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ABSTRACT

This paper examines the investment decision of firms undertaking risky
investment projects, assuming that firms can shut-down production if variable
costs exceed revenues, and that claims on the firms are owned by risk-averse
investors. A formula is obtained for the value of a claim on uncertain future
profits. We find that increases in the variance of the output price can
either raise or lower the value of a project; that claims on uncertain profits
in the medium—term future can have a greater current value than claims on
uncertain profits in the near future; and that changes in the risk-free rate

will change the composition of the capital stock.



I. INTRODUCTION

This paper examines the investment decisions of firms undertaking risky
investment projects and departs from previous economic studies of firm
behavior under uncertainty in two important ways: firms have a shut-down
option (i.e., they will not produce if variable costs exceed revenues); and
claims on the firm are owned by risk-averse investors.! We do not model the
investment decision directly (as do Abel [1981b] and Hartman [1972]), but
concentrate on the valuation of a risky project as an all-or-nothing decision
(as in Dietrich and Heckerman [1980]). The structure of the problem is
similar to that of valuing a call option on a stock, and this allows us to
exploit existing techniques for valuing options, as developed by Black and
Scholes [1973] and Smith [1976].

There have been previous attempts to introduce risk aversion into models
of firm behavior. Sandmo [1971] analyzed the production decisions of an
explicitly risk-averse firm (i.e., one which maximizes the expected utility of
profits), but our model differs in that the firm is a risk-neutral, value-
maximizing price-—taker, which is owned by risk-averse investors. The two
models will generally give different comparative static results.? Our model
is widely used in the finance literature, but has not been much exploited by
economists. >

These features of our model lead to results different from those obtained
by others. Some of our principal results are:

1)) Increases in the variance of the output price can eitter raise or
lower the value of a project. An increase in variability raises expected
profits for a given capital stock at a given point in time (a result obtained

by Hartman and others), but may lower the present value of a claim on future



profits. The latter effect depends upon the extent to which cash flows from
the project covary with other uncertain income streams in the economy.

2) For a given project with a fixed capital stock, it is possible for
claims on uncertain profits several years in the future to have greater
current value than claims on uncertain profits in the immeaiate future.
However, claims on profits sufficiently far in the future will always have a
current value below that of claims on profits in the near future.

3) Changes in the risk-free rate will change the composition of the
aggregate capital stock in a way which is, in principle, predictable.

The paper is organized as follows. Section II values an investment
project with a simple production technology and a shut-down option, assuming
that investors are risk-neutral. Section IIT demonstrates how the model can
be applied directly to value profit streams from Leontief and Cobb—Douglas
production technologies. Section IV allows investors to display risk-
aversion, and it is shown that the solution is essentially unchanged from the
risk neutral case. The only difference is in a term which has the
interpretation of being a futures price. Option pricing techniques are used
together with the Capital Asset Pricing Model to introduce risk-averse
investors in a general equilibrium context, in a tractable way. Section V
interprets the solution of the model as the Black-Scholes call option formula
written in terms of futures prices. Section VI presents comparative static
results for a Leontief technology. Section VII introduces a stochastic wage

into the model. Section VIII concludes the paper.



II. THE VALUATION PROBLEM

Consider capital, which, at each time t, can produce one unit of output
selling for P, while incurring a variable unit production cost C,. (In a
technology with only capital and labor, Ce can;be thought of as the wage bill
per unit of output.) The profit at time t, exclusive of capital costs, is
Pt-Ct if the firm decides to produce. If the firm decides not to produce,
profit is zero. This decision need not be made until time t. The profit flow

at time t is therefore
(1) 7, = max[O0, P, - ct]

Because the firm has a shut-down option, profits are a convex function of
price, as is clear from Figure I. Consequently, if output price is uncertain,

then from Jensen's inequality we have
Eo(max[O, Pt— Ct]) > max{O0, EO(Pt) - Ct]

from which it follows the uncertain profits will have at least as great an
expected value as certain profits.

Convexity of the profit function is responsible for the results of Abel
[1981b], Hartman [1972], and Dietrich and Heckerman [1980] that increases in
output price uncertainty raise the value of a firm. Those papers have profit
functions which are convex due to thé nature of the technology; this paper
emphasizes profit functions which are convex due to the shut-down option,
although we include the Cobb-Douglas model of Dietrich and Heckerman as a
special case. However, as we show later, when investors are risk-averse, it

will not necessarily follow that an increase in expected future profits leads
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FIGURE I



to an increase in the current value of a claim on those uncertain future
profits. The market value of the firm can fall when there is an increase in

output price variability:

Valuation Under Risk Neutrality

We now derive a formula for Vp(t), the value of a claim on time t
profits, conditional information at time 0. For simplicity, we assume that

all investors are risk-neutral. We relax this assumption in Section V. Once

“r
'

we have found the current value of a claim on future profits, Vo(t), the value
of a machine which generates the stream of future profits is found by summing

the values of the claims:
_ (T
J = 0 Vo(t)dt

where it is assumed that the machine lives for T periods.

A)  Assumptions
To derive the explicit valuation formula, we make several assumptions.
1) The firm is a price-taker in the market for output, and the output

price follows the continuous time stochastic process4

(2) &

= q dt + o dz
P P P

where ap is the expected growth rate of the output price, os is the per unit

time variance of that growth rate and dzp is the random increment to the

This process assumes that the output price is known with

5

Wiener process zp.

certainty at time zero, but becomes increasingly uncertain over time.

Appendix I shows that this process implies that P, is log-mormally distributed



and that

(3 E.[P_ ] = P.e P

As we will discuss in Section V, the ability to qbserve futures prices
for the commodity (or to construct a "shadow" futures price) will allow us to
assume an arbitrary process generating P and the solution will be obtained in
terms of the futures price, rather than the commodity spot price.

2) The variable unit production cost, Ct’ is known at time zero with
certainty. We will relax this assumption in a later section.

3) The risk free rate of interest, r, is constant and known with

certainty.

B) Valuing the Cash Flow

In a world with risk-neutral investors, the present value of an uncertain
cash flow is equal to the epectation of the cash flow discounted by the risk-

free interest rate. Therefore

(4) V(P,C,t) e‘rtEO[nt]

e—rtEO[max(Pt— c 0)1

t’

if g(Pt; ap,op,PO) represents the probability density function of P,

conditional on PO, then (4) becomes

-rt (o .
(4") V(P,C,t) = e fo m g(P ;o ,op,PO)dPt

P

-rt (e .
e fct(Pt c)g(P ; ap,cp,PO)dPt



In Appendix I, we show that the solution to (4') is

(5) V(E,,C,,t) = poe‘“N(dl) - ¢ e "tN(,)
d; = [In(By/C) + (r = & + of)/Z)t]/op/f
d2 = d1 - op/t

and § = r —a .
P

While it may appear that this solution has already made a strong
assumption about the form of the production technology, we will show that the
problem of valuing a claim on output produced by a Cobb-Douglas technology
also has a solution of the form (5), although with an appropriate redefinition
of variables.

In Section IV, we show that the introduction of risk—averse investors
leaves (5) unchanged except that 8§ will involve terms which reflect risk

aversion,

III. EXAMPLES

In this section we apply the above valuation technique to machines with
Leontief and Cobb-Douglas technologies. 1In both examples, we retain the above

assumptions about output price, factor costs and the risk-free interest rate,

Leontief Production Function

Assume that the machine's technology is Leontief, so that the capital-

labor ratio is fixed. Then for a given level of capital K, the firm will, at



each time t, produce either

(6) Q = £(K,L[K]) = £(K,L)

or zero. Then the profit flow at time t is
max[Pta - Wti, 0]

where W, is the time t wage rate. By redefinition of units this expression

can be rewritten as

(7) max[Pta - cta, 0] = amax[pt -c., 0]

t’

where C. 1s the wage bill per unit of output. Using (4), the present value of

the expected cash flow in (7) is then
QV(R,C,,t)

where V(Pg,C.,t) is calculated from (5).

Cobb-Douglas Production Function

Consider now a Cobb-Douglas technology with putty-putty capital (i.e.,

the capital-labor ratio can be changed at any time):

(8) Q(K,L) = K2LP a+b<l

Assume that the quantity of capital is fixed at K. At time t, the firm

chooses L, to satisfy



(9)

where the wage W is constant and known with certainty.

to show that labor usage is then given by

1 a 1
_ 1-b ,1-b ,1-b
Lt (Pt/w) K

(10) b

Inserting (10) into (9) yields profits at time t of

.
(11 ¢(Pt) BP_
where
S
Y =15
a -b b 1
B = El—b Wl—b ( 1-b _ bl—b)

It is straightforward

Assume now that there is a quasi-fixed cost, C., at each time t, which is

known with certainty and which is incurred by deciding to produce a nonzero

quantity of output.

This cost is independent of the level of production.

For

example, suppose that a plant must be heated and lighted no matter what the

level of production.,
shut off. Profits are therefore given by

T, = max[¢(P ) - C, O]

With no production, however, the heat and light can be
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The firm with a Cobb-Douglas technology will not produce unless profits exceed
the quasi-fixed cost. The Cobb-Douglas profit function ¢(Pt) plays a role
analagous to that of P, in the Leontief case.

To place this problem within the framework developed above, it 1is

necessary to derive the stochastic process governing ¢(P.). An application if

Ito's lemma7

yields

(12) ap =2 ae +2 ar+ Lo

We assume that ¢t = 0.8 Substituting the price dynamics for P from (2) into

(12), we have -

2
_ 3¢ 1.2 2% 36

Finally, using (11) yields

, d¢ 1.2 -
14 — o + =q - 1])dt + o dz
(14) 3 ( o ¥ 2% vy 1) 232,

o,dt + o,dz
P

It is now possible to use our formula (5), simply be replacing P with ¢
and the parameters describing the prices for P with those describing the
process for ¢. That 1s, replace ap with a¢ and cp with 0¢.

An interesting feature of this solution can be seen by setting Ct = Q.
Then (5) reduces to

~(r-a )t

(15) pe O
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because N(dl) = N(dz) = 1, Using (11) and (14), (15) becomes

~(r-a = g0y [y-1D)t

(16) V(P ,W,K,T) = BPBe P

The value of the stream of profits from the payouts of the project is then

~(r—_- iolfy [y-11)t

(17) g=fgeele P 2 de

If we set T = », the solution to (17) is

Y
BPO

12
r - - =g -1
* T 3% y(y )

(18)

Dietrich and Heckerman (1980) show that this is also the solution to

-rt

(19) max E0 IO m.e dt

Le

This should be no surprise, since equation (5) was derived as the present

value of expected profits. C, = 0 is just a special case.

IV, VALUATION UNDER RISK AVERSION

We have derived the formula for the current value of a claim on the risky
cash flow V(PO,Ct,t) in a risk neutral world. In this section we show that
essentially the same formula can be derived when claims on the firm are valued
by risk-averse investors, using an equilibrium asset pricing model developed
by Merton [1973]. This model, the Intertemporal Capital Asset Pricing Model

(ICAPM) has the implication that for any asset the expected rate of return in
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excess of the risk-free rate will be proportional to Osm? the covariance of
the returns of the asset with the returns of all other assets in the

economy. The equilibrium expected rate of return for asset i is given by

(20) @, - r = Bi(am -r)

where o is the expected rate of return on a portfolio of all assets in the

economy (the market portfolio) and

Pim®1i

(o
m

oim
(21) B, == =
o]
m

where ci is ‘the variance of the rate of return on the market portfolio; Pim is
the correlation coefficient between the rate of return on the asset and that
on the market; and oi is the standard deviation of the rate of return on asset
i. Suppose that the claim on future profits, V(PO,Ct,t) is traded. For an
investor to willingly hold this claim in a portfolio, its expected rate of

return must be given by equation (20). We can calculate the rate of return on

V(Pu’ct’“) using Ito's lemma, and we then obtain

v _ 1,3V 3V 1223 P_ 3V

where u is calendar time, and t is the date at which the production decision
will be made. Note that the bracketed term contains all the nonstochastic
components of dV, and only the last term is stochastic. If the unexpected
component of the rate of return on the market is given by cmdzm, then the

covariance between the rate of return on the claim and that on the market is9
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(23) -,

The beta of the claim on future profits (using (21)) is therefore this

covariance divided by the variance of the rate of return on the market:

=PV pm P23V
(24) By =V 3P 52 V 3P Bp
m

where Bp is the beta of the commodity. We can now impose the constraint that

the expected rate of return on the claim on profits be given by the ICAPM:

(25)

2
OV _ o i aygdV _ 1 223%
(26) oo rv (r G)PaP iopP —
oP
where
§=a -a
s P
a, =t + Bp(rm -r)

ag is the equilibrium rate of return on a stock which has the same beta as the
commodity price. (26) can be solved, subject to the boundary conditiomn that,

at the time at which the production decision must be made, the value is

(27) V(Pt,Ct,t) = max (O, Pt - Ct).
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Smith ([1976], p. 26)] shows that the solution to (26) subject to (27) is
identical to the formula in the risk-neutral case (5) except that
10

§ = a, - ap instead of r - ap. In the absence of risk aversion, the

expected return on the market, r

me ¥Would equal the risk-free rate r. Thus, it

is only due to the presence of risk aversion that a. is different from the
risk—free rate.

Note that, in general, the value of a project will depend upon both the
beta of the commodity price and upon the total: variance of the commodity

price.

V. INTERPRETATION

Consider the expression
(28a) Fo=e °“E(®)=e P

where we have used (3) to evaluate E(Pt). Fg is the price an investor would
pay today in order to receive future delivery of the commodity—--that is, it is
the price of a futures contract which must be purchased in full at the time-
the contract is arranged.11

Consider also the expression
(28b) G

This is the futures price for the certain cost of production, C.. If we
substitute (28) into (5), we can write the value of a claim on future profits
in terms of the current futures prices for the commodity being purchased and

for the production cost:
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t ot oy opbura®y  atara®
(29) V(FO,G ,t) = FON(dl) GON(dZ)
x £t 1 2
d; = [ln(FO/GO) + (E-cp)t]/cp/f
* % —
d2 = dl - cp/t

Equation (29) is a slightly rewritten version of the Black-Scholes formula for
the value of a call option, where the stock price has been replaced by the
futures price of the commodity and the exercise price has been replaced by a
futures price for the production cost. Owning a machine provides the owner
.with the right to produce a commodity at the variable production cost Ce
(analogous to the exercise price of a call option), and to receive the
commodity price P, (analagous to the stock price). A call option on a stock
need not be exercised if, at maturity, the exercise price is greater than the
price of the stock. The owner of physical capital can similarly avoid a ioss
by shutting down the plant if the variable cost of production exceeds sales
revenue.

If there is a futures market for the commodity being produced and for the
production cost, where the futures contracts require full payment at the time
the contract is made, then (29) can be used directly. If there is no futures
market, shadow futures prices can be constructed using (28).

Because the firm produces a commodity, it should be no surprise that (29)
is the formula for a commodity call option. (29) is identical to Black's
[1976] formula for the value of a commodity call-option, except that Black's
formula uses a futures price where payment is made when the commodity is

delivered.
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We are now in a position to understand why the assumption that the price
follows a geometric Wiener process as in (2) is not critical. It is possible
to derive (29) directly by repeating the derivation in Section 3, and writing
the value of the claim, V, directly as a function of the futures prices: V =
V(F,G,u)., While it may not be reasonable to expect the output price in a
competitive industry to follow equation (2), it is reasonable to expect the
price of a futures contract with a given expiration date to follow a process

like (2):

1 — =
2" ath + oFsz

Furthermore, a futures contract of the type we have described is a financial
asset which must have an expected rate of return sufficient to induce
investors to hold it.12 Thus, the expected rate of price increase of a
futures contract will be determined by the Capital Asset Pricing Model:13

(20") a, =1 + BF(rm - r)

F
Using (2') and (20'), and repeating the section IV derivation, will yield
(29). Having noted that the model is really more general than it appears to
be, for simplicity we will continue to assume that the price process is given
by equation (2).

To completely understand (29), it is useful to distinguish between two

classes of commodities, stored and non-stored commodities.
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Stored vs. Non—-Stored Commodities

If a commodity is actually stored, then it must be that its price (net of
physical storage costs) is rising at a rate which compensates the owner for
the risk involved in storing the commodity. 1In effect, the commodity is like
any financial asset. The futures price for such a commodity will simply be
the current spot price, if payment for delivery mist be made when the contract
is struck.l%

If the commodity price is expected to rise at a rate which is too low to
compensate for the risk involved in storing the commodity, then no one will
store the commodity. The futures price will be less than the current spot
price, and is given by (28).

Many commodities are non-stored because they may easily be reproduced at
constant marginal cost, and potential production preQents a rise in their
price. Pencils and shoes are two examples. In equilibrium, we would not
expect the price of pencils or shoes to rise at the rate of interest.15

The distinction between stored and non—-stored commodities is important.
We will show in the next section that an infinitely-lived, non-depreciating
machine which produced a stored commodity (8§ = 0) would have an infinite

present value, while the present value of a machine producing non-stored

commodity (8§ > 0) will always be infinite.
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VIi. COMPARATIVE STATICS

We showed in the previous section that our expression for the valuation
of a claim on uncertain future profits is equivalent to the formula for a call
option on a stock with a futures price in place of the more usual stock
price. The comparative static properties of call options are well-known
[Smith (1976)]. However, our formula exhibits some unusual properties because
changes in parameters affect both the value of the claim given the futures
prices, and the value of the fdkures prices.

To interpret the results in this section, one should recall that the
purpose of the exercise is to compute the present value of a risky cash
flow. This present value can be thought of as having an option component
(when there is a right to limit losses by not producing) and a futures value
component (reflecting the current price of a contract for future delivery of a
commodity). When there is no option component (as, e.g., when the variable
production cost C is zero), then the formula (5) reduces to V(Pp,t)
= Poe-(St = Fg which is just the futures pricg. In this case, futures prices
by themselves are a guide to production decisions. When there is no

16 the formula reduced to a

meaningful futures price component (when § = 0)
standard call option. It is possible to decompose all of the comparative

static results in the following way:

Q

F aVv
T ]

v _
a6

@l
| <
@

That is, when the parameter 8 changes, it will affect the value of the claim
on future profits both by affecting the futures price (the first term) and by
affecting the value of the claim given the futures price (the second term).
When the futures price is unaffected, our comparative static results are

identical to those for a call option on a stock. All of the calculations are
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made for V(t), and may be extended to the value of a project by calculating

T dV(t)
IO de

For future reference, note that differentiating (29) yields

- 3d, 3d,
o = M@ + (dl)—-—aF - ce Tty (dz)———aF

It is straightforward to verify, however, that

FN'(4,) = Ce"rtN'(dz)

and that
Bdl ) adz
3 P

so that
av _

(30) F N(d )

Equation (30) is frequently useful in the calculations in this section. The
implication of (30) is that a rise in the futures price raises the value of a
claim on future profits, but in general by less than the value of the futures
price increase.

In what follows, we show the effect on our valuation formula of a change
in the: time to production, variance of the rate of change of the commodity

price, risk-free rate, variable production cost and §. We treat only the case
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of a Leontief technology; the results are easily extended to the Cobb-Douglas
case, provided that Py is replaced with ¢(PO) along with the other changes

mentioned in Section 2 below.17

i) Time to Production
Differentiating equation (29) with respect to t yields
Po

—BN'(dl)
2t

dv _ 9V

oV =St

= —Se N(dl) + re_rtCN(dz) + e-dt

%]
=

—_ 4+ 2
t at

dt 3

[« %]

where § = as - a¢ and dl’ d2 are as defined in (29). When § = 0, we have the
standard result that the value of the claim (due to the option component)
increases with time to maturity. When 6 > 0, the sign of the derivative is
ambiguous. We will first show analytically that for large enough t, V(t) is
approximately zero and then we will present several simulations to show under
what conditions dV/dt > O.

Assuming that all limits are finite,

lim V(t) = lim Pe SF 1im N(d,) - lim Ce™™® lim N(d,)

gl oo gl gl oo

since the exponential terms have limits of zero, and the limiting values of

N(dl) and N(dz) are either zero or one,18

lim V(t) =0
Ly
To examine the behavior of V(t) for intermediate t, we present the
results of several simulations in Figure 2. Of particular interest is the
hump-shaped time profile of the value of the claim, which has the

interpretation that a claim on the cash flows from a project several years in
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the future may be worth more than a claim on cash flows from the same project
tomorrow or in the far future.

It is the option component that causes the rising portion of the time
profile. The hump-shape can always be made into a monotonic decline by
changing other parameters so as to lower the value of the option component or
increase the futures price component, so that the latter dominates. In
particular, the hump-shape can be made to vanish if we (a) lower the variance
of the rate of price increase of the commodity, (b) lower the exercise price,
or (c) lower the futures price. Conversely, the hump-shape can be made to
appear by doing the opposite. The first two parameters affect the option
component, while the third affects the futures price component.

If § = 0 and a machine is infinitely-lived and non-depreciating, we have
fo V(t) dt ==

so such a machine would have an infinite present value.

ii) Variance

Differentiating (29) with respect to the variance of the rate of change
of the price of commodity yields
(31) dav_ _ 3V oF + 3vV_ _ -t 36 e_GtPN(dl) + e_rtCN'(dz)cp’/_.t—

v
dcz 9 302 302 302 2
P P P P

If 6§ = 0, then 3F/80§ = 0 and (31) gives the standard result that increases in
variance raise the value of the option. If § # 0, then we must examine

2
98 /30 ",

P

If we assume that the secular rate of price increase of the commodity is

ap, then § = a, - ap =71 + Bp(rm -r) - ap, hence
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B
35_')= (rm_r)_g
Yo Y]

P P
o
- - 1 "mp
= (r r) 200
m p

1
=—3 (rm r) Bp

This calculation assumes the the correlation coefficient between the

, 1s

return on the market and the rate of change of the commodity price, pmp

unchanged by changes in the variance of the rate of change of the commodity
price. If the commodity is positively correlated with the market, then an
increase in variance raises the discount rate for the project and thus tends
to lower the value of the claim on future profits.

Since 85/8o§ is proportional to the commodity beta, (31) gives us the
result that increases in own variance will lower the value of projects which
are highly correlated.with the market, and will raise the value of projects
with zero or negative correlation with the market. This result is sensible.
Undertaking a project which is highly correlated with other projects in the
economy (i.e., which has a high beta) adds to the risk of the market portfolio
and such a project will, ceteris paribus, have a lower value. A somewhat
surprising result is that for commodities with a small positive beta, it is
possible that increases in own variance can increase the value of the project,

because the first term on the right hand side of (31) might still dominate,1?

iii) Risk-Free Rate
Differentiating the value of the claim with respect to the risk free rate

yields
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(32) T, T cwr -2 e
where

35 _ L+ s 8(rm -r)

ar P ar
Hence, (32) becomes

5= TtV - 8o a(rglr_ ? RN

The effect on project value of a change in the risk free rate depends upon
whether the commodity has a price change which is positively or negatively
correlated with the return on the market, and upon whether the market risk
premium rises or falls with the risk-free rate.

This has interesting implications for aggregate investment., If the risk
premium rises with the risk-free rate, then an increase in the risk free rate
will shift investment from high beta projects to low beta projects. 1If the
risk premium falls with increases in the risk—-free rate, the effect will be

the opposite.

iv) Variable Production Cost

Taking the derivative with respect to the variable production cost yields

An increase in the variable cost of production lowers the value of the

project.
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v) &
An increase in § could come about by increasing the systematic risk of
the commodity or by lowering the secular expected rate of increase of the

commodity price. Differentiating (5) with respect to § yields

v _ -5t
EG— = te PN(dl) < 0

An increase in § lowers the value of the project.

VII. STOCHASTIC COST OF PRODUCTION

We now allow the variable cost of production to be random. Suppose that
the stochastic evolution of the variable production cost is governed by

dc | o dt + o dz
C c c ¢

We can write the value of the claim as W(Pu,Cu,u,t) where u is calendar
time and t is time production, and the rate of return on the claim is given by
W o +WdP+ W dC + Lo+ oW+ 2CPW_o o p ldt
W u p c 2°p PP c ce cp ¢ p pc
where pcp is the correlation coefficient between the rate of change of the
output price and the variable production cost, The stochastic component of
the return is WpPopdzp + WcCccdzc. Repeating the derivation in Section 3

gives the following partial differential equation:

1 2,2
= - - - - - - - P
(33) Wu W - (r [as ap])PWp (r [aX ac])ch 7prop
- lw 0202 -PCW_p o0 o0
2 ccc pc pcpc
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a, is defined by

a =T + Bc(rm -r)

As with ag, o is the required rate of return for anyone to willingly hold an
asset which has the same beta as the random exercise price, C.

This equation, together with the boundary condition

W(Ct,Pt,t) = max[0, Pt - Ct]

has the solution

_ Stk Aty X
(34) W(CO,PO,t) = Poe N(dl) Coe N(d2)
& =n + (1 <S+°2 /o VE
1—[n(PO/CO) \ - -z—)t]o t
* * —
d, = d1 -0/t
and
02 = 02 +0" - 20 0
% c pcpc
S§=a -a
s p
A=a —-a
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Appendix II shows by direct calculation that (34) is a solution to (33).

Notice that if we define
(35) G

then GS has the interpretation of being a futures price for the variable
production cost. If we substitute (35) and (28a) into (34), we obtain (29).
When it is known for certain that C will be constant, (35) reduces

to GB = Ce-rt, which when substituted irto (29), yields the formula for the
case of a non-stochastic cost of production.

Since (34) is equivalent to (29), we can decompose comparative static

changes in the following way:

The first term is again the "pure” option effect, and the last two are the
effects of futures price changes.

The derivatives of W with respect to time to expiration, excercise price,
and § will be like those of V when the exercise price is stochastic. The
derivatives with respect to the variance of the rate of change of the output
price and risk-free rate will be different, however. We will also consider
the effect on project value of a change in the variance of the rate of change
of the variable production cost and a change in the correlation between the

rates of change of the production cost and the output price.

i) Output Price Variance

Differentiating (34) with respect to the output price variance yields
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(a0 =a )t — o

daw 23S x ¢y Yt _
5 t ——E-N(dl)F + Ce N (dz) EE—(I ppc ;—J
dcp Bop p

[o4

In equation (5.3) we saw that 36/80§ was proportional to Bp’ the output price
beta. Hence the first term is negative if the output price has a positive
beta. The sign of the second term depends upon both the correlation of the
rates of change C and P (pcp) and their relative variances. If the commodity
has a positive beta, then the entire derivative is ambiguous unless

pcp > 0 and oi substantially exceeds ci. In that case an. increase

in ci lowers the value of a project. If the project is uncorrelated with the

market (zefo beta), and if ppc = 0, then an increase in os raises the value of

the project.

iii) Wage and Output Price Correlation
Differentiating (34) with respect to the correlation between the rates of
change of costs and the output price yields

2 — -(a =a )t
ddv - awz gc - _1’_::7 5_a_Ce X CTNra) <o
ppc 30° °P P -

pPcC

A ceteris paribus increase in this correlation lowers ¢ and thus lowers

the value of é project. This calculation assumes that both c§ and ci are
unchanged. Note that an increase in the correlation coefficient lowers the
variance of the rate of change of P-C and therefore lowers the value of the
"option component”--an option‘which is in the money now is likelier to remain
in the money~-without affecting the time-value component.

This is contrary to the following plausible but erroneous intuition: as
P-C become less variable, given current values of P and C the cash flow

increases in value because of the reduction in variability.
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iv) Risk-Free Rate
From (29), we can see that the value of a claim depends on the risk-free

rate only through the futures price of F and G. Hence

dW _ oW dF awW dG
dr aF dr aG dr

= 38 L2
= tar FN(dl) + tar GN(dz)
d(r_-r) 3(rm'r)
= —t[1+Bp ——5;———] FN(dl) + t[l + Bc ——5;———] GN(dz)

As before, the effect of a change in the risk-free rate is ambiguous,
depending oﬁ the beta of the commodity being produced and the beta of the cost
of the factor of production.

The extension of these results to other technologies is straight-
forward. In particular, it is possible to incorporate stochastic wage in the

Cobb-Douglas case, as in Dietrich and Heckerman.

VIII, SUMMARY AND CONCLUSIONS

We have shown in this paper how option—-pricing techniques can be applied
in a straightforward way to the investment problem of the firm which has the
option to shut down production if variable production costs exceed revenues.
The investment model is rudimentary, however, in that no account is taken of
adjustment costs, depreciation, or the possibility of other fixed factors.

Allowing for depreciation is a trivial extension when the rate of
depreciation is a fixed function of time. A more interesting and certainly
more difficult problem, however, is modelling the reasonable case where

physical depreciation depends upon the intensity with which the factor is
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used. The analytical problem in this case is the dependence of expected
future profit not just on the future realized commodity price, but also on the
entire sequence of commodity prices.

There 1s another interesting problem which is formally identical to the
problem of modeling depreciation which is dependent upon usage: calculating
the value of a depletable resource. The value of options to produce in the
future will be affected by decisions to produce some or all of the resource
now.,

Our model also provides a way to deal with the investment decisions of
monopolists facing a stochastic demand. While we assumed price taking
behavior, this was not necessary. We could have assumed that a parameter in
the demand curve followed a Wiener process, instead of having the price follow
such a process.20 Then, assuming that the firm maximizes instantaneous
profits, marginal revenue would follow an Ito process and the analysis could
be carried through, calculating firm value as a function of the capital
stock, Determination of the optimal capital stock would then be straight-

forward.
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Appendix 1
The evolution of P is described by: \
(1) - = adt + odz

This can be integrated to give (Fischer [1975]).

P 1 2 t
§S-= exp [(a - 5 0 it + ofosz]

(2)

Applying Ito's Lemma to- (2) will yield (1). By assumption, dz is a standard

normal random variable, so that
(3) 1n(P.) = (¢ - 262)t + ofSdz_+ In(P.)
t 2 0 "s 0

is distributed normally with mean (a - %oz)t + InPy = u and

variance ozt = sz. Thus P, is lognormal, with density function

(4) g(B) = (/T lemplx(FE B2 0<p <
We now proceed to calculate
(5) Eo[max(O, Pt -C)] = IC(Pt - C)g(P)d4p

Make the change variable

=1nP—u
s
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which transforms (5) into

-1 .2
© o 55
/ (75 - o) My e 2 seys+udy
InC—p
s
This can be rewritten to give
12 1 2
(7 / —l;e 2 e ? dy - C / —l_—e
InC-u _ Y 2u InC — u V2n
s s

where the further change of variable z = y-s was made. Now define

x 1 - l-z2

(8) N(X) = —_— e 2 dz

Vom
and note that
(9 1 - N(x) = N(-x)
Using (8) and (9), (7) becomes

12
u + =s _ _

(10) e 7 N(s -IDEZHy o ontRG

and substituting into (10) the definition of u and s yields
at
Poe N(dl) CN(dz)

where
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(oW
1]

[ln(PO/C) + (o + %sz)t]/s/z-

d, =d; - s't
Multiplying through by e Tt gives equation (5) in the text.

Notice also that since ln(Pt) is normally distributed with mean u and
variance sz, P, is log-normally distributed with mean

u+%s2
E(Pt) = e =P e

where the second equality follows from the definitions of u and s2.
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Appendix II: Verification of Formula (34)

In this Appendix, we verify that equation (34) is the value of a claim on
future profits when the variable cost of production is stochastic. Equation
(34) is verified by deriving the partial differential equation that the claim
must satisfy and then demonstrating that (34) satisfies it. The partial
differential equation is derived in the same way as in Section IV: We
calculate the expected rate of return on a claim on future profits, and impose
the condition that, in equilibrium, the claim must have an expected rate of
return in accord with the ICAPM. This yields from (33) in the text.

Let § = (as—ap) and A = (ax—ac). We now evaluate the various

derivatives, using (34)

W= W, = 6Pe_6tN(d1) - xe‘“n(dz) - Ce‘*tN'(dz)—“—
“ WE
-5t
Wp = e N(dl)
-\t
WC e N(dz)
W= etNr(d)) S
PP Pov't
W= e TNd,) S
Wov't
W . -e—stN’(dl) 1__
P Cov't
where 02 =02+02 - 20 00
P c pc cp

A crucial simplification is obtained by noting that
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-8t _C —At,
e N (dl) 7° N (dz)

which follows from the definitions

e
N'(dl) =——¢e
Vor
\ —%(dl— o/t)z
N'(dz) = —— e
Vor

Note that W = rPWp + CW... Making the appropriate substitutions into

(33) in the text yields

5Pe'5tN(d1) - Ce'“N(dz) - Ce"‘tN'(dz) -
2t

\
O
d
o

+
®
=4
~
)
Nt
°
o
a
| |=
a
0

But by the definition of 62, the last three terms on the right hand side
of this equation can be written as —Ce—AtN'(dz)o/Z/—. Therefore, all of the

terms cancel and (34) is verified.
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FOOTNOTES

1. Abel [198la] models the choice of the energy—capital ratio for a
firm with a shutdown option.

2, In Sandmo's model the utility of profit is a concave function of the
output price, and hence and increase in the variance of the output price
lowers the value of the firm. In risk neutral models of the firm, the profit
function is convex, and hence an increase in price variance has the opposite
effect.

3. It is standard in the literature on capital budgeting to calculate
the present value of a cash flow stream by discounting expected cash flows
using a discount rate which adjusts for the systematic risk of the cash
-flows.  (See, for example, Brealey and Myers [1981], Chapter 9.) In effect,
this is our solution procedure in Section IV.

4. See the appendix to Fischer [1975] for an excellent introduction to
the use of continuous-time stochastic processes, and for further references.

5. Equation (2) is taken as exogenously given. A more satisfactory
formulation would involve solving for the price process as a function of true
exogenous variables, but we do not attempt that here.

A more plausible process for the output price would be the mean
reverting process dP = ap[P* - Pldt + cdezp. Lagged entry into the industry
drives price slowly back toward the long run production cost P*. We have not
been able to solve explicitly for the valuation formula using this process,
but numerical methods can be used. However, see Section V below.

6. This is the value of a European call option on a stock which pays
continuous dividends at the proportional rate §. Holding the commodity whose

price dynamics are given by (2), is exactly like holding a dividend-paying
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stock, but receiving only capital gains and not the dividends.
7. Ito's Lemma states that if Y=¢(P,t), and P follows (2), then the

stochastic differential of Y is given by

2
ay = 2ar + 4p + L2 ;2 3 04,
T 3P A

8. by will be non-zero if capital physically depreciates slowly over
time. Thus, we are assuming that capital disintegrates at T, with no
depreciation before then.

9. Here we use the formalism dzmdzp = pmpdt.

10. Constantinides [1978] derives the same formula as the solution to
valuing a call option on a "non-traded” (hence incorrectly priced) asset.

11. Standard futures contracts call for payment to be made when the
commodity is delivered, rather than when the contract is struck. Because

payment is to be made in the future, a standard futures contract would have

the price

fg = Fg ert = Poe(r-é)t

12. See Black [1976] for a discussion of these points.

13. In this case the futures price can still be determined by (28a),
but § is not a constant, and may be a complicated function of time and the
current commodity spot price.

14, It is easy to see that when the commodity is stored, Fg = Po is
necessary to prevent the existence of arbitrage opportunities. If F > P, one
would buy the commodity and sell it forward, making a sure profit of F - P.

If F < P, one sells short the commodity and buys it forward to make a profit.



With standard futures contracts, the no—arbitrage relationship for
stored comodities is fg = Poert.

15. A more complicated example is corn. Because corn is stored between
harvests, the e¥pected rate of price increase for corn must be sufficient to
induce investors to store corn. In this case, § = 0, and from (28a), the
futures price for corn equals the spot price. Corn will not be stored across
harvest, however, since the price will typically fall at harvest time, and the
investor who stores corn will not be compensated for this loss.

Consider now a production process which produced a perfect
substitute for corn. If the project were to be short-lived, lasting only
between harvests, it would be appropriate to set Fg = PO. If the project were
to last several years, a more complicated array of futures prices would be
required to userthgrﬁormula, in order to account for the expect reversion to
the mean of corn prices. For example, between November and March, when corn
is not produced, corn will be stored and its price will be expected to rise at
the rate a_. From January to January, however, the price of corn would be
expected to remain unchanged, since (assuming that corn can be produced at
constant marginal cost) an expected price increase would induce new production
which would eliminate the price increase.

16. When 6 = 0 the current spot price is the futures price.

17. Dietrich and Heckerman perform comparative static calculations for
the Cobb-Douglas case with (in our teminology) C. = O and risk-neutrality.

18. It is impossible for N(d;) to have a limiting value of one when
N(dz) has a limiting value of zero. The other three combinations are
possible, however,

19. Note that this result also holds for the Cobb-Douglas case

considered above where C, = 0 [equation (16)]. It can be shown that if a is
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the return on the asset which has the same systematic risk as ¢(P), then the
derivative of the value of the claim with respect to the variance will be

positive if
(a_ - 1) < OZY(Y -1
S p

When o is large (Bp > 0) this inequality will be reversed and the value of
the claim will fall with an increase in variance. In the Cobb-Douglas case,
an increase in variance will raise value——given the future price——because the
profit function is convex even without a shutdown option.

Dietrich and Heckerman [1980], using a Cobb-Douglas production
function, obtain the result that aﬁ increase in own variance raises the value
of a project, but they ignore the effect on the discount rate.

20. Pindyck [1980b] studies a related problem introducing a demand curve

varying according to an Ito process.
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