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COOPERATIVE GAMES WITH INCOMPLETE INFORMATION

by Roger B. Myerson

l. Introduction

In a cooperative game, the players must bargain to select an outcome
which is efficient for them. Each player wants to demand the outcome that is
best for himself, so the players must moderate their demands to reach a
feasible argreement. In general, the amount that a player can realistically
demand in such bargaining will depend on his power in the game situation.
tHere, power means the ability to alternatively help or hurt other players at
will, and to defend oneself against the threats of others. A solution concept
in cooperative game theory is an attempt to systematically predict which
outcomes on the Pareto frontier would be selected by the players, in any
cooperative game, in such a way that each player's payoff is commensurate with
his power. This paper will develop a general solution concept for games with
incomplete information.

The Nash [1950,1953] bargaining solution, defined for two—person
bargaining problems, and the Shapley [1953] value, defined for n-person games
with transferable utility, are the most conceptually elegant and appealing
solution theories in cooperative game theory. Each is derived as the unique
fair allocation rule satisfying a set of compelling and (seemingly) weak
axioms. Harsanyi [1963] showed that these two important solution concepts are

special cases of a more general solution concept, called a nontransferable-

utility value or NTU value, that is defined for all complete—information

cooperative games, with any number of players, with or without transferable

utility. Shapley [1969] developed a simplified version of the NTU value.



These solution concepts may be viewed as generalizations and extensions of the
equal-gains principle (that any two players should gain equally from
cooperating with each other) to games with more than two players and without
obvious symmetries or interpersonally-comparable ut;lity scales.

Harsanyi and Selten [1972] developed a generalized Nash solution for
games with incomplete information, a modified version of which was presented
by Myerson [1979]. However, this solution concept had serious theoretical
drawbacks, and no n-person generalization value could be found. Myerson
[1981] analyzed the problem of inscrutable selection of a mechanism by a
player who has all of the bargaining ability but also needs to conceal his
preferences and private information. This work led to a new generalization of
the Nash bargaining solution for two—player games with incomplete information
where both players have equal bargaining ability. This new generalized Nash
solution was derived from axioms in Myerson [1982].

In this paper, we will construct a bargaining solution concept that will
extend the solution concept of Myerson [1982] and the NTU value of Shapley
[1969] to general cooperative games with incomplete information, using the
Bayesian formulation of Harsanyi [1967-8]. Our bargaining solution will not
be derived from axioms here. 1Its justification will be that it generalizes
and unifies the three basic axiomatically-derived theories of Nash [1950],
Shapley [1953], and Myerson [1982].

It is reasonable to ask why we should be interested in finding unified
cooperative solution concepts of such great generality. One goal is to have a
common framework within which to analyze and compare a wide variety of
games. Another goal is to use generalizability as a test of solution concepts
themselves. That is, if there are two solution concepts which appear equally

plausible for a limited class of games, but only one is naturally



generalizable to a much broader class, then that is evidence in favor of the
conceptual significance of the generalizable concept. In this sense, perhaps
the bargaining solution concept in this paper should be viewed as a further
justification of the Shapley value and the Nash bargaining solution.

But the most important gain from developing a unified solution concept
for general cooperative games with incomplete information maybe that it forces
us to systematically survey the basic logical issues involved in cooperation
under uncertainty. In this paper, we will be developing conceptual structures
and perspectives which may prove to have significance behond the specific

solution concept to which they are applied in this paper. In particular, the

ideas of virtual utility and maximal linear extensions, developed in Sections
3 and 4 respectively, might also be applied to develop alternative solution
concepts for cooperative games with incomplete information. Also, the
interpretation of the rational-threats criterion developed in Section 6 may
also help justify the Shapley NTU value against the recent criticism of Roth
[1980] and Shafer [1980].

In Section 2, the general structure of cooperative games with incomplete
information is formalized. Incentive—efficient mechanisms for such games
satisfy a parametric linear programming problem, which is characterized in
Section 3. Virtual utility is defined so that the Lagrangian function for
this parametric optimization problem can be expressed as the expected sum of
the players'virtual utility. Thus, in an efficient agreement subject to
incentive constraiants, it may appear ex post that the players have maximized

their virtual utilities, rather than their real utilities. This suggests the

following virtual utility hypothesis: that when incentive constraints

(necessary for players to trust each other) are binding in a bargaining

situation, players may act as if they want to maximize their virtual



utilities, rather than their real utilities.

The concept of transferable utility was extremely important in the first
development of cooperative game theory. However, for games with incomplete
information, linear activities like side payments can serve a signalling
purpose as well as a transfer purpose, which makes matters more complicated.
In Section 4, it is shown that, for a game with incomplete information, the
most transferability that can be allowed, without totally replacing the
efficient frontier, is transferability of virtual utility conditionally on the
state of information in the game.

In Section 5, the ideas of Sections 3 and 4 are applied to construct the
general solqtion concept. With complete information, a Shapley NTU value is
an allocation for which there exist nonnegative weighting factors for all
players' utility scales such that the allocation would be both equitable (as
evaluatéd by the Shapley value) and efficient if interpersonal comparisons and
transfers could be made in terms of these weighted utility scales. For games
with incomplete information, a bargaining solution is an incentive-compatible
mechanism for which there exist virtual utility scales such that the mechanism
would be both equitable and efficient if interpersonal comparisons and
transfers could be made in terms of these virtual utility scales. The main
results of this paper are the existence and individual rationality of these
general bargaining solutions.

The rational-threat criterion used in our solution concept is
reconsidered in Section 6. We show that the rational-threat criterion may be
most appropriate in games where the coalitions can commit themselves to
threats in advance, when they anticipate only a small probability of actually
carrying out the threats. In such a situation, a single coalition's threat

against its cowplement does not need to be either equitable or incentive



compatible. Instead, it should be evaluated as part of a plan of threat and

agreement that must be equitable and incentive-compatible overall.

Section 7 contains the longer proofs.

2. Basic Definitions

Let N = {1,2,...,n} denote the set of players, and CL denote the set of
possible conditions or nonempty subsets of N, so that

cL = {s|scw, s # ¢}.

For any coalition S, we let Dg denote the set of collective actions or
decisions feasible for the members of S if they cooperate with each other.
For example, in a market game, Dg might be the set of possible trades among
the members of S. For any two disjoint coalitions R and S, we assume that

DR x DS C_'.‘._DRUS .
That is, RS can implement any decisions feasible for R and S separately,
if RIS = @.

For any player i in N, we let T; denote the set of possible types for
player i, where each type t; in T; is a complete description of i's private
information about preferences, endowments, and any other factors relevant to
the players. For any coalition S, we let

= X
TS ieST-’
so any tg in Tg denotes a possible combination of types for the members of

S. TFor mathematical simplicity, we will assume that all Ti and Dg are

nonempty finite sets. The decision spaces and type spaces for the grand



coalition N will play a major role here, so we may drop the subscript N for
these sets; that is,
D =D, T= Ty
For any d in D and t in T, we let u;(d,t) denote the payoff to player i,
measured in some vonNeumann—-Morgenstern utility scale, if t is the combination
of types for then players and d represents the decisions made by the players.
Throughout this paper, whenever t, tg, and t; appear in the same formula,

th

then ty denotes the i component of the vector t in T, and ts = (t.). We

also use the notation N-i = N\{i}, and we may write ¢t = (tN—i’ti)'

th

Similarly, (t —i’si) is the vector of types differing from t in that the i

N
component is changed to sj.

For any t in T, we let pi(tN-i'ti) denote the conditional probability
that ty_; is the combination of types for players other than i, as would be
assessed by player i if t; were his type. We will assume that these

probabilities are consistent in the sense of Harsanyi [1967-8]. That is,

there exists some probability distribution p over T such that

- i .
(2.1) pi(tN_ilti) = p(t)/p (ti) ¥ieN, VteT,
where
(2.2) pi(si) - I p(s) VieN, ¥s eT,.
Sy-15TN-1

we will also assume that no types—vector has zero probability, so
(2.3) p(t) > 0, ¥teT.

(These consistency and positivity assumptions (2.1)-(2.3) will be needed
only to simplify the interpretation of our results. The solution concept

developed in this paper will satisfy the probability-invariance axiom

described in Myerson [1982], and so it can be extended using this axiom to



games without consistent positive probability distributions.)

Thus a cooperative game with incomplete information is defined by these

structures:

F= (g)geer> (Tyouydieys PI-
We assume that this structure T is common knowledge among the players when
they play the game, plus each player also knows his own true type. We may
refer to a vector of the players' types as a state of the game.

Any coalition S, if it were to form, could plan to determine its
collective decision randomly as a function of its members' information. We
let Mg denote the set of all functions from_TS into the set of probability
distributions overADs. That is, u_eM_ iff

S S

. » = .
(2.5) g(dglts) » 0 and I wg(el]t) =1 ¥dgeDg, ¥t eT,
cseDS

Any such us in MS may be referred to as a mechanism for coalition S.

If RNS = {, then we can embed MR X MS in in the obvious

MrUs

way. That is, if uRsMR and uSEMS, then (uR,uS) in MR(}S is defined by

s d_,d = . d xD <D_,,
(ugoug)(dpsdgftp,te) = u (dp [ dong(dgfes)  AF (dp,dg)eDxD SOy o,
and
Py d .- = .f N xD .
Cugoug)( RusltR’ts) 0 1f dp;;s¥Pp*Pg
We shall assume that, in the cooperative game, only the mechanism chosen
by the grand coalition N will actually be implemented. As a threat during
bargaining, each coalition S may commit itself to some mechanism us in MS’ to

be carried out if the other players refuse to cooperate with the members of

S. Such threats will be significant only to the extent that they may



influence the mechanism uN chosen by the grand coalition. 1In the rest of this
section and in Sections 3 and 4, we will only consider mechanisms in MN, to
develop the theory of efficient mechanisms for the grand coalition. In
Section 5 we will reconsider the threats of all coalitions and construct our
bargaining solution.

We let U:(HN’Silti) denote the expected utility for player i from the

mechanism p_ in MN’ if i's true type is t; but he reports type Si» while all

N

other players are expected to report their types truthfully. That is

*
2. =
(2.6) U Guges )
= z .
p ey Jt) T oudley i) v (d,0)
t. €T ., deD
N-i "N-i
We let

*
(2.7) U (uygle) = U Gugse e

R L AW CI DR CRR

tN—iETN—i deD

That is, Ui(uNlti) is the expected utility for player i from the

mechanism Mo if i's true type is t; and all players are expected to report

their types truthfully in implementing Myt
We shall assume that each player's type is not observable by other

players, so that the types are unverifiable. Thus, if a player had some

incentive to lie about his type when the grand coalition N implements its

mechanism u then he would do so. A mechanism is incentive compatible (or,

N’

more correctly, Bayesian incentive compatible in the sense of d'Aspremont and




Gerard-Varet [1979]) iff

*
2.8 t)>U t ieN .
(2.8) Ui(uNI R i(uN,sil ) VieN, ¥t eT , ¥s.eT,

That is, W _ is incentive compatible iff it would be a Bayesian Nash

N
equilibrium for all players to plan to report their types honestly in the
mechanism uN, assuming that they are asked to report their types
simultaneously and confidentially. Thus, with unverifiable types, the players
must choose an incentive—compatible mechanism if honest reporting of types is
to be induced. It has been argued elsewhere (see Myerson [1979], for example)
that any Bayesian equilibrium of possibly dishonest reporting strategies in
any mechanism can be simulated by an equivalent incentive—compatible mechanism
with honest reporting. So without loss of generality, we may assume that the
mechanism selected by the grand coalition N must be incentive compatible.

In some games, it may be possible for some types to costlessly prove that
other types are false.l/ For example, if a person can play the piano, then
he can prove that he is not a non-pianist simply by playing a few bars. On
the other hand, the non-pianist cannot prove that he is not really a pianist
unless he is given the proper incentives. TIf player i, when s; is his true
type, could costlessly prove that he is not type ts, then we should drop the
corresponding constraint (saying that t; must not be tempted to report Si) in
(2.8). With this modification, our analysis in this paper can be extended to

cover the case of verifiable or semi-verifiable types. Henceforth in this

paper we will consider only the case of unverifiable types.

1. T am indebted to Paul Milgrom for pointing out this issue.
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3. The Priwmal and Dual Problems and Virtual Utility

A wechanism uN in MN is incentive-efficient iff it is incentive

compatible and there does not exist any other incentive-compatible

mechanisn uN such that

(3.1) Ui(;NIti) > Ui(uNIti), ¥ieN, ¥t eT ,
with Uj(;N'tj) > Uj(uNItj) for at least one type £ of some player j. If the
players can bargain effectively, then they should be able to ultimately agree
on some incentive-efficient mechanism. Otherwise, it would be common
knowledge that all players could agree to a change to some other

mechanism My satisfying (3.1). See Holmstrom and Myerson [1981] for an

analysis of this and other concepts of efficiency for games with incomplete

information.
T,
Let A be the following simplex in X R 1,
ieN

Ti

(3.2) A={xe x ® "X (t,) >0, ¥ieN, ¥eeT , | 1 A.(s,) =n}
1eN o . jeN s.eT, 3 J
J ]

Let A0 denote the relative interior of A,
(3.3) 2% = [xeA|r (t,) > 0, wieN, ¥ eT ).

it i i i

Since we are assuming that D and T are finite sets, the set of all
incentive~compatible mechanisms is a closed convex polyhedron in MN, defined
by the linear inequalities (2.5) and (2.8). (Notice that

*
Ui(uNIti) and Ui(uN’siIti) are both linear functions of uy.) Thus, by the
supporting hyperplane theorem, uN is incentive-efficient iff there exists

some A in AO such that My is an optimal solution to the problem
I\
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(3.4) maximize I I A (ti) Ui(uNlti)

. i
€
uN MN ieN tieTi

subject to the incentive constraints (2.8).

We shall refer to this optimization problem (3.4) as the primal problem
for A.

Given A, the primal (3.4) is a linear programming problem. Let us now
formulate its dual. We shall generally let ai(silti) denote the dual variable
(or shadow price) corresponding to the incentive constraint (2.8) that asserts
that player i should not be tempted to claim to be type Si if his true type is

t.

i* We let

T, xT,
(3.5) A={aex " * @ (s |t,) >0, a {t |t ) =0, VieN, ¥t eT_, ¥s eT }
~ ieN i iti i it i i i i i

That is, A is the set of all possible vectors of dual variables for the

incentive constraints. ((2.8) holds trivially when s; = tj, so the shadow

. ( . , ) )

We now come to an important definition. Given any A in A and o in A, let

(3.6) v, @0, = (A e+ = a (s [e ) b (e e) u (d,8)

s €T,
i i

- I a(e]s) b (e ]s) u(d, (e s 0))/p(E)

S.ET,
i i

for any i in N, d in D, and t in T. We shall refer to vi(d,t,l,a) as player

i's virtual utility for decision 4 in state t, with respect to A and a.

If we multiply the incentive constraints by their dual variables and add
them into the primal objective function, then we get the following Lagrangian

function:
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(3.7) I A () U (u e
ieN t,eT, - -t N
i 1
*
+ £ = Iooa (e fs) (U G|t )-U Gug,s [ )

ieN t eT, s €T,
1 1 1 1

= I p(t) = uN(dIt) I v (d,t,)a).
teT ded ieN
The equality in (3.7) follows by straightforward manipulation from the
definitions (2.6), (2.7) and (3.6). So the Lagrangian function for the primal
problem is just the expected sum of the players' virtual utilities.
By standard Lagrangian analysis, an incentive-compatible
mechanism uN will be an optimal solution of the primal problem for A if and
only if there is some a in é such that

*
_ = i €T
ai(silti) (Ui(uN|ti) Ui(uN,silti)) 0, V¥ieN, VtieT Vsi i’

i,
and My maximizes the Lagrangian function subject only to the probability
constraints (2.3). Obviously, this Lagrangian function is maximized by

putting all probability weight, in each uN(°It) distribution, on the decisions

that maximize the sum of the players' virtual utilities. That

is, My maximizes the Lagrangian function over all mechanisms in My if and only
if
(3.8) z uN(dIt) I v.(d,t,1,a)

deD ieN

.= maximum I vi(d,t,k,a), ¥teT .
deD ieN

The appropriate vector a for use in this Lagrangian analysis is the

vector that solves the dual of (3.4). This dual problem for A can be written
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(3.9) minimize X p(t)emaximum I vi(d,t,A,a).
aeé teT ded ieN
Each vi(d,t,k,a) is linear in o, so this dual problem is indeed a linear
programming problem.
The virtual utility functions will play an important role in our theory
of bargaining, so it is worthwhile to try to develop some intuitive
understanding of them. So let us assume that yu_ is an incentive-efficient

N

mechanism. Let A in AO and o in A be such that u_ solves the primal for A and

N
@ solves the dual for A. We say that one type St jeopardizes another type tj
of player i, in the incentive—efficient mechanism My iff the constraint that
says s; should not gain by claiming to be t; is binding (that is,
U( )-U*( ' ) d i h . '). c h

i uN|si = U, uN,ti Si) and its shadow price ai(ti §;) 1s positive. Then
player i's virtual utility when he is of type ty differs from his real utility
in a way that exaggerates the difference from the types that jeopardize t;.
That is, equation (3.6) defines i's virtual utility for d at t as a
positive multiple of his real utility for d at t, minus a multiple of what
his utility for d would be if his type were changed to a type that
jeopardizes t;. To see this more clearly, notice that (3.6) may be

rewritten as

PHED v (@t = (g (e) + ] oGy fe)) u @0

i

- z “i(tilsi) ui(d’(tN—i’Si))(pi(tN—i'Si)/pi(tN—i'ti))’

1

where the probability-correction ratio in the last term vanishes to one if the

players' types are stochastically independent.
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For type t; of player i, the expected virtual utility from the

mechanism uN (honestly implemented) is

(3.10) ) Lopy (e ) my@]e) v (d,e,0,0)

tN—iETN—i deD

_ ! * v, 1
= (e + é o (s [e)) U Gnygley) - Z o (eyfs) U gt fs )/ (e,
1 i

If u,_ solves the primal for A and a solves the dual for A, then by

N

complementary slackness this formula can be further simplified to

Gan () + T a s e)) v gle) -1 a e ]s) Ugls ) /et
sy : s

Let us consider now an application of the virtual utility concept. An
incentive—-efficient mechanism need not be efficient ex post, after the players
learn each other's type. That is because, in order to satisfy incentive
constraints, it may be necessary to accept a positive probability of an
outcome that is bad for both players. For example, in union—-management
negotiations, if the management of the "type" that can only afford to pay
lower wages, then it might have to accept a positive probability of a strike
before it can get a reduction in the wage rate. The strike is needed to prove
to the workers that management is not of the type with high ability to pay.
But it may be difficult to understand how the players can commit themselves to
implement a strike of any duration, since management's low type is revealed as
soon as the strike begins, and then both sides would prefer to settle at a low
wage.

By (3.8), an incentive—efficient mechanism always maximizes the sum of

the players' virtual utilities (with respect to the appropriate A and a) in



every state t. Thus an incentive-efficient mechanism would appear efficient
ex post if the players' payoffs were measured in virtual utility, instead of
real utility. Instead of saying that the incentive constraints (2.8) force
the players to accept ex post inefficiency, we may say that the incentive
constraints force each player to transform his effective preferences from his
real to his virtual utility function, to exaggerate the difference between his
true type and the false types that jeopardize it. This idea, that players in
bargaining may act as if they want to wmaximize their virtual utilities instead

of their actual utilities, may be referred to as the virtual-utility

hypothesis.

In Section 5, we will extend this virtual-utility hypothesis by assuming
that the players also make interpersonal equity comparisons in terms of

virtual utility, to compute their fair payoffs or warranted claims. But

first, we consider generalizations of the classical transferable-—utility

assumption for games with incomplete information.

4. Transferable Utility and Linear Activities

The assumption of transferable utility has played an important role in

the development of cooperative game theory. Of course, bounded utility
transfers can be accommodated within the model described in Section 2 (by
interpreting the decisions in each Dg as including specifications of how much
utility should be tranferred between each pair of players in S), so there is
very little loss of generality in restricting ourselves to this model.
Nevertheless, to understand cooperation under uncertainty, it is useful to see
how the assumption of transferable utility extends to games with incomplete

information.
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Transfer of utility between players is just a special kind of linear
activity which could be permitted in a game. In general, a linear activity
can be represented by a function f£:T =+ ]Rn, such that fi(t) is the utility
gained by player i in state t if the players do one unit of activity f. Let F

NxT

be any finite set of such activities, so that F is a subset of TR « Given T

as in (2.1), the game T extended by F refers to the game in which the grand

coalition can also use any linear combination of activities in F as a function
of the players type-reports. (More generally, we could introduce a set of
feasible linear acitivies Fg for each coalition S, with

FSQQ Fp if S R, but we will only be concerned with the grand coalition N in
this section.)

In the extended game with linear activities, the set of mechanisms for N
becomes MN x ijxT. That is, a mechanism is a pair (uN,e) in MN x ]RFXT
where e(f|t) is interpreted as the level of activity f to be performed if
the players report their vector of types as t. Notice that we allow that
e(flt) may be positive or negative.

The expected utility gained by player i from linear activities in the

mechanism (uN,e), given that i's type is t;, is

(4.1) G, (e[t) = i ET p(ty s |ts) fZFfi(t) e(f|t)
N-1° N-i ¢

if all players are honest, and is

*
(4.2) G leps, [t,) = T p (e e ] £.(6) ele|e,  ,s)

S f

N-i
if all players are honest except for i who reports S The mechanism

(uN,e) is incentive compatible iff
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* *
(4.3) U Guglt) + 6 Cefe) > U Gug,s [t + G (e,s e )

¥ieN, ¥t eT ¥s €T.
i i

i’

With linear activities, the extended primal problem for A is defined to be

maximize I I A,(t,)(U,(u It_) + G_(e't,))
. i i "N i i
Hyse ieN tieTi

subject to uNEMN and (4.3).

(4.4)

This extended primal problem differs from the original primal problem
(3.4) only in that it has more variables, in the vector e. Thus, the extended

dual problem for A differs from the original dual problem (3.9) in that it has

more constraints, one new constraint for each variable e(f|t), as follows:

(4.5) RECCHCR RN L) NG LD A ()
ieN s €T,
1 1
- :T o, (t,|s;) p (e fs.) £ (r .80} =0  W¥feF, ¥teT.
i i

(Notice that (4.5) is a linear constraint on a.)

The assumption of transferable utility means that, for any two players j

and k, F includes an activity of transfering one unit of utility from j to

k. We may denote this activity by fjk, where
f;k(t) = -1, fik(t) = +1, fik(t) = 0 if i#¢{j,k}, ¥teT.

Let us suppose that the players' types are stochastically independent random

variables, so that
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i
p(t) = T p(t,), VteT.
ieN t

Then (4.5) for f=fjk becomes

i
Bed+ 2 oa(s |t - T oale]s)) T opi(e,)
33 s,&:T,J T s,eT,J 3 ieN-j *
J 1] J
- _ i
= (xk(tk) + . :T ak(sk|tk) . :T ak(tklsk)) ieg—kp (ti), ¥teT.
k "k k "k

Dividing both sides of this equation by p(t) gives us

e6) (e + T as ey -1 ae s )l
B 3 j J' j 3 j Jl i j

k
= + Z -z .
(A (e o (s, [t o (e s ) /(e ¥eeT,, Ve eT,
s s
k k
Thus, if the players' types are independent and if utility is transferable

between all players then, for any A in A, o satisfies the dual constraint

(4.5) iff

_ i
(4.7) \E) + 2 oas |t I ot [s) =p'(t,), ¥ieN, ¥t eT

s €T, s €T,
i i i i

io

(The constant ratio in (4.6) must be 1, because the Xi(ti) sum to n, for
A in A. Recall (3.2).)
Equation (4.7) can be very helpful for solving applied problems.
However, it also illustrates why transferable utility is less useful as an
assumption for games with incomplete information than it was for games with

complete information. With complete information each player has only one
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type, so that (4.7) becomes simply Xi(ti) = 1; that is, all players must be
given equal weight in the primal problem or else the dual is infeasible and
the primal has no finite optimum. Thus, transferable utility with complete
information implies that all efficient mechanisms solve the same primal
problem, and the Pareto—efficient frontier is a hyperplane. With incomplete
information, (4.7) implies that

z Ai(ti) =1, ¥ieN,

t.eT,
i i

but this still leaves I (|Ti|—l) degrees of freedom in choosing A, and the

ieN
dual problems are generally nontrivial to solve. Under incomplete
Ty
information, the incentive-efficient frontier in _Xij_ is generally not a
i€ : "

hyperplane for games with transferable utility.

To get a conceptual simplification comparable to that offered by
transferable utility under complete ianformation, we must introduce a larger
class of linear activities. 8o let us re—examine (4.5), but think of it now
as a constraint on f for some given A and a. The expression in brackets in
(4.5) is just p(t) times i's virtual utility for ome unit of activity f in
state t. Thus, (4.5) asserts that f must transfer virtual utility between the
players in each state.

Thus, instead of transferable utility, let us consider the assumption of

conditionally transferable virtual utility. Given any two players j and k and

given any type-vector s in T, let gjks denote the activity that transfers one
unit of virtual utility (with respect to A and a) from player j to player k
conditionally on s being the true vector of types, and that transfers zero
units of wvirtual utility otherwise. That is, gjks satisfies the following

equations, for every 1 in N and t in T:
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ik
(4.8) (e + 1 oo fed) ey o) gl S

r. €T,
i i

_ ks 3
i ET @ (eyfr) pileyg g lry) gy Ceygory)j/pCe)

1 1
-j—l if i =j and t
= +1 if 1 k and t
Z 0 |if i¢{j,k} or t # s

]
0

Il
0

If AeAO, acA, and all pi(tN_i,ti) > 0, then (4.8) has a unique solution gjks,

and this vector satisfies:

g% (e) = 0 if 1¢{3,k} or ¢

i N-1 T SN-i
jks

. s. .,t.) €0 ¥t .eT,
83 ( N-j? J) i 3

jks
4 (sN_k,tk) 20 VtkeTk

(These properties follow from (4.8) using Lemma 1 in Section 7.) Notice that,

although gjks gives no virtual utility to player k except in state s, ngS may

in fact give him positive amounts of real utility in states where his own type

differs from Sy e
. . ,0 . —Aa jks
Given any A in A" and a in A, we let F denote the set of all such g

generated by A and a. That is:

fﬂa = {ngSI jeEN, keN, seT, and (4.8) is satisfied with A and « }.

If T is extended by an then we may say that virtual utility with respect to

A and a is conditionally transferable. (Here "conditionally transferable”
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refers to the fact that the transfers can be conditioned on the players' true
types, rather than just their reported types. So conditional transferabiltiy
is a stronger property than simple transferability.)

The following theorem states that, if we try to extend a game in such a
way as to preserve at least one of its incentive—efficient mechanisms, then

the maximal extension is to allow conditionally-transferable virtual utility.

Theorem 1: Let I be as in (2.1) and let uN be an incentive—efficient
mechanism for the grand coalition in I'. Let F be any set of linear
activities. Then (uN, 9) is incentive-efficient in T extenae& by F 1if and
only if there exists some ) in A0 and o in A such that uN iéian optimal
solution of the primal problem for A, o is an optimal solution of the dual
problem for A, and F is contained in the linear span of FAQ.

(Here (uN,g) is just uN without using any activities in F.)

Proof: (n_,0) is incentive-efficient in T extended by F if and only if

N’
there is some X in AO such that (uN,O) is optimal in the extended primal for
A. But this holds if and only if there 1s some o in A such that a is feasible
in the extended dual for A and the value of the primal objective function

at uN equals the value of the dual objective function at a. This in turn
holds if and only if My is optimal in the (unextended) primal for A, a is
optimal in the (unextended) dual for A, and a is feasible in the extended
dual. But the linear span of fﬂa is just the set of all activities f that
satisfy (4.5) for X and a. (To check this, observe that all activities

in FA& satisfy (4.5); there are (n—l)‘Tl linearly independent vectors gjks

in ?AQ; and the set of vectors satisfying (4.5) has (n—l)ITI dimensions.) So
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a is feasible in the extended dual for A if and only if F is contained in the

linear span of ?Aa. Q.E.D.

To understand Theorem 1, it is helpful to recognize that linear
activities in games with incomplete information can be used for signalling,
that is, for helping to satisfy incentive compatibility, as well as for
transferring utility. For example, if real utility (instead of virtual
utility) were conditionally transferable, then a player could perfectly signal
his type by agreeing to transfer large amounts of utility to other players
conditionally on his type being anything other than what he reports. In
general, any linear activity that affects different types of a player
differently may be used for signalling, to help prove that the playéfkié not
of the type that loses more from the activity. The activity gjks, which
transfers virtual utility from j to k conditionally on state s, can affect the
real utility payoffs of j or k in states other than s; so its potential for
sign.EHﬂgpurposes is less than that of an activity that transfers real utility

from j to k conditionally on state s.

5. The General Bargaining Solution

The construction of Shapley's NTU value for games with complete
information may be sketched as follows. First, select any outcome on the
Pareto—efficient frontier for the grand coalition. Now extend the game by a
maximal collection of linear activities such that the selected outcome is
still on the efficient frontier of the extended game. These linear activities
can be characterized as transfers of weighted utility between players, where

each player's "weighted utility"” payoff is some contstant Ai times his
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original utility. 1In the extended game, let each coalition choose a threat;
let the worth of each coalition be the total weighted utility that would be
earned by its members if it and its complement both carried out their threats;
and let the grand coalition N act so as to give each player weighted
ﬁtility equal to his Shapley—-value allocation computed from these eoalitional
worths. If this hypothetical behavior in the extended game, when each
coalition chooses its threat optimally for its members, turns out to give the
players payoffs equal to what they were getting in the originally-selected
outcome (which was feasible in the original game), then we say that that
outcome is a Shapley NTU value for the original game. That is, the Shapley
NTU value is defined as a Shapley value, for an extended game with transfers,
that is also feasible in the original game without transfers.

In Section 3 we saw that, when players face binding incentive
constraints, they may appear to act according to the preferehces of their
virtual utility functions. 1In Section 4 we saw that, with incomplete
information, the maximal linear extension (without completely replacing the
efficient frontier) is to let virtual utility (w.r.t. some A and a) be
conditionally transferable in every state. Thus, to follow the logic of the
Shapley NTU value, we should let coalitional worths and Shapley values be
computed in terms of virtual utilities. This key insight, to look at the game

with transferable virtual utility rather than weighted utility, was not

evident to this author until after eight years of search; but with it we can
readily construct a bargaining solution which generalizes the Shapley-NTU
value and has satisfactory mathematical properties, including individual
rationality and existence.

In our model of bargaining, every coalition makes a threat against the

complementary coalition, and then these threats form the basis for computing
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the warranted claims of each player. We let
M= x MS
SeCL
denote the set of possible combinations of mechanisms that the conditions
might select as threats. That is, any vector u = (us) in M includes a

SeCL _
specification of the mechanism us that each coalition S < N threatens to use
in the case that its complement N\S refuses to cooperate with it.

For any coalition S, we let Ws(u,t,k,a) denote the sum of the virtual

utilities (with respect to A and a) that the members of S would expect in

state t, if S and N\S carried out their threats. That is, if S # N,

(5.1) W (u,t,1,0) =
= z ): z )‘ hd
d.eD D “s(dsits) uN\S(dN\S‘tN\S) ies vy ({dgady g)atahsa)
S S dNKS N~S

In the case of S = N, there is no complementary coalition to threaten, so

(5.1) simply reduces to:

WGt d,a) = I udle) I (d,t,),0).
deD ieN

denote the characteristic function game

We let W(u,t,x,a) = (WS(U9t9A9a))S€CL

with these conditional worths. Its Shapley value for player i is:

S{-1)!(n~-|S})!
(5.2) ¢, (Wu,t,0,0)) = E (|s]=1)1¢nz[s]> (W Cuyt,h,e) = W (u,t,0,0))
SeCL n!
s={i}
(This formula is equivalent to the more familiar formula with S-i replacing

N\S. We let W¢ = 0.)

Thus, if the coalitions make threats p in the game with conditionally
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transferable virtual utility, then the Shapley value gives type t; of player i

an expected virtual-utility payoff equal to:

Ioop (e e 6 (W h,0).

EN-15TN-1

We want to know what allocation of real utility corresponds to this allocation
of virtual utility. By (3.11) we know that, if each type s; of player i gets
expected (real) utility mi(si) from an incentive-—compatible mechanism which

maximizes the sum of the virtual utilities, then the corresponding virtual

utility expected by type t; is:

i
A + I -z .
(( (€9 : ai(si!ti))mi(ti) : ai(ti'si)mi(si))/p (t,)
i i
Equating these two formulas (and multiplying through by pi(ti)) we see that
the allocation of real expected utilities corresponding to the Shapley value

allocation of virtual utilities should satisfy:

(5.3) () + 2 oadls, |t))e () - £ al(t|s)wl(s)
it i i ili i i i iti i i
s.€T, s.€T,
1 1 1 1
= z p(t) ¢, {W(u,t,A,a)}, ¥ieN, ¥t eT,.
t. €T . b ol
N-i "N-i

T,
A vector w in X jm_l which satisfies (5.3) 1is said to be warranted
ieN
by A,a, and p; and wi(si) is then the warranted claim of type s;. Thus, the

warranted claims are real utility payoffs corresponding to an allocation which
would give each type of each player his expected Shapley value, if the players
made interpersonal equity comparisons in terms of their virtual utility

scales.



- 26 -

For any A in AO and @ in A, equationms (5.3) have a unique solution in
w, by Lemma 1 in Section 7. Furthermore, these solutions are monotone
increasing (weakly) in the right-hand sides. That is, increasing the right-
hand side of (5.3) for any type of player i weakly increases the warranted
claims of all types of player i. Thus, to maximize i's warranted claim in any
type, player i wants to maximize his expected virtual allocation from the
Shapley value in all his types.

The threat u_ affects the Shapley value allocation only through the

S

difference WS_WN\S’ which all members of S want to maximize. Thus we say that

p in M is a vector of rational threats with respect to A and a if

(5.4) zop(e)(W,(u,t,0,0) = W (u,t,A,a)) =
teT S N\S

= max I p(t)(ws(u_s,vs),t,x,a) S (I ),t,h,a)), WSeCL

S S
vSsMS teT

(Here (u_S,vS) is the vector where vS replaces us in p.) Notice that (5.4)

really depends only on u_ and Haa , SO0 the two complementary coalitions are

S S

involved in a two-person zero—sum game when they choosing their rational
threats. We do not require that rational threats to be incentive
compatible; we only require that pg must be in MS’ satisfying the probability
constraints (2.5). (The set of incentive-compatible mechanisms for coalition
S could depend discontinuously on the mechanism chosen by N\S. So the threat-
selection game between S and N\S would be a pseudogame and would not
necessarily have any equilibrium, if we required that each threat be
incentive~compatible given the other.)

Condition (5.4) includes the case of S = N, using Wb = 0, Thus, if u is

a vector of rational threats with respect to A and o then
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WN(u,t,A,a) = max I vi(d,t,k,a) .
deD ieN
That is, Uy maximizes the Lagrangian function (3.7).

The essential idea in defining our general bargaining solution is that if
the warranted claims for a set of rational threats can actually be achieved by
an incentive-—compatible mechanism, then this mechanism may be called an
bargaining solution for the game. Some care is needed in formulating this
idea precisely, to permit an existence theorem to be proven. The problem is
that the warrant equations (5.4) are only known to be solvable if
all Xi(ti) are strictly positive, so that AEAO. But the Kakutani [1941] fixed
point theorem cannot be applied to the interior of a simplex. We solve this
dilemma by allowing that some of our positive Ai(ti) weights may be
infinitesimal. 1In standard analysis, this is done by considering a sequence
of vectors in AO, some of whose components may converge to zero.

(This dilemma also arises in the case of complete information, where the
resolution proposed by Shapley [1969] is not quite satisfactory. For
Shapley's definition, if there is a dummy in a game then any feasible
allocation will be an NTU value, with all nondummies having Ai = 0. The
definition developed below refines Shapley's definition in a way that rules
out such perverse solutions without losing existence.)

We say that ;N is a bargaining solution (or an NTU value) for T iff

u'\I is an incentive-efficient mechanism and there exists a sequence
{(Ak)ak’uk’mk)};":l such that
k k k k
(5.5) a €A, yu €M, and A EAO (so all Ai(ti) > 0), ¥k;
(5.6) uk is a vector of rational threats for Ak and ak, ¥k;
k k k
(5.7) w is warranted by Ak,a , and # , ¥k;
. k - .
(5.8) lim sup mi(ti) < Ui(uNlti)’ ¥ieN, VtieTi.

k>
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That is, a bargaining solution is an incentive—efficient mechanism such that
there is a vector of warranted claims, supported by positive utility-weights
and rational threats, in which no type's warranted claim exceeds the utility
that it expects from the mechanism by more than an arbitrarily small amount.

We can now state our main existence and individual-rationality theorems.

Theorem 2. There exists at least one bargaining solution EN for T.

Theorem 3. If ﬁ is a bargaining solution then

N
v lt.) » mini i t ¥ieN, ¥t €T, .
Ui(uNI i) minimum  maximum Ui((uN_i,uil i) , i€

My—-iMy-1 ¥1%Mpsy

Proofs are deferred to Section 7.
For any positive number &8, (5.5)-(5.8) imply that, for all sufficiently
k - .
large Kk, mi(ti) < Ui(uNIti) + § for every i and t;, and so

(5.9) L p(t) max I vi(d,t,lk,ak)

teT deD ieN

Z p(t) WN(uk,t,kk,ak)
teT

i

Ip(e) I, a",en",a)
teT ieN

D X A:(ti) m?(ti)
teT ieN

k —
< z z ]
. li(ti) Ui(uN]ti) + né
ieN tieTi

(Here the first equality holds because u; is a rational strategy for N with
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k
respect to A and ak. The second equality is the Pareto—optimality of the
Shapley value. The third equality follows from summing the warrant equations
(5.3) over i and t;. The final inequality follows from (5.8) and the fact

that the Ai(ti) sum to n, since AEAO.) But p.. is incentive compatible; so

N
by duality, if 6 > O then, for all sufficiently large Kk, p, and ak are

N
respectively within nd of the optimum in the primal and dual problems for Ak.
The following theorem follows from (5.9), and lists some convenient
necessary conditions for a bargaining solution. Notice that these conditions
seem to be well-determined, in the sense that (5.10)-(5.13) can

determine p_, &, p, and w, and (5.14) has one equation for each component in

N)
A. This suggests a conjecture that the set of bargaining solutions might be

generically finite.

Theorem 4. TIf ;N is a bargaining solution for T then there

exist (A,a,u,w) such that

(5.10) My is an optimal solution of the primal problem for A;
(5.11) a is an optimal solution of the dual problem for i;
(5.12) u is a vector of rational threats for A and a, and My = ﬁN;
(5.13) w is warranted by A, &, and u ;
(5.14) A () 20, w (c)<U Gije), and

A(e) e (e) = A (e) Ui(ﬁNlti), vieN, ¥t eT ;
(5.15) (A,@) # (0,0).

T,
(That is, A may be any vector in the nonnegative orthant X Eg}, not
ieN
necessarily in the simplex A. But, to avoid trivial solutions, A and & cannot

both be zero vectors.)

See Section 7 for the proof of this theorem.
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6. Interpretation of the rational-threat criterion

Our rational-threat criterion (5.4) postulates that each coalition should
seek to maximize the expected difference betweean the total virtual utility
that its members would earn and the total virtual utility that the
complementary coalition would earn, if both carried out their threats. The
rational threats for coalitions other than N are not required to satisfy any
equity or incentive-—compatibility constraints. These aspects of our rational-
threat criterion deserve some interpretive discussion.

In any bargaining situation, a coalition's threat normally has both
defensive and offensive objectives. The defensive objective is to show that
the coalition could maintain high payoffs for its members if the complementary
coalition refused to cooperate. The offensive objective is to show that the
complementary coalition's members would be hurt by such a breakdown in
cooperation. Obviously, a threat that is strong both defensively and
offensively would be the ideal; but the best defensive threat will generally
not be the best for offensive purposes. Thus, a coalition may have to make
some tradeoff between these two objectives. As observed by Harsanyi [1963],
the Shapley value implicitly defines such a tradeoff, since it only depends on

the difference W _-W

s Nns® The defensive and offensive objectives are combined

with this tradeoff in our rational-threats criterion.

This interpretation of the rational-threat criterion relies on our
identifying Wg as the natural defensive objective function for coalition S.
Once this identification is made, then the natural offensive objective

function is (the opposite of the complement's defensive objective),

NS

and WS-WN‘S is a natural combination of defensive and offensive objectives.

But, in what sense is Ws(u,t,a,k) an appropriate measure of the defensive

strength of coalition §?
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We can best understand the purely defensive aspect of threats by studying
games in which each coalition can only influence its own members' payoffs, so
that there are no offensive possibilities to consider. In the terminology of

Shapley and Shubik [1973], these are games with orthogonal coalitions. That

is, a game T has orthogonal coalitions iff,

A

(6.1) u; ((dg,d S*ONs

),t) = u, ((d ),t)

A

¥d

N\S

¥SeCL, ¥ieS, ¥d_eD

g€Dg> ¥d

¥teT,

NP’ ¥INsFPs?

so that the threat of coalition N\S cannot affect the payoffs to members of
S. Market games of pure exchange are examples of games with orthogonal
coalitions.

In a game with orthogonal coalitions, suppose i€eS. Then, we can let
ui(dS’t) denote the utility payoff for i in state t if dS in DS is carried
out. That is, u;(dg,t) = u;((dg,dy.g)>t) for any dy g in Dy.g- (Recall

D D.) We similarly define vi(ds,t,k,a) as vi((ds,dN\S),t,k,a) for

x
S DN\S &
any dN\S‘ Then for any Hg in Mg, the obvious generalizations of (2.6),(2.7)

and (5.1) are:
*
Uy Gugorg |t = Loey (e e Touglagfeg o) w (dg,t)
£ . d
N-i S
*
U uglt) = Ul gt e )

Wglug,£,2,0) = [ ugldglee) [ v (dg,t,0,a).
dS jes

Let us now consider what threats would be defensively optimal for a given

player, say player 1, in a game with orthogonal coalitions. To be specific,
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suppose that player 1 is acting as a coordinator or leader for all the
coalitions to which he can belong. Suppose that, to maintain his leadership,
player 1 must use a threat-plan that offers each type £y of each player i at
least some minimal expected utility mi(ti). For any coalition S Ef{l}, let
qg denote the probability that S will be the coalition forming under player
1's leadership. Ordinarily, qg would depend on how much player 1 offers the
other players, but for simplicity let us suppose that qy will be some fixed
number close to one aand all other qg will be small positive numbers, for any
threat-plan that gives all players at least their mi(ti) payoffs. (Then qg
for S # N may be thought of as a "trembling—-hand"” probability of the coalition
S forming instead of N.)

In such a situation, if player 1l's type is £y, then he wants to choose

his threat-plan (uS)SZD{l} in S:;{I}MS so as to maximize his expected utility

S:§{1}qs Ul(“sltl) subject to the minimum-payoff constraints
(6.2) z q, U, (u ]ty > ( Z q.) w,(t.), ¥ieN~-1, ¥t eT,,
and the incentive—compatibility constraints
(6.3) * -
. “}j qg Ui(uslti) > 2 dg Ui(us,rilti), VieN, ¥t eT , ¥r eT,.
s={1,i} s={1,1i}

This constraint (6.3) asserts that no player i should have any incentive to
lie about his type when agreeing to follow player 1 in a coalition. We assume
that 1 can negotiate separately with each other player i, so that i agrees
without knowing which coalition S$2 {l,i} will actually form.

To conceal his own type, player 1 must use a threat-plan which achieves

some balance between the objectives of his various types. (See Myerson [1981]
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for detailed discussion of this issue.) At the very least, however, player 1
should choose a threat-plan such that there is no other threat-plan satisfying
(6.2) and (6.3) that gives higher expected utility to all types t, in Ty. For

any such undominated threat-plan there must exist some vector A such

that (uS)ng{l} maximizes
(6.4) Y oA () Y g U |t
et N T sl 1

subject to the constraints (6.2) and (6.3).
So optimal defensive threats for player 1 should maximize (6.4) over

(u 3> subject to (6.2) and (6.3). The Lagrangian for this problem can

s)52{1

be written as follows

(6.5) oA e) Y oaq U (]t

£ 6T, 1717 g5y 8 1 st

+ ) Y ooA(t)) ) q. (U, u [t,) - w, (t.))

1eN-1 ¢t €T, 1 g5, 8 1 SI t 1
) T o« ey I g, U e le) - Urguo,r, e )
ieN t.eT. r.eT. i i| i $so1{1,i} S i S| i i*"$s 1| i
i 71 i i —~

=Y q. (] ple) W (u_,t,x,0) = § YA (t,) w,(t,)).
s> {1} S teT S8 ieS-1 t;eT, i it

(This equality follows straightforwardly from the definitions of Ui Wg, and
virtual utility.)

Thus, by (6.5), in any plan of optimal defensive threats for player 1,
there must exist some A and a such that every coalition is choosing a threat
that maximizes the expected sum of its members' virtual utilities with respect

to A and @. The maximum value of 1's weighted objective function (6.4) is



equal to the expected sum of these virtual utilities for the coalition forming
around player 1, minus terms in (6.5) that do not depend on the threat-

plans. This is exactly the result that we wanted, since it shows that the sum
of virtual utilities can be a valid measure of the defensive strength of a
coalition.

In particular, suppose that ay is almost one, and all other qg are only
infinitesimal probabilities. Then constraints (6.2) and (6.3) require that ny
must be (almost) incentive compatible and must give all players their minimum
payoffs (or at most infinitesimally less). Any other coalitional threat ug
does not need to be gither incentive compatible or equitable, as it is only a
small component of a plan which is incentive compatible and equitable
overall. Thus, our rational-threat criterion can be justified in situations
where the coalitions commit themselves to their threats and gather type-—
reports from their members before the realized coalition structure is
determined, provided that all players believe that the probability of the
grand coalition forming is close to one. In such situations, the value of a
threat for a coalition S (S#N) depends on what it can contribute to the
required utility and incentive—compatibility of the overall plan. With
appropriate shadow prices A and a, expected virtual utility Wg measures this
contribution. For S#N, the threat ug does not need to be either equitable or
incentive compatible itself, because the members of S do not expect to carry

out this threat when they agree to make it part of their threat-plans.
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7. Proofs
First, we cite a basic lemma.

T,
Lemma 1: Given any player i, a in A, A in AO, and hi in I(l, there is a
T,
unique vector w; in R 1 satisfying

. + - = *
7.1 (3 () z o, (s |t ))w (t) E o, (t |8 du. (s,) = h(£), ¥teT
i i
Furthermore, the solution wi to these linear equations is increasing in the
vector hi' (That is, if hi(ti) > hi(ti) Vti, and mi solves (7.1)
for hi instead of h;, then mi(ti) > mi(ti) ¥ti.)

This result is proven as "Lemma 1" in Myerson [1981].

Lemma 2: Suppose that u is a vector of rational threats with respect to
A and a, and w 1is the vector of warranted claims for A, a, and u,

where Ae AO and aeA. Then

w,(t.) > minimum maximum U, (Vv _,v_|t,).
1 v € v, eM Mo il
N-1MN-1 VM)
for any player i and type £y
Proof: Let i be any fixed player. For any coalition S ;Z{i}, let ui be

a mechanism in M{i} such that

S
B, € argmax Ui(uS—i’vi’uN\Slti)
Vv, eM..

i {1}

. S
for every ty and Ti' That is, ui(dilti) > 0 only if di would be a best

response for player i if his type were t; and the coalitions S—-i and N\S were

expected to independently implement their threats from p. Then let p in M be
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defined so that

=
1]

S ce s
(ug_;ou7) if ies

u if i#S.

=
w0
]

Y

For the threat-vector u, no coalition changes its threat when player 1
joins it. So ws(u,t,k,a) and Ws_i(u,t,k,a) differ only by the addition of i's
expected virtual utility in state t when Hg_g ,us, and Hy\g 2Te carried out.

Thus, for any tis

L op(e)(wg (u,t A,a) - W (u t,2,a))
N-i

= (A e +§ o (r |e)) U Gug_ou |t

Haas
r,
i

- 2 a (e | UT (g u,u

Ty

Let ni(ti) = z QL—L——)'(E*L—L——‘U (u ,u

so{i}

ns? 2 by 'r ).

N\Slti)

n:(tilr.) -z (LSL_l)!(n_ISL)! U:((u

S
1 IELPEY ),t-lr ).
$D{i} n! S—-i""1i’ " N\S il 1

; against (uS_ ), for each

MNNs
S, it follows that n, (r.) > n?(t.|r.).
ivi itTilti

Consider now the following chain of inequalities

)+ e |e))n e -1 a (e fr)n ()

: r,
1 1

*
< (e + z o (r e ))n (&) - E a (e, |r) n (e |r)

i i
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-1 oy 3 USRSy F s - WG ,0)
tyoi s={i} n: S S-1
=) p(t) 2{ }(Ls[-l)isn-lsl)! (ws((u_s,ﬁs),t,x,a) - WN\S((u_S,;S),t,A,a))
t S >{i )
N_i T
< Lo 1 }QS"I)QS“'ISD’ CRORRROIEE R W)
t i :
N-i =

(xi(ti) +§” ai(ri,ti))mi(ti) - z ai(tilri) w,(r,).

1 1

In this chain, the fourth line holds because WS(u,t,X,a) and WN\S(u,t,X,a) depend

only on us and u Then the next inequality uses the fact that p is

NS Mns®
a vector of rational threats, and the last equality uses the fact that w is
the vector of warranted claims.
Since the above chain of inequalities holds for all t;, Lemma 1 implies
w > .. -
that i(ti) ni(ti) for all t; But ni(ti) is an average of best-response

payoffs for type t; against a variety of mechanisms for N-i, and so ni(ti) is

not smaller than the right-hand side of the inequality in Lemma 2. Q.E.D.

Proof of Theorem 2

n
We begin with some definitions. For any k larger than I ‘Til, let
i=1

k :
A = {xeA| A (e ) > 1k, ¥, ¥e ]

% %
There exists a compact convex set A such that AT A and, for each A in
%
A there is some @ in A such that @ is an optimal solution of the dual for

A. The proof of this fact is given in the proof of Theorem 6 in Myerson

[1981].
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Let B = maximum Iu (4, t)|+1
i,d,t
T,
and let X ={oe x g | -B < w (c,) < B, ¥i, Vti}.

ieN
For each k greater than Z 'Til, we define a correspondence
ieN

Z :MX A xXx A =>MxA xXx A so that (p,oa,w A)EZ (p,a,w,x) iff the

following conditions are satisfied

~

(7.2) uN is an optimal solution of the primal problem for A;
(7.3) uge argmax ] p(t)(Wg((u_g,v)t,h,0) = Wy (((u_g,v5)E,),a)).
v_eM teT
S'S
(7.4) o is an optimal solution of the dual for A;
(7.5) wi(ti) = max{-B, min{B,gi(ti)}}, ¥i,¥t,, where @ 1is the

vector of claims warranted by A,a, and u;
(7.6) A,(t,) = 1/k for every t; such that

w, (t ) - U (u It ) < maximum (w (s ) - U (u ls ).
j,s
h|

By the Kakutani fixed-point theorem, for each k there exists some

(uk ak wk Ak) such that

(7.7) WS, a0l 2Ky & 2508, ek W Ky,

Since this sequence of fixed points is in a compact domain, there exists a
- - - = *
convergent sequence, converging to some (u,a,w,A) in M x A x X x A. We

will show that y,_ is a bargaining solution.

N
By the fixed-point condition, each v 1is a vector of rational threats

for Ak and ak.

~ k
Let wk be the vector of claims warranted by Ak, ak, and ¢

, ~k ,
By Lemma 2, since w 1is a vector of warranted claims supported by rational

~ k
threats, wi(ti) > -B for every i and t;. Thus wi(ti) can differ from
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~k ~k k ~k
. . < .
wi(ti) only if wi(ti) > B, 1in which case wi(ti) wi(ti)
By summing the warrant equations, we get
Doox AN ENe) = T AN U e,
ieN t eT, ieN
i i
For any i and t,, if ;k(t Y<U (uklt ) then, by (7.6) and (7.7)
i iti Ly e ’ ’

k
Ai(ti) = 1/k; thus

. . ~k - . k _
(7.8) if 1lim dinf wi(ti) < Ui(uNlti) then lim Ai(ti) = 0.

koo ko

Now, suppose.that there were some j and rj-such that

(7.9) lim sup ;%(r.) > U.(EN|r.) = lim U.(u;lr.).
o 303 i 37 e i

Then (7.8) could be strengthened to:
. .. ~k - . k
if lim inf w_ (t,) < U,(u |t ) then 1lim A[(t.) = 0.
i i i NIT1i i1
k> k>0
Since each Ak is in the simplex A, we could find some j and rj satisfying

(7.9) such that Xj(rj) > 0. But then we would get

k ~k k
0 < 1i A(r J(w, (r,) - U, .
im sup AX(r ) (i(ry) - U Cuylr.))

k>

= lim sup y l?(ti)(Ui(uElti) - g:(ti)) <0,
k»  (i,t )#(j,r.)
1 J
using (7.8) (and the fact that ;:(ti) does not diverge to —® as k*®  since it
is bounded below by -B) to get the last inequality. But 0 < 0 is impossible,
SO0 no (j,rj) pair satisfying (7.9) can exist. That is, for every i and t,,

~k -
lim sup w,(t,) < U, (u |t.)e
Kk iti i Nl i
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k k k ~k ,®

So {(A ,a ,n ,w )}k=l form a sequence verifying (5.5)-(5.8) for EN' Q.E.D.

Proof of Theorem 3

Theorem 3 follows immediately from Lemma 2 and the definition of a

bargaining solution.

Proof of Theorem 4

k k k k,®

Given the bargaining solution EN’ let {(A ,a ,u ,w )}k=1 satisfy
(5.5)-(5.8). Let Xk and ak be defined by
Tk k k k
A =2 +
NCRRERWCORVI(EY IR LN D
“k k k k
= +
af(r |t = o (x|t /(AT + |a B
where
PE[+ [ = 2 2 ey s oz efe,fe)) o n.
. itTi ititti
ieN t_eT, r.€T,
i™ i i" 71
’k "k . . . s .
So for each k, (A ,a) lies in a unit simplex. By the linear homogeneity
of all formulas concerned, uk is a vector of rational threats for Ak and ak,

as well as for Ak and ak, and wk is warranted by Ak, ak, and uk.

By Lemma 2 and condition (5.8), each wk must lie within the compact set X
defined in the proof of Theorem 2, and each uk is in the compact set M. So

Kk ok Kk
{

there must exist a subsequence (A ,0,u ,w) that is convergent to some

he
limit (A y&, U ,U)).

The vectors A and o cannot both be zero, because (A,a) has a summation-
norm of one. By continuity of the rational-threat and warranted-claim

conditions, u is a vector of rational threats for A and ¢, and w is warranted

by A, @, and u. By (5.8), wi(ti) < Ui(uNlti) for every i and t;. From
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s s k k .
(5.9) (dividing through by Il |+|a ', and letting 6+0 as k¥®), we get

Y p(t) max ) v (d,t,h,a) < ) A (e Ui(ﬁNlti),
teT deD ieN i t,
and so by duality ;N and o are optimal solutions of the primal and dual for A,
respectively. Duality also implies that the above inequality must be an
equality, which gives us the complementary slackness conditions in (5.14).
Thus we have all of the conditions in Theorem 4, except that letting

Uy = iig u§ does not imply uN = ; . However, since ; is an optimal

N N

solution of the primal for A, it must also maximize the sum of the virtual
utilities in every state. Thus, if we redefine uN as being equal to EN’ we do

not change WN(u,t,A,a) for any t, and so w is still warranted by A,a,u. Q.E.D.
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