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ABSTRACT

This paper is concerned with the formation of production plans by
multi-product firms that face a stochastic technology. Two types of
planning under uncertainty are considered: informed planning and dynamic
informed planning. The first case represents static plans formation
wherein inputs must be chosen before a random variable is revealed, but
output decisions can be delayed until the state of nature is known. In the
second case the firm progressively learns about the state of nature as it
produces. Moreover, it can use resources to adjust the distribution on the
state of nature. In both cases we show that a nondynamic expected
technology exists that embodies all relevant information for plans
formation. Implications for duality theory, econometric studies of
technology and models of the firm with expected vs. actual supply are

discussed.






1. Introduction

This paper is concerned with the formation of production plans by
multi-product firms. Specifically, we will characterize plan formation for
the case wherein the firm's technology is stochastic. This is in contrast
to much of the literature, which has exhaustively examined problems 6f
randomly varying output in terms of external factors: random demand or
random input prices (see, for example, Sandmo [1971]). In the case at hand
randomness in output will arise from purely internal reasons: the techno-
logical relationship between inputs and outputs (and amongst inputs and
outputs) will be viewed as depending on an unknown state of nature.

Previous literature is sparse. Rothenberg and Smith [1971] provided a
general equilibrium notion of stochastic prices arising from stochastic
inputs faced by the firm. Feldstein [1971] and Olivera [1973] have con-
sidered the one-ouput stochastic production problem. Henn and Krug [1973]
consider multiple cutput stochactic production correspondences, but do not
couple the analysis with the firm as expected profit maximizer so as to
derive a characterization of production plans. Mak [1981] has developed a
notion of a "confidence indexed production correspondence" for a stochastic
technology. EHEe provides a model of production plans in the one output case.
Finally econometricians have, for some time now, been attempting to me;sure
various types of inefficiencies in a stochastic technology framework (see,
e.g., Aigner and Schmidt [1980].

No one, however, has formalized these notions in a model of a multi-
product firm that gives rise to a characterization of plans (i.e. planned
levels of output andvinput purchases). Since firm supply (and general firm
behavior) depends upon costs incurred, and these in turn depend upon commit-

ments made to purchase inputs, a formal characterization of output/input



plan formation is clearly called for. Moreover, none of the above papers
has considered the firm is a general stochastic, dynamic environment where
resources can be used to influence the distribution of the state of nature
as well as produce output.

To say that a firm chooses levels of inputs and outputs (i.e. sets
plans) so as to maximize expected profits presupposes a notion of what to
take a mathematical expectation over. This, in turn, hinges on when and how
randomness enters the planning process. In what follows we will consider

two cases:

(1) Informed planning, wherein the random variable is observed

after choosing inputs but before picking the output mix.

(2) Dymamic informed planning, wherein the random variable is

sequentially revealed and wherein resources can be used to
adjust the distribution on the state of nature as well as

produce output.

In section two we consider the first case, developing a notion of
static plans. We show how to construct the expected transformation function
and we explore the duality between stochastic technology and revenue. We
show that, in a certain sense, the introduction of randommess into the
technology requires the employment of a nonsymmetric duality.

Section three considers firms in a dynamic, stochastic environment.
Here we find that all relevant (i.e., to plans formation) information about
the firms technology and optimal choices can be captured by a deterministic,

static representation. Finally section four provides a summary and conclusions.



2. Stochastic

Technology and Production Planning

2.1 Stochastic Technology

. . . 1 n m .
We consider a firm that uses inputs x&R, to make outputs zeR+ according

. . n
to the state of nature weQ). Inputs are purchased at given prices qsr++

while outputs are sold at given prices psrT+. The firm's technology is

summarized by the function T: RT X Ri x Q@ ===> R and is written as T(z,x,w).

Definition 1

We assume

Let W(x,w) = {zeR]| T(z,x,w) < 0} for xeR), weQ. W(x,w) is

called the set of feasible outputs for the pair

(x,w)e Rf x Q. The firm's production possibilities set is

Y = {(z,x,w)eRT x Rz x Q| zeW(x,w)}.

the following properties for T(z,x,w) and W(x,w):

Al. W(x, w) is a non-empty, compact, convex subset of RT for
each (x,w)st x Q. Moreover, W(x,w) ¢ A(x) szQ where A(x)
is a compact subset of RT.

Y
A2. W0, w) = {0} we Q.
2 v -

A3. T(-,-,w) € C7 "weQ, Vzl(z,x,w) > 0, VXT(z,x,w) <0
Vi(z,x,w)eY.

Ab. V(x,w)s Ri x O, Vzl, z2 eW(x,w), zl¢ z2 such that

1 2 1 . 2
T(z ,x,w)=0=T(z",x,w), VZT(z , %, W) # VZT(z , X, W) .
1 _k k . k k .
R, = {xeR lxi > 0, i=1,...,k}, R, = {xeR Ixi > 0, i=1,...,k},
k _ k _ kK _ .k k
F+ = {st+lei =13}, F++ = R++ n F+



Condition (1) states that level sets in the output space are convex, non-
empty and compact for each (x, w) in Rz x Q; this is a regularity condition.
Furthermore, condition (1) eliminates certain pathological cases that might
imply unbounded output for a finite input level. TFor example W(x,w) =
{zaRTl z'z { x'x/w}, we(0,1] is eliminated, since it would imply that there
exists weQ that allows arbitrarily high production levels for finite x.
Condition (2) implies that positive output cannot be produced if all inputs
are zero. Condition (3) is an efficiency of production condition; for
efficient production T(z,x,w) = 0. Also, the transformation function is
twice differentiable in x and z. Condition (4), along with (1) and (3),
implies that the transformation surface in RT is strictly concave and that
each point on the surface has associated with it a unique gradient. Figure

1 represents the feasible output sets for w,, w, €, m = 2, and for a given

1
level of inputs gaRz.

Finally, we assume (A5) that the state of nature is an element of a
probability space {Q,A,P} where A is a o- algebra on sets of Q and P is a

probability measure.

For convenience we shall refer to {T,P} as the technology structure

since the notation carries all the relevant information about technology,
namely the transformation function T(z,x,w) and the probability measure P.

2.2. Informed Plans

As stated above, this case corresponds to sequence: choose x, observe
.. . . . ™
w, choose z. Thus, maximization of expected profits for given (p,qle ++xr++

is expressed as

A - [}
max E[mgx P'z - q'x].

S.T. {T,P}
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The inner-most problem is straightforward: for given x and W we wish to

find a solution to the following problem:

max p'z - q'x

S.T. T(z,x, w) < O.
This first order conditions imply that
P=H VZT(z,Q, w)

0 at the optimal =z.

1l

where the multiplier p satisfies MER  and PT(z,x,w)
Note that, in fact, p = p(x,w) since changing x and w can result in a dif-

ferent multiplier. Since the expectation is taken over values of w, we know

that for a given Q, the first order conditions imply
= : = v
p = p(x,w) VZT(z,x,w) we .

Hence, for each wo,wlsQ, optimality is characterized by equality of the
marginal rate of transformation (MRT) over states of nature, i.e.
BT(z,x,wo)/azi 3T(z,x,w1)/8zi

= = = i,j
BT(z,x,wo)/azj 3T(z,x,w1)/azj

Thus the expectation can be viewed as being taken on a path segment in
output space of constant MRT; this is illustrated in Figure 2. The figure
shows two transformation surfaces for given input level x and states of
nature W and w, . The two points z1 and 22 have equal MRT. As a function
of the probability measure P (and assuming Q = {wo,wl}), the expected output
would be some particular convex combination of z1 and zz. By varying the
MRT (or, equivalently, the price vector p), a surface in RT is traced out

that relates input level x to expected (or planned) output {, which we will

refer to as the planning surface t({,x). The planning surface can then be
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used in conjunction with a given set of prices p and q to provide an optimal
informed plan ({*,x*). 1In this sense T({,x) acts like a standard transformation
surface in the deterministic case.

To make the foregoing more precise, we define W(x,w) as the comprehensive set

associated with W(x, w) (ﬁ: Ri x Q -=) Rm):

ﬁ(x,w) = {zale q z' ) z}.

z'eW(x,w)’

To construct W(x,w), we simply pick points in W(x,w) and then take all
vectors z that are less then or equal to the picked point. This extends
W(x,w) to all of R™. It is trivial to show that ﬁ(x,w) is convex and that
it contains the negative orthant RT.

Let
Y = {z: Ri x Q --> RTi z is P-integrable and z(x,w)sﬁ(x,w)}

i.e. ¥ is the set of selections from W(x,w (i.e., random variables) that are
P-integrable. The integral of the sets Wix,w) is W(x) (see, for example,

Hildenbrand [1974]):

W(x) = f ﬁ(x,w)P(dw) = { [ z(x,w)P(dw): ze¥};
9] Q

Moreover ﬁ(x) is convex. Furthermore for all psrfz

sup{p'@l@sﬁ(x)} = { sup {p'ylysﬁ(x,m)}P(dw),
Q

i.e. the surface of ﬁ(x) is a convex combination of points of equal MRT
drawn from the surfaces of the sets ﬁ(x,w). Since we are only interested in

nonnegative plans, we define W(x), the set of expected outputs as

W(x) = {LeR] | Le W(x)}.



Since ﬁ(x) is convex, so is W(x). Figure 3 illustrates W(x) for a two state

example. The surface of W(x) is the planning surface and is recovered as

follows. Let, for ({,x) € RT X Ri:

D(¢,x) = min {A8R+| C/aew(x)},

- . . m n
and define the expected transformation function T1: R+ X R+ --> R as

T(¢,x) = D(,x) -1

Defirnition 2 ({,x) ¢ RT X Rz is a feasible informed plan

if  1(g,x) 0.

As an example of finding T({,x), let W(x,w) be defined as follow:

W(x,w) = {zaRT | wzzi + zz - x2 < 0}.

Moreover, assume P is the uniform density on the interval [a,b], b>a)0.

With some effort, it can be shown that

% .5 .5
t(€,x) = Cl- =3 In [b(u; + u,)/ale, + u3)] -

where
u, = C;(b—a)2 + x4(b+a)2 - 2X2C§(b2 + a2)’
4, = xz(b+a) - Cz(b‘a)

and
u, = xz(b+a) + C;(b~a).

While not transparent, 1({,x) has output level sets as indicated in Figure 3.
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Finally, to construct optimal plans, we return to our original expected

profit maximization problem which is now expressed as:

n(p,q) = max max {p'{ - q'x | ©(f,x) {0}
X g

The function n(p,q) represents expected profit and thus is non-stochastic.
Following standard theory we have the following result via Hotelling's Lemma

(see Varian [1978]):

Theorem 1 The optimal informed plan is the m+n vector (L*,x*) where

&*(p,q) Vpn(p,q)

i

x*(p,q) —an(p,q)-

2.3 Stochastic Duality for the Informed Planning Case

Duality relationships between production, cost and profit functions are
well established for the deterministic case (see Fuss and McFadden [1978] or
Shephard [1970]). When randomness enters the picture, a new level is added
to the potertial dual relationships. One might consider duality relationships
between a stochastic technology description and a stochastic cost or profit
function, and one might also consider duality relationships between the
expected technology and varicus cost or profit functions.

Depending upon the source of the randomness, complete duality relation-
ships may, or may not, be describable. We will examine duality at both the
stochastic and expected levels for a firm facing a stochastic technology
T(z, x, w), a probability measure P, kno;n input prices q and known output
prices p. In general we will find that duality is incomplete: stochastic

duality does not give rise to an expectational duality, except in special

Cases.
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2.3.1 Incomplete Duality

The firm faces a stochastic transformation function T(z, x, w), prob-
ability measure P, output prices p and input prices q. Define the stochastic
distance function D(z, x, w) as

D(z, x, w) = {min A | T(A—lz, x; w) < 0}.
A0
D(z, x, w) is non-negative, continuous, convex, positive linear homogeneous
(PLH) function of ZSRT (Fuss and McFadden [1978]). D(z, x, w) = 1 describes

points on the surface of W(x, w) while D(z, x, w) < 1 describes points in

“the interior of W(x, w):
W(x, w) = {z € R, | D(z, x, w) < 1}.

Dual to D(z, x, w), for given x and w, is the stochastic revenue
function R(p, x, w):
R(p, x, w) = {max p'z | z € W(x, w)} = {max p'z | D(z, x, w) £ 1}
z z
. . ] . . 2 ,
This function is a non-negative, continuous , convex, PLH function of

£ rm. Since W(x, w) is convex, there is a one-to-one correspondence
+ ? ’

between W(x, w) and R(p, x, w), i.e. given R(p, x, w) we can recover W(x, w).

To be more precise, continuity is on the interior of the domain, but
extension to the boundary is often performed (see Blackorby, Primont and
Russell [1978]). To simplify exposition we will simply use the word
continuous, since the issues to be discussed do not concern jumps at the
boundary.
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The expected output set W{(x) is derived as before:

W(x) = [ W(x, w) P(dw)
Q

and, the revenue function associated with W(x), namely R(p, %) is sinply

R(p, x) = {max p'CT | § ¢ W(x)}.

R(p,x) is the integral of the stochastic revenue function, i.e.

R(P, X) = f R(P) X, UJ) P(dw)’
Q

. . . . m
and is thus a non-negative, continuous, convex, PLH function of p ¢ r+.
From standard duality theory we know that dual to R(p, x) is a distance
functicen on W(x) which we denote as D({, x):

D(Z, x) = {min A | §/A & W(x)}.
A0

Unfortunately, in general, D({, x) is not the integral of D(z, x, w),

D(¢, x) # f D(z, x, w) P(dw).
Q

This is because the construction of W(x) involves picking the "right" random
outputs z(x, w) (those of equal MRT) and integrating them to provide expected
output. To see that the integration does not hold, consider the following

two-state stochastic technology:

T(z, x, w) = (1 + wzs + (2 - Wz, - x,
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w =0 or 1 with equal probability. For fixed x, the output sets for the two
states of the world are symmetric about the 45° line. It is easy to show
that Cl = Cz = J3/8 x belongs to the surface of W(x) (by letting P, =P, =
1/2 and solving) and that T(J378 x, 43/8 x, %, w) > 0 for both states of the
world, i.e. D(z, x, w) > 1 at z = (J3/8 x, J3/8 x). Thus, integrating tke
stochastic distance function does not provide the expected distance function
D({, x) since D(Z, x) =1 at & = (J378 x, 378 x).

Figure 4 illustrates the results described above. T!e horizontal lines
represent duality relationships that come from standard (deterministic)
analysis. The one vertical arrow reflects that only the revenue function

integrates to a function of interest. The duality is incomplete in the

sense that D(z, %, w) does not, in general, integrate to D({, x).

2.3.2 Completing the Dualjity: State-Homothetic Technology

The fact that the standard distance functions do not integrate in
general does not mean that it is impossible to find special classes of

technology with distance functions that do. Consider the following definition3:

Definition: The transformation T(z, x, w) represents a state-homothetic

technology if there exists a function ¢: Q ~» R++ which

attains a minimum at wo £ Q, with ¢(w0) = 1, such that
T(z, x, w) = T(z/dWw), x, wo).

Thus, a state-homothetic technology is one wherein, for fixed input level x,

points on the transformation surface associated with state w are simply

3 Spady {1981] uses a similar definition (for the single product case)
to consider econometric estimation of distance function for firms
that imperfectly optimize.
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{max p'z | R(p, x, w) < 1}

D(z, x, w) . R(p, x, w)

fmax p'z | D(z, x, w) < 1}

J R(p, %, w) P(dw)

fmax p'C | R(p, x) £ 1}
P

D(E, x) | R, x)

{mzx p'C | DL, x) < 1}

FIGURE 4

Incomplete Duality for Stochastic Technology
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fixed ray expansions of points on a reference surface (state wo). In fact,

it is easy to show that:
Wix, w) = ¢(w) W(x, wo).

Note that this implies that MRT is preserved along rays from the origin.

Let

D(z, x, w) = {max o | T(oz, x, w) < 0}
o>0

and let

D(¢, x) = {max 0 | o & W(x)}
o>0

For fixed x and w, D({, x) and D(z, x, w) are non-negative continuocus,
PR . . m
concave positive homogeneous of degree minus one functions of { ¢ R+ and

z & R? respectively. Moreover:
D(z, x, w) = 1/D(z, x, w)
and
Bet, 10 = 1, 0.
The following theorem provides completeness for the duality.
Theorem 2: If T(z, x, w) is state-homothetic then

D(L, x) = f D(L, x, w) P(dw).
Q

Proof: It is easy to show that

ﬁ(z, x, w) = d(w) ﬁ(z, X, wo)
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and therefore

f D(z, x, w) P(dw) = D(z, x, wy) f $(w) P(dw)
Q Q

Note that:
R(p, x, w) = {max p'z | D(z, x, w) < 1}
z
= {max p'z | D(z, x, w) > 1}
z
= {max p'z | ®w) D(z, x, w,) > 1}
z
= @) {max p'(z/¢w)) | D(z/¢Ww), x, wy) > 1}
z
= &) R(p, x, wo).
Hence,
R(p, x) = J R(p, x, w) P(dw)

Q

R(p, x, w.) [ ¢(w) P(dw).
" o

To retrieve D(z, %, w) from R(p, x, w) we construct it as follows:

D(z, x, w) = {max p'z | R(p, x, w) { 1}
P

D(z, x, wy)/®(w)

which corresponds to ﬁ(z, x, w) = ¢&(w) S(z, X, wo) since 5(2, X, W)

= 1/D(z, x, w). Similarly

D(¢, x) = {max p'l | R(p, x) £ 1}
P

= D(L, x, wo) /J @(w) P(dw)
Q
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which corresponds to 5(@, x) = 5(@, X, wo) J ¢(w) P(dw) since
Q

D(¢, x) = 1/D(E, x).
Figure 5 illustrates the extension of the relationships in Figure 4

and the resulting completion of the duality relationships.
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3. Dynamic Informed Plans

We now consider a very important generalization of the previous case.
In the preceeding analysis the firm knew the realized state of nature before
it had to choose the mix of outputs to produce. Once the state was known
there was no uncertainty as to what the firm could produce for the period
even though production had not begun. Casual observation would suggest that
this is the exception and not the rule. A more realistic representation
would treat the problem of incomplete information concerning the state of
nature, both at the begnning of the production process and throughout the
production period. Intuitively, we think of the firm as planning weekly
production while producing on a daily basis. The state of nature for the
reek is a vector of the states of nature that occur each day of the week.

On Monday, the firm sees the realized state for that day and produces
accordingly; but the firm does not know what states of nature will obtain
through the rest of the week.

An obvious response of a firm is to apply resources to control the
production process; i.e. aiter the distribution of later states of nature.
The use of resources both to produce daily output and control future pro-
duction clearly separates this case from the previous one; in section 2, no

control was needed.

3.1 Dynamic Production and Control

We will formalize this scenario in the following manner. We assume
that at the beginning of the production period, the firm signs contracts for
a fixed level of daily services and a fixed stock of resources. Furthermore
we explicitly rule out the possibility of purchasing (or selling) resources
on a daily basis. Thus, in the middle of the production week the firm

cannot buy or sell resources on a spot market.
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Let X, be the quantity of "flow" resources (i.e., services) contracted
for at the beginning of the week and let Yo be the stock of materials
purchased. On day t, the firm must choose a level of services xp and
quantity of resources yp to be used for daily production. We assume that
given the allocation xp and yp, today's production possibility set is
independent of past production levels. and is specified by the daily pro-
duction relationship T{(z,x ,yp,wt) < 0 where we is the state of nature4 on

p

day t. The remainder of the flow services Xc =%y - xp is used for control
along with the allocation of stock inputs Voo The control technology and
the evolution of the daily states of nature are specified by a transition

probability function P(w,w';x —xp,yc) which gives the probability that

0
tomorrow's state will be w' given that todays state is w and control re-
sources X, - xP and y. are used. We assume that (x, y) » P(w, w'; x, y) is
. 5
continuous.
Let r(p,xp,yp,m) be the value of maximized revenue given the vector of

prices p, the state of nature w and the use of productive resources XP and

YP-

r(p,xp,yp,w) = max Pz (1)

ZSW(XP,YP,UJ)

To aveid measurability problems, which are tangential to the issues
we want tc address, we assume that Q is countable. Extension to

? uncountable merely complicates the exposition without contributing
to the analysis.

In general let f: r" x " - Rk. The notation "x ~» f(x,y) is

continuous™ is a shorthand for "f(x,y) is continuous in x for
each v."
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The assumed properties of w imply that (p,xp,yp) > r(p,xp,yp,w) is continuous,
and p r(p,xp,yp,w) is convex. Let v be the initial distribution on the

states of nature. The planning problem that the firm faces given x . and Yo

0
is to pick sequences of allocations {xp(t)}, {yp(t)} and {yc(t)} that

maximize expected profit over the T period planning horizon, subject to

resource restrictions. This is expressed as follows:

T
max ZV(wl) E { 2 r(p,xp(t),yp(t),wt)} hul, xp(l), yc(l)

wl t=1

T

S.T. til vo(8) +y () Ly

xp(t) < X,

xp(t), yp(t), yc(t) >0

where

WG (0,3 () ,m)) = {2eRiIT(z,x (t),y (£),w) < 0}

p

x . Notice that a zero

As before, we assume that (z,xp,yp) > T(z,x_,y ,w) is continuous and that

+ 2R

W(xp,yp,w) is convex for all (x,y,w)eRz x R
salvage value is attributed to unused resources.

The problem for the firm represented by (2) can be solved via dynamic
programming. The optimal use of resources (productive flow resources,
productive stock inputs and control stock inputs) is then specified for each
date t, each state of nature w and each level of unused stock resources u.

Thus, for (x )eRz x RT given, the firm searches for a strategy

0’ Yo

$: {1,..., T} x Q x Rz > Rin via the following recursion formulation which

is equivalent to (2):
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Vt(u,w;xo,yo,p) = max {r(p,xp,yp,w)

+ i' Vip (0¥, 7y o0 3X:Y,P) Plw,w ;xo-xp,yc)}

S.T. (3
(xp’yp’yc)g E(Xoyu)

VT(u’w,;XO’YO’p) = r(p’xOSU’w)
where
Bx.,u) = {(x ,y ,y )eR" | x (x., v +y < ul
O’ P) p7 C + P 3 0’ p C _

Thus, Vt(u,w;xo,yo,p) is the expected optimal revenue from date t to date T,
given that date t's state is w and there is u unused stock resources. The
strategy 8 is aAfunction mapping period, state of nature and level of unused
stock resources into a trajectory of allocations of productive (xp and yp)
and control (yc, and implicitly, xo—xp) inputs. We have assumed that

(x,vy) > r(p,x,v,w) and (x,y) > P(w,w';x,y) are continuocus. Thus

u > VT(u,w;X,y,p) is continuous and if we assume that u ~» Vt+1(u,w;x,y,p) is
also then

v v _ - ant . - rs Y, - 7
r(p,x ,y W) * i' Ve (0,73 oW5x0, v, PIPW,whsxpmx by ) (4)

is contiruous in u. Furthermore since u g y u) is compac

O)
valued. Thus a maximum exists and, by the Berge Maximum Theorem (Berge
[1963]) the maximized value of (4) is continuous in u. The induction
argumeat thus shows that: 1) the value functions Vt exist and 2) the

optimal strategy exists. We further make the assumption that the optimal

strategy function $*(t,w,u;x0,y0,p) is single valued.
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Notice that the vector of unused stock resources at time s, U, is a

. s-1 .
function of the state-of-nature vector w = (wl,...,ws_l) given the

feasible strategy 8 (of course feasibility of $ makes it a function of X

and yo) :

-
i

yO - sy(l)wl)yo) - sy(zytuzryO_sy(lywlﬂyO)
etc., where

s(t,w,u) = (B, (t,w,v), $y (t,w,u), Sy (t,w,u))
P P c

and

8 (t,w,u) = 8 (t,w,u) + §_ (t,w,u).

Y ¢
Thus, for a feasible, single-valued strategy $, the beginning-of-the-week
revenue R(xo,yo,p,S) is given by the following:

R(xo,yo,p,s) =2 n(wl)Es {til r(p,$p(t,wt,ut),wt)} lwl,u1 =Y, (5)

where E, indicates expectation given that the control strategy is defined by

:
8.
The set of feasible outputs at date t is determined by the strategy
. t
function B, the vector of states of nature w = (wl,...,wt) and the state of

6

Also, for counvenience, let $P(t,w,u) ($x (t,w,u), $y (t,w,u))

P P
and $c(t,w,u) = (xo - Sx (t,w,u), $y (t,w,u))
P C
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nature for date t, w, . The strategy function g relates todays uncertainty
and available stock resources (u) to an allocation of resources to production
and control. The availability ofvthe resources themselves are a function of
the vector of states of nature wt~ through the strategy function &.

Finally, output is influenced by todays uncertainty w, - This will be

. t
capsulized by denoting the set of feasible outputs at date to by Wt(b,w ).

where

t - £
W (8w = W, (e ,u), Syp(t,wt,ut), w ).

0f course since u, is a function U of t, the vector of states up to t (wt_l)
and the strategy @, we have
, t t-1 t-1
W (Bow) = WS, (L, UCw” 7,8)), S (tuw,,0(tw 7,8)), w),
P P
random output is
-  t
zt(p,w ,D) = arg max Pz ,
t
zewt(S,w )
and aggregate output for the period is
T < t
z{(,w ,p) = % Zt(S,w »P)
t
Given the strategy 8, the probability that wt will occur is
Pty = mw )P, ,w 38 (1w ,y)) Pl ,w ;% (t-1,w _,u_.) (6)
1 1°72° 27100 t-1""t’"¢ TTe-17 -1

and thus expected revenue can be written as:
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R(xoyyoypas) =
t

H M

S 3 -3 Pt(wt) max Pz 7)
W, w

w

1 1 72 t

zeW_($,0")

In 2 manner similar to the discussion in section two, we can integrate over

the sets Wt(S,wt) to produce Wt(S):

W) = 33 PR@h) W (8,wh)
Wi %

and thus (7) becomes:

T
R(x),y,,P,8) = til max 14 (8)
LeW (8)
= max p{
€ e W@ (9)

where

W(8) = 3 W (8).
t

Evaluating W at the solution,S*(xO,yO,p), of the dynamic program, define
WE(x,,Y:P) = W(B*(x),y,,P)) (10)
and

R¥(x,y,,p) = max p{ 2 R(xy,v,,p,8) (11)

Cew‘k (XO 7y0 ’p)

for any other feasible strategy 2.
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In general, S* is a function of p and hence W*(xo,yo,p) will depend
nontrivially on p. Thus, W& reflects more than simply the technology of the
firm. Due to the multi-period nature of the analysis, W* also reflects the
prices that output can be sold for. Except for this dependence, the expression
in (11) looks remarkably like the static case discussed earlier in section
two. It is this dependence on the output prices that we will now examine.
We shall find that (11) can be rewritten into a form wherein prices only
appear in the objective function.

Before reexpressing (11) we first examine the function p = R*(XO,yO,p)
and the correspondence p W*(xo,yo,p). Properties of these correspondences
are provided by the following lemma

Lemma 1: W+(x ,p) is a continuous, compact, convex valued correspondence

0°Y0
in p and R*(xo,yo,p) is a continuous function of p.

Proof: Recall from above that

M

t, t .- t
Zoeex POV (8% (x,,y,,p),w0).

1w )
1 n

We(x, .¥,,p) =
0°70 .

Recallin; that, for a feasible strategy B,

W (8,u") = W(Sxp(t,wt,U(t,wt_l,S)), syp(t,wt,U(t,wt‘l,s)), w,)

and

B, (tw ,u) {x, g (t,,u) Ly,

i S o
yP

Then

W (B,w0) < W(x ).

0 Yo%t
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Since W(x,y,w) is compact and is contained in a compact subset of RT for all
w, we know that W*(xO,yO,p) = w($*(x0,y0,p)) is compact-valued.

Since (x,y) - T(z,x,y,w) is continuous then (x,y) > W(x,y,w) is a
continuous correspondence. Moreover, since p - r(p,xp,yp,w) is continuous,
so is p > VT(u,w;xo,yo,p). Again, using and induction argument as before:

P> x(poxy,ypw) * i, Ve (WYY oW,V PIP0,Wh X~ 5y )
is continuous for all t. Thus, since P* is the maximizer it is upper
hemi-continuous due to the Maximum Theorem. Since $* is assumed to be
single valued, p - 5*(t,w,u;x0,y0,p) is a continuous function. Note that date
t's production possibility set at the optimum allocation is a function of p
through the continuous function S$%, and hence date t's production possibility
set is a continuous correspondence of a continuous function and hence a
continuous correspondence in p. Finally, W*(xo,yo,p) is a weighted sum of
continuous correspondences where the weights are continuous functions of p.
Thus p - W*(xo,yO,p) is a continuous correspondence in p that is compact and
convex valued (due to the assumptions on W(x,y,w)). Applying the Maximum
Theorem to R*(xo,yO,p) we see that p - R*(xo,yo,p) is a continuous function,
and thus the lemma is proved.

At this point, we have established that the optimal expected revenue
can be expressed as a maximization over a nonstochastic "feasible production
set" that is a function of p. We next establish the analogy with section
two: optimal expected revenue can be expressed as a maximization over a
nonstochastic feasible production set which is purely a function of X, and
Yo Moreover, we will then show that this set is (in an appropriate sense)

an envelope set of the W*(xo,yo,p) sets.
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First, define ﬁ(xo,yo) as follows7
W(x ) = {£eR™|pt < R¥(x ), pel™}
O!YO N ‘+ P.> N O’Yo!p » P +3°

We now prove Lemma 2.

Lemma 2
R¥(x,y,¥4,p) = max  pl
Proof
Clearly ﬁ(xg,yo) is compact and convex, and thus
I-{(XO;YO,P) = max pg

is well definad with p » R(xo,yo,p) continuous, homogeneous of degree one

and convex. If Ecﬁ(xo,yo) then for all p
e N >
pL  R*(x,,¥,,D)

and in perticular

p) = max bt < R¥(xg,v,,p)

LeW(xy,v,)

Now consider 2n arbitraxy posff and Coaw*(xo,yﬁ,po). By the definition of

S o m i .
R (xo,yo,po), pOCO {R ‘XO’yO’PO)' Let p18F+ be another price vector. Then

7 . . . S s .
As was mentioned in section 2.3 above, this is more rigorously

done by defining the set for pCFT+ and then extending the definition
by continuity.
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Pty {max  pC

cew'r(xo )yO ’po)

max p1§
Cew (B~ (x,¥4,P))
_<_ max Plc = R-"‘-(Xo)yO ’pl)

LeW (87 (x,7,50,))

Thus PICO g_R*(xo,yo,pl) and since p, was arbitrary pco < R*(xo,yo,p) for

all perT. Since CO was picked arbitrarily, we see that
w‘k(xo )yO )po) _(_: W(XO )}10)
and, since P, was arbitrary:

. - v
WE(x,,Y45P) S W(xg,v,) pel’, .

N

Therefore

R*(x,,y,,P) = max 14
Cew (x(,¥»P)

max p

I

LeW(x,y,)

ﬁ(xo )yO )p) _é R_k(xo )yO )p)
from above. Therefore, the lemma is proved:

R*(Xo’yO)p) = max pC‘

Esﬁ(x )

0’Yo

Lemma 2 provides an indirect method of construction for the nondynamic,
nonstochastic feasible production set. It is indirect in the sense that the

sets W*(xo,yo,p) are used to construct R*(xo,yo,p) which, via standard
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duality theory, should be dual to a distance funclion representing a pro-
duction set (namely Q(xo,yo)).
What is the direct relationship between the W*(xo,yo,p) sets and

W(x ,yo)? We shall find that W(x ) is essentially an envelope of the

0 0’70

w*(xo,yo,p) set, as p is varied and that

W(xo,yo) = g W“(xo,yo,p)

. . n . .
where the union is over psrj. To prove this we need the following lemma to

show that U ﬁ(xo,yo) is closed (this is not trivial since TT is not finite).

Lemma 3

p - W*(xo,yo,p) continuous implies that UW*(xo,yO,p) is closed.

Proof:
Let {Cq} be an arbitrary sequence in U W*(xo,yo,p) with

1Y
Cq > ¢ € RT. We need to show that §O e U W*(xo,yo,p). Since
Cq e U W*(xo,yo,p), Qq £ W*(xo,yo,pq) for some pq. The sequence pq is

p
A m
contained in r+, a compact set, and hence has a convergent subsequence

n n n
qn q ),

and

m n n .
p Py & I'y- Then we have g4t cO’ P2 Py ¢ e W“(XO,YO:P

by continuity, { is an element of W¥(x

0 O,yo,po), a subset of U hﬁ(xo,yo,p).

We now employ the fact that U W*(xo,y,p) is closed to provide the

p
following theorem.

Theorem 3

If §* is single valued then

W(xo,yo) = g W“(xo,yo,p).
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Proof:

As was shown in Lemma 2,

. - v m
W (x,,545,P) € W(x,,y,) pel’,

and thus

U Wo(x,,¥5,P) € W(xy,y,)-

p
We wish to show the reverse so as to prove the theorem. Thus, pick a point
EO 2 0 not in U W*(xo,yo,p); we will show that it is also not in W(xo,yo).

p
For a given € > 0 define the price correspondence m by

n(p) = {HSFTI HCO >nf + g for all Cs&*(xo,yo,p)}.

If n(p) has a fixed point (i.e., p*srT such that p*en(p*)) then we know

that p*§0 > R*(xo,yo,p) and thus CO £ W(xo,yo).

Recall that FT is a nonempty, compact, convex set in RT and that n is a
correspondence from FT to FT. From its definition it is clear that m is
convex for all psrT. Next we show that it is nonempty. From Lemma 3

U W (x
p

O,yo,p) is closed and thus its complement in RT is open (in RT).

Thus there is an open ball around §O which is contained in the complement
of g W“(xo;yo,p), i.e., there exists € » 0 with 0 { ¢ { min {Coi:coi > 0}
such that we construct the vector {:
{ coi T E if Coi 2 0,

0 otherwise,

which is nonnegative and in the complement of U W*(xo,yo,p), and thus (for
p
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arbitrary psrf) outside of W*(xo,yoy,p). Since H*(XO,yO,p) is convex, there

. m
ex1sts_nsr+ such that

ng> ng TVvé',EW""‘(XO,‘yo ,P)-

Let A = {iléi > 0}. By construction A is nonempty and, moreover, X moo= Y >0,

igA
for the aforementioned m-vector, since otherwise

. Vo o
0=m{>ng >0 LeWw™ (x),¥P) -
We now use 1 to construct a member of n(p), nemely ﬁSTT:

n /Y £, >0,

pos Y
H

0 otherwise.

By construction A{ = n{/y and, for arbitrary {eW(x ,yo,p) we have that

0

Al = 2 L /y L b/

5
A

and therefore n - nf > nl/y - nf/y > 0, since n{ > n{ for all QsW*(xo,yO,p).

Again, by construction

o
[7aa ]
i

Y - /
n@o aini,y
= néa - &,

which means that ﬁco exceeds ni{ + & for all QSW*(XO,YO,P) i.e., n(p) is

nonempty since p was arbitrary and € was chosen independently of p.

Moreover, n(p) is upper hemi-continuous. Suppose {pq} is a sequence in

FT converging to P, and let {nq} be a sequence converging to nO with nqan(p



34

We want to prove that nosn(po). To see this, observe that since nqsn(pq)

then
q q v Jav q

Pick an arbitrary point §1 in W*(x ). By the continuity of

o!YO’PO
p > w*(xoiYO»P) there exists a sequence {1 - §1 with

Cqsw*(xo,yo,pq).
Therefore nq§0 D nng + &, and thus no§0 > n0§1 + €. Since §1 was arbi-
trarily chosen, nogo > no§ + & for all QSW*(xo,yo,po) which implies that
nosn(poj and therefore nt is upper hemi-continuous.

Thus, n is an upper hemi-continuous, convex valued, nonempty correspondence
from a convex, compact set ™ to FT. By Kakutani's fixed point theorem,

+

there exists a p* such that p*en(p*) i.e., there exists p* such that
P-kg > P?'\‘g + £ vésw\‘(x y p‘z'\‘)
0 7z o) 0) b
and in particular

P‘z'\'go 2 max p?'»‘g + £
QSW“(XO ’YO ’Pf“)

= R?'»‘(xo’yo’p*) + £.
and hence §0 £ W(xo,yo), completing the proof.
Finally, let expected profit for the period (when it exists) be

n(p,q) = max max pl - q.x,-q

y
0

y

with qxsrf and qysFT the vectors of x and y purchase prices. The
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associated expected supply is {*(p,q) and the random supply for the period

is z(S*(xO*,yO*,p),wT,p), where x * and yO* are the optimal input choices.

0

3.2 Implications of the Dynamic Models

The main implication of the foregoing analysis is embodied in Theorem
3: the expected profit maximizing firm operates in such a manner as to be
(techrnologically) completely representable by a nonstochastic, nondynamic
"feasible prcduction set'". The appearance of firm purchases of inputs (for
the purpose of controlling output as opposed to producing it) such as
product inspectors, quality control equipment, etc. is our only clue that
the firm actually exists in a stochastic, dynamic environment.

The implication for econometric and policy analysis is also clear: an
analyst may treat such a firm with standard, deterministic cost/production
techniques, as long as output is expressed in terms of planned (or expected)
output and not taken as observed output. This is an important caveat, since
cost is a function of planned and not actunal output; simulation experimments
show that violeting this provisio can result in serious inferential error
(see Daughety [1976]).

An implication for the theory of the firm is that the above analysis
provides (for the perfectly competitive firm) a complete foundation for
models involving expected supply and end actual (random) supply. Such
models, in a general equilibrium setting, give rise to randomly fluctuating
prices (see Rothenberg and Smith [1971]). To the degree that the resulting
random prices are independent of (or uncorrelated with) individual firm

uncertainties (i.e., w), the above analysis is valid and provides the

micro-foundation for such models.
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4, Conclusions

This paper has three basic results which correspond to the three
theorems proved above. First, in the static setting, the expected profit
maximizing firm behaves as if it were employing a nonstochastic technology
which is the expected technology found by integrating over the stochastic
production possibilities sets. Second, only in special cases does the
stochastic distance function integrate to the expected distance function.
The practical implication of this result for analysis of such firms is to
suggest that studies using indirect techniques (i.e., cost or revenue
functions) to study technology are more likely to properly represent ex-
pected techﬁology then use of a direct approach (such as estimating the
stochastic distance function). This holds as long as the investigator can
provide a mechanism for constructing expected output.

Third, the most natural, but complex, environment for the firm involves
both stochastic and dynamic aspects. Here we show the extension of theorem
one, namely that even if the firm can use inputs both to produce output and
to influence the state of nature, a well defined nondynamic expected tech-
nology can be constructed, which represents all the necessary information to

link cost, revenue, factor demands and planned outputs.
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