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ABSTRACT

A method is described for constructing all Pareto-optimum resource
allocations for a dynamic economy, under perfect certainty, in which both the
technology and consumer preferences are recursive but preferences need not be
additively separable over time. Optimum allocations are obtained through the
study of an appropriate dynamic program, and the connection between optimum
and equilibrium allocations is then used to interpret the optima as perfect
foresight competitive equilibria. The main novelty of the paper is that
consumers' relative weights in the objective function are awmong the state
variables of the dynamic program, and the utilities "from now on" are among
its coantrol variables.,

For an economy with one consumption good, sufficient conditions on the
technology and preferences are given for the existence of a unique, interior,
stationary distribution of consumption and wealth. These conditions are that
the technology be regular in the sense cf Burmeister [13], and that each

consumer's preferences display increasing impatience. For a pure exchange

economy with two consumers, sufficient conditions are given for the global
asymptotic stability of the unique, interior stationary point. These are that
each consumer display increasing impatience, and in addition that each view
consumption today and stationary consumption from tomorrow on as non-inferior.
These conclusions are in contrast to the case where consumers'
preferences are additively separable over time. As shown in Becker [2], such
preferences lead asymptotically to corner allocations where the consumption
and wealth of less patient consumers approach zero (if consumers have
different discount rates), or else to a large multiplicity of stationary

allocations (if all consumers have identical discount rates).






1. Introduction

This paper describes a method for constructing all Pareto-optimum
resource allocations for a dynamic economy, uander perfect certainty, in which
both the technology and consumer preferences are recursive. Within the
restrictions imposed by certainty and recursivity, the scope of the theory is
quite broad: any finite number of capital goods may be considered, and any
finite number of non-storable consumer goods. There is a finite number of
consumers, each living an infinite number of periods or the entire life of the
€Conomy.

The basic idea of the paper is to obtain optimum allocations through the
study of an appropriate dynamic program, and then to use the connections
between optimum and equilibrium allocations tc interpret the optima as perfect
foresight competitive equilibria. The objective function of this dynamic
program is a weighted sum of all agents' total discounted utilities, its state
variables include the stocks of various kinds of capital goods with which the
econony begins a period, and its control variables include current consumption
and current investment. In addition, and this is the main novelty of the
paper, the relative weights assigned to agents by the objective function are
also state variables, and the utilities "from now on" to be given all of the
agents are also control variables.

The paper is a direct descendant of the work on growth theory which
developed from the contributions of Solow [26], Cass [14], Koopmans [20] and
many others in the 1960s. It also rests heavily on the work of Bellman [3]
and Debreu [16]. The earlier study of this problem that is closest to ours is
Becker [2]. A main difference between Becker's treatment and ours is that we
make essential use of the recursive but not time-additive preferences proposed

by Koopmans, Diamond and Williamson [19], [21].



In the next section, some notation will be set and optimum and
equilibrium allocations defined. Section 3 specifies the particular class of
preferences that will he assumed. Section 4 similarly sets out the
technology. Section 5 contains the study of the dynamic program referved to
above and connects the solution of this program to optimum allocations in the
sense of Section 2. Section 6 summarizes what can be said about the
connections between optimum allocations as constructed in Section 5 and
competitive equilibrium allocations.

Sections 7 and 8, proceeding under stronger assumptions than those used
earliev, connect the dynamics of optimum allocations to the more familiar
dynamics of optimum allocations in one—consumer economies. The Fuler
equations are set out in Section 7. Stationary solutions are studied in
Section 8,

Sections 9 and 10 illustrate the use of results developed in the paper to
the simple example of a two—agent, exchange economy. This one state-variable
system serves as 3 kind of parallel to the one—agent, one capital good exanmple
on wnich is based such an embarrassingly large fraction of our capital-

theoretic intuition. Section 11 contains concluding remarks.

2. Optimum and Equilibrium Allocations

The economy under study contains n consumers or agents, denoted
i=1,ese,n, ecach of whom lives for an infinity of periods, t = 0,1,2,...
There are @ consumption goods, j =1,2,...,m, all consumed or freely disposed
of in the period in which they are produced. Let Xj it be the quantity agent i
consumes of good j in period t.

In order to keep bookkeeping issues within bounds, we will use omitted

subscripts to indicate various arrays formed from these numbers Xq j Thus



let x;, be the vector (Xilt, XiopseeesXipe) Of goods consumed by agent i in

. - s oea .
period t, let xy (XiO’Xil’XiZ"“) be the infinite sequence of agent i's

consumptions, and let x = (%{,Xp,++.,%X,) be the complete listing of everyone's
consumption of every good in every period. Similarly, x, will denote a

complete listing of everyone's consumption of each good in period t, x: a

jt
listing of the way good j is allocated over agents in period t, and so on. It
will also be useful to have a shorthand notation for the economy's total
production. Let Ejt = Zixijt be the total amount of good j consumed in period
t, and ij be the sequence of productions of good j in all periods.
Consumptions Xi jp are nonnegative real numbers. The sequence X j of

agent i's consumption of good j is taken to be an element of the nonnegative

orthant of £_ , the space of sequences {xijt} with:

"Xij" = sgp lxijtl

finites We will drop the infinity subscript and call this orthant £+. Then

mo_
By = Ay X eew X B

by

the list of agent i's consumptions, x iz an element o

i»

(m times). The list of everyone's consumptions, the complete resource
. .. s oWN

allocation, is in £+ .

The preferences of agent i are described by a functiom ulzlr + R,

restrictions on which will be developed in Section 3. Feasible allocations

are allocations x € ™" For which total consumptions Xx =L, x, = (;1""’£m)

+ 1 1
m

lie in a set Y C 4,

to be restricted in Section 4. With these conventions

set, optimum and equilibrium allocations can be defined.

s e . mn . cr sy s . .
Definition. An allocation X € 2+ is Pareto—optimal if it is feasible and if

there is no other feasible allocation x' with

ui(Xi) > ui(xi), for all i,



and

ul(xi) > ul(xi), for some i.

Definition. A competitive equilibrium is a feasible allocation x & &$n

together with a price system p € l$ such that

(1) L pjtijt < =, for all X € zj_‘,
(ii) for all 1, and for any x{ € lﬁ
1
Zie P ige € Tie PicXige?
inplies

. ] .
] 1
u'(x,) € u'(x,)
1 1

(iii) for all feasible x'

-1 -

< p [ d
PieXje < g Pycge

th
These definitions are standard, except perhaps for the restriction (i) in the
definition of equilibrium to the effect that present values of all consumption
streams must be finite at equilibrium prices. There are continuous linear
functionals on & which do not have this property, so our definition is more

restrictive than that used, for example, in [16].

3. Preferences

. . . . . . i
This section deals with restrictions on the preference function u™ of a

typical agent. Since only one agent will be discussed at a time, the

1

superscript i on u- and the subscript 1 on agent i's consumption %x; will

temporarily be dropped.



In the theory of optimal growth it is convenient and usual to restrict

preferences to assume the recursive and time additive form
u(x) =z 8Mu(x,) .
t | e

where 0 < 3 < 1 and where restrictions are imposed on the current—period

m

+ 7 R. ¥or reasons which by now are familiar, (and which

utility function U: R
in any case will be illustrated in Sections 7 and 9, below), this class of
preferences proves to be too narrow to permit the development of an
interesting theory of economies with many agents. Accordingly, we will follow

Koopmans [19] and Koopmauns, Diamond and Williamson [21] in using preferences

in a broader, but still recursive, class, specified as follows.

7 m
For any sequence x = (xo, xl,...) € ﬁ: of consumptions, define X € 2; by

x = (x_, ). Thus pX = ¥ X means consuming x; today, Xo tommorrow,
C L

t Xt+l,oo'

and so on; and in geuneral . x is the sequence beginning with X today, X 4
tommorrow, and so on. Then [19], [21] are conecerned with finding restrictions

on preferences u(x) sufficient to permit writing u(x) as
u(x) = W(xo, u(lx))

for all x ¢ 22 for some function W: Rz x R » R.l The argument of this paper

proceeds in the reverse (and much simpler) direction, beginning with the

s e . +1 . . ce o
Definition. A function W: Ri > R+ is an aggregator function if it is

Wl: continuous and bounded,
W2: concave,

and satisfies
W3: wW(0,0) =90

Wa:  (x,z) < (x',z') and (x,z) # (x',z') implies W(x,z) < W(x',z'),



and

W5: for all x ¢ Rz and all z,z' ¢ R+,

IW(x,z) = W(x,z")| < Blz - 2z'|, for some 0 < B < 1.
Note that the restrictions W2 and W3 are cardinal in nature, so that the term
aggregator function as used here is narrower than the ordinal interpretation
used in [19] and [21].2

Next, let S be the space of functions uzzi + R which are continuous and

bounded in the norm

hull = sup_lu(x)!.
xelm
+

S is a complete, normed linear space. An aggregator function W defines an

operator Ty: S + S by
(3.1) (Twu)(x) = w(xo,u(lx)).

In this paper, we will work with the class of preference functions u which are
fixed points of Ty for some aggregator function W. The following result

describes the main features of this class.
Theorem 1. For every aggregator function W there is a unique u € S satisfying
Tyu = u, and for any uoes
N
(3.2) I'T u - ull € 37 —
where B is an upper bound for W. This function u satisfies:
(i) u is concave

(ii) x' > x ==> u(x") » u(x)



(iii) wu(0) = u(0,0,0,...) =90

(iv) bu = o < BNuuH, where uN(x) = u(xl,...,xw_l,0,0,...).

Proof. F¥For any u,v € S, the fact that
NTwu - vaﬂ < Bllu—vl

follows immediately from the definition of Ty in (3.1) and W5. Hence the
existence of a unique fixed point u and (3.2) are implied by the contraction
mapping theorem.

To prove the concavity of u we prove first that if u € § is concave, so
is Tyu. Let X,x' € 1$ be given, let 0 £ 6 < 1, and define x° = Ax+(1-9)x".

Then

6T WG + (1-6)(T w)(x") = 0(x_,u( 0) + (1-6)(x’,u( x"))

N

WLGXO + (1—e)x5, 6u(1x) + (1—6)u(1x'))

N

W(xi, u(lxe))

(T, 0) ()

where the first inequality follows from the concavity of W and the second from
the assumed concavity of u and the fact (W4) that W is increasing in all

arguments. Now choosing u_. to be concave and applying (3.2), (i) is proved.

o
To prove (ii), observe that by W& Ty takes increasing functions into
increasing functions, and apply (3.2) to an increasing u,.

To prove (iii), use W3 plus (3.1).

m
To prove (iv), note that for any x € Ly



u (x) = u(xO,xl,...,xN_l,O,O,...)

il

W(XD’U(XI""’XN-I’O’O”"'))

Wi u' ()

while
u(x) = W(xo,u(lx)).

Heace by the coantraction property

la—atl < Bliu — Ly
2 -

< By - ub 2

< ;leIu - uOll.

Since uo(x) = u(2,0,...) =0 by (iii), (iv) is proved.

4, Technology

This section deals with restrictions on the technology available for
producing a sequence of goods x = (El,...,§m) = {Et}. Since only the total
production of each good, and not its distribution over agents, will be
discussed in this section, the bar over x will tenporarily be dropped.

The technology will be assumed recursive, in the sense that production
possibilities in period t will be taken to be fully proscribed by a vector of
capital stocks kt = (klt,...,kpt) € Ri on hand as of the beginning of t.
These stocks determine the current consumption goods production %, and the
end-of-period (beginning-of-next-period) capital stocks K41 which are jointly
producible, given k.. Call this set B(k,), so that the technology is
characterized by a correspondence B: Ri > Ri x RE taking points kt into sets

of feasible productions (xt,kt+1). With a given production correspondence B



and a given initial capital vector k, the set Y(ko) of feasible consumption

goods sequences X is

1 — m 1 —
Y(&O) = {x ¢ £+: {x ) € B(&t), t =0, 1, 2,000,

(4. 1) t’kt+1

P p .
for some k e &, k_ given}.

The correspoundence B will be assumed continuous {that is, upper—and

lower—hemi—continuous3) and in addition to have the properties:

Bl: for each k, B(k) is compact and convex,
B2: (x,y) € B(k) and (x',y') € (x,y) implies (x',y') € B(k),
B3: k' < k implies B(k') _ B(k),

B4: if (x,v) € B(k) and (x',y') € B(k'), then
((ox + (1-8)x"),(0y + (1-8)y')) € B(6k + (1-6)k'),

B5: the set
M= {k € RE: (0,k) € B(k)}
has a noa-empty ianterior,
B6: if k is an interior voint of M, (x,k) € B(k) for some x > 0

(where x > 0 means x5 >0 for j=1,...,m).

The restrictions Bl and B2 refer to production possibilities for
consumption goods x and capital goods y for fixed beginning—of-period capital
stocks ke They are standard, given free disposal. Assumptions B3 and B4
describe the way B(k) varies with k: B3 is a kind of momnotonicity (or free
disposal) assumption; B4 is a convexity assumption. The set M defined in B5
is the set of maintainable capital stock configurations. Assumption B6
requires that off the boundary of this maintainable set, it is possible both

to maintain all capital stocks and to produce positive amounts of all



consumptions goods.
The following describes the wain implictions of this description of
production possibilities for the set Y(ko) of feasible sequences of

consumption goods production.

Theorem 2. Let the production correspondence B satisfy Bl1-B6 and let Y(ko) be
defined by (4.1). Then Y is closed and convex, and if k, is an interior point

of M, Y(ko) has a non-empty interior, using the "sup” norm used in Section 3.

Proof. To prove closedness, consider the sets

c. = {xe &

- 4 KE ﬁz: (xt,kt+1) € B(kt)’ t =0,1,...,N, kg given}t.

Then Cy is closed by Bl, and since
Cyrr = TGk e Cyr (xgygnlagyy) & B,

Cyt1 1is closed if Cg is, by Bl and the continuity of B. Hence all Cno
N=20,1,..., are closed. It follows that the projections Yy of the sets Cy on

m .
the set 2+ of consumption sequences are closed, and hence that
Y =Ny
N

is closed.
To show that Y is convex, choose x,x' € Y and let k,k' be associated

capital paths. Then from B4, if 0 < 8 < 1,

- 1 — 1 -
(8x, + (1-0)x!, Ok . + (1-8)k} ) e B{8k_+ (1-0)k!),

t+

for all t, so that 6x + (1-8)x' € Y.



If k, is in the interior of M, B&6 implies that (x,ko) € B(ko) for some
X > 0. Then the sequence with consumption equal to (1/2)x for all t = 0,1,...

is an interior point of Y.

5. A Dynamic Program For Optimal Allocations

The general objective of this section is to formulate and study a dynamic
program, the policy functions for which generate all Pareto—ontimal
allocations. Properties of the optimun value function for this program are
established in several stages. We begin by defining the economy's utility
possibility set and the support function for this set. Lemmas 1 and 2
establish properties of this set and its support function, and Lemma 3 shows. .
how fzasible utility allocations arz represented in terms of the support
function.

The dynamic program is then introduced. 1In Lemma 4 we show that the
functional equation for the optimum value function of this program has exactly
one bounded, continuous solution, and in Lemma 5 we show that the support
function for the utility possibility set is this solution. In Lemma 6
properties of the associated optimum policy correspondence are established,
and in Lemma 7 we show that an allocation is Pareto-optimal if and only if it
is generated from this policy correspondence. The results of the section are
surmarized in Theorem 3.

The economy under study involves n agents with preference functions
ul,...u? constructed from given aggregator functions Wl, ..., W as described in
section 3. TIts technology is the set Y(k) counstructed from a given initial
capital vector k and a given production correspondence B as described in
section 4, The problem of finding optimal allocations in this economy will he

treated as one of constructing its utility possibility sets U(k), defined by



(5.1) U(k) =tz e RY: 2, = ui(xi), £ =1,00.,n, for some x € Y(k)}.

Thus U(k) contains the possible combinations of utility available to the n
agents in the economy when the initial capital stock is k.

Define v(k,8) to be the support function of U(k).

(5.2) v(k,8) = sup Z.e.zi.
zeU(k)
Thus v: Ri x T> R, where I = {9 ¢ Ri: Xiei = 1}. Any allocation x

attaining v(k,8) will be Pareto-optimal, yielding utilities lying on the
"northeast boundary” of the set U(k) defined in (5.1). From the definition of

U, it follows that we can also write v as:

(5.3) v(k,8) = sup I.8.ul(x,).
xeY(k) +* t

The next four lemmas describe the main features of U{k) and v(k,8).

Tenma l. For each k € R, U(k) is compact and coavex, and exhibits "free

R

disposal™ in the sense that u € U(k) and 0 < u' € u implies u' & U{k).

Proof. TFree disposal is inherited from free disposal for the production set

1

and the fact that the u~ are increasing. Convexity follows from the convexity

of Y(k) and the concavity of the ul. Boundedness follows from the boundedness

of the ul.

To prove that (k) is closed, let {un} be a sequence in U(k) with
u > u. Let X € Y(k) attain u, for n = 1,2,... . The set Y(k) is not

compact, but the sets

YN(k) = {x g Y(k): X, = 0 for t > N}

of feasible, truncated alloctions are. TFor any feasible allocation x, let vl



denote the projection of x onto YN(k).
Since Yl(k) is compact, {xi} has a convergent subsequence, call it

1
{xin}, with lim x; = xl, and the utilities for the corresponding untruncated

e 1In

allocations satisfy lim u(xln) = u. Continuiag by induction, for any N > 1,
n+= '
since YN(k) is compact, {x:_1 n} has a convergent subsequence, call it
9

N ry * 1
{an}’ with the properties that:

(5.4) iiz U(XN,n) = u,

and

(5.5) lim xg 0= (xl,x7...,xN,O,O...) = xN
n*e ’ -

(where convergence in (5.4) is in the Euclidean norm for R™ and in (5.5) is in
the sup norm for ™). This defines an allocation x & Y(k), the allocation

N

such that x" is given by (5.5) for all N. We need to show that u{x) = u.

We have, for any N and n,

lu(x) = ul < lu(x) - u(XN)| + lu(xN) - u(xg n)l

+ lalgy ) - ulx, D+ luGxg ) - al.

By Theorem 1, part (iv) the first and third terms on the right can be made
arbitrarily small by choosing N sufficiently large, independent of n. By
(5.5) the second term can be made small, and by (5.4) the fourth, by a
sufficiently large choice of n. Hence u(x) = u, so that u € U(k), and U(k) is

closed. This completes the proof of the Lemma.

In view of Lemma 1, the suprema used in (5.2) and (5.3) to define the

function v(k,9) may be replaced with maxima. We have, next,



Lemma 2. The value functioa v(k,6) is bounded and continuous.

Proof. Boundedness is obvious. To prove continuity, let YN(k) be the set of

truncated allocations defined in the proof of Lemma 1, and let

vﬂ(k,e) = ma Z.eiul(x,).
xeY (k) '

2“N, V¥ is continuous for each N by [6],

p.116. For each N, YN (k) E:YN+1(k) € Y(k), so that N Ny Hence for

Since YN(k) is a compact set in R

each (k,0), v'(k,8) > v(k,08). We next show that this convergence is uniform.

For given (k,9), let x attain v(k,8). Then

v(k,0) - VN(k,e) < Z{Si[ui(;i) - ui(;i)]

i

< max si hatil
i

where the second inequality follows from Theorem 1, part (iv). Since

0 < ﬁi <1 for all i, the proof is complete.
Lemna 3. u € U(k) if and only if u 2 0 and v(k,8) - 6su > 0 for all 8 e I.

Proof. That u € U(k) implies v(k,8) - 8eu > O is immediate from (5.2).
Suppose, for the converse, that u > 0, v(k,8) = 8+u > 0 for all 9 & I,
and u ¢ U(k). Since U(k) is convex, it follows from the separation theorem
for convex sets that for some w € R, w # 0, weu > wez for all zeU(k). Since
U(k) exhibits free disposal (Lemma 1), it follows that w » 0, and we may
choose w € I. Since U(k) is closed, the inequality is strict: weu > wez. Now .
since v(k,9) = 8eu > 0 for all 8 € I, v(k,w) > weu > wez for all z & U(k),

contradicting the fact that



v(k,w) = max wez.
zeU (k)

This completes the proo€.

Next we will show that v(k,8) is the unique solution of the functional

equation:
(5.6) v(k,d) = max Z,B.Wi(xi,zi)
(x,y)eB(k) '
z 2 0
subject to:
(5.7) nin v(y,w) — wez 2 O.

wel

The idea in (5.6) is to view the problem of choosing an optimal allocation for
given capital stocks k and vector of weights 8, as one of choosing a feasible
current period alloction (x%,y) of consumption and capital goods, and a vector
z of "utilities—frow~tomorrow—-on" subject to the constraint that these
utilities be attainable given the capital accumulation decision, i.e., that =z
satisfies (5.7). The weights w that attain the minimum in (5.7) will then be
the new weights used in selecting tomorrow's allocation, and so om, ad
infinitum. Further properties of ;(k,e) will be established by studying this
functional equation, and optimal resource allocations will be generated from
the policy correspondence associated with it. First we will show that (5.6) -
(5.7) has a unique continuous, bounded solution (Lemma 4), and that v(k,8) as

defined in (5.2) is this solution (Lemma 5).

Lenma 4. There is exactly one continuous, bounded function V: Ri x I R

A

satisfying (5.6). This solution v is increasiag and concave in k and convex

in O,



Proof, Let F be the Banach space of continuous, bounded functions
£: RE x I > R, with norm
Ift = sup [£(k,8)].
k,8
Let T be the operator on F defined by the rizht-hand side of (5.6). The set
of (%,y,z) values satisfying (x,y) € B(k), z » 0, and (5.7) is compact, and
the function to be maximized in applying T is continuous, so Tf is well
defined for each f € F. Since B and f are continuous, it follows from ([6],
p.116) that TF is continuous. It is evidently bounded, so that T: ¥ + F.
We next show that T is a contraction mapping, by showing that it

satisfies the hypotheses of ([8], Theorem 5) or that

(3.8) for all f,f' e F, £ < f ' implies Tf < Tf',
and

(5.9) for any f € F and any constant a > 0,
T(f + a) < Tf + Ba for some B € [0,1).

That the monotonicity condition (5.8) is satisfied follows from (5.7):
increasing f everywhere enlarges the feasible (x,y,z) set.
To verify (5.9), let f e F, ke RE, 8 e I, be given, and choose a > O.

Let (x2,y?,z2) attain T(f + a) at (k,8). Define the sets U, U® and B as

follows.
U ={z ¢ Rz: f(ya,w) - wez 3 0 for all we I}
% = {z ¢ R:: f(y*,w) +a - wez > 0 for all w e I}
B ={z ¢ Rz: z £ z' + a for some z' € U}.

We show that, as illustrated in Figure 1, U2 = 3.



Figure 1

Since Ziwi = 1, it is clear that z' € U implies z' + a € Ua, so that
B S;Ua. Suppose z € U? and z ¢ B. It follows that if z' € R:
satisfies z' + a > z, then z' ¢ U. Hence there exists w € I, such that
f(ya,w) - wz' <0. This in turn implies f(ya,w) -w (z=a) <0, or z ¢ vé:
a contradiction. Hence U2 = B,

a

If (x%,y2,22) attains T(f+a), then z% € U? = B, so that z? > z' + a for

some z' € U. Then (x®,y?,z'+a) also attains T(f+a), since the W' are
increasing functions of their last argument. Then since (x2,y%,z') is

feasible for the problem (Tf)(k,0),
(TE)(k,8) > xieiwi(x;’,zi),
from which it follows that
(T(f+a))(k,8) - (TE)(k,8) < L0, IW (x;,2] +a) - W (x;,2])]
< ZiﬁiBia

< max Bia < a
i



where the last inequality follows from property W5 of the fuactions wi, Since
this conclusion holds for all choices of f,k and 6, (5.9) is verified.

Thus T is a contraction, and it follows from the contraction mapping

theorea that there exists a unique solution v to £ = Tf, and that

(5.10) lim n'r“fo - vl =0, forall f_ e F.

n¥>o«

>

To prove that v is increasing in k, recall (B3) that k' < k implies
B(k') C B(k).

To prove that ; is concave in k and convex in 0, we show that if f ¢ F
has these properties, so does Tf. Then choosing f, to be concave in k and
convex in 0 it will follow from (5.10) that the solution ; has these
properties.

The proof that T takes concave—convex functions into councave—counvex
functions is a standard argument (see, for example, [22], p. 1433) utilizing
the concavity of Wl,...,wn (W2), the non-increasing returns to k of B(k) (B4),
the fact that each Wi {s an increasing function of its last argument, and the
convexity of the (x,y,z) set defined by (x,y) € B(k), z > 0, and (5.7). To
verify this last fact, let (xi,yi,zi), i = 1,2, lie in this set and

A

let (xk,y ,ZA) be a convex coambination. Then (xx,yx) € B(k) by Bl and

- A )
min v(yx,w) - W'ZA ? min (Av(yl,w) + (I-Nv(y~,w) - W'ZA)
wel wel

> A min (v(yl,w) - w'zl) + (1 = A) min (v(yz,w) - w'zz)
wel wel

>0,

so that (yx,zx) satisfies (5.7).

This completes the proof of Lemma 4.



A

In view of Lemma 4, the following lemma establishes that v = v, or that
v(k,9) as defined in (5.2) is the unique continuous, bounded solution of the
functional equation (5.6)~(5.7).

Lenma 5. The function v: Ri x I R+ defined in (5.2) satisfies (5.6)~{5.7).

Proof. We have:

v(k,0) = max Zi Gizi
zeU(k)

max Z{e.ui(xi).
xeY(k) ~ '

max Z.e.wl(xio,ul(lxi))
xeY (k)

= max z, G,Wl(xio,zi)
(XO’Y)EB(k) ’
zeU(y)

= max N0 W (x, ,z.)
10 1

(x_,y)eB(k) = *
720

subject to (5.7), where the second line follows from the definition of U(k),

.

1 in terms of W' in Section 3, the fourth

the third from the definition of u
from the definition of Y(k) in Section 4, and the last from Lemma 3.

This completes the proof of Lemma 5.

In view of Lemma 4 the maximum problem on the right-hand side of (5.6)
involves maximizing a continuous, concave function over a compact, convex set.
Hence for each fixed (k,8), v(k,6) is attained by some (x,y) € B(k) and z > 0

satisfying (5.7). Given such an (x,y,z) choice, the minimum problem in



(5.7) iavolves minimizing a continuous function over the compact set I and the
minimum is hence attained at some w € I. Call the set of such wmaximizing-

ninimiziag choices the values of a policy correspondence G taking states

(k,8) in Rz x T into choices (x,y,z,w) in R$n x RE x Ri x I. The main

properties of this correspondence are described in

Lemma 6. The policy correspondence G(k,8) is lower hemi-continuous and

convex-valued.

Proof. Lower hemi-continuity is from ([6], p.116). Convexity follows from
the concavity of wl,...,w“, the concavity of v in k, the convexity of I and
the convexity of v in 6.

Given an initial capital vector k, and a vector of weights 60, any

[+ +]
sequence {xt,y wt}t=0 satisfying:

£2 %

(5.11) (Xt+1’yt+1’zt+1’wt+1) € G(kt,St), t =0,1,2,00.,
(5.12) Ky = Yoo £ = 0,1,2,000,
(5.13) 8,4 = Vo t =0,1,2,...,

- . mn

defines a set of resource allocations x = {Xt} € £+ « Moreover, the

sequence {Zt} defines for each period t, utilities to be enjoyed from t on.
It is clear from their construction that these allocations are feasible,

given k,. We will refer to these allocations and their associated utility

paths as being generated from (ko,eo) by the policy correspondence G.

We have, finally,



Lemma 7. An allocation attains v(k 60), if and only if is generated from

0,

(ko,ﬁo) by the policy correspoudence G.

Proof. Let X € Zin be any allocation generated from (ko,eo) by G, let k be an
. . n 1 n
associated capital path, and let z = {zt} € 4y, 2, = (u (tx1 yo eyl (txn)) be
the associated path of utilities.
If x does not attain v(ko,Bo), then some other feasible allocation,

X does. Let k and z denote the capital and utility paths associated with

this allocation. Then

_ i,? 2 i
(5.14) v(ko,eo) = Ziﬂoiw (xoi,z ) > zieoiw (Xoi’z

) .

1i 1i

"~

Now since X is feasible, (xo,kl) € B(ko) and z, € U(kl)- By Lemma 3, this

1

last fact implies V(kl,w) - wezy 2 0, for all w € I. Hence (5.14%4) contradicts
(5.6). Since this argument holds whether or not X is generated by G, it
proves both that all allocations so generated are Pareto—optimal and that no

other allocations are.

It will be useful for later reference to sum up the main results of this

section in:

Theorem 3. For any initial capital vector k, the utility possibility set U(k)
has the properties listed in Lemma 1. Its support function v(k,9) is
continuous and bounded, and is the unique solution with these properties to
the functional equation (5.6)~(5.7). The allocations generated by the policy
correspondence G of this dynamic program are Pareto-optimal, aund all Pareto-

optimal allocations are so generated.



6. Optimality and Equilibrium

One of the reasons we are interested in being able to construct Pareto-
optimal resource allocations (though certainly not the_ggiz_reason) is that
under certain conditions they are equivalent to the set of competitive
equilibrium allocations. We mean here "competitive equilibrium” in the
complete market sense of Section 2, but in recursive systems it is frequently
the case that such equilibria may be interpreted as perfect foresight
equilibria with a complete set of "spot™ markets operating at each date and a
very limited set of securities linking spot wmarkekts at different dates.

The economy under study is a special case of those studied in [16], [24],
{71, providéd the initial capital stock k, is in the interior of the
maintainable set M defined in B5. That this is so is the content of Theorems
1 and 2 of Sections 3 and 4. From Theorem 1 of [16], then, every equilibrium
allocation is a Pareto-optimum. From Theorem 2 of [16] and Theorem 1 of [24],

o

. . . . m
for every Pareto-optimal allocation x“ there exists a price system p € 2+ such

that (ii) and (iii) of the definition of competitive equilibrium are

satisfied, and such that ul(xi) > ul(Xg) implies

(o)

(6.1) z it

X, 2 X [P 4
e Pe ¥t t Pt

(o)

Following [16] (Remark, p. 591) if Zt P.Xy,

I

> 0 for all i, this can be
strengthened to condition (ii) in the definition of equilibrium.
Finally, if an equilibrium is defined by allocating to trader i a share

a, of the total value of consumption, with Zi a, = 1 and a, > 0, all i, and

L

with the budget coastraint in (ii) replaced by:

.2 z x, S a, °x i = 1,...
(6.2) £ Pt % © % b P Ee L =1eee,n,



then the existence of an equilibrium for each a follows from Theorems ! and 3
of [71.

Since all Pareto-optimal allocations can be constructed by the method
described in Section 5, there is a sense, then, in which all competitive
equilibria can be constructed too. For two reasons, however, this sense is a
rather limited one. First, given a Pareto—optimal allocation X, one needs to
be able to calculate the price system(s) p that support it. Second, even if

one can calculate p and hence also the wealth distribution

_ = ;-1 .
a, = [Zt poxt] Zt P, %, i=1,e4.,n,

i it?

cocresponding to x, it will not in general be true that this will offer a
methodr(other fhan'trial-and—error) for finding an equilibrium for a given
wealth distribution a'. This latter capability is what is typically meant by
the ability to construct equilibria.

We will not pursue either of these difficult issues at this level of
generality, but both will come up again in the context of a specific example,

in Section 10.

7. Dynamics

In the preceding sections it was shown that the optimal policy
correspondences for the dynamic program (5.6) generate all the Pareto—optimum
allocations for the economy under study. In this and in the remaining
sections of the paper, wvarious aspects of the dynamics of this economy will be
examined. As the reader familiar with the dynamics of recursive, one-consumer
economies with heterogeneous capital will tecognize, however, the present
nodel is too generally formulated to yield useful qualitative results on

either the uniqueness or the stability of stationary optima (or



equilibria).4 Accordingly, our first task in the present section will be to
specialize the model to the point where its first-order conditions describe
its motion, in a way that it may be easily compared to the wmore familiar
equations of wmotion for the one-coasumer case. With this done, the parallels
and diffevences between the dynamics of this model and earlier omes can be
exhibited in as clear a way as possible. Stationary solutions will be
examined, under these same restrictions, in the section following, and a much
rnore specialized example will be studied in sections 9 and 10.

The new restrictions to be imposed have to do with the number of
consumption goods, and with the strict concavity and differentiability of both
the technology and preferences. We begin with the technology.

Tn order to make it easier to focus on dynamic issues, we will restrict
attention to economies with one consumer good, so that X € R,. Define the

. D
function F: R!

+XRE_+Rby:

(7.1) F(y,k) = max X
(x,y)eB(k)

Thus F(y,k) is the maximun oufput of consumption good consistent with an
initial vector of capital k and a terminal vector y. It follows from Bl-B4
via standard arguments (see, for example, {28]) that F is continuous,
decreasing in y, increasing in k, and concave in (y,k). To the restrictions
B1-B6 we add, for the remainder of the paper, the assumption that F is
continuously differentiable.

Analogously, to assumptions W1-W5 on preferences we add the assuunptions
that Wl is continuously differentiable, strictly concave, and satisfies the
Tnada condition

(7.2) lim W) (x,2) == , for all z, 1 = 1,es.,n.
x+0



With this additional structure we have, first,

Lemma 8., The value function v(k,9) is strictly coucave in k and strictly

convex in 0.

Proof. Strict concavity in k is an immediate consequence of the strict

concavity of the W', the concavity of v in k (Lemma 4), and the fact that
To show that v is strictly convex in U, choose 60,91 e I, let GA be a

convex combination, and let (xf,y%,zF) attain v(k,6%), r = 0,1,A.

Given the differentiability of W' and (7.2), a necessary condition on

(xr,yr,zr) is

r i, r ry _ .r . j,.r T . s
61 Wl(xi,zi) = 6j di(xj,zj) , r = 0,1,x, for all i, j.

Since Wi > 0, it follows that if 8° # 61, (x2,2°) # (xl,zl) and hence

that (XA,ZA) # (xr,zr), for r = 0 or 1 or both. Then if 0 < X < 1,

Ay A i A A

v(k,8™) = ziei 5] (Xi’zi)
_ o i, A A _ 1.i, A A
= A ziei W (Xi’zi) + (1-2) ziei W (xi,zi)

<A v(k,8%) + (1 = A) v(k,eb)

as was to be shown.

In view of Lemma 8, the right hand side of (5.6) is attained by a unique
(%x,¥,2z) value for each (k,9), and the minimum problem (5.7) is solved by a
unique w value for each z., Hence the policy correspondence G will be a

continuous function of (k,8), and we refer to it hereafter as the policy



function for (5.6)-(5.7). Let GX, GY, G*, and GY denote the projections of G
onto the coasumption, capital, and utility spaces, and n-simplex,
respectively, with components (G?,...,GEJ, etc.

Next, we establish

Lemna 9. If 6 » 0, then for all k > 0, v is continuously differentiable

at (k,0), with derivatives given by

_ ira% z ~nY
(7.3) vj(k,e) = eiwl(ci(k,e),ci(k,e)) Fp+j[u (k,0),k) ,
3= 1l,eee,p, i =1,00.,n,
and
(7.4) Vo (Ki8) = wH(GY (k,0),67(k,0)) , 1 =1,00.,n.

Proof. (7.4) is obvious, given the continuity of W' and G. We verify (7.3)
by paralleling exactly the proof of Theorem 1 of [4]. In view of condition
(7.2), 8 » 0 implies G?(ko,e) > 0, for all i. Then for sowme neighborhood of

Kos

x
x(k) = 6Y(k_,0) + F[Gy(ko,e),k) - F(Gy(ko,e),koJ
will be positive. Define R(k) on such a neighborhood by
i z i,.x z
R(k) = v(ko,e) + 6. [W (x(k),Gi(ko,e)) - W (Gi(ko,e),Gi(ko,e))]-

Then R(ko) = v(ko,e), and since v is the optimum value function,

R(k) < v(k,8) for all k. Moreover, R(k) is differentiable and concave, since
Wl and F have these properties. Then by [4], Lemma 1, v(k,0) is
differentiable at (ko,e) and its derivatives at this point are those of

R(k). Then (7.3) follows from the definitions of R(k) and x(k).



With these preliminaries completed, the unique solutions to the maximum
and minimum problems (5.6) and (5.7) are given by the first-order conditions
for these problems, obtained as follows. The Lagrangean corresponding to

(5.6)-(5.7) is

- X . i — L. - e -
L = Lieiw (Xi’zi) + A{F(y,k) Zixi] + y min [v(y,w) wez]

wel

The first-order conditions are:

(7.5) 0= eiwi(xi,zi) - A s i=1,...,n0,
(7.6) 0 = Biw;(xi,zi) - we, i=1,...,n,
(7.7) 0 = A Ty, k) + uv (y,w) i=1,eee,0,
(7.8) 0 = F(y,k) - Zixi s

(7.9) 0=1- Ziwi s

(7.10) 0 = vp+i(y,w) -z R i =1,¢se,n,
(7.11) 0 = v(y,w) - wez .

Equations (7.5)-(7.11) are 3n + p + 3 equations in the "unknowns" x,y,z,w,A
and p. Bince v{(y,w), viewed as a function of w ¢ RE, is homogeneous of degree
one in w, it follows from Fuler's theorem that (7.11) is redundant, given
(7.9)-(7.10).

There ara three interrelated uses to which (7.5)~(7.10) may be put., If
one actually knew the functions Wl and F and wished to calculate the Pareto—
optimal program for a given (ko,eo) then the function v(k,8) would be
tabulated using the constructive methods of Section 5, and its derivatives

could be taken as known, too, to any desired degree of accuracy. Then for



each (k,8), (7.5)-(7.10) would be solved for (x,y,z,w,A,u), and (X,¥,z,w)
would be the value of the policy function G at (k,8). Having so tabulated the
function G, the system could be “"run” from any initial (ko,eo) and its
dynamics explored in as much detail as desired (and affordable).

For other purposes oune may be interested in such qualitative questions as
whether the system described by G has a stationary point, whether it is
unique, and how it varies with given changes in tastes and technology. These
issues will be studied in some detail in the next section.

Finally, given the existence of a stationmary point, one is interested in
its local and global stability. Qualitative study of this question is often
more conveniently carried out with the system (7.5)-(7.10) stated in Euler
equation form. We next give this re-—-statement, in order to facilitate
comparison with the more familiar one—agent economy. Using the derivatives of

the maximized objective function given by (7.3)-(7.4), and paralleling (7.5)-

(7.10) line by line, we find that

(7.12 0 = eitwi(xit,zi,t+l) - A , i=1,00.,n,
(7.13) 0 = eitwé(xit,zi,t+l) S TCARTRNE R RPN S
(7.14) 0 = AP Gk Fuvs g s 3= Leessn,
(7.15) 0 = Flkk) - Iixg, ,

(7.16) 0 = 1-18 . ,

(7.17) 2., = wi(xit,zi,t+1) , i=1,...,0,
(7.18) Vi = AF o i(keypok) s 3= 1,0us,p

In transcribing (7.5)-(7.10) into the form (7.12)-(7.18), k,6,x,z,A and u have



been given time subscripts; y and w have becone Kl and 6 and the value

t+13
function derivative 9v(k,6)/39k has become Upe These 3n + 2p + 2 equations
may be viewed as a dynamic systea in the n + 2 "control variables”

L Ar and Heo the n + p "state variables"” ke and et, and the n + p "co-state

variables” Ve and z,. To study the dynamics of the system in a neighborhood
of a stationary point, then, one would eliminate the control variables and

examine the 2(n + p) characteristic roots of the system in (kt,St,vt,zt).

Since L.0,

= 1 , one of these roots is zero. Hence the condition for
ii,t+l

local saddlepoint stability is that n + p - 1 non-zero roots lie within the
unit circle and n + p without. Such a study would not, at this level of
generality, be informative. An examplé will be e%amined in Section 9.

The advantage of studing the dynamics of this model in the form (7.12)-
(7.18) lies in the fact that these Euler equations do not involve the value
functions or its derivatives in any way. The only functions whose "shapes”
matter acre those describing prefereuces wl and the technology F, which are
those on which we place restrictions directly (and hence are as well informed
about as we wish to be).

On the other side, it is clear that information has been lost in moving
from (7.5)-(7.10) to (7.12)-(7.18), so that the latter system will--for
given (ko,ﬁo)—— have many more solutions than will the former: One for each
possible initial configuration of the state and co-state variables. This

1
¥
3

situation is sometimes termed a "prohlem” and it has even been suggested that
the relative paucity of solutions to (7.5)-(7.10) is a kind of defect of
looking at things in a recursive way, or a sweceping under the rug of important
econonic issues. Section 5 of this paper shows that just the opposite is

true. One of its implications is that there is (apart from the problems

raised by "flats"” in objective functions that can arise in any programming



problem) only one Pareto—optimal way €for the system to evolve from an initial
vector k of capitals and allocation of utility weights 60. Thus, only for the
"right” initial values for the costate variables (vo = av(ko,ﬂo)/ako and
z = av(ko,eo)/aso) is a solution of (7.12)-(7.18) also a solution of the
original resource allocation problem.
It may be instructive to consider (7.12)-(7.18) for the particular case
where the aggregator functions Wl assume the time-additive form:

wh(x,u) = Ui(x) + Biu, for some 0 < B; < 1. Then (7.13) reduces to

(7.19) 93eBs = Hi%¢,e41 0
since in the time—additive case W; = Bi- Then for any two consumers i, j
5 ,
(7.20) RS S W
L] e B e .

t

j,ttl i 3

Consider the possible dynamics under (7.20). If Bi < Bj (so that
consumer i is wmore "impatient” thaa ccnsumer j), the relative weight eit on
consumer i's utility will, from (7.20), converge to zero at a geometric
rate. Then from (7.12), his consumption wust also converge to zero. This
description of the relative positions of consumers 1 and j can simply be
reversed if Bi > Bj' Thus the only dynamics consistent with (7.20) require
that the consumption of all but the most patient (highest B) consumers
converge to zero.

If Bi = Bj for all consunmers, this conclusion is avoided, but in an
equally drastic way. In this case, all non-negative constant weights 8el
satisfy (7.19), which is to say that any initial distribution of utility will
be stationary. If either of these strong conclusions arose from some economic

feature of the model they would be of some interest, but in fact they are



simply transparent consequences of time-additivity, an assumption of
convenience for which no one has ever claimed an economic rationale. This is
exactly why it seems necessary to use a broader class of preferences in a
study of dynamics with consumer heterogeneity.

Notice also that with time-additive preferences with common discount
factor B, equations (7.12),(7.14),(7.15) and (7.18) are, given an initial (and
hence permanent) set of weights 8, a dynamic system in Kis Vs % and
At alone. Equation (7.17) continues to describe the evolution of utilities
over time, but there 15 no interaction between the dynamics of capital
accumulation and utility. In the wmore geuneral case uader study there are rich
possibilities for substitution or complementarity relationships among current
and future consumptions, which can interact with intertemporal possibilities

in production in complicated ways.

8. Stationary Points

In this section we will study stationary points of the system described

in Section 7, that is, vectors (x*,k*,z*,6%) satisfying:
(x*,k*,z*,e*) =0 k*’e*) .
* i,k &
z, = W (Xi’zi) , i=1,0ee,m.

From (7.12)-(7.18), we see that any interior stationary solution tmst satisfy:

(8.1) 0 = GIWi(x:,z:) -" L i=1,...,n,
(8.2) 0 = e:[wé(x:,z:) - u7] , i=1,0e.,n,
(8.3) 9 = A*[Fj(k*,k*) - u*Fp+j(k*,k*)] T

(8.4) 0 = F(x*,K%) - Zix: ,



*
(805) O l - Zisi . s

1 * % *
(8.6) 0 Wl(xi,zi) -z , 1= 1,.0.,n.

We will look for solutions of this system in the following way. Given u,
(8.2) and (8.6) may (perhaps) have a unique solution (x,z) = (Di(u),Zi(u))
for © > 0., Letting D(u) = ZiDi(u), we can view D(u) as a "demand curve" for
total stationary consumption as a function of the stationary interest

factor u (u = 1/(1l+r), where r is the stationary interest rate). Similarly,
given p, (8.3) may have a unique solution K(u).

Letting S(u) = F(R(uw),K(w)), we can view S(u) as a "supply curve” for total
stationary consumption. The market—clearing condition (8.4) is then
equivalent to finding the interest factor u* where the "demand curve" and
"supply curve" intersect, D(u*) = S(u*). The terms "demand curve” and "supply
curve” are enclosed in quotation marks to indicate their rather illegitimate

use in this steady state context: obviously there is not really a wmarket for

"stationary consumption.’

N




Now an economist with any sense of decency would surely want these curves
to look as drawn in Figure 2, so that they intersect exactly once, or so that
there exists a unique stationary point to the system (8.1)-(8.6). Tt is an
unfortunate but well established fact that this need not be so. One is led,
then, to the study of conditions on the functions T and wl,...,w“, in addition
to those already imposed, under which Figure 2 is an accurate description.
This study occupies the remainder of this sectiom.

For the standard one-sector (that is, one capital good) model, we know

that S(R) is as drawn in Figure 2. Thus, if
F(y,k) = £(k) + (1 -8k -y,

where £ is increasing and strictly concave and § is the rate of depreciation,

(8.3) reduces to

*
AT e ™y + 1 - 61 - w,

(8.7) 0

and (8.4) bhecones

(8.8) 0

. .
FkT) - 6k - L.x" .
1 1

Then the solution function x5 = S(p*) obtained from (8.7) and (8.8) has the
depicted shape with ;é on the diagram being the maximal sustainable or "golden
rule” consumption level.

With many capital goods there are many more possibilities and the best
one can do is to find useful sufficient conditions for S(u) to take this
form. This problem has been extensively studied by Burmeister and Brock
({10}, [11], {13}). See [13] for a good summary and an exposition of the idea
of regularity of a multi-sector economy, which is one sufficient condition for

S'(u) > 0 for u < 1.2 This matter will not be pursued further here.



. . . i
On the demand side matters are much simpler. Since D(n) = ZiD (W, a
sufficient condition for D to be nonincreasing is that Dl, i=1,i4e,n, be
so. Dropping the i, we will consider a representative counsumer,

Property W5 insures that we can define the function ¢: R+ > R+ by:
(8.9) p(x) = W(x,9(x)), for all x > 9.
Therefore, D,Z satisfy (8.2) and (8.6) for all u, for 6, > 0, if and only if:
(8.10) Wo (D), oMW} = u, for all u > 0,
(8.11) Z(uw) = ¢(d(w)), for all p > 0.

It is clear from (8.10) that D(u) is nonincreasing in u if and only
if Wz(x,¢(x)) is nonincreasing in X. Hence D is nonincreasiang if and only if
the consumer's subjective time discount factor is a nonincreasing function of
steady state consumption.

This condition i5 most clearly interpreted by studying the function

2

¥ R+ > R+ defined by:

(8.12) ¥(x,x) = W(x,o(x)) .

<

45

Figure 3



Level sets of the function ¥, shown in Figure 3, are indifference curves
betwecen levels of consumption x today and stationary levels of consumption

A

% from tomorrow on. Since ¥(x,x) = ¢(x),
(8.13) p'(x) = Yl(x,x) + Tz(x,x) , for all x > 0.

Hence, differentiating (8.12) with respect to X, using (8.13), and evaluating

at X = X, we find that:
Wy G, 0000) = ¥, (e, ) /(¥ (%) + ¥, () = [0+ ¥ G/, (x, 017

Therefore, D is nonincreasing in u if aad only if Yl(x,x)/Yz(x,x) is

nondecreasing in x, i.e., if and only if:
(8.14) wz(x,¢(x)) is nondecreasing in x.

Diagrammatically, the requived coandition is that the indiffereace curves in
Pigure 3 get steeper farther out along the 45° line, or that the consumer becomes
more impatient (at the margin) at higher levels of stationary consumption.

Given these two conditions of regularity of the technology and iucreasing

2

impatience of preferences, stationary states are described by:

Theorem 4. Let the technology F be regular in the sense of Burmeister [13],
and for i = 1,,..,n, let Wt satisfy WL-W5, satisfy (7.2), and be strictly

concave. Asgsume further that W;[x,¢l(x)) is noniancreasing in x, for all x 2

0, where ¢ (x) is as defined in (8.9). Then there exists a stationary state

X % % % * *

(x ,k ,z ,6 ) satisfying (8.1)-(8.6), with associated multipliers u and A .

Moreover,
(8.15) max éi =g <y <B = max Bi,

where



Ei = lim W;(x,¢l(x)J, i=1,44.,n,
x>0

Ei = 1lim W%[x,¢i(x)), i =1,eee,n.
X¥ro

If W;LX,¢1(X)) is strictly decreasing in x, for all x » 0, for 1 = 1,...,n,

* - *
then the equilibrium is unique. Moreover, Gi > 0 if and only if Bi D H o

Proof. Since F is regular, S(u) is strictly increasing on the range
0<u <1, with S(0) = x>0, 8(1) = Eg <{ ®, as shown in Figure 4. Under
the given assumptions on the Wi's, D(u) is defined on the range 8§ < u €1 .

It is non-iucreasing in this range, with
D(u) =0, E < p <1,

lim D(u) =« ,
g
As shown in Figure 4, S(u) and D(p) must cross exactly once, and at the point

of intersection (8.15) holds.

Figure 4

1f w;[x,¢(x)] is strictly decreasing in x, for all x 2 0, for i =



i *
l1,..4,n, then D (u) is strictly decreasing for all i. Thus, given u the

* *
uniqueness of the allocation (xl,...,xn) follows as shown on Figure 5.

4

Bi
¥
i !

B o e e e

B T
l
| I
X X

Figure 5

* * * *
The uniqueness of (zl,...,zn) and (61,...,6n) is then immediate. If

— * *
B > 4 holds, then X, > 0, and conversely, as shown in Figure 5. Then it

* *
frou nonsatiation that Gi > 0 if X, > 0.

follows

9. A Two—Agent Exchange Economy: Stability

Some of the ideas of the preceding sections can be illustrated by their
application to the study of a simple example: a two—agent pure exchange
system. Let there be two consumers, with contiuously differentiable, strictly
concave preferences wl and w? satisfying assumptions W1-W5 of section 3 and
condition (7.2) of section 7. Let there be a single, non-storable consumption
good x, the endowment of which is fixed at the constant level x > 0, so that
the technological assumptions of section 4 are trivially satisfied. 1In the
notation used earlier, then, n =2, m =1, and p = 0.

Under these restrictions, it has been shown that a continuous optimal



policy function exists, giving the current period goods allocation (xl,xz),
the end~of-period-utility allocation (zl,zz), and the beginning-of-next-period
weights (wy,w,) as functions of the beginning of period weights (61,02). For
this two-agent case, it is couvenient to let 61 =4, 62 = 1-8, and denote the

optimal policy functioans by G (8,1-8) = (x(8),x-x(8)},

GZ(8,1-0) = (z,(8),2,(8)), and ¢"(,1-8) = (w(8),1-w(8)). Then
x: [0,1] » [O,E]; zy [0,1] » [0,¢i(§)], where ¢i is the function defined in
(8.9); and w: [0,1] » [0,1]. The motion of St, the one state variable of the

system, is described by:

(9.1) by = w(ﬁt), 60 given,

and the Pareto-optimal resource allocation, for given 60, is the consumption

sequence described by:

(9.2) X, = x(et) , t=0,1,2,000 &

The objective of this section is to characterize the behavior of these
optimal allocations via the study of the policy functions. Clearly, x(0) =
x(1) = X and from (7.4), 0 < x(8) < x if 0 < & < 1. Similarly, z;(0) = O,

zl(l) = ¢1(§), 22(0) = ¢2(§) and zz(l) = 0. Further information on the policy
functions can be obtained frou the first—order conditions (7.5)-(7.11),

suitably specialized to the present case. Two of these are:

(9.3) oW (x(e) z,(8)) = (1-8) w2 (x - x(8),2,(0)),
and
1 - _ i}
(9.4) (e) W (x(e) z (6)) =y W ( x(e),uz(e)).

- ] . . R N . i
Where convenient, these derivatives of W' will be abbreviated to Wj(e)-
We will impose two additional restrictions on preferences: the

increasing marginal impatience assumption (8.14), and the assumption that both



X and z are non-inferior "goods"™ for both consumers, or that for i = 1,2,

A - Wi(x,z) Wi(x,z)
(9.5) x <x and z > z = T > S
Wz(x,z) Wz(x,z)

Under (8.14), it follows €rom Theorem 4 of the preceding section that there is
at most one stationary point (x*,z;,z;,a*) with 0 < 6” <1, We will show, in
Theorem 5, that 1if such a stationary point exists, it is stable for

all HO €(0,1) and convergence is monotone, provided (8.14) and (9.3) hold.

This demonstration will rely heavily on Figure 6, which illustrates a
single period's allocation of goods and utilities-from—tomorrow—on between the
two agents. The lower box is an indifference map for agent 1, with goods
consumption on the horizoantal axis and utility z; on the vertical. The upper
box contains the preferences and goods~utility possibilities for agent 2, with
the origin at the upper right, goods measured right to left, and utilities
measurad top to bottom. This display is as close a replica of an Edgeworth
box as can be obtained for this economy, since the second "good™, utility, is
not measured in a common unit,

The curve (x,¢1(x)) in the lower box pairs each possible allocation x to
agent 1 with the utility ¢l(x) agent 1 would enjoy if he were to consume this
amount forever. Its counterpart in the upper box is the curve (E-x,¢2(§—x)).
¥rom the properties of ¢i, these curves are continuous, increasing, and touch
the corners of their respective boxges, as drawn.

The curve (x(e),zl(e)) in the lower box gives the Pareto=-optimal
allocations of goods and utility to agent 1, traced out as 6 varies from O to
1. Its counterpart in the upper hox is (§-x(6),22(6)). Along these curves,
which together are the counterparts to the contract curve in an Edgeworth box,
the tangency conditions (9.3) and (9.4) hold. It follows from Lemma 6 that

these curves are continuous.
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The curves (x,¢l(x)) and (x(e),zl(e)) meet at the corners of the box, as

drawn. 4

Frow Theorem 4, and assumption (8.14), they coincide at exactly one

% *
other point, labelled (x ,@1(x )). There are no other stationary points.

These observairions have their obvious counterparts in the upper box.

Because



the goods allocation must sum to X, the curve (x(e),zl(e)) lies to the left
(right) of (x,¢1(x)) if and only if (E—x(@),zz(e)) lies to the left (right) of
(E‘X,¢2(§—X)- In Lemma 10, we verify that (x(e),zl(e)) is monotonically
increasing, as drawn. In Lemma 11, we show that it cuts the curva
(x,¢1(x)) from above at (x*,¢1(x*)), as drawn. The stability result in

Theorem 5 will then be an easy consequence of these two facts.

Lenma 10. Under the non-inferiority condition (9.5), both x(8) and zl(e) are

increasing functions of 9.

Proof. If the assertion is false, at least one of the two situations depicted

in Figure 7 must obtain. That is, for some weights 69 and Ob, both

x(@a) < x(@b) and zl(ﬂa) > zl(ﬁb) must hold.

& ) oL ()

(x(8),7, (8))

S~

(x(e),zl(e ) |

Figure 7

Then x - x(ea) > x - x(ﬁb), and since Zl(ea) > zl(eb) if and only if



w(ea) > w(eb), it follows that zz(ea) < zz(eb). Then from (9.5), both
1 1
W (9 ) w.o(8,.)
(9.6) R s
wz(ea) wz(eb)
and
w%(ea) w%(eb)
9.7) 5 < 5
W T
dl(ea) Jz(eb)

must hold. From the two tangency conditions (9.3) and (9.4),

1 92
Wi (0. ) wo(9,)

(9.8) w(o, ) =X o (-, )) —— K
X alee) w2k
2% 249

for k= a,b. If (9.6)-(9.8) hold simultaneously, then w(ea) < w(eb). This

contradicts zl(ea) > zl(eb) and thus completes the proof.

Lemma 1l. Under the increasing marginal impatience assumption
* *
(8.14), 0 < 6 < 8" inplies z,(8) > o1 (x(6)) and 6% < 8 < 1 implies

2, (8) < ¢! (x(8)).

Proof. If the assertion is false, the situation depicted in Figure 8 must
%
obtain. That is, for some (and hence all) 6 € (0,8 ), it must be the case
_ 1
that zl(d) < ¢1(x(6)). From condition (8.14), Wé(x,¢ (x)) is declining as x

*
increases, so that since 6 < 0

* %
(9.9) WAGx(0),00x(8)) > Wi, (ol ).
By concavity, Wé is a decreasing function of its second argument so

that 21(6) < Ql(x(ﬁ)) also implies



(9.10) Wy (x(8),2 (8)) > Wi(x(8),9! (x(0)) .

Combining (9.9) and (9.10) gives

(9.11) WA(x(8),2,(8)) > Wi elx™) .

Since agent 2's situation is entirely symmetric, the same reasoning yields:

(9.12) W%(i—x(@),zz(ﬁ)) < wg(;-x*,¢2<§—x*)) .

¢

(x(8),2, (8))

R (x, ¢ (x))

_-_—__.___._.
st
b

A e ———

Figure 8

The tangency condition (9.4) holds at (x(e),zl(e)),(§-X(@),Z (8)) and
at [x*,¢1(x*)J,[%—x*,¢2(§—x*)), so that from (9.4), (9.10) and (9.11) it

follows that

1-6 2 _ 6
ey 7200 = g

I
=
~
<
-~




This in turn implies

To seae that (9.13) is a contradiction, refer again to Figure 8. The

indifference curve I of wl(x,z) that passes through (x(@),zl(e)) intersects

A A
4

the curve (x,¢1(x)) at some point (x,z) with x < %(8) and z > zl(e)- By the
definition of the curve (x,¢1(x)), it follows that z = wl(x,z), which in turm
must equal wl(x(e),zl(ﬁ)). Hence zl(e) < wl(x(e),zl(e)). This conflicts with

(9.13), and so completes the proof.
We may now sum up in:

Theoren 5. For the two—agent economy under study, described

1 .2 = , . e . .
by W', W~ and x, restricted by the non-inferiority assumption (9.5) and the
increasing marginal impatience assumption (8.14), the solution {St} to the

%
difference equation (9.1) converges monotonically to © for all

initial 60 e (0,1).

Proof. The accuracy of the salient features of Figure 6 have been verified in
Lemmas 10 and 1l. For a point x(8) to the left of 6* then, one may reason along the
indifference curve I in Figure 6 to prove that zl(e) > Wl(x(e),zl(e)),

and hence that w(8) > 8, in exactly the manner used to conclude the proof of

Lemma ll. Since the situation is exactly reversed for x(8) > x*, the proof is

complete,

It is instructive to compare the global stability result in Theorem 5 to

the comparable result in the Cass [14] - Koopmans [20] one-consumer, one



capital good economy. Both systems involve a single state variable only, and
in both cases the proof of global stability exploits this one-dimeunsional
character in essential ways, with arguwents that have no obvious counterparts
in higher dimensional systems. In the Cass—-Koopmans case, the argument rvests
entirely on diminishing returns to the one state variable in the system. In
the present model, the same role is played by the assumption of increasing
marginal impatience, a kind of diminishing returns to the accumulation of
individual wealth, as wealth increases,.

In the Cass—Koopmans model, diminishing returns occur in two, mutuaily
reinforcing places: the strict concavity of current period preferences and
the coacavity of the production function. Tt is fairly evident, then, that
conditions found sufficient for global stability in these models are strouger
than necessary, or that, for example, stability might occur under increasing
returns ia production if preferences were concave enough to offset this
effects Similarly, in the present system, both agents are assumed to have
increasing marginal impatience. It must surely be the case that one could
obtain convergence to an interior stationary point if one consumer's
preferences failed to exhibit this property, provided the other's had it in a

"strong enough” way to be offsetting.

10, A Two—-Agent Exchange Economy: Equilibria

For the specific economy analyzed in the preceding section, we have seen
that for each utility weight 60 e [0,1] assigned to agent 1 there is exactly
one Pareto-optimal allocation {xt(eo)}, say, of consumption to agent 1, and
the behavior through time of these allocations has been fully characterized
under the restrictions on preferences (8.14) and (9.5). 1In this section,

these allocations will be resinterpreted as "perfect foresight” or (in this



context, equivalently) "rational expectations” equilibria.

As observed in Section 6, it follows from Theorem 2 of [16] and Theorem 1
of [24] that for each of these allocations {xt(eo)} there is a price
sequence {pt(eo)} with tht(eo) { ®» such that {xt(eo)} is cost-minimizing at

these prices for agent 1 and {x - x (90)} is cost-minimizing for agent 2. In

t

particular, theun, for any t 2> 0, (xt(eo),x (60)) solves:

t+1
(10.1) . min pt(eo)xt + pt+l(eo)xt+l
£+l

subject to

(10.2) Wl 0 e ha (pR@ONT > ul(xCe))

t+2

where, as in Section 3, ul denotes the preference function over infinite

sequences induced by wl and where tx(eo) = (xt(eo),x (60),...).

t+l1
1f 60 € (0,1), then 0 < xt(eo) < x, for all t, as in the preceding

section. Since ul is strictly increasing in both arguments, it follows

that pt(eo) > 0 for all ¢ for each 60 ¢ (0,1). If both consumers are

initially positively endowed, then, the conditions of the Remark on p. 591 of

[16] are satisfied and {xt(eo),pt(eo)} is in fact a competitive equilibrium.
These equilibrium prices are readily calculated from the first-order

conditions Eor the problem (10.1). In terms of the optimal policy

functions x(9), zl(e), and w(9) used in Section 9, define q(8): [0,1] » R, by:

Wy [x(8),7 (8)] Wy lx(u(6)),z (w(8))]

(10.3) a(®) = : :
W [x(8),2, (8)]

Then given the normalization po(eo) = 1, the equilibrium prices pt(eo) are
uniquely given by the difference equation (9.1), the initial value 60, and the

difference equation:



A - 4 /7
(10.4) pt+l(60) q\et) pt\eo) .

Obviously, this construction could as well have been based on the marginal
conditions obtaining for agent 2.

One may think of these equilibrium prices as being established at time O,
in a single, grand clearing of a market for infinite sequences of
consumptions. Alternatively, one may think of q(8) as the spot price of a
one—period, goods—denoaminated bond, established in an infinite sequence of
temporary equilibria in which agents have rational expectations. The two
interpretations are interchangeable, though they would cease to be if one were
to try to supplement them with a tatonnement-type stability theory.

Given an initial 8 and the price—quantity behavior described in (9.1),

(9.2), (10.3) and (10.4), the relative wealth of agent 1 is given by
- -1
(10.5) a(e) = [x tht(6))] tht(e)xt(e) )

and of agent 2, 1 - a(8). This function a: [0,1] » [9,1] is, being composed
of continuous functions, continuous. By [7], Theorems 1! and 3, it is onto, an
observation that also follows, in this more specific setting, from continuity
and the facts a(0) = 0 and a(l) = 1. Tt need not, however, be monotonic. A

possible graph of o is Figure 9.

ai{8) 4

1

Figure 9



To each utility weight 0 to agent 1, then, there is a unique wealth
share a(6) under which he will obtain this utility in a perfect foresight
equilibrium, and a unique consumption path that will deliver him this
utility. For a given wealth level a, however, there may be several
equilibrium allocations with different associated paths of equilibrium prices.

As remarked in Section 6, it remains dubious whether one wishes to view
this as a method for coastructing equilibria. Certainly, one could tabulate
the function a(8) to any degree of fineness, read off the value(s)
of B corresponding to a particular a, and obtain approximations as close as
desired. In the present, one-dimensional context this would he entirely
practical method (though as is the case with most slzorithms, we imagine
examples could be devised to embarrass it badly). In uore dimensions, such a
virtually complete enumeration of possibilities would rapidly becone

impractical.

11. Concludiang Connents

Optimun growth theory is useful in qualitatively characterizing simple
systems and in providing constructive methods for calculating solutions to
more complex ones because it is so arranged as to produce solutions taking the
form of a system of autonomous difference equations. This usefulness is, for
some purposes, enhanced because of the intimate connections between optimal
and competitive equilbrium allocations, so that theories constructed for
normative purposes can turn out to be useful for positive purposes, and
conversely.

On the other side, to attain this usefulness, growth theory has utilized
many “assumptions of convenience” that preclude its applicability to

interesting and easily imaginable general equilibrium systems. As we read



Koopnans [19], that paper is directed at the question: How far can the
assumptions of convenience of growth theory be relaxed, without losing the
convenience? This paper has been an effort to push a step further, to the
study of economies with heterogencous agents——-economies that do not seem
analyzable in an iateresting way under the limits imposed by the assumption of
time—additive preferences. This inquiry has surely added to the confirmation
praovided by [18], [1], {91, [23] and others that Koopmans' instincts were
accurate: time—additivity is neither a desirable nor an analytically necessary
property to impose on preferences. The formal structure of the dynamic
systems with many agents discussed in earlier sections is in most essentials
identical to that of one-agent systems. This cbhservation does not make the
difficult study of such systems any easier, but we hope it may make the
returns from success in such studies more evident.

The hypothesis of increasing marginal impatience, illustrated in
Figure 3, appears to be an essential component that any theory within the
class considered in this paper must possess if it is to generate dynamics
under which wealth distributions converge to determinate, stationary
equilibria in which all agents have positive wealth and consumption levels.
Although we pay lip service to the idea that our theories should have content,
its emergence in fact tends to be unsettling. It remains to be seen whether
this addition to the list of ways in which diminishing returns is required to
produce equilibria that remain away from corners will, or should, be accepted

as being as "natural” as its predecessors.



NOTES

lActually, [19] and [21] consider aggregator functions of the slightly

nore specialized form u(x) = W(v(xo),u(lx)) where v: Rf + R and
W: R+ x R+ R,

ZA broader class of aggregator functions than that used here could
evidently be obtained by considering any function W: RE x R + R with the
property that, after a monotone transformation of utilities, the transformed
function obeys W1-W5. That is, let H: R + R be continuous and strictly

increasing and, given W: Rf x R * R define WH: Rz x R » R by

]

W (x, 2) 1W(x, A 1 (z)] .

Then our theory applies to any aggregator function W such that QH satisfies
W1-W5, for some continuous iacreasing H.

3This terminology is from Hildenbrand [17], Part 1.

“See [12], [111, [14], [27].

5An alternative condition for the uniqueness of stationary points in one-
agent systems, which is easier to verify in some applications, is the "non-
vanishing Jacobian” condition of Brock {[10]. See also [5].

6An evidently closely related condition was used by Uzawa [27], and in

many subsequent applications of his continuous—time formulation.
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