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TWO-PERSON BARGAINING PROBLEMS
WITH INCOMPLETE INFORMATION

by Roger B. Myerson

1. Introduction

Consider first the simplest of bargaining games, in which two risk-
neutral players can divide $100 in any way that they agree on, or else they
each get $0 if they fail to agree. In this example, there is a natural common
scale (dollars) for making interpersonal comparisons of utility, and both
players have equal power to prevent an agreement, so $50 for each individual
is the obvious bargaining solution. This 50-50 split is fair, in the sense
that each player gains as much from the agreement as he is contributing to the
other player, as measured in the natural utility scale. One goal of
cooperative game theory is to provide a formal definition of fair equitable
agreements for the widest possible class of bargaining games. Such a theory
of fair bargaining solutions can be useful both for prescriptive purposes,
providing guidelines for arbitrators, and for descriptive purposes, if we
assume that individuals tend to reach agreements in which each gains as much
as he contributes to the other.

The bargaining solution of Nash [1950, 1953] is the best-known solution
concept for two-person bargaining problems. It selects a unique Pareto-
efficient utility allocation for any bargaining problem with complete
information, and it coincides with the 50-50 split for the simple example
above.

A game with incomplete information is a game in which each player may

have private information (about the payoff structure of the game) which the



others do not know, at the time when the game is played. Harsanyi and Selten
[1972] proposed an extension of the Nash bargaining solution for two-person
games with incomplete information, and a modified version of this solution
concept was used in Myerson {1979a]. However, this solution concept uses
probabilities in a way which cannot be based on the essential decision-
theoretic structure of the bargaining game. 1In this paper, we will develop a
new generalization of the Nash bargaining solution for games with incomplete
information. (See Myerson {1982] for an analogous generalization of the NTU
value.)

In a bargaining game with incomplete information, the players may be
uncertain about each other's preferences or endowments. To describe such

situations, we shall use the concept of Bayesian bargaining problem, based on

ideas from Harsanyi [1967-68]. Formally, a two—person Bayesian bargaining

problem T is an object of the form
*
(1.1) I =(,d,T,T,,u.,uy,p ,P,)
whose components are interpreted as follows. D is the set of collective

decisions or feasible outcomes available to the two players if they cooperate,

*
and d €D is the conflict outcome which the players must get by default if they

fail to cooperative. For each player i (i=l,2), Ti is the set of possible
types for player i. That is, each ty in Ti represents a complete description
of player i's relevant characteristics: his preferences, beliefs, and
endowments. Each uj is a function from DXTlXT2 into the real numbers R,
such that ui(d’tl’tz) is the payoff which player i would get if 4 in D were

chosen and if (tl’tZ) were the vector of players' types. These payoff numbers

are measured in a vonNeumann—-Morgenstern utility scale for each player.



Without loss of generality, we shall assume that utilities are normalized so
that ui(d*’tl’tz) = 0 for all i, t;, ty. Each p; is a function that specifies
the conditional probability distribution that each type of player i would
assess over the other player's possible type. That is, pl(tzltl) is the
conditional probability of player 2 being of type ty, as would be assessed by
player 1 if he were of type tj. Similarly, pz(tlltz) is the conditional
probability of player 1 being of type t;, as would be assessed by player 2 if
he were of type ty. To simplify our notation, we let T denote the set of all
possible type-pairs t=(t1,t2); that is,

T = T1 X T2.
Any pair t=(t;,t,) in T represents a possible state of the players'
information. For mathematical siwmplicity, we shall assume that D and T are
finite sets throughout this paper.

The players' conditional probability distributions p; and p, are said

to be consistent iff there exists some common prior probability distribution

p on T such that p; and p, can be derived from p Dby Bayes theorem, so
that
i .
pi(t_ilti) = p(t)/p (ti), vie{1,2}, ¥(t,,t))eT,
where

i _ .
p(s;) = ) plt_;,s.), W¥ie{l,2}, ¥s.eT .

t_.eT_.
-i -1

(We use the notation T_; = T,, t_; =ty, T, =T}, t_yp = t;, and t = (t1:t2)
throughout this paper. We use (t_i,si) to stand for (tl,sz) or (Sl’tZ)’
depending on whether i=2 or i=l.) We will not need to assume consistency for
any results in this paper, but it will be helpful when we interpret these
results in Section 9.

The players in a bargaining problem do not have to agree on a specific



outcome in D; instead they may agree on some decision rule or mechanism, which

is a contract specifying how the choice should depend on the players' types.
We will allow randomized strategies, so a decision mechanism is here defined

to be any real-valued function p on the domain D x T such that

(1.2) ) ule|t) =1 and wu(d|t) » O, ¥deD, ¥teT
ceD

That is, u(d|t) is the probability of choosing outcome d in the mechanism u,
if t; and t, are the players' types.

Given any mechanism u satisfying (1.2), we let Ui(ulti) denote
conditionally expected utility for player i, given that he is of type ts, if

the mechanism u is implemented. That is, for any i in {1,2} and any t; in Ti’

(1.3) U le) = ] Lop (e Je) udle) u (d,t)

t .¢eT ., deD
-1 -1

Since the players can agree on a mechanism, they do not need to reveal
anything about their actual types in the negotiating process. That is,

instead of player l saying "I demand decision d" if he is type t; and saying

"I demand decision d" if he is type t he can say "I demand a mechanism with

1’

u(dltl,tz) =1 and u(dltl,tz) = 1" 1in both types, and thus make the same

-

effective demands without revealing whether t, or t1 is true. Throughout this
paper, we shall assume that neither player will ever deliberately reveal any
information about his true type until the mechanism is agreed upon. This
assumption, that players will bargain inscrutably, has been discussed and
justified in the context of principal-subordinate cooperation in Myerson

[1981].

In order to conceal his type, each player must phrase his bargaining



offers and demands in a way which is independent of his type. However, this
need for inscrutability can create a new kind of dilemma for a player. It can
easily happen that player 1, when he knows only his own type, would be

A

indifferent between two mechanisms p and p; but player 2 might

prefer p over u if t2 is his type, and p over n if t2 is his type. So player
2 would prefer to argue for u if t, is true and for u if t2 is true. However,

such a policy by player 2 would reveal information to player 1, which could
destroy player 1l's indifference between u and ;. For example, 1 might be
indifferent between betting that 2 can or cannot speak French, until 1 learns
that 2 wants to bet he can.

Thus, each player must be careful to use a bargaining strategy which
maintains a balance between the conflicting goals that he would have if he
were of different types, (maximizing Ui(-lti) or Ui(-lgi)) , even though he
already knows his actual type. That is, in bargaining games with incomplete
information, we need to understand not only how fair compromises between

players 1 and 2 should be defined, but also how fair compromises between

alternative types of the same player should be defined.

2. Feasible and Efficient Mechanisms

We must now clarify one additional question of interpretation relating to
our Bayesian bargaining problems: are the players' types verifiable or

unverifiable? 1If the types are verifiable, it means that players can

costlessly prove their types to each other. One may think of a verifiable
type as consisting of information written on a government—-certified
identification card, which each player keeps hidden during the bargaining but

can pull out to prove his type afterwards. If the types are unverifiable, it



means that players cannot prove their types to each other, and so each player
would lie about his type whenever such a lie might be profitable. For
example, an unobservable subjective preference would be unverifiable in this
sense. When types are unverifiable, players will not reveal their types
honestly unless they are given incentives to do so.

Actually, by appropriately redefining the set of choices D, one can
describe any situation with verifiable types by a more elaborate model with
unverifiable types (by building the verification procedure into the definition
of a "chosen outcome"); so the unverifiable-types assumption is more
general. Thus, in this paper, we shall restrict our attention to the case of

unverifiable types.

Recall that Ui(u|ti) denotes the expected utility for player i in
mechanism pu if his type is t; and both players report their types honestly.
We let U:(u,silti) denote the expected utility for player i in mechanism p if
his type were t; but he pretended that his type were S§ in implementing the

mechanism, while the other player remained honest. That is

*
U, (u,s, |t,) = ) Y op,(t . ]t.) wddlt_.,s,) u,(d,t).
1 1 1 t iET_i deD 1 1 1 1 1 1

A mechanism p is (Bayesian) incentive compatible iff

*
(2.1) Ui(ulti) > Ui(u,silti), vie{l, 2}, ¥t eT,, ¥s,eT..

1
Condition (2.1) asserts that if player i is of type t;» then his expected

utility Ui(ulti) from participating honestly in mechanism u cannot be less
than his expected utility from pretending to be of any other type s;. That

is, (2.1) asserts that honest participation in the choice mechanism p is a



Nash equilibrium for the two players. If (2.1) were violated, then at least
one type of one player would be tempted to lie about his type and so, since
types are unverifiable, the mechanism p could not be implemented. It can be
shown that even dishonest equilibrium behavior in more general mechanisms
cannot achieve any expected utility allocations which are not also achieved by
incentive-compatible mechanisms satisfying (2.1); see Myerson [1979a], for
example. Thus there is no loss of generality in restricting our attention to
such incentive—compatible direct revelation mechanisms.

Besides lying about his type, a player can also force the conflict
outcome if his expected utility is less than zero. A mechanism p is said to

be individually rational iff

(2.2) U, (ule,) >0 vie{1,2}, ¥t .eT. .

A mechanism p is feasible iff it satisfies the probability conditions (1.2)
and is iacentive compatible and individually rational.

A mechanism p is incentive—efficient iff p is feasible and there does not

~

exist any other incentive—compatible mechanism p such that
(2.3) Ui(ulti) > Ui(ulti) vie{l,2}, L

with strict inequality for at least one t;. That is, if p is incentive-
efficient, then there is no other incentive-—compatible mechanism that gives
higher expected utility to at least one type of one player without giving
lower expected utility to any type of either player. Notice that, if there

were another feasible mechanism p satisfying (2.3), then an outside arbitrator

could be sure that both players would be willing to accept a change



A

from y to u, no matter what their types are. See Holmstrom and Myerson [1981]
for a wider discussion of efficiency with incomplete information.

Given any mechanism p, we let U(u) denote the vector of all
Ui(u|ti) conditionally-expected utility levels for each player, given each of
his possible types. That is,

uu) = ((Ui(“Iti))tieTi)iG{I,Z}’

so U(u) is a vector with |T1I+[T2f components.

Our definition of incentive—efficiency implicitly uses U(u) as the
relevant utility allocation vector for welfare analysis. It would not be
appropriate to average player i's expected utility over his various types,
because we are assuming that he already knows his true type at the time of
bargaining. On the other hand, an arbitrator (or an external social theorist)
does not know which»ti is true, so welfare analysis must be based on
consideration of all of the Ui(ulti) numbers, for all possible t;. Even if
the players bargain without the help of an arbitrator, all of the components
of U(u) may be significant in determining whether mechanism p is chosen (not
just the components corresponding to the two actual types), because each
player must express a compromise among the preferences of all of his possible
types in bargaining, in order to not reveal his true type during the

bargaining process.

3. The probability-invariance axiom

Let BP denote the set of all two-person Bayesian bargaining problems of
the form (l.1). Then a solution concept for bargaining problems is a mapping
S(*) such that, for any Bayesian bargaining problem T in BP, S(I') is a set of

feasible mechanisms for I'. That is, if ueS(T') then u should be considered



a fair bargaining solution for the two players in I'. Our theoretical problem
is to find a reasonable definition of such a solution correspondence S(e).

Following Nash [1950], we will approach this problem axiomatically. We
will present some basic properties that a fair solution correspondence should
satisfy and derive a generalization of Nash's bargaining solution from these
properties.

Harsanyi and Selten [1972] proposed that the solution to a Bayesian
bargaining problem should be the mechanism which maximizes

pl(tl) P2(t2)

(3.1) (1 (U ule)d) JO 1 (UyGu]e,)) )

tle:Tl tze:T2

over the set of all feasible mechanisms (although they defined the set of
feasible mechanisms somewhat differently from in this paper). They assumed
that the players' probability distributions are consistent, so that the
marginal probabilities pi(ti) are well-defined. Formula (3.1) is a natural
generalization of the product-maximization formula characterizing the Nash
[1950] bargaining solution, and Harsanyi and Selten have derived it from a
very convincing set of axioms.

A fundamental property of the Nash bargaining solution is that it depends
only on the decision—theoretically significant structures of the problem.
(Nash's scale-invariance axiom follows from this property.) For a solution
defined on general Bayesian bargaining problems, this property implies the

following axiom:

Axiom 1. (Probability-invariance) Consider any two Bayesian bargaining

A ~ ~ A

* - *
problems T = (D, d ,Tl,Tz,ul,uz,pl,pz) and T = (D, d ,Tl,Tz,ul,uz,pl,pZ),

having the same decision sets, type sets, and conflict outcome. Suppose that



~

pi(t-ilti) ui(d,t) = pi(t_i]ti) ui(d,t), vie{1,2}, ¥deD, WteT.
Then these two bargaining problems must have the same solutions; that is,

s(r) = s(o).

To see why the probability-invariance axiom must hold, notice that
whenever we compute an expected utility, we always multiply probabilities by
utilities, as in the axiom. Thus, both bargaining problems in the axiom have
the same sets of feasible mechanisms, and each mechanism y generates the same
vector U(p) of conditionally expected utilities in both problems.

In effect, the probability-invariance axiom states that probabilities
cannot be meaningfully defined separability from utilities, when state-
dependent utility functions are allowed (see Myerson [1979b] for a basic
development of this idea). This axiom was first observed by Aumann and
Maschler [1967]. 1t implies that there is no loss of generality in
considering only bargaining problems in which the two players' types are
stochastically independent, provided that ui(d,t) is allowed to depend on both

A

components of t in any arbitrary way. For example, T is equivalent to T where
(3.2) pi(t_i|ti) = l/IT_il, u, (d,t) = |T_i| pi(t_ilti) u, (d,t), ¥i, ¥deD, ¥teT.

(In Myerson [1976], this axiom was appplied to n—person dynamic games, in
which the probabilities of some players' types may depend on the decisions of
earlier players, to reduce dynamic problems to equivalent static problems in
which all players' types are determined simultaneously and independently.)
For our present purposes, the most important application of the
probability—invariance axiom is to rule out Harsanyi and Selten's solution,
because the probability exponents in (3.1) depend on the probabilities
separately from the utility functions. Thus, we are presented with a dilemma:

Harsanyi and Selten have derived (3.1) uniquely from a convincing set of axioms,



and yet this criterion violates the probability-invariance axiom. To resolve this
dilemma, we must relax one of Harsanyi and Selten's assumptions. The

assumption to be weakened will be their axiom of irrelevant alternatives.

4, The Extension Axiom

Given two bargaining problems T and T in BP, we say that I' extends T

iff T and T can be written in the form

*
r = (D)d ’TI’TZ’UI’UZ’pl’pZ)

>

A

~ * ~
= (D)d ’TI’TZ’UI’UZ’pl’pZ)’

=
|

where D 2D and ui(d,t) = ui(d,t) for every (d,t) in DxT,
That is, T extends T iff the two bargaining problems differ only in that more

decisions are available in T,
For bargaining problems with complete information, Nash's axiom of

independence of irrelevant alternatives (ITA) defines a relationship between

the solutions of one problem and the solutions of its extensions. In this
paper, we shall consider the following condition, which generalizes a stronger

version of Nash's IIA axiom.

Axiom 2 (Extension) Suppose that p is an incentive—efficient wmechanism

for a bargaining problem I'. Suppose also that there exist bargaining

k . @ k .
problems {F } and mechanisms {u }k=1 such that each T is an extension

©

k=1
k. . . k

of T, each y is in the solution set S(I' ), and

. k, k .
lim sup U G lti) < Ui(ulti), ¥ie{1,2}, ¥t eT, .

k>

Then p must be in the solution set S(I').



When the hypothesis of this axiom applies, it means that there are ways
to increase the set of decision options available t;:;layers (without changing
the conflict outcome) such that both players would be willing to settle for
expected utility payoffs that are arbitrarily close to what they can get from
the feasible mechanism u. Thus, following the argument of Nash's TIA axiom,
the players ought to be willing to settle for the mechanism p even when these
extra decision options are not available.

Our definition of an "extension” of a bargaining problem is more
restrictive than that used by Harsanyi and Selten [1972] in their IIA axiom,
so our extension axiom is weaker than their IIA axiom. (Actually, their TIA
axiom allows no sequential approximation, so the two axioms are not quite
comparable. But their solution would also satisfy a stronger version of their
IIA axiom that would be strictly stronger than our extension axiom.)
Essentially, Harsanyi and Selten considered fhat a bargaining problem
% "extends"” I iff T and ; have the same type sets. and the same probability
distributions over types, and

{a(u){ p is feasible in ;} ;Z{U(u)l u is feasible in F}.
Any extension } in our sense would satisfy this definition, but there are many
other bargaining problems that give a larger set of feasible utility

allocations than T, but which cannot be constructed from I' by adding new

decision-options to the set D.

5. The Random-Dictatorship Axiom

Let us consider again the "Divide the Dollars™ game, in which two risk-

neutral players can divide $100 among themselves, provided that they can agree



on the division. If player 1 were a “"dictator” with all of the bargaining
ability, then he could insist on essentially all of the money (or a 99%
share). After all, player 2 would be better off with any infinitesimal share
than with the zero that he gets in the conflict outcome. On the other hand,
if player 2 had all of the bargaining ability, then he could insist on
essentially all of the money.

Now, when the two players have equal bargaining ability, one equitable
solution would be to randomize equally between these two dictatorial
outcomes. Indeed, this plan of giving each player an equal chance of getting
the entire $100 is a Nash bargaining solution for this game. Since the
players are both risk-neutral, this random—dictatorship plan is equivalent to
splitting the money equally, in that each player gets the same expected payoff
of $50.

More generally, consider any two—person bargaining problem with complete
information (no uncertainty yet). Let x; be the highest expected utility that
player 1 can achieve, subject to the constraint that player 2 gets his
conflict payoff of zero. Similarly, let Xy be the highest expected utility
that player 2 can achieve, subject to the constraint that player 1 gets his
conflict payoff of zero. A random dictatorship that gives each player an
equal chance of enforcing his best outcome, subject to the constraint that the
other gets zero, would give expected utility l-x. to each player i. 1If this

271

1 .
— x,.) is Pareto—-efficient then it is the Nash

utility allocation (%-xl, 7 %,

solution of the bargaining problem.

This last observation is very important. 1Its proof is that the random
dictatorship is Pareto-efficient iff the Pareto froantier is a straight line
from (xl,O) to (0,x2) in utility space, as in the "Divide the Dollars” game.

In such games, the Nash bargaining solution always selects the midpoint of



this line.

Now let us return to Bayesian bargaining problems with incomplete
information. In this case, it may not be obvious how to even define a "random
dictatorship” mechanism, because it may not be obvious what decision or
mechanism a player would demand if he had all of the bargaining ability. For
example it may be that each type of player 1 has a different incentive-
compatible mechanism that would be optimal for it; and it may happen that none
of these "potentially optimal” mechanisms for player 1 would be incentive
compatible if player 2 could infer player 1l's type from the fact that he
demanded this mechanism. In such cases player 1 would have to demand a
mechanism that seemed to be a fair compromise between the alternative goals of
his possible types, so as to prevent player 2 from learning 1l's type, even if
player 1 had all of the bargaining ability. What such a "fair compromise”
should be is a subtle question, and has been analyzed in detail in Myerson
[1981].

However, there are some Bayesian bargaining problems ia which there is a
clear decision that each player should demand, if he could have all of the
bargaining ability. We will now focus our attention on a class of such
problems.

We may say that a mechanism p always implements a decision d iff

u(d|t) =1 for every t in T. We say that a decision d 1is incentive-
efficient iff the mechanism that always implements d 1is incentive—efficient.

A decision ey in D is a strongly optimal decision for player 1 iff e; is

incentive—-efficient and uz(el,t) =0 for every t in T. Similarly, a
strongly optimal decision for player 2 is any decision in D that is incentive-
efficient and gives zero utility to player 1 in all states.

Two important facts about these "strong optima" will justify the name.



First, there can be at most one strongly optimal decision for a player, up to

equivalence in utility.

A

1 and e, are both strongly optimal decisions for

player 1 in the bargaining problem [, then ul(el’t) = ul(el,t) for all t.

Proposition 1. 1If e

Proof. If not, let p be the mechanism that systematically selects e;

or e depending on which one is better for player 1. Then this mechanism is

1’
incentive compatible, since player 1 gets the decision that he prefers and
player 2 always gets zero utility no matter what he reports. But p dominates

A A

e; and e, as mechanisms, unless ey and e, are utility—-equivalent. Since

1
strong optima are incentive-efficient, the equivalence asserted in Proposition 1

must hold. Q.E.D.

Our second proposition shows why a player would have to demand his
strongly optimal decision, if there were such a decision and he had all of the

bargaining ability. When S1 is any nonempty subset of Ty, we say that a

mechanism u is feasible given S, iff satisfies the probability constraints
(1.2), is incentive compatible and individually rational for player 1l in the
usual sense (that is, p satisfies (2.1) and (2.2) for i=1), and would be
incentive compatible and individually rational for player 2 after he inferred

that 1's type was in S;. That is, to be feasible given Sy, W must satisfy:

(4.1) Y1 op, (e |e)) udd|t) u (d,t)
271172 2
t,eS., deD
1771
2 d r u,(d ¥t e ¥r €T, ;
) p, (e, [t,) Itl, ,) u,yld,t), t,eT,, ¥reT,
t.eS. deb

and 1



chance at being allowed to demand any feasible mechanism, constrained only by
the requirements of incentive—compatibility and individual-rationality. If
each player has a strongly optimal decision e;, then a random dictatorship
will be equivalent to a .50-.50 randomization between e; and ej;. A random
dictatorship is certainly equitable (since each player gets an equal chance to
control the decision), but it is not necessarily incentive-efficient.

However, if the randomization between e and ey is an incentive-efficient
mechanism, then it is a fair and efficient bargaining solution, and should be

included in our solution set S(I'). The following axiom summarizes this

conclusion.

Axiom 3. (Random dictatorship) In a bargaining problem ', suppose that

there exist strongly optimal decisions e; and e, for players 1 and 2
respectively. Suppose also that the mechanism ; defined by
1

u(ellt) = p(ezlt) =5 ¥teT

is incentive=~efficient. Then JES(F).

It is important to recognize that the hypotheses of this axiom are quite
restrictive, which makes this a fairly weak axiom. In many bargaining
problems, there may be no strongly optimal decisions (so that the outcomes of
a random dictatorship may be hard to predict), or else the randomization
between the strongly optimal decisions may not be efficient. This axiom only
states that, in cases where the random dictatorship is well-understood and

incentive-efficient, then it should be considered a fair bargaining solution.



(4.2) I I ey le) udle) u(d,e) >0,  ¥ret,.

tlesl deD

Proposition 2 Suppose that e, is a strongly optimal decision for player

l, and p is any mechanism. Let S; be the set of all types of player 1 that
prefer u over ej; that is,

S, = {tllUl(u|t1) > 1 ey ey fe)) ul(el,t)}.
£,€T,

If S1 is nonempty then p is not feasible given Sl'

Proof. This is essentially a special case of Theorem 1 in Myerson
[1981]. The basic idea is that, if p were feasible given Sl’ then we could
construct another feasible mechanism that would dominate e, by implementing
e if t1 ¢ Sl’ and implementing p otherwise. But e is incentive—efficient,

and so cannot be dominated. Q.E.D.

Suppose e is strongly optimal for player l. Then, if player 1 tried to
demand some other incentive-compatible mechanism p, and if player 2 inferred
from this demand that player 1 must be in the set of types that prefer p over
ey, then u could not be feasible given this information: some type of player
2 would have an incentive either to lie or to insist on the conflict
outcome. Thus, if a player has a strongly optimal decision, and he is given
an opportunity to demand any feasible mechanism, then he cannot do better than
to demand his strong optimum, no matter what his type is. Any other demand
would be self-defeating, because of the information that it‘would reveal.
(For more on this issue, see Myerson [1981]. Our strongly optimal decisions
here are just a special subclass of the "strong solutions” discussed in that
paper.)

Now consider the random dictatorship, in which each player gets a 50%



6. Definition of neutral bargaining solutions.

There are many solution correspondences which satisfy the probability-
invariance, extension, and random—dictatorship axioms. For example, letting
S(I') be the set of all incentive—efficient mechanisms would satisfy all three
axioms. Our goal as theorists is to find a theory of bargaining that
determines the smallest possible set of solutions, so as to get strongest
possible predictions. So we would like to know how small a solution set we
can define, for each bargaining problem, and still satisfy these two axioms.
We would like to know which mechanisms must be contained in any solution
correspondence that satisfies these axioms.

We formally define a neutral bargaining solution of a two—person Bayesian

bargaining problem I' to be any mechanism p with the property that, for every
solution correspondence S(¢) that satisfies the probability—invariance,

extension, and random—dictatorship axioms, u is in S(I'). We 1let §(F) be the
set of all neutral bargaining solutions of I'. That is, if we let g denote

the set of all solution correspondences that satisfy our three axioms then

(6.1) s(ry = ) s().
SeH

We can now state three of our main results.

Theorem l. As a solution correspondence, S(s) itself satisfies the three

axioms: probability—-equivalence, extension, and random—-dictatorship.

Theorem 2. For any two-person Bayesian bargaining problem ', S(I') # #.



Theorem 3. If I' is a bargaining problem with complete information (in
that T; and T, contain only one type each) then peS(T) if and only if p is a

Nash bargaining solution of T.

Theorem 1 is easy to check, because any intersection of correspondences
that satisfy the three axioms will satisfy these axioms as well. To prove
Theorem 2 and 3, we will need a more useful characterization of the neutral
bargaining solutions in §(F), as will be developed in the next two sections.

The proofs are thus deferred to Section 1ll.

7. The Primal and Dual Problems

Let us now consider a fixed Bayesian bargaining problem I', as in (1l.1)

To simplify our notation we let

and we let Q+ and Q++ denote the nonnegative and strictly positive orthants of
 respectively.

Given any vector A = [(Xi(ti)) in Q+, we define the primal

t,eT, ie{1,2}
problem for A to be the optimization problem

2
(7.1) maximize .z ) Xi(ti) Ui(ulti)
u i=1 tieTi

subject to (1.2) and (2.1).

That is, the primal problem for A is to find an incentive-compatible mechanism

that maximizes the A-weighted sum of the expected utilities of all types of



both players. With D and T assumed to be finite sets, the primal problem is
just a linear programming problem.

These primal problems are important because every incentive-—efficient
mechanism must be an optimal solution of the primal problem for

some A in Q+ This fact follows from the supporting—hyperplane theorem, and

+
the fact that the set of all utility allocations U(u) generated by incentive-
compatible mechanisms is a closed convex polyhedron in 2. (We have omitted
the individual-rationality constraints (2.2) in the primal problem for A,
because any incentive—efficient mechanism will still not be dominated, in the
sense of (2.3), when these constraints are dropped.)

Let us now formulate the dual of problem (7.1). We let ai(silti) denote
the dual variable (or shadow price) corresponding to the incentive constraint
(2.1), which asserts that player i should not expect to gain from reporting
his type as s;, if t; is his true type. We let é denote the set of all
vectors a = (ai(silti))iE{l,Z},sieTi,tiETi such that
ai(silti) > 0 vie{l,2}, ¥s €T, , ¥r.eT,,

and ai(tilti) =0 vie{1,2}, ¥e.eT .

If we multiply the incentive constraints (2.1) by their dual variables
and add them into the objective function of (7.1), we get the following

Lagrangian function

(7.2)

i O~

*
. ) A (e) Ui(ulti) + g % z ai(silti) (Ui(ulti) - Ui(u,silti))
i Sy

1 t.eT,
1 1 1

*
Substituting in the formulas for Ui(u|ti) and Ui(u,silti) it is

straightforward to show that (7.2) is equal to



2
(7.3) ) ) Y oudd|t) V. (d,t,4,0)
teT deD 1i=l
where
(7.4) v.(d,e0,0) = (A (e) + ] e (s fe)) p (e fe,) v dd,e)

s.eT,
1 1

i s ET ai(tilsi) pi(t—ilsi) ui(d,(t_i,si))).
i i

Formula (7.4) will be very important. We will refer to Vi(d,t,k,a) as player

i's virtual evaluation of decision d in state t, with respect to A and a,

By standard Lagrangian analysis, we know that an incentive-compatible
mechanism p will be an optimal solution of the primal for A iff there exists
some a in é such that

if Ui(ulti) > U:(u,silti) then ai(silti) =0, W¥ie{l,2}, VtieTi, VsisTi,
and p maximizes the Lagrangian (7.3) subject only to the probability
constraints (1.2). Clearly, the Lagrangian is maximized by putting all
probability weight, in each u('lt) distribution, on the decisions that
maximize the sum of the two players' virtual evaluations.

The appropriate vector a for use in this Lagrangian analysis is the

vector that solves the dual of (7.1). This dual problem for A can be written

as follows:

2
(7.5) minimize X maximum 2 v,(d,t,A,a).
aeA  teT  deD  i=1 *

Each Vi(d,t,k,a) is linear in a, so this dual problem is a linear programming

problem.



8. Characterization theorems

We now have the machinery to state our first main characterization

theorem.

Theorem 4 p is a neutral bargaining solution in S(T) if and only if

p  1is an incentive—efficient mechanism and there exist sequences

-] ky o

{Xk}k=1, {a }k=l’ and {wk}k:1 such that:

k k k
(8.1) Ae Q,,, o €A, and w €Q , ¥k;
k k k k k
(8.2) (ki(ti) + 1 aiGe)) i) - ) ei(e]s) w(s,)
s €T, s, €T,
i i i i
2

= 1 omax § ovo(a,eaa)/2,  wie(1,2}, weer,, W
t_,€T_, deD j=1 7

and
. k .
(8.3) lim sup w,(t,) < U, (u|t.), vie{l,2}, ¥t eT_.
iti i i i1
k>

We defer the proof of Theorem 4 to Section 1l1. Instead, we shall devote
this and the next section to analysis of these conditions, to give a better
understanding of their significance.

Since (8.1) and (8.2) are linearly homogenous in Xk and ak, and since

k
each A has strictly positive components, we can assume without loss of
. k k . k k

generality that the (A, o ) are normalized so that IA | + Ha I = 1, Then
these sequences lie in a simplex and have a convergent subsequence. By (8.3),

k
the w are also bounded and have a convergent subsequence. So we can assume

k k k

without loss of generality that the (A ,a ,w ) sequences are convergent to
some limits (A,a,w), where the limiting vectors A and a are not both zero.

Now (8.2) and (8.3) imply that

2

(8.4) ) A (e Ui(ulti) > Z Y ) e () = Y max .2 vj(d,t,x,a).

i ti i ti t ded j=1



Since p is feasible in the primal for A, and a is feasible in the dual for A,
(8.4) implies that u and X are also optimal solutions of the primal and dual
respectively. TFurthermore, by duality theory, we must have equality in (8.4),
so the following complementarity condition holds for every type t; of each

player:

(8.5) w,(t,) =U, (ult,) or A, (t,) =0.
1 1 1 1 1 1

To summarize, we have proven the following theorem, which gives the most

tractable conditions for computing neutral bargaining solutions.

Theorem 5. If u is a neutral bargaining solution in §(P) then p is

incentive—efficient and there exist A in 9+, a in A, and w in Q+ such that

(8.6) () # (0,0);
(8.7) p is an optimal solution of the primal problem for Aj;
(8.8) a is an optimal solution of the dual problem for Aj;
(8.9) Ay + ) e (s, lt))w (e,) - § a (t]s.)w,(s,)
it i iTi'i i i i iti i7i
sieTi sieTi

2
= 2 max z V.(d,t,A,2)/2 , Vie{l,Z}, ¥t eT.; and
s = J i i
t ieT_i deb  j=1

(8.10) mi(ti) < Ui(ulti), vie{1,2}, ¥t eT, .

Futhermore, A and w must satisfy the complementarity condition (8.5) for every tye

If these conditions are satisfied with A in Q++ then we can satisfy the

k k
conditions of Theorem 4 with the constant sequences (A ,a ,wk) = (A,a,0).

Thus, we get the following theorem.



Theorem 6, If A, a, w, and p together satisfy conditions (8.7)-(8.10),
and A€Q++ (that is, all Xi(ti) are strictly positive) then p is a neutral

bargaining solution in S(T).

Notice that the conditions (8.7)-(8.10) form a well-determined system, in
the sense that there are as many equations as variables. Given any A, the
primal problem (7.1) determines p, the dual problem (7.5) determines @, and
equation (8.9) determines w. (In fact, (8.9) is a nonsingular system of
equations for w if A€Q++.) Then (8.10) and the resulting complementarity
condition (8.5), give us |T1|+|T2| equations, which are enough equations to
determine A. This suggests a conjecture that the set of neutral bargaining
solutions may be generically finite.

The interpretation of equation (8.9) still needs to be developed.

Summing the equations of (8.9) over ty in Ti and applying (8.5) we get

) A (e ) U Gle) = ) A (e ) w ()
t.€T, t.€T,
1 1 1 1

2
= § max ) V_.(d,t,A,a)/2.
teT deD j=1

Since the last expression is independent of i, we get

(8.11) ) A (e)) Ul(u]tl) = ) A, () Uz(u|t2).

tleT1 tzeT2

Thus, (8.9) gives us an equity condition between the two players, namely, that
the weighted sums of their possible conditionally expected utilities should be

equal. However, (8.9) is a stronger condition than (8.11). (For example,



one can show that any Harsanyi-Selten solution would satisfy (8.7) and (8.11)

for some nonzero vector A, even though it would not generally satisfy

(8.9).) As was discussed at the end of Section 1, a bargaining solution

concept must specify criteria for equitable compromise between the different

possible types of each player, as well as between two players. The equations

of (8.9) define these intertype—equity conditions in our solution theory.
Extending the terminology of Myerson [1981], we say that the vector w is

warranted by A and a, and wi(ti) is the warranted claim of type tis iff w

satisfies (8.9) for A and a. Then (8.10) says that p gives to each type at
least its warranted claim in expected utility. 1In the next section we will
try to show in what sense it may be appropriate to consider such wi(ti) as

equitable or "warranted" claims.

9. The Virtual Bargaining Problem

In this section, we will assume that the players' probability
distributions P and Py in the bargaining problem ' are consistent with a
common prior distribution p, and that p(t) > O for every t in T.

Let u be an incentive-efficient mechanism for the bargaining problem T,
Let»k be a vector in Q++ such that p is an optimal solution of the primal for
A, and let o be an optimal solution of the dual for A.

The virtual bargaining problem with respect to A and a is defined as

follows. The sets of types T; and T, and the probability distributions P and
p, are the same as in T, but the utility functions are v, and v,, defined by

the formula

(9.1) Vi(d,t) = Vi(d,t,)\,a)/p(t), ¥deD, ¥teT,



where V., is as in (7.4). We may refer to v; as the virtual utility function
of player i, In the analysis of this virtual bargaining problem, we will
assume that it has two other properties different from the original bargaining
problem I'. The players' types are assumed to be verifiable in the virtual
bargaining problem, so that there are no incentive constraints. And the

virtual utility is assumed to be transferable between the two players in the

virtual bargaining problem, as if the virtual payoff were in money.

One reason for considering this virtual bargaining problem is that our
original mechanism u 1is the obvious agreement for the players to reach in
this game. This is because, with verifiable types and sidepayments, the
players should simply agree to choose their decision, in each state, so as to
maximize the sum of their payoffs, which can later be redistributed according
to any other standard of equity. Since p is an optimal solution of the primal
for A, for any state t, u(d[t) only puts positive probability on those
decisions d that maximize

Vl(d,t,k,a) + Vz(d,t,k,a) = p(t) (vl(d,t) + vz(d,t))
So u does systematically maximize the sum of the players' virtual-utility
payoffs in every state,

Now consider what would be an equitable agreement in the virtual
bargaining problem, if the players’virtual—utility payoffs were
transferable? The virtual bargaining problem is very simple: there are no
incentive constraints, the players are paid in transferable units like money,
and the virtual payoffs for the conflict outcome are always zero. So an
obviously equitable agreement is that each of the players should get half of
the total virtual payoff available in each state. The expected virtual

utility for type t; of player i in this equitable allocation would be



(9.2) x, (t,) = i ET p (t_;lt) max (v, (d,t) + v,(d,t))/2

2 .
i
= y max ) V,.(d,t,A,a)/(2p (ti)),
t ,eT, deD j=I1 J
i i
where pi(ti) is the marginal probability of type t; of player i in the common

prior. We may say that a mechanism is virtually equitable if it gives an

expected virtual utility to each type t; equal to its equitable allocation
xi(ti).
We may now ask, what allocations of real utility could correspond to this

equitable allocation of virtual utility? Suppose that u 1is a mechanism that

is virtually equitable and incentive compatible. Then

(9.3) xi(ti) = . iéT—i dZD p(d|t) pi(t—ilti) Vi(d,t)

) ;(d|t) Vi(d,t,x,a)/pi(ti)
t .eT i deD

it
o~

- . .
(O + T aysylep) ey =1 ayeyfs) vitne s )i

1 1

v

(O + 1 aGylep) 1Gle) -1 atels) U (ls ) /T
i i

(The third equality here just follows from the definition of Vi (7.4). The

A

final inequality uses incentive-compatibility of p.) Notice that the
inequality in (9.3) would be an equality if p were an optimal solution of the
primal for A, by compementary slackness of dual optima. Now suppose that w is

a vector of warranted claims satisfying (8.9) for X and a. Then (9.2) and

(9.3) imply



(9.4) (Ai(ti) + ) ai(si|ti)) U e - Loa (e ls) U tuls)
sieTi SiETi

2

< ) max ) V,_ (d,t,A,a)/2
t €T , deD j=1 *

=A@ )+ § o a(s. |t w. (t)- Y a (t ]s.)w, (s,).
il i i'i i i i i'ti ii
s,eT, s.€T,
i i i i
Since this inequality holds for every ts, straightforward algebra implies (see

Lemma 1 in Myerson [1981]) that

(9.5) U e < w (r), wiell,2}, ¥t eT,
i i iti i i
with equality if ; is an optimal solution of the primal for A.

Thus we can at last interpret the warrant equations (8.9) in the
characterization theorems. FEquation (8.9) implicitly defines w to be the
highest vector of expected utilities that the various types of the two players
could get in any virtually-equitable mechanism that is incentive—compatible in
I' (or in any extension of I' for which p is still an optimal solution of the
primal for A). The condition (8.10) asserts that, to be a neutral bargaining
solution, the mechanism u must give every type of each player a real expected
utility that is at least as large as what it could get in a virtually-
equitable mechanism.

One of the basic difficulties we face in understanding cooperation under
uncertainty is that a mechanism which is efficient within the set of all
incentive—compatible mechanisms might not be efficient ex post, after the
players learn each others' types. In order to satisfy the constraints of

incentive compatibility, it may be necessary to accept a positive probability



of an outcome that is bad for both players. For example, in union—-management
negotiations, if the management is of the "type” that cannot pay high wages
then, to prove its type, it might have to accept a positive probability of a
costly strike that neither side wants. Otherwise, if they simply used some
strikeless mechanism in which the wage agreement was increasing in the
managements' ability to pay, the management type with high ability would
always pretend to be the type with low ability. But it may be difficult to
understand how the players can commit themselves to implement a mechanism with
a strike of any duration, since managements' type (low ability to pay) is
revealed as soon as the strike begins, and then both sides would prefer to
settle at a low wage.

Virtual utility gives us one way to explain how the players might
implement an incentive—efficient mechanism p that may be inefficient ex
post. In the heat of bargaining, as each player feels the pressure of his
incentive—compatibility constraints (in that he has difficulty getting the
other player to trust him), he might begin to act as if he wants to maximize
his virtual utility, rather than his real utility. That is, instead of saying
that the incentive constraints (2.1l) force the players to accept ex post
inefficiency, we may say that the incentive constraints force the players to
transform their effective preferences from the real to the virtual utility

functions. We may refer to this idea as the virtual utility hypothesis. The

incentive—efficient mechanism y maximizes the sum of virtual utilities in
every state, so it will be efficient ex post in terms of virtual utilities.

We may say that one type S; jeopardizes another type t; of player i, in
the efficient mechanism py, iff the constraint that says S{ should not gain by
claiming to be ty (i.e., Ui(ulsi) > U:(“’tilsi)) is binding in the primal for

A and its shadow price ai(tilsi) is positive. Then the virtual utility of



type t; differs from the actual utility of type t; in that the virtual utility

exaggerates the difference from the types that jeopardize t;. That is,
equations (7.4) and (9.1) construct the virtual utility of type t; as a
positive multiple of the actual utility of type tj minus a multiple of the
“"false" utilities of types that jeopardize t;. So the virtual—-utility
hypothesis of the preceding paragraph may be restated as follows: when
incentive constraints are binding in a bargaining process, then a player in

one type may begin to act according to virtual preferences which exaggerate

the difference from the other types that he needs to distinguish himself from.

The argument leading up to (9.5) showed that this virtual—utility

hypothesis is more than just a convenient way to describe how the players can

come to agree on a mechanism that is ex post inefficient. It is also embodied

in the warrant equations (8.2) and (8.9) that characterize the neutral

bargaining solutions. 1If the players made interpersonal-equity comparisons in

terms of virtual utility, then each type t; could justly demand half of the
expected virtual utility that t; contributes by cooperating (that is Xi(ti)
from (9.2)). But (8.9) and (8.10) guarantee that a neutral bargaining

solution either satisfies these fair virtual demands (if Theorem 6 applies),
or gives no less expected (real) utility to each type of each player than he

could get from any mechanism that does satisfy these fair virtual demands.

10. Example

Let us consider an example which was first discussed in Myerson [1979al.
this example, the two players can jointly build a road which both would use,
and which would cost $100 to build. The road is commonly known to be worth

$90 to player 2; but its value to player 1 on depends on his type, which is

In



unknown to player 2. If 1's type is 1h ("high") then the road is also worth $90
to him, and player 2 assigns subjective probability 0.9 to this event.

However, if l's type is 1% ("low™) then the road is only worth $30 to him, and
player 2 assigns probability 0.l to this event. The problem is to decide
whether the road should be built, and if so, how much each player should pay.

, = {1}, 1, = {2},

D = {do,dl,dz}, p(lh) = 0.9, p(l8) = 0.1, with the utility functions as

To formally model this problem, we let T

follows:
e S 2 I L LI
t1=1h: (0,0) (-10,90) (90,-10)
t1=12: (0,0) (-70,90) (30,-10)

Since player 2 has only one possible type, we may ignore the ty variable
throughout this analysis. The decision options in D are inﬁerpreted as
follows:

dO is the decision not to build the road;

dl is the decision to build the road at 1l's expense; and

d) is the decision to build the road at 2's expense.
The conflict outcome is d* = do. There is no need to consider intermediate
financing options, because they can be represented by "randomized™ strategies
(assuming that both players are risk-meutral). For example, letting

u(dllt ) = 0.4 and u(d2|t1) = 0.6 is equivalent to building the road and

1
charging $40 to player 1 and $60 to player 2 in state tj.

It can be shown (see Myerson [1979a]) that the set of incentive-efficient
utility allocations satisfying individual rationality is a triangle

in 8, with extreme points (Ul(ullh), Ul(ulll); Uz(u)) as follows:

(80,20;0), (60,0;20), (0,0;72).



The first of these allocations is implemented by having player 1 pay $10 and
player 2 pay $90 for the road independently of the state, or by using the
mechanism ul where

ul(d1|t1) = 0.1, ul(dzltl) = 0.9, ¥t

The second of these allocations is implemented by having player 1 pay $30 and

player 2 pay $70 independently of the state, or by using o where

uz(dlltl) = 0.3, ”2(d2|t1) = 0.7, ¥,
The third of these allocations is implemented by having player 1 pay $90 and
player 2 pay $10 for the road if l's type is lh, and by not building the road
if 1's type is 1%; or by using the mechanism My where

u3(d1|1h) = 0.9, u3(d2|1h) = 0.1, u3(d0|12) = 1.0 .

Notice that p, above is the best feasible mechanism for both types of

1

player 1, and Hy is the best feasible mechanism for player 2. (Mechanism u2

is best for player 2 among feasible mechanisms that guarantee that the road

will be built, but player 2 gets a higher expected utility from because

Mg

his subjective probability of type 1% is so small.) Thus, a random

dictatorship would implement the mechanism Hy = O.Su1 + 0.5u3, that is

n,(d,[1h) = 0.5, n,(d,|1h) = 0.5,

u4(d1|12) 0.05, u4(d2|12) = 0,45, u4(d0|12) = 0.5 .

If 1's type is 1lh then is equivalent to building the road and having both

"y
players pay $50 each; if 1l's type is 1& then Hy is equivalent to having a 50%
probability of not building the road, and a 50% probability of building the
road with 1 paying $10 and 2 paying $90. Although there is a 5% probability
ex ante that the road will not be built in My (p(12) u4(d0|12) = 0.05), this
mechanism is incentive-efficient, with

Ul(u4|1h) = 40, Ul(u4|1z) = 10, U2(u4) = 36.

Thus, the argument justifying the random—dictatorship axiom also suggests that



u4 should be a bvargaining solution for this game.
In fact u4 is the neutral bargaining solution for this game. To check

this, notice first that all the incentive-efficient mechanisms satisfy

13 U, G lIn) + =0 (u|12) +0,) =72,

so that all incentive-efficient mechanisms must be optimal solutions of the
primal for A, where

A, (1h) = 13 A\ (10 =5, A, = L

15° 15’ 2
The unique optimal solution of the dual for A (7.5) is

a, (12]1h) = a (1hf12) = O.

1
30°
That is, type lh jeopardizes 12, because the only problematical incentive

constraint is that player 1 should not have any incentive to claim that his

valuation for the road is low ($30) if it is actually high ($90). With

A and @ as above, the virtual utility functions are (by (9.1) and (7.4))

v, (d,1n) = (%§-+ ) u,(4,10)/(0.9) = u, (4,10,
v,(d,12) = (15 u,(d,12) - 30 u, (d, 1h))/(0.1) = 3 u, (d,18) - ; u,(d,1h),
vz(d,tl) = uz(d,tl), theTl, ¥deD.

That is, the virtual utility functions are as follows:

Wiovp) | dor 0 dr o dyr
t,=lh: (0,0) (-10,90) 1 (90,-10)
t1=12: (0,0) (-90,90) (10,-10)

Recalling that d, has 1 paying $100 for the road, and d2 has 2 paying $100 for
the road, we see that these virtual utilities differ from the real utilities
only in that l's virtual valuation for the road is $10 (instead of $30) when

his type is 12. This low virtual valuation for 12 exaggerates type 12's



difference from type lh, which jeopardizes 1%. When 1l's type is 1%, the
players' total virtual valuation for the road just equals its cost ($10+$90 =
$100), so that players can randomize between building the road or not in an
incentive-efficient mechanism. If the road is built when l's type is 1%, then
virtual equity would require that 1 pay $10 and 2 pay $90, so that each pays
his virtual valuation. When 1's type is 1lh, building the road and having each
player pay $50 is efficient and equitable in both the real and virtual utility
scales. Type lh is just indifferent between getting the road at a (personal)
cost of $50, and getting the road at a cost of $10 with probability 0.5 (his
expected gain is $40 in either case), so lh can jeopardize 12. Thus Hy is the
unique virtually-equitable incentive-efficient mechanism.

Formally, the warrant equations are

(%+ 3—(1) 0, (1h) = 2((0.9)(90 - 10))
T%'wl(ll) - gé'wl(lh) = 0
Wy = %{(0-9)(90 - 10) + 0)

and so ml(lh) = 40 = Ul(u4|1h), ml(lz) =10 = Ul(u4]1£), w, = 36 = Uz(u4).

2

Then, by Theorem 6, Hy is a neutral bargaining solution.



11. Proofs
We begin with a key lemma.
€D, e

Lemma l. Suppose that e €D, and uz(el,t) =0 = ul(ez,t), ¥yteT.

1 2

Let ; be the mechanism defined by
e [t) = uleyft) = .5,  ¥eeT.
Then ; is incentive—efficient if and only if there exist vectors A in Q++ and

a in é such that

(ep+ T et e v Gle) - ] a (e s) Ui(5|si)
s €T, s.eT,
1 1 1 1
2
= ) max ) V, (d,t,A,a)/2, vie{l,2}, ¥t eT, .

t_,eT_, deD j=1 7

Furthermore, if J is incentive-efficient then each e; is a strongly optimal

decision for player i.

Proof. 1If ; satisfies the equations in the lemma for some A and a, then

summation implies
2 _ 2
) D A e ) U Gule) = ) max )} V.(d,t,h,a) .
i=1 t,eT, teT deD j=1 3
i i

Thus, since ; is feasible in the primal problem for A, and a is feasible in
the dual problem for A, both J and & must be optimal solutions in their
respective problems. Thus J must be incentive-efficient.

Conversely, suppose that ; is incentive—-efficient. Then there exists
some A in Q++ such that E is an optimal solution of the primal for A. Let a
be any optimal solution of the dual for A. By duality, E must put weight only

on decisions that maximize the sum of the virtual evaluations. Thus, for



every t in T,

2
Vl(el,t,k,a) = Vz(ez,t,k,a) = max z V (d,t,A,a).
dep j=1 J
(We use here the fact that Vz(el,t,k,a) =0 = Vl(ez,t,k,a) ¥t.)
Thus, e; and e, are incentive—-efficient as mechanisms (as they also solve the

primal for X), which implies the last sentence of the lemma. Furthermore, by

definition of V; and us ((7.4) and (1.3)),

(A e +z o (s, t,)) Ui(ﬁ|ti) -é o, (e, |s,) Ui(ﬂ|si)

i i
= X ET V. (e;5t,1,0)/2, ¥i, ¥t.eT,,
-i -
which implies that U satisfies the equations in the lemma. Q.E.D.

We prove Theorem 4 first and then return to prove Theorems 2 and 3.

Proof of Theorem 4. (Characterization of neutral bargaining solutions.)

We show first that the set of incentive—efficient mechanisms for which
(8.1)-(8.3) can be satisfied constitutes a solution concept that satisfies the
three axioms. The definitions of Vj and U; both depend only on the
P{Y4 product, so this solution concept satisfies the probability-invariance
axiom. By the Lemma, this solution concept satisfies the random-dictatorship
axiom. To check the extension axiom suppose that, for each k, there is some
extension Pk in which a mechanism uk satisfies these conditions (8.1)-(8.3) in

Pk and such that

Kk, k
< + i .
UG le) S U Gule ) + Lk, W, FeeT,



~

~ k
Select Xk in Q++ and ak in A and wk so that w?(ti) £ Ui(ﬂklti) + 1/k  for

. . k k
all i and t;, and so that the warrant equations (8.2) for A and a are
satisfied in Pk. (That is, use the maximum over d in the extended decision

. k .
domain Dk, instead of D.) Now let w satisfy these same warrant equations

in T'; that is, with the maximum only over d in D, instead of over d in Dk.

It is easy to show (see Lemma 1 of Myerson [1981]) that the warrant equations
(8.2) have a unique solution mk, and that it is increasing in the right-hand

sides. Thus (since a maximum over D is less than or equal to a maximum over
~

Dk) we must have w?(ti) < w?(ti) for every i and t;. This sequence

{Ak k

k
,O W satisfies (8.1)-(8.3) for u in I'. So the set of incentive-

he
efficient mechanisms for which (8.1)-(8.3) can be satisfied does obey the
extension axiom, as a solution concept.

Because S is the smallest correspondence satisfying the three axioms,
these conditions (8.1)-(8.3) can be satisfied for every neutral bargaining
solution in g(P).

Conversely, suppose that conditions (8.1)-(8.3) are satisfied in T for
the incentive—efficient mechanism p, together with some

k ky®

k k
sequences {A ,a W }k=1' We define quantities yi(t) so that

k k k k k
(11.1) () + 1 afsle)) vy = I afe ls) vyt i, s.)
s.eT, s .eT,
1 1 1 1
2 k k
= max ) V.(d,t,A ,a ) , ¥k, ¥ie{l,2}, ¥teT.
ded j=1

k . . . ,
As long as A EQ++, these equations have a unique solution (again, see

Lemma 1l of Myerson [1981]). Assume that pi(t—ilti) > 0 for every i and t.



Then let us define Pk as an extension of T with two additional decision-

options e; and ey such that

— &
|
o

p (t,]t) uie,b) = yT(t), u;(el,t) -

o

N = oK k -
pz(t1|t2) u2(e2,L) = yz(t), ul(ez,t) 0.
Let uk be the mechanism that randomizes equally between these two decisions
e; and e, in the extension Pk. Then summing (11.1) and using the fact that
wk is the unique solution to (8.2) (given Ak and ak), we conclude that

K, k K ,
Ui(u Iti) = wi(ti) for all i and t;. Thus

liE+zup U:(uklti) < Ui(ulti), vie{1,2}, ¥t eT, .

But by the Lemma and the random—dictatorship axiom, each uke§(rk).
Therefore, by the extension axiom, pes(r). That is, any incentive-efficient
mechanism p that satisfies (8.1)-(8.3) for some sequence is a neutral
bargaining solution.

In the preceding paragraph, we needed to assume that all
pi(t—ilti) > 0, to construct u?(ei,t). However, for any problem T that
violates this assumption, there are other problems ; (as in (3.2)) that
satisfy this assumption, and are equivalent in terms of the probability-
invariance axiom, and have the same set of incentive—efficient mechanisms
satisfying (8.1)-(8.3). So by probability-invariance, (8.1)-(8.3) imply
ueg(F), for any Bayesian bargaining problem I'. (This is the only use made

of the probability—invariance in these proofs.) Q.E.D.



Proof of Theorem 2. (Existence of neutral bargaining solutions.)

We begin with some definitions. For any k larger than |T1|+|T2|, let

2
k .
A= {xeq, |_2 LoAj(e) =1, A (t) > 1/k, ¥, ¥t ],
i=l t,eT,
i1
We let A denote the unit simplex in Q+, containing these sets Ak, and let F
denote the set of all incentive—compatible mechanisms for T.

* %
There exists a compact convex set A such that A S A and, for

every A in A, there is some a in é* such that a is an optimal solution of
the dual for A. To prove this fact, observe first that the feasible set of
the primal for A is compact and independent of A. So the unit simplex A can
be covered by a finite collection of sets (each corresponding to the range of
optimality of one basic feasible solution in the primal) such that, within
each set, an optimal solution of the dual can be given as a linear function of
A. Each of these linear functions is bounded on the compact unit
simplex A, so we can choose é* to contain the union of the ranges of these
linear functions on A.

Let B = max max max |Ui(u|ti)|+l.

i eF
i ti !

Let X ={we@ | 0< w (t,)< B, ¥i, ¥t eT,}.
1 1 1 1

For each k greater than |T1|+|T2|, we now define a correspondence

* X
Zk: FxA x Xx Ak =>Fx A x Xx Ak

so that (u,a,w,X) € Zk(u,a,w,k) iff the following conditions are satisfied



(11,2) p is an optimal solution of the primal for A;
a

(11.3) is an optimal solution of the dual for A;

>

(11.4) wi(ti) = min {wi(ti), B},
where w is the unique solution to the equations

(11.5) (e + z a (s ]t.)) Bi(ti) - z a (e ]s,) Si(si)

1 1

2
= ) max ) vj(d,t,x,a)/z ,  ¥ie{l,2}, ¥t.eT ; and

t—i d j=1
(11.6) Ai(ti) = 1/k for every t; such that
w, (€)= U e, < max (wj(sj) - Uj(ulsj)).
J’Sj

Lemma 1 of Myerson [1981] guarantees that w is uniquely determined by (11.5),
and that each ai(ti) > 0 because each

2 2
max ) V,(d,t,A,a) > ).
a j=11 j=1

Thus w is in X. Condition (l1.6) asserts that A should put as much weight as

*
Vj(d ,toA,a) = 0.

possible (within Ak) on types for which wi(ti) most exceeds Ui(u|ti).

By the Kakutani Fixed Point Theorem, for each k there exists

some (uk,ak,wk,xk) such that

k k k .k k, k k
o Z (u,a

k ,k
? ’w ’A ) € w ?

( AT

’
There also exists a convergent subsequence of these fixed points, converging
to some (;,&,J,X) in the compact set F x é* x X x A, We now show that ; is
in S(T).

Let ;k be the vector determined by (11.5) for Ak and ak. Summing (11.5)

and using duality theory, we get



2 2
k ~k k k
(11.7) iz=1 % A (e 0 (ey) =) max ) Vj(d,t,)\ ,0)

i t d j=1

1
Il o300

k k
% A (e U G |ti).

1

i=l

. k ~k ~k ok K _
For any t;, if Ui(u Iti) > wi(ti) then wi(ti) = wi(ti) and Ai(ti) 1/k,

~k k
because by (ll.7) there must be some type S 5 for which wj(sj) > Uj(u |sj)

k k ,
and so mj(sj) > Uj(u |sj). So for any type t; in T, U1y,

lim sup XF(t.)(U.(uklt.) - 05, < 0,
iti i i iti
k + =
k .. k ~k .
because the Ai(ti) coefficient must go to zero whenever Ui(u |ti)ﬂni(ti) is
positive, and this term is bounded above by B.
Now suppose that there were some i and t; such that
lim sup (Gg(t.) - U,(uklt.)) > 0.
K > o iti i i
Any such t; would also satisfy
- = , k k
@, () = U (lt,) = Lim (@ (k) = U, G [t.)) >0
iti i i itTi i i
koo
by (11.4). Then by (11.6), we could choose such a ty that also satisfies
- . k
A (t,) = 1lim A, (t,) > O.
iti ks 11
But this would imply
] k ~k k
0 < lim sup Ai(ti)(wi(ti) - Ui(u lti))
k + o

= lim sup ] s )W G5 ) - 85G6)) <0,
ko> o (jssj)%(i,ti) 3] J ] i 7]

which is impossible.



Thus, for every i and tis

~ - k
lim sup @ (t,) < U.(u|t,) = lim U, u"[t,).
kK > o 1 1 1 1 K> 1 1

k ~k

k
and so {A ,O W0 4

}k satisfy the conditions of Theorem 4 for n. (Also, ;k must
equal wk for all sufficiently large k, since the B-bound in (10.4) is not
binding.) The mechanism E is incentive compatible, but not necessarily
incentive—efficient. However, there must exist an incentive-efficient

mechanism p such that Ui(ulti) > Ui(;|ti) for all i and t;. Then all the

conditions in Theorem 4 are also satisfied for u, so uag(r). Q.E.D.

Proof of Theorem 3. (Extension of Nash solution.)

If there is no mechanism giving both players strictly more than zero, in
a bargaining problem with complete information, then there is only one
efficient individually-rational utility allocation, which must correspond to
the Nash bargaining solution and the neutral bargaining solution. So let us
assume that T is a bargaining problem with complete information in which both
players can get positive payoffs together.

Then n (now just a randomization over D) is a Nash bargaining solution
iff there exist nonnegative numbers Al and Az, not both zero, such that u
maximizes A U, + AU and AlUl(u) = XzUz(u). Under our positivity

11 272
assumption, these conditions can only be satisfied when both Al and Az are
strictly positive.
Since each player has only one possible type, there are no incentive
constraints, and the vector a must be just (0,0). (Recall the definition of

A in Section 7.) So the conditions (8.6)-(8.10) in Theorems 5 and 6 reduce

to:



(Al,kz) # (0,0), with Al > 0, A2 > 0;
- + .
B maximizes AIUI A2U2,
2
A = %— max § A, U,(u), Wi;
d j=191

w, < Ui(u), Vi.

These conditions can only be satisfied when each Ai > 0 and each
wi = Ui(u), because of our positivity assumption on T'. Thus the necessary

and sufficient conditions in Theorems 5 and 6 both coincide with the

conditions for a Nash bargaining solution. Q.E.D.
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