of the stock discovered at T and suppose H(+) is the
probability distribution of Z.

If the resource stéck just before the discovery is Xp_ = x and if the
discovery is of size Z=z, then the post-discovery deterministic problem is
that of optimally consuming the total resource stock XT = (x + 2z) on [T, =),
This problem was analyzed in Section 5; let G(-) denote the concave increasing
function that is the solution of (12). Consequently, the terminal reward at T

for the problem in the present section is

(17) W(x) = [ V(x + z) dH(z), x > O.
0

Note that W(e+) is concave and increasing with W(e) = u(e)/a.

With this W(e), the optimality equation (1) now becomes
(18a) aV(x) = ng {U(c) - cV'(x)} + ng {—e + A(e) [W(x) - V(x)]}, x > 0,

with the boundary condition c*(O) = (0 yielding



(18b) aV(0) = Max {-e + A(e) [W(0) - V(O)]}.

In Deshmukh and Pliska (1980) it was shown for a similar model (with an
unlimited number of discoveries permitted) that V is concave increasing, that
the optimal consumption policy c* is increasing, and that the optimal
exploration policy e* is decreasing., The following provides some similar

results for the present model.

(19) Theorem. The optimal value V is a concave increasing function
with V < W and V() = U(c)/a. The optimal consumption policy c* is

increasing.

Proof. To see why V' > 0, compare the two optimal control problems
corresponding to two arbitrary starting points x; < xp. Use c* starting at
X]» but use c*(x - X9 + xl) starting at xj, SO the consumption rate, and thus
the utility rate U(ct), will be exactly the same at each time until time T,
when the discovery is made. Similarly, use the optimal exploration policy e”
starting at X], but use é*(x — Xy + x;) starting at x,, so the random variable
T will be the same in both cases. Thus, the expected discounted return up to
time T will be the same in the two cases. Since Xy for the case starting at
xy9 will exceed Xy for the case starting at x; by exactly x, - x;, the terminal
reward W(XT) will be greater for the case starting at x;. Since the optimal
policy was used starting at X but not at x,, this all means V(x2) b V(xl)-
The argument why V < W is similar. Let the starting point x; be
arbitrary. In the first case, use the optimal consumption policy c* until

time T when a discovery of size Z occurs, and then use the optimal consumption



policy from the Hotelling model (see Section 5). The optimal exploration
policy e* is also used, so the expected discounted return is simply V(xl). In
the second case, start at the random level x; + Z and use the consumption
policy é(x -7+ xl) until time T, where T has the same distribution as in the
first case, but no exploration is going on here. After T, use the optimal
consumption policy from the Hotelling model. This policy is not necessarily
the optimal way to consume the quantity X} + Z, so the expected discounted
return for the second case is less than W(xl). Now, compare the two cases.
The consumption rate at each time before T is the same. At time T, the stock
level will be the same, even though the quantity Z was added at different
times, so the consumption rate at each time after T is the same. Thus, the
expectgd discounted utility due to consumption is the same in both cases. But
the first case involves exploration costs, so V(xl) is less than the expected
discounted return for the second case, which in turn is less than W(xl).

With an infinite supply of stock, the consumption policy c(s) = c yields

a return of U(c)/a. Since W(w) U(c)/a it is clear no higher return can be

U(c)/a.

achieved, so e*(w) = 0 and V(=)

To see why V is concave, suppose not. Since W is concave, V is
nondecreasing and V < W, there exist points x; < xo with W(x;) - V(x;) = W(xy)
- V(xz) and V'(xl) < V'(xz). Rewrite the functional equation (l5a) in the

form

V'(xX) = max {% [UCe) — e = aV(x) + A(e)[W(x) - V(X)]}
c,e
(see Deshmukh and Pliska (1980) for a demonstration of a similar
transformation). Now compare V'(xl) and V'(xz). Since W(xl) - V(xl) = w(xz)

- V(x9) and V(xl) < V(xz), this equation says V'(xl) > V'(xz), a



contradiction.
Finally, to see that ¢ is increasing, differentiate the first order
. . . * .
optimality condition (7) to show that V is concave if and only if ¢ 1is

increasing.

Thus, the resource stock has a decreasing marginal value, and it is
optimal to consume more rapidly at higher levels of this stock.

Unfortunately, unlike our previous model, we are unable to show that the
optimal exploration rate e* is decreasing in the level of stock. Note,
however, that with a reasonable assumption that A(+) is nondecreasing in the
exploration effort e, upon differentiating the first order optimality
condition (8), one sees that e*(x) is decreasing in x if and only if

W(x) - V(x) is decreasing in x.

In other words, higher resource levels are associated with reduced
exploration if and only if the post-event shadow price, W'(x), is lower than
the pre-event one, V'(x). This would be another criterion for saying that the
event is a favorable one. However, for a related model in Deshmukh and Pliska
(1981) we have provided a counterexample in which W > V but W' > V',

Since %% = 0, it follows from Theorem (11) that the discounted shadow
price P is a martingale, i.e., the expected shadow price rises at the rate of
discount. This is the stochastic analog of Hotelling's (1931) result
discussed in Section 5, wherein no additional discoveries were possible. Note
that if W-V is decreasing as discussed above, the discounted shadow price
process P makes a downward jump at time T. Since this process is a
martingale, this means it increases before time T in just the right way to

compensate for the jump at time T.



8. R & D and Uncertain Development of a Substitute

In the previous section, the occurrence of the favorable event of
discovery of new stock relaxed the resource constraint temporarily, that is,
it postponed the moment of exhaustion. In this section, we consider the
possibility of an extremely favorable event (a technological change) that
permanently eliminates the resource constraint as a result of the development
of a producible perfect substitute. The substitute development process may be
expedited by allocating higher R & D expenditures. The special case of
uncontrolled development was analyzed by Dasgupta and Heal (1974), Dasgupta
and Stiglitz (1981) and Hoel (1978), while Dasgupta, Heal and Majumdar (1977)
and Kamien and Schwartz (1978) have also permitted the development process to
be controlled endogenously.

Let X be the size of the natural resource stock on hand at time t and
suppose T corresponds to the random time at which the perfect substitute
becomes available. If the substitute can be produced from then on at a unit
cost of k and if Xy = x, the planner's problem on [T, =) is to determine the

substitute production rate s e[O;El and the resource consumption

t

rate cte[O,c], t » T, so as to maximize
o —qt . L
- = .
f e [U(ct + st) kst] subject to f ctdt X

T T

Let W(x) be the optimal value of this program, given Xp = x. Then, the

dynamic programming argument yields the following optimality equation
(20a) a W(x) = gag {U(c +s) — ks - cW'(x)}, x>0

with



(20b) a W(O) = ng {U(s) - ks}.

It can be shown that the optimal value function W(x) is concave increasing in
X. Optimal consumption and production rates c*(x) and s*(x) are then obtained
as the maximizers in (20) and can be characterized as follows. If W'(x) < k
(i.e., the imputed price of the resource is less than the cost of producing
the‘substitute) then s*(x) = 0 and no substitute production takes place. Also
U'(c*(x)) = W'(x), so that, as before, c*(-) is increasing. As the resource
stock depletes over time, the consumption rate decreases and the shadow price
rises at rate a (as in Section 5) until U'(c*(x)) = W'(x) = k. At that time
the resource stock is just exhausted and the optimal production rate s* from
then on is determined by U'(s*) = k, with W(0) = [U(s*) - ks*]/a.

With an infinite level of stock, it is optimal to consume at the maximum
rate c. If also U'(c) < k, then it is optimal for no substitute production to
take place, in which case W(®) = U(c)/a.

Prior to the development instant T, the control variables are c (the
resource consumption rate) and e (the R & D expenditure rate). The former
depletes the resource and the latter increases the rate A(e) of discovery of
the substitute. The resulting optimal value function V then satisfies the
same optimality equation (18) as in the previous section, except now W(e+) is
given by (20) instead of (17). The same kinds of results can be obtained,
namely, if U'(¢) < k (so W(») = U(c)/a), then V is concave increasing
with V < W and V(») = U(c)/a, and the resource consumption rate prior to
discovery 6f the substitute is increasing in the resource stock. The only
difference from the proof of Theorem (19) is the argument why V < W.

Briefly, in the first case you start at X1 and use the optimal policy both



before and after T, so the expected discounted return is V(x;). In the second
case, you start at x; and use exactly the same consumption policy, but do no
substitute production, before T, and then you consume and produce the
substitute in the same way as in the first case. Thus, the expected
discounted return in the second case is greater, because there are no R&D
expenditures, Finally, upon considering the problem corresponding to (20),
one sees that the expected discounted return for the second case is less than
or equal to W(xl). Unfortunately, again we are unable to demonstrate

‘that W' < V', so that the optimal R&D expenditure rate is decreasing in the
level of stock.

As to the prices, since = 0, the discounted shadow price process is

X
again a martingale. If at the time of invention of the substitute X; = x,
then the undiscounted price changes from V'(x) to W'(x). Then it rises at
rate a until it becomes k = W'(0) and stays at that level from then on.

In summary, as the resource level falls over time, the stock price rises,
the consumption rate is reduced and the intensity of the R & D activity is
increased until a substitute is discovered. At that time the stock price
changes, the consumption rate is increased and R & D expenditures bécome
unnecesSary. Then the price rises and only the resource is consumed until it
is exhausted. At that point, the resource price just equals the cost of

producing the substitute. From then on, the constant rate of consumption is

sustained only through the substitute production.

9. Remarks
We have presented a general model of natural resource decisions that
involves uncertainty regarding the time of occurrence of some significant

event of interest. The consumption rate decision depletes the resource stock



and the exploration rate decision expedites the occurrence of a favorable
event. Dynamic programming and probability theory were employed to
characterize the optimal value function, optimal decision policies and the
behavior of prices. The model was then specialized to the analysis of three
cases involving the events that are most unfavorable (exhaustion), somewhat
favorable (discovery of a new stock) and most favorable (development of a
substitute). The analysis was mostly heuristic and the emphasis was on
intuitive arguments and interpretations rather than on the technical details
involved. The related literature was also reviewed within the context of the
genefal model and its four special cases.

The model could be extended along two significant directions. It may be
important to allow for the possibility of occurrence of multiple random
events, such as a sequence of discoveries of new stocks (as in Deshmukh and
Pliska (1980)) or a sequence of partial substitutes developed. Secondly, the
probabilistic rate of occurrence of the events should depend not only on
current decisions but also on some aspect of the environment and the past
history (such as the time elapsed, the cumulative amount of stock discovered
or the cumulative R & D expendutures) which may expedite or delay the
occurrence of the event; we have incorporated such factors in a model
involving discoveries of new stocks and a random environment in a companion

paper (Deshmukh and Pliska (1981)).
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