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ABSTRACT

General conditions are provided which ensure the consistency and
asymptotic normality of the ordinary least squares estimator. These
conditions apply to time-series, cross—section, panel, or experimental data
for single equations as well as systems of equations. The errors of the
regression may be heteroscedastic and/or serially correlated. A consistent
estimator of the asymptotic parameter estimator covariance matrix is
proposed. The consequences of misspecifying the regression function are

discussed, and new tests of model specification are proposed.



1. INTRODUCTION

The linear regression model is the workhorse of empirical economics.
Ease of computation and interpretation have contributed to the popularity of
the linear model in analyzing data in every form encounted by economists.

The most common technique used to estimate the parameters of linear
models is the method of least squares. The classical theory of least squares
is based on the assumption that the observations on explanatory variables are
fixed, not random. Such an assumption is inappropriate in a nonexperimental
science such as economics in which data often appear as the realizations of a
stochastic time-series, as a random cross—section, or as a panel.

General conditions sufficient to ensure classical properties such as
consistency and asymptotic normality of the least squares estimator in the
case of stochastic explanatory variables have been investigated by several
researchers. Pierce (1972), Hannan (1973), Sims (1978), Kohn (1979), and
Nicholls and Pagan (1982) provide conditions when the regressors are
stochastic time-series, for example. Crowder (1980) develops such conditions
by a careful analysis of the behavior of moment matrices, an approach also
taken by Anderson and Taylor (1979) and Christopeit and Helmes (1980) in the
analysis of consistency properties. White (1980b) provides very general
conditions for the case in which the explanatory variables are independent,
but not identically distributed, coming from a stratified cross-section, for
example.

Careful investigation of the stochastic regressor problem has also led
researchers to question the appropriateness of assuming that errors are
independent of regressors and independent over time. Many of the above
treatments assume only that the errors have zero mean conditional on current

and lagged explanatory variables, as well as on past errors. Thus, errors may



be dependent, but are serially uncorrelated with the explanatory variables.
Important exceptions are provided by Hannan (1973) and Pierce (1972), who
allow the errors to have an arbitrary, but stationary, dependence structure.
White (1980b) retains the serial independence assumption, but the errors need
not be identically distributed, permitting a rigorous treatment of the
heteroscedasticity problem.

In this paper, these results are unified and extended by providing
conditions which ensure the classical properties of the ordinary least squares
estimator for most kinds of situations encountered by economists. The results
given here are essentially special cases of the very general theorems for
nonlinear models given in Domowitz and White (1982). Valuable insights are
gained by examining the special case of the linear model, and the results are
more easily interpretable. The conditions guaranteeing consistency and
asymptotic normality allow the data to come from a time-series, a cross-—
section, a panel, or an experiment. Explanatory variables and errors may be
serially correlated and/or heteroscedastic. This treatment rigorously
justifies the use of ordinary least squares in a more realistic context than
allowed in the classical framework, Additional insight into special cases of
the theory is provided by phrasing the conditions directly in terms of the
regressors and errors, instead of placing broad restrictions on moment
matrices.

The role of various regularity conditions is discussed in the context of
consistent estimation in Section 2. Restrictions on the allowable amount of
serial dependence in terms of correlational properties engenders bounds on the
moments of explanatory variables that may be unacceptable in some
applications. Alternative mixing conditions are presented, allowing a direct

characterization of the trade-off between dependence and knowledge of higher



moments, while reducing moment restrictions in general., Similar conditions
sufficient to estabish the asymptotic normality of the least squares estimator
are given in Section 3. The White (1980b) heteroscedasticity-consistent
covariance matrix estimator is extended to obtain a covariance matrix
estimator which is consistent regardless of the presence of heteroscedasticity
and/or serial correlation of unknown form in the errors. The consequences of
misspecifying the model are discussed in Section 4, and specification testing
is discussed in Section 5. Tests based on the Hausman (1978) and White

(1982a) paradigms are presented. Section 6 concludes the paper.

2. REGULARITY CONDITIONS AND CONSISTENT ESTIMATION

The model considered in this paper is given by

ASSUMPTION 1. The model is known to be

Y =XB +¢ t=1,...,n 2.1
. 0 . ( ) (2.1)
where {Xt} is a sequence of random lxp vectors and {€t} is a sequence of zero-
mean random scalars. The parameter vector BO is an unknown pxl vector of

finite constants.

In a nonexperimental science such as economics, the data which form the
basis for the estimation of BO are usually beyond the control of the
investigator. It is therefore appropriate to view both the dependent and
explanatory variables as realizations of a stochastic process. Since

considerable heterogeneity may occur in nonexperimental data, the random



vectors (Xt,et) are not required to be identically distributed. As a large
amount of economic data comes in the form of time-series, (Xt,at) may also be
serially dependent.

The model (2.1) may also be thought of as a sequential control model
le.g., Goodwin and Payne (1977)], in which X; is a function
of XT for 1 < t. If {Xt} is a sequence of nonstochastic regressors, fixed
in repeated samples, and {Et} is serially independent, (2.1) is the
classical linear regression model. A special case of particular interest is

h

the qt order univariate autoregressive scheme with s=p—-q additional

explanatory variables; i.e., Xt= Y, __ ,-..,Y .,Zst) and 8' = [a', Y'].

g Pl
The ordinary least squares (OLS) estimator is defined as
Bn= (X'X)—IX'Y, where X is the nxp matrix with rows X, and Y is the nxl

vector with elements Y., It is of practical interest to provide conditionms

which ensure that the OLS estimator retains its desirable classical properties
under the wide variety of situatioms enéountered by economists.

The OLS estimator exists almost surely (a.s.) for all n sufficiently
1argelprovided (X'X/n) is nonsingular a.s. for n large. When this is true,

Assumption 1 allows one to write
B =By + (X'%/n) H(x'e/n), (2.3)

where € is the nxl vector with elements et. The consistency of

én for SO follows if (X‘X/n)_l is appropriately dominated and if X'e¢/n
converges to zero. Interpretation of the regression function as the
conditional mean of Y, given all information up to time t is often sufficient
to guarantee the latter requirement. In this case, the errors satisfy

. cen = 0. ig i i
E(sttst_l,at_z, ,EO,Xt, ,XO) This implies



E(Xt'e | X' ) = 0, so a strong law of large numbers for

€ ces X!
t t-1 t-1° ? oeo

martingales [e.g., Stout (1974), Theorem 3.3.1] may then be applied to

X'e/n. This condition is an important weakening of the assumption of errors
independent of regressors and across time [cf. Kohn (1979)]. It may be
unsuitable for some applications, however, ruling out serial correlation in
the errors.
* Convergence of the cross-product matrix generally requires assumptions
concerning the allowable dependence among regressors. For example, if the
regressors haje uniformly bounded fourth moments and

corr[Xitht, Xit—ijt—m] + 0 sufficiently fast as m * = for i,j € {l,...,p},
a law of large numbers [e.g., Stout (1974), Theorem 3.7.2] may be applied
directly to X'X/n, ensuring the appropriate convergence provided E(X'X/n) is
uniformly nomnsingular. Covariance stationarity among the regressor cross-
products is not required, but the "long distance” correlations between cross-
product terms must vanish asymptotically.

In the case of the stable pth order autoregressive model, consistency of
the least squares estimator follows directly from the consistency of the
estimated moment matrix [cf. Anderson and Taylor (1979)]. The asymptotic
theory given in Anderson (1971, pages 188-211) relies on covariance
stationarity and independent errors. When the independence assumption is
relaxed to that of errors with mean zero given past information, both
variables and errors are generally required to have bounded fourth moments
[cf. Anderson and Taylor (1979), Lemma 2; Christopeit and Helmes (1980),
Theorem 3; Nicholls and Pagan (1982), Theorem 1].

It is known that as the degree of dependence in the random variables
increases, higher moments are required to be uniformly bounded to establish

limiting results [cf. McLeish (1975); White and Domowitz (1981)]. The types



of dependence restrictions discussed so far are weak in the sense that they
are formulated in terms of correlational properties. Lack of correlation
certainly does not imply an absence of dependence. Without knowledge of the
behavior of higher moments, it may be difficult to ensure that a process
eventually contains new information. The complete absence of serial
correlation implied by the martingale difference assumption provides
additional structure, but rules out some common situations in practice.

Some of these problems may be resolved by adopting so—called mixing
conditions as ways of describing economic data which may exhibit both serial
correlation and heterogeneity. These conditions restrict the memory of a
process in a fashion analogous to the role of ergodicity for stationary
stochastic processes. Mixing conditions are formulated in terms of
probabilities instead of moments. The relevant dependence properties of a
mixing stochastic process are thus invariant under a wide variety of
transformations. A single assumption may then be made about the behavior of
individual explanatory variables, rather than imposing broad restrictions on
the cross—product matrix directly, for example. Although mixing processes may
exhibit considerable dependence and heterogeneity, they are sufficiently well
behaved to allow the establishment of laws of large numbers and central limit
theorems, making possible a satisfactory and complete theory of estimation and
inference.

Let {Zt} be a sequence of random vectors defined on a probability space

(8, ,P), and let 32 be the o—algebra2 of events generated by

(Za,Za+l,...,Zb). Define



¢(m) = [P(G|F) - P(G)]

sup sup n ®
n P{Fe3 ,Ged ,P(F)>0}
and

a(m) = }IP(FG) - P(F) P(G)| .

supnsuP { FE}?@ , GE'}:_*.m

A sequence for which ¢(m) *+ 0 as m *+ ® is called uniform or ¢- mixing
[Ibragimov and Linnik (1971)], and a sequence for which a(m) >+ 0 as m > =

is called strong or o~ mixing [Rosenblatt (1956)]. Both coefficients measure
the dependence between events separated by at least m time periods in the
usual terms of statistical independence; i.e., how much the probability of a
joint event differs from the product of the probability of each event
occurring. The coefficient a provides an absolute measure of dependence,
while ¢ measures dependence relative to P(F). The asymptotic independence

implied between Zy and Zyyp, as m *+ =, is analogous to the average asymptotic

independence embodied in the definition of ergodicity for stationary
stochastic processes [Rosenblatt (1972)]. A discussion of the applicabiity of
these conditions to processes commonly encountered in economics is given in
White and Domowitz (1981) and Domowitz and White (1982).

The next assumption, together with Assumption 1, is sufficient to
demonstrate the strong consistency of the OLS estimator by making use of

mixing conditioms.

ASSUMPTION 2. (a) There exist positive constants r_ > 1, OK§ € r , and

2 r1+6 r; + 6 = 1
A<= such that E|€_| < A and E|{X, X_ | < A for all t and
t it™it X
i,j e{1,...,p.}. (b) The average moment matrix Mn= n Zt=lE(X£Xt) is such

that det Mn > ¢ > 0 for n large. (c) The random sequence {Xt,et} is either

(i) ¢ - mixing, with ¢(m) = O(m_x),k>r1/(2r1—l) or (ii) a-mixing with a(m) = O(m_x),

XD ry/(r-1), r>l. (d) E(Xéet) = 0 for all t.



When condition 2(c) is met, ¢(m) will be said to be of size
rl/(2rl—l), and similarly for a(m).
As the dependence restrictions become stronger, the moment restrictions

become weaker (as indexed by rl). Explosive nonstationarity is ruled out,

however. In dynamic models, where X, = (Yt—l""’Yt-q’zlt""’zst)’
B'" = [a', Y'], nonexplosiveness generally requires that all roots of the
_1
characteristic equation A% alkq — ee. — aq= O are less than one in absolute
value.

1f (Xt,at) is serially independent, the process is ¢ - mixing, allowing
Ty = 1, which corresponds to the conditions in White (1980b, Lemma 1).

If ¢ or @ vanish exponentially fast, as would be the case with stationary

Markov processes, Tl may be set arbitrarily close to unity.

Assumption 2(b) ensures that (X'X/n)_l

is well defined for large n and
that its elements are uniformly bounded asymptotically. This is sufficient to
guarantee the existence of the OLS estimator. Note that Mn’ hence

(X'X/n)_l, is not required to converge to any limit, analogous to the
analysis in White (1980b) of the case of independent regressors and errors.
Assumption 2(d) is the required orthogonality condition, which is always
satisfied if E(€t|Xt) = 0, for example. By assuming only contemporaneous zero
correlation in the cross-product, (Xést) is allowed to be serially

correlated. Such correlation constitutes a form of heteroscedasticity for

which a test is formulated in Section 5.
THEOREM 2.1: Given Assumptions 1 and 2, én > 80 a.s. as n * <,

Previous consistency results for the linear model with stochastic

regressors have usually exploited a martingale difference assumption on the



error term, e.g., Nicholls and Pagan (1982). Results for generally dependent
stationary errors are given by Pierce (1972) and Hannan (1973). The main
difference between Theorem 2.1 and earlier results is that here regressors and
errors may exhibit rather arbitrary time dependence and heterogeneity

simultaneously.

3. ASYMPTOTIC NORMALITY AND A HETEROSCEDASTICITY—CONSISTENT

COVARTANCE MATRIX ESTIMATOR

Given Assumptions 1 and 2, it is easy to show that if

~1s2
(l//E)Bn / 22—1 Xést is asymptotically N(O,Ip) for some sequence of
positive definite matrices {Bn}, then the OLS estimator is asymptotically

_172

normally distributed. Typically Bn = var[n / ? X'e ]. 1f XtBO is the

t=l1"t t

conditional expectation of Y  given the past history of the process and the
explanatory variables, a central limit for martingales [e.g. Scott (1973)] can

1,2
be applied to Xést' The asymptotic covariance matrix of n / 22=1X£€t is

then Bn = n—lEE_lE(EZXQXt), the form given in White (1980b). The simplicity
of the average covariance matrix is a result of the lack of serial correlation
in Xéet. Allowing for serial correlation in both regressors and errors, the

covariance matrix may be written as

x&xt) (3.1)

n-1 n
\]
+n - [ 1 ECee XD X __HXI

t~7°t 't XD,
=] t=T1+l

T t

In the case of fixed regressors, Bn is simply X'IX/n where I = [E(gth)]_

The next assumption formally identifies the limit of (3.l) as the



_1s2
asymptotic covariance of n / 22_1 Xést and specifies the additional

conditions under which the OLS estimator has the normal distribution

asymptotically.

ASSUMPTION 3. (a) There exist positive constants T, > 1, & (>,

T 1,2
2y T w6 ).

A, i =1,...p. i
. <4, i 1, p. (b) Define B r=atl Xt &t

such that E]EZX. = var(n
t 1

a,m

There exists a matrix B such that det B > 0 and A'B m A= X'BA >0 as m
uniformly in a for any real nonzero pxl vector A. (c) The random vector

(Xt,st) is either (i) ¢- mixing, with ¢(m) of size rz/(rp-1) or (ii)

a-mixing, with a(m) of size max [rl/(rl-l), rz/(rz—l)], rl> 1.

Assumption 3(b) requires that the asymptotic covariance matrix B not

depend on n, imposing a restriction on the allowable amount of heterogeneity

~1ln
in the data. Processes {Z } for which lim n E(Z Z ) converges to
t Il r® t=1 t t-7
a stationary covariance r(t), T = 0,1,..., have been studied by Kampi de

Feriet and Frenkiel (1962), Rao (1978), and Parzen (1962), who termed such
series "asymptotically weakly stationary.” Central limit results were not
obtained for such processes, however. The uniform convergence requirement of
Assumption 3(b) is an additional restriction which allows a central limit
theorem to hold. 1In the special case of m—dependent processes, however, B may
depend on n.

_1/2 -
/M(B -8

THEOREM 3.1: Given Assumptions 1-3, vo B
n n ' n 0

a
) 20,1,

where B = B
n O,n.

A similar result was obtained by Eicker (1967) for linear models with

fixed regressors. The present theorem incorporating random regressors 1is the



dependent variable analogue of Lemma 2 of White (1980b). The covariance
matrix Cn = Mn—anMn—l has the same form as the conditional parameter
estimator convariance matrix of Hansen (1982) in the linear case. Hansen
assumes jointly strictly stationary, ergodic, regressors and errors, but his
covariance matrix accommodates complicated conditional covariance structures
for the regressors and errors. The present result allows for both conditional
and unconditional variation, but the practical implication of both results
(i.e., the form of the covariance matrix) is the same in both cases.
Asymptotic approximations to the normal law are usually used to construct
tests of hypotheses. Given a consistent estimator of the present result
yields test statistics which are robust to the presence of heteroscedastcity
and/or serial correlation of unknown or incorrectly specified form. Suppose

it is desired to test the linear hypothesis3

versus

H : RB #r,

where R is a finite qxp matrix of full row rank and r is a finite qxl
vector. The appropriate form of the Wald statistic is given by the next

result.

THEOREM 3.2: Given the conditions of Theorem 3.2, HO’ and

B such that B -~ B —£> 0,
I n I

1 1

(RS - 1) [R(X'X/n)” ﬁn(x'x/nf 2] (Re- 1) & xi.



[uN
I\P

Under identical conditions, the analogous Lagrange Multiplier (IM) test

statistic is asymptotically equivalent. It should be emphasized that the

2 -1
usual form of the Wald or IM statistic uses On (X'X/n)

~2 1 ~ 2
. . . - n
as the covariance matrix estimator, where on =n Z (Yt-XtBn).

t=1
Heteroscedasticity and/or serial correlation of unknown form generally
invalidates inferences based this standard estimator. The use of the
appropriate estimate of C  in its place is required to ensure a test of proper
size. Since C, 1s more complicated to compute, the information matrix testing
principle of White (1982a) is applied in Section 5 to test for conditioms
. . 2. -

which ensure the consistency of cn(X X/n)” .

The computation of C  in the general case requires an estimator of

(3.1). A natural candidate is an estimator of the form

~ 1D o~ -1 2 n A A
= t ' 1 3.
Bymm ) N L2 € Cpor XX R R (3.2)
t=1 =] t=T+1
where €t= Yt— thn' The second term of (3.1) is truncated at

T = 2 < n-1 and the integer 2 is called the truncation lag.
In some situations, it may be thought

that E(Ete X ,X > =0 for all T > & > 0.

t—T' t t-T

This is the case when {et} is an MA(L) process, for example. If

E(YtIX )y = XCBO (m=0,1,...; t = 1,...,n), which is a common assumption in

t-m

X ,X

) =0 for T > 1
t-T t t-T —

dynamic models containing lagged dependent variables, E(Eta

In all such cases, the following additional moment condition is used to prove

the consistency of B for Bn.4
n

ASSUMPTION 4. There exist positive constants T

+ 5
Ty

21, 0< 8 < r and

2 9 1 4 rl+ §
A < = guch that for all t, Eje X[ | < & and E|X,_| < b, i=1,...p.
t it 1t



The assumption that E(e € |X ) =0 for T > %2> 0 may be too much

X
t t-1't’ -1

to accept in some applications. In such cases, the mixing property ensures
that the contribution of distant lags will be negligible, as long as £ grows
with n. The truncation lag cannot grow too quickly relative to n, however,
since not enough information will be available to estimate all covariances
consistently. With the next assumption, admissible growth rates for £ may be

specified.

ASSUMPTION 5. There exist positive comstants r; > 1, 0 < ¢ < r and A { =

6 r1+ §
such that for all t, E’Xit) <A, i=1,.., p.

The next theorem formalizes the foregoing discussion.

THEOREM: 3.3: (a) Given Assumptions 1-4, if

= [==] A— g
E(etst_T[Xt,Xt_T) 0 for all ™2, 2 < A<=, Bn Bn 0.

(b) Given Assumptions 1-5, if 2 » © as n » « such that 2=O(nY),O <y < 6/(rl+5) < 1/2,

either (a) ¢(m) is of size 2 or (b) a(m) is of size 2(r, + &)/(r;+ 8-1),

1
r1> 1, then B_ - B 5 0.
n n

The result provides the conditions under which Bn is consistent for Bn,
given the possible dependence assumptions on the error structure of the model

(2.1>. In the case of generally dependent errors, £ must grow with n, but

§/(x1+6).

more slowly than n Heuristic methods of choosing £ in

applications are discussed in White and Domowitz (1981). The marginal
computational costs of including extra lags are negligible, however,
suggesting that a potentially reasonable strategy would be to include all lags

§/(x,+8).
n

up to Further study of this issue is needed.



The covariance estimator én = (X/X/n)_lﬁn(X'X/n)-1 is the time-series
generalization of White's (1980b) heteroscedasticity-consistent covariance
matrix estimator. Taken together, Theorems 3.2 and 3.3 extend White's (1980b)
Theorem 1l to cover most situations encountered by economists. The results
apply to time-series, cross-section, panel, or experimental data, and may be
applied to systems of equations as well as single equation models.

These theorems are derived assuming that the conditional expectation or
behavioral law, XtBO, is known to the investigator. This assumption is often
difficult to accept in practice and is relaxed in the next section, in which
the consequences of misspecifying the regression function are briefly

examined.

4. THE LEAST SQUARES APPROXTMATION TO AN UNKNOWN
REGRESSION FUNCTION

In this section, the assumption of a known model is replaced by
ASSUMBTION 1'. The sequence of real~valued responses Yt is generated as
Yt= gt(Zt) (t=1,...,n) (4.1)

where the g, are unknown measurable functions of the real-valued random vector
Z,. The vector Z, 1is finite-dimensional, may contain unobservable elements,

and is jointly distributed with distribution function F. on , a Euclidean

space.

Once again, it is not assumed that Y  or Z; is statiomary. Stationarity

is a particularly strong assumption in the context of potential



misspecification.

The researcher chooses the linear regression function XtB to
approximate gt(Zt). In order to ensure that this approximation is well
defined, it is assumed that X, is a measurable function of Z, . If suffices to
consider X, as a subvector of Z;, where Bgt/azi may be identically zero for
some i, allowing for the inclusion of irrelevant variables.

Under the regularity conditions given below, the OLS estimator is
consistent for 8:, the parameter vector which minimizes the average
approximation (or prediction) mean squared error (MSE),

2 hot 2
S =n | (g,(z) - X B) dF . (4.2)

For example, suppose gt(Zt) = ZtY Then the vector of parameters which

0

is estimated is given by the minimizers

* -1 . -1 _1
8n= [n E(tht)] [n

t=1 t

I~

: E(Xézt)YO] . (4.3)

*
Under stationarity assumptions, B = [E(ngt)] [E(Xézt)YOI [cf. Hendry
(1979)]. It is undesirable to assume that the covariance between Zt and X; is

constant over time, however, lacking any knowledge of Z,- An example in which

B; may fail to converge is given in Domowitz and White (1982).

Let u. = g (Z¢)- Xi8. The following modification of Assumption 2 provides

regularity conditions sufficient to ensure the consistency of

~ *
Bn for the minimizers Bn.

ASSUMPTION 2'. (a) Assumptions 2(a) and 2(b) hold, replacing €, by u - (b)

The random vector Z, is either (i) ¢-mixing with ¢(m)of size r;/(2r; - 1),



r. > 1 or (ii) a-mixing with a(m) of size rl/(rl-l),rl >1.

~

*
THEOREM 4.1. Under Assumptions 1' and 2', Bn— Bn + 0 a.s. as n > =,

This result is the time-—series generalization of Theorem 2 of White
(1980b). The theorem says that the least squares estimator is a strongly
consistent estimator of the parameter vector which minimizes the average MSE
of prediction. In fact, 8: is the parameter vector of a least squares
approximation ° XtB to an unknown function gt(zt)’ with weighting functions

dFt. Note that Assumption 2 restricts the moments of the approximation
error, ruling out the use of a linear trend to approximate a constant, for
example.

If gt(zt)E XtBO + Et for all t, B: = BO for any sequence of weighting
functions dF , as Theorem 4.2 below establishes. Otherwise, the parameter
vector of the approximation will depend on the weighting functions. Define
the weights {wt} as positive measureable functions of the Z. taking values on
a compact interval, and normalized such that fwtdFt= 1, t=1,...,n. Let

2_1 be a diagonal matrix with nonzero elements W,.. The weighted least
squares (WLS) estimator is then

~

_1 1 _1
Bn =(X*'Z X) X'I Y. (4.3)

If Bz minimizes the average MSE of approximation with weighting functions
d?t= wt dFt’ Bn= Bn*+ 0 a.s. wunder Assumptions 1' and 2'. The next result
provides conditions sufficient to ensure that B; does not depend on the

weights.



2. = + =
THEOREM 4.2 Suppose gt(Zt) XtBO Et where E(Et) 0 and
E(WtXEEt) = 0 for all t. If Assumptions 1' and 2' are satisfied, then

~

B + 8. a.s. as n * =,
n 0

The theorem extends the results of White (1980b) to the case of weighted
least squares for dependent observations and errors. When the model represents

a conditional expectation, the orthogonality condition of the theorem is

always satisfied, and En* BO a.s. regardless of the weights W, (and
distributions F. ). This case will play an important role in the specification
analysis of the next section.

The asymptotic normality of the OLS estimator may be obtained with an

extension of Assumption 3.

ASSUMPTION 3: (a) There exist positive constants r,> 1, 4 <®, such that for
2 2 T2

. . * "1/2 atn t *
all t, ElutXit | <4, i=l,...,p. (b) Define Ba,n = var(n Zt=a+lxtut(6n))'

* %
There exists a matrix B® such that A'Ba nk - A'BA+(0 asn * @ uniformly in

b
a for any real nonzero pxl vector A. (c) The random vectors {Zt} are either

(i) ¢-mixing, with ¢(m) of size r,/(r,~1) or (ii) a-mixing, with

a(m) of size max [r;/(r;-1), ro/(rp-1)], ry> 1.

THEOREM 4.3. Under Assumptions 1', 2' and 3',

_1s2 ~ *
as T M -8") 2 weo,1)
n n n ol p

*

o,n.

where B* = B
n



This asymptotic normality result would establish the basis for tests of
hypotheses concerning parameters of the approximation if a consistent
estimator of B; could be found. Unfortunately, this is not possible in
general. The estimator (3.2) is not generally consistent when the regression
function is misspecified, and the covariance matrix of the least squares
estimator depends on the true data-generating process, as noted by Chow (1981)
and Burguete, Gallant, and Souza (1982). When the observations are
independent, it can be shown that (3.2) provides an upper bound for

B; asymptotically. This property does not generalize for £ > 1. Theorem 3.4
of Domowitz and White (1982) establishes a necessary and sufficient condition

namely

- *
for Bn to consistently estimate Bn,

_1n7lon . .
;[]i&g " ‘[:%-*—1 tZT+1E(X't ut(Bn)) E (ut_T(Bn)Xt_T) = O-

This condition is satisfied if the model is correctly specified or if g, and

F, are time invariant.

5. SPECIFICATION TESTS

Most models used in empirical studies represent, intentionally or not,
approximations to some unknown underlying data-generating process. The
results of the last section are useful insofar as they provide insight into
the strengths and limitations of our approximations. The least squares
approximation has optimal prediction properties, but OLS estimates the
parameters of the approximation, rather than parameters of interest to the
economist, in general.

The understanding of empirical phenomena, rather than prediction, is

often of primary interest, however. Interpretation in terms of economic



theory relies both on a model correct in the sense of Theorem 4.2 and on valid
hypothesis testing procedures. The latter requires a consistent estimate of
the OLS covariance matrix estimator, while the former depends on

E(Xéatwt) = 0. Such zero correlation may be difficult to verify for arbitrary

weighting functions, W The tests discussed below maintain the stronger

te

hypothesis of the following definitionm.

DEFINITION 5.1. 1If E(Yt|Xt) = XtBO a.s. for all t, the model is said to be

correct to first order.

1f the model is correct to first order, the investigator can be confident
that OLS provides consistent estimates of parameters of interest. The next
definition formalizes the condition under which valid inferences can be made

based on the standard least squares covariance matrix estimator
~2 1 ~2 1 2

p— n ~
? = x -
Gn(X X) , where Gn n t=l(Yt XtBn)

DEFINITION 5.2. If the model is correct to first order and

2 _1
Bn = GO n 22=1E(X£ Xt)’ the model is said to be correct to second order.

Serially uncorrelated homoscedastic errors independent of the regressors
are sufficient to satisfy the above definitions [cf. White (1980b)]. The

following conditions are also sufficient in the sense that the White (1982a)

2 _1 g
test for B =c.n I
n t=

. .
0 1 E(tht) may be obtained under them.

ASSUMPTION 6. (a) There exist positive comstants r;» 1, 0 < § < r and & { =

v rl1+d 8 ri+d
such that for all t, Elet\ < A and Elxitl < A. Define Van =
—1/2 a+tn ' 2 2 : :
g -g
var [n Zt=a+l (1, wto) ( . O)], where wto is a lxko vector with



elements Xitxjt’ i,j e {l,...p}. There exists a matrix Vo such that

det VO>C>O and X'Va nX—X'VOX+O as n > © uniformly in a for any real nonzero

b

4
(ko+l)xl vector A. (c) E(etIXt)=KO<m a.s. for all t, and

2 2 2 2

E(etIXt,Xt_l,...; € 1> et_z,...)=oo<w a.s. for all t.

The conditions given in Assumption 6 are not the most general conditions
under which the White test for heteroscedasticity may be obtained. Instead,
the conditions ensure that the test may be computed as n times the constant-

adjusted RZ of the artificial regression
e, = agt b (t=1,...,n). (5.1)

Assumption 6(d) essentially ensures that the errors of (5.1) are homoscedastic

and serially uncorrelated, so that OLS is appropriate. The dimension of

¥ is gemerally lxk._, k < p(p+l)/2; i.e., ¥

o %o is the vector containing the

t0o t0

elements of the lower triangle of XéXt. Redundancies may occur, violating
Assumption 6(c). For example, X  may contain a vector of ones. In such

cases, the redundant elements of wtO may be deleted, reducing kg and degrees

of freedom for the test statistic below.

THEOREM 5.3. Given Assumptions 1-3 and 6, if the model is correct to second

order, n times the constant-adjusted RZ from the regression (5.1) is
2

asymptotically distributed as X -
0

Serial correlation in Et is usually sufficient to cause

2 2 2

E(e |X_,X yeaa} € ,es«) # 0., The artificial regression errors are then
t' Tt -1 t-1 0

serially correlated, resulting in the incorrect size of the nR2 statistic.



The presence of autoregressive conditional heteroscedasticity [ARCH, See Engle
(1982)] leads to the same difficulty. A test for ARCH disturbances can be

constructed under similar conditions, replacing the vector ¢__ in (5.1) by a

~2 ~2 ~2
- t f lagged d i € eee,E
q-vector o agg squared residuals, (Et_l € €e—q

2
qth order ARCH, the asymptotic y statistic will have q degrees of freedom.

t0

). When testing for

. th
A White test for T  order serial correlation in Xt'e may be comnstructed

t

-~

. th s s s
by comparing the T term of Brl to zero. The test statistic is computed by
2

n—1T times the constant-unadjusted R2, denoted RO’ from the artificial
regression
etet_T = th a (1=1,2,...; t=T+1,...0) , (5.2)

where th is a lka vector with elements XitX' , 1, € {l,..,p.}.

Jjt-T1

The following conditions are imposed to ensure that OLS is appropriate

for (5.2).

. _ -1/2_a+n .
ASSUMPTION 7. (a) Define v, = var(n b ). There exists a

T
€
,0, T t=a+l v

€
tT t t-T

matrix VT such that det Vr> ¢ >0 and A"V A—A'VT A >0 as n > uniformly

a,n,T,

in a for any real nonzero k_xl vector A. (b) E(e |X X , X ) =0 a.s. for
) T t' t+T’ Ot t-T
2

all t, and E(sts X , X___) = Kk <= a.s. for all t.

t-1'7t? Tt-T

THEOREM 5.4. Given Assumptions 1-3, 6(a), (b), and 7, if the model is correct
to second order, n~T times Rg from the regression (5.2) is asymptotically
distributed as xi .

Serial correIation in Xést may arise in models in which the parameters

are erroneously believed constant, for example. 1In such cases, the mean of



the (random) parameter vector is often consistently estimated by OLS. The
*
covariance structure of the OLS estimator then includes Bn as in Section 4,

since the errors are functions of omitted dynamic coefficients.

The tests of Theorems 5.2 and 5.3 are sensitive to failures in the
assumption of a model correct to first order, as well as to forms of
heteroscedasticity and/or serial correlation which cause

Bn¢ Ogn—122=lE(XéXt). If the hypothesis that the model is correct to second
order is rejected, it may still be that the model is correct to first order.
A test of the latter hypothesis may be based on the results of Section 4.
When the model is correct to first order, the WLS estimator is consistent for Bo
using any set of positive weights which are measurable functions of Xt and
take values on a compact interval. Whenever two such WLS estimators are
available, the distance between them can be used as an indicator of model
misspecification. This distance is zero asymptotically if the model is
correct, but generally does not vanish otherwise.

This fact has been exploited previously in the context of maximum
likelihood estimation and asymptotically efficient estimators [e.g., by Wu
(1974), Hausman (1978), and White (1982a)]. The next test does not rely on
asymptotic efficiency, since this would generally require a knowledge of the
joint distribution of the errors and covariance statiomarity. In this sense,
the test is similar in form and spirit to that of White (1980b) and to those

proposed for nonlinear regression models in White (1981) and Domowitz and

White (1982).

Let {Bln} and {an} be two sequences of WLS estimators using weights

{Wlt} and {WZt} as defined in Section 4. The sequence {W } may simply be a

1t

sequence of ones, making Bln the OLS estimator. Define



_1 n 2
= ! .
R =n Z E(W W, & XX ) (5.3)
t=1
_ n—-1 n
t +
* o z Z E(Etst—T(XtXt—Twltw2t—T Xé—Tthlt—TWZt])‘
=1 t=1+1

The average covariance matrix of the difference between the two WLS estimators

given by
-1 -1 -1 -1 -1 S B S |
= - - .4
Sn MlnBlnM ln+ M2n B2n M 2n M lan M2n MZn Rann (5.4)
where M, = X'I.'X, I.'= diag(W. ) defined in Section 4, and B._ is
re M, ; % b, = diag(W, ) as defined in Section 4, in

computed with weights wit t=1,...,n.

b

Let € =Y - XB

. . B1n Under the null hypothesis of a model correct to

first order, the covariance estimator required for the test statistic is given

by

wH
[l

(X‘ZIIX/n)-l B, (x'z7lx/n)7! (5.5)
n 1

1

I -1 2 S IS |
+ (X'I, X/n) B, (X'I, X/n)

RS WS ERARNE S B |
(X'Z,"X/n) " R (X'L, X/n)

-1, -1’ -1, -1
1 1
(X'2,"X/n) © R (X'Z;7"X/n) ~ ,

where

>
|
Jomt

n ~
_ 2 o
R, =1 E WieWoesr K& (5.6)

n ~ -~

) e e _ (X!
=1 t=g+1 ° 7T

i i £, = - . e
and Bin is evaluated using it Yt thln

Xt—TwltWZt—T + Xé—rxtwlt—TWZt)



The next assumption formally identifies S  as the covariance matrix of

Bln_ an and provides the additional moment restrictions required to
guarantee consistent estimation of Sn'
-1/2 atn -1 -1
i = ' - t
ASSUMPTION 8. Define Sa,n varn zt=a+l (Mln Xt wltet M2I1 Xt Wztet)].

There exists a matrix S such that det S>¢>0 and A'S nX—X'S A0 as nre

a,

uniformly in a, for any real nonzero pxl vector A.

The memory condition is also modified to ensure that

~

Sn consistently estimates Sn'

ASSUMPTION 9. FEither (a) ¢(m) is of size 2 or (b) a(m) is of size

2(1‘1 + 5)/(1‘1 + & - 1), r) > 1.

~

THEOREM 5.5. Let {Bln} and {an} be sequences of WLS estimators using

weights {W } and {Wzt}. I1f Assumptions 1 - 3, 8, and 9 hold, and if

1t
£ rmasn+>® 2=0(n), 0<y<8/(ry+ 8 < 1/2,

- A1 - - 2

" - a
n(Bln_BZn)Sn (Bln—BZn) - Xp (5.7

when the model is correct to first order.

The statistic (5.7) is the time-series generalization of the
specification test given in White (1980b). The statistic requires the
computation of two WLS estimates. Although (5.7) appears complicated, all

matrices and their inverses are available as byproducts of the WLS

estimates. Note that only one truncation lag for Bl , B2 and R has been
n n n

defined. This need not be the case in practice, so long as each truncation



lag satisfies the conditions of the theorem.

The test given by (5.7) is limited by the choice of weights, which is
apparently arbitrary. Heuristically, it seems desirable to weight portions of
the parameter space most heavily where the approximation is the poorest, in
hope of improving the power of the test. A set of weights which satisfies
this requirement is given by the fitted values of the regression (5.1). A
discussion of this case may be found White (1980b,1981). A treatment of the
weighting problem is beyond the scope of the present study. It is, however;
an important topic for future research, since issues of test power and
relative estimator efficiency also depend on the merits of alternmative

weighting schemes.

6. CONCLUSION

General conditions sufficient to ensure the consistency and asymptotic
normality of the OLS estimator have been provided in this paper. Regression
errors may be heteroscedastic and/or serially correlated, while the data may
come from a cross—section, a panel, time—-series, or an experiment. A
heteroscedasticity—consistent covariance matrix estimator is introduced for
the time-series framework considered here. The estimator allows the
development of hypothesis testing procedures robust to serial correlation
and/or heteroscedasticity of unknown or misspecified form in the errors.

The consequences of misspecifying the mean regression function are then
explored. The OLS estimator is found to be consistent for the parameters of a
well-defined least squares approximation to an unknown regression function.
The parameters of the approximation need not be stable over time. Additional
conditions are provided which ensure that the OLS estimator is asymptotically

normal. In the presence of general model misspecification, the estimator of



the asymptotic parameter covariance matrix need not be consistent, however.
General tests of model misspecification are derived under the null hypothesis
of a correctly specified model, based on principles advocated by Hausman
(1978) and White (1980a, 1982).

It is well known that unknown forms of serial correlation in the errors
of dynamic models lead to inconsistent parameter estimates. In such cases,
the method of instrumental variables is an appropriate estimation technique.
Future work on the linear model will include an extension of the analysis here

to that case, extending the framework introduced by White (1982b).



MATHEMATICAL APPENDIX
All notation, definitions, and assumptions correspond to those given in
the text. Limits are taken as n + ®, unless stated otherwise. Footnote 2

applies in the Appendix as well as in the main text.

Proof of Theorem 2.1: The argument follows the basic line given by White

(1980b, Lemma 1). Provided that X'X/n is nonsingular for n large,

~ =1
Bn= BO + (X'X/n) (X'e/n) (a.1)

under Assumption l. By Lemma 2.1 of White and Domowitz (1981),

{Xitxjt}’ i,j € {l,...,p} are mixing sequences with the size properties of
r1+6
Assumption 2(c). Since E\Xitht| < A for all t, it follows by Theorem

indicates

2.10 of McLeish (1975) that |X'X/n - Mnl + 0, a.s., where

convergence element by element.

By Assumption 2(b), M_ is nonsingular for n large, and thus so is

-1
X'X/n. Assumption 2(a) bounds the elements of Mn for n large, so that

|(x'%/n) - M;l} > 0, a.s.

r1+§ 1/2 2 T1+46

2
X, | E" e, | <4,

r)+8¢ 1/2,
it £

Now, E{xitet[ ~E

for all t, and i = 1,...,p, by Assumption 2(a) and the Holder inequality.
X €
LN

-1
) - h . B ! , o si ‘e n
McLeish (1975), so that |X'e/n - n t=lE(Xtet)[ + 0, a.s. Since Xtet as

is a mixing sequence meeting the size requirements of Theorem 2.10 of

_1
uniformly bounded elements for n large, as does (X'X/n) , and since

21
E(Xéet) = 0, |(X'X/n) (X'e/n)| + 0, a.s. The result follows from (A.1l).



1/2Zn

Proof of Theorem 3.l: Consider the quantity n~ =1

Xéet. Under Assumption

3, the sequence {XéEt} is mixing, and the average covariance matrix is given

by
-1 g 2 ‘
B = .
L0 E(Et tht) (A.2)
t=1
-1 n:l n
1 1
+ n ) ) ECe e, _ (X)X __+ X X D).
T=] t=1+1

B, is positive definite for n large by Assumption 3(b), and so the matrix

square root Bé/z and its inverse, B;l/z, are well defined. Applying Theorem
2.6 of Domowitz and White (1982), a central limit result for mixing random

variables, it follows that va Bn_l/z i® xre 2 N(O,1). By (&.1),

t=l"t t

1/2 -1z
/ M_(X'X/n) ] X

_ — _1/2 ~

Yn B €,= /n B M (B - B) (A.3)
-1 -

a.s. for n large. Since {X'X/n) —Mn | + 0 a.s., as argued in Theorem 2.1,

1
M_(X'R/N) - 1p1—2—> 0 by Lemma 3.2 of White (1980c) and it follows that

_1/2 ~ a
Yo B_ ' M (B_ -8 ) < N(O,I).
n n n o P
Proof of Theorem 3.2: Under Hy,
Rg - r = RBO-r+R(Bn—BO) =R(Bn-80). (A.4)

21 1
let S =RM B M R', which has uniformly bounded elements and is positive

n n nn

definite large given Assumptions 1-3 and HO- The result follows from Lemma

3.3 of White (1980c), provided



~ 1 - 1
where Sn= R(X'X/n) Bn(X'X/n) R', and

_1,2 0 172 _1

2/ Y os TR % € 2 N(0,1).
n n’'t t P

t=1

(A.7) is easily verified by noting that the random variables

_1/2 -1
S RM_ X

n a éet are mixing, with size properties given by Assumption 3, and

with the identity matrix as covariance matrix. Assumption 3 allows the

application of Theorem 2.6 of Domowitz and White (1982), establishing (A.7).

(A.6) follows since I(X'X/n)_l—M;II >0 a.s., and ]ﬁn-Bn} P_>0 by
hypothesis, applying Lemma 3.2 of White (1980c). '

(A.5) follows from (A.2), noting that the elements of S;l/zR are
uniformly bounded.

The result then follows by applying Lemma 3.3 of White (1980c).

Proof of Theorem 3.3:6 (a) From (3.1) and (3.2) in the text

~ 1 n ~2 2
-— - 1 —_ t
B-B=n g e, XX - E(e X'X)
t=1
I

+ 0 ) ) e e (XX 4X! X))
1oy pes4p B ETT TETET E-TE

- ! + ¥
E(Etet-T[XtXt—T Xt—‘f Xt])

(A.5)

(A.6)

(A.7)

(A.8)



when Ekitst_TlXt, Xt—T) =0 for all T > &, & finite. Now,

'X X' X ] = - - X'  +X' X ]. It
Etst—T[Xt t-T t-T t] (Yt th) (Yt—T Xt—T)B)[ tt-T t-T t]

suffices to consider omnly

(Y X 8)(Y__-X__ B)(X'X__). (4.9)

Under Assumption 1, (A.9) is equal to

[e X (B = B)le, - X (B-8)IX X (A.10)

for i,j E{l,...,p}. Taking absolute values,

[le -X (B-B)Ile - X __(B-B)] X X |

it jt-1
(A.11)
2 2
< fle X [B-B X, | [le ~X (B8] th_Tl
Let BRand BOkbe the k™ elements of B and BO’ respectively. An argument

identical to that of White (1980b, Theorem 1(i)) establishes that there exists

2 _
a B < ® such that (Bj“BO,) <B,j=1,...,p- Using this fact, and by

3
repeated application of the inequality |a + blr.s STl T T

la| T2 |, £ 21,

the expression in (A.ll) is bounded above by

2 P 2
[ygle X I+ kil LIRS (4.12)

2_
-+
x[uolet—Tth-T‘ k=1 uklxkt—rxjt—rt 8l

where 7Y

K’ uk, k=0,1,...,p, are finite constants. The expectation of each

term is uniformly bounded under Assumptions 2-4, Applying the same argument



- - v - e e [X'X_ _+X' X ] i
to (Yt XtB)(Yt_T Xt_TB)(Xt_TXt) establishes that . t-T[ N S t] is

dominated by functions that are uniformly r |+ -integrable. Application of
Theorem 2.5 of Domowitz and White (1982) then ensures that

n

-1
{(n~T) ) (g ¢ XX +X! X ]
t=T+] t t-7T ¢t t-T ¢t-T t

—E(ate [X'X +X

095 S t_TXt}))[ + 0 a.s.

uniformly in 8 for T = 0, 1l,...,2. Since (n-T)/n + 1 as n +» =, and én+80

a.s., it follows from Theorem 2.3 of Domowitz and White (1982) that

n
y £ € ' + X!
|n % t t-T [XtXt-T Xt—rxt]

> 0 a.s.

for 1=0,...,%. By Lemma 3.2 of White (1980c¢), it follows that

B-B-E > 0.
Tl el

(b) Define
-1 n 2
B () =n ) (Y -X 8) X'X_
t=1
12 n
o LR (Yo% B) KX X XD
T=1 t=T+l

and

-~ -— n 2
B_(8) =n E E[(Y, X 8)7X!X ]

L
+0 ] [ EL(Y X B)(Y _ X _ B)(XX __+ X X)L

(A.13)

(A.14)

(A.153)



> 0. It is then

It will first be shown that B (8.) - B
n 0 n
demonstrated that Bn(B) - EH(B) —2:5. > 0, uniformly in g, Finally, it is

shown that En(én) - En(BO) P _> 0, yielding the desired result.

First,

- 1 ol n
B (B) -B =n ) ] E(e e
n 0 B =4+l t=1+1 ¢

1 1
t—T[XtXt—T * Xt—TXt]) :

It suffices to show that

1 n-1 n
n ) ) |ECe e, X'X__ )} + 0. (A.16)
t=0+1 t=T+1 teortoet

Assumption 2 ensures that E(Xéet) = 0. Since Assumption 5 ensures that
E}Xtet]2+2n { ®, where n = rj + ¢8-1, it follows from Lemma 2.2 of White and
Domowitz (1981) that either

IE(etet_TX;Xt_T)l < c1¢(T) ,

or

|E(€t€t—rX£Xt-r)‘ < cp a(T) n/(2+2n)

where the c; are henceforth finite constants. Therefore, either

1 n-1 n n-1 1/2
n L IE(e e _ XX )| <ecr )} (0, (A.17)
T=0+] t=T+l T T=2+1
or
1 n-1 n n-1
h ) L ’E(Etst_TX£Xt_T)| <cp ) a(T)n/(2+2n)- (A.18)
T=4+1 t=T+1 T=£+1

To see that the right-hand sides of (A.17) and (A.18) converge to zero



appropriately, write

n-l 1/2 n-1 12 2 12
lim ) $(T) . lim §  ¢(1) A P Y o(T) /
T=2+1 =0 =0
ot /(2+2n) ncl o n/(2+2m)
lim ) a(1)" Ve 1im §  a(1) (A.20)
T=2+1 =0
g n/(2+2n)
- 1lim z a(T) TN
=0
The size requirements of the theorem ensure that
© 1,2 ©
ZT=O (1) / < ® and ZT=O a(r)n/(2+2n) { ®, Since & » =, (A.16) follows
from (A.17) and (A.19) or (A.18) and (A.20). Thus, En(so)-3q+ 0.
It is now shown that Bn(B) = ﬁn (g) —&-S5:5 ¢ uniformly in 8.
Let d =€ € X X. -E(e € X X. ), noting that d is
tT  t t-T it jt-T t t-T it jt-t tT
a function of B8, but suppressing the extra notation as well as the 1i,j
subscripts. By the triangle inequality, Bn(B) - En(S) —2 50 uniformly in
B provided that for all i and j
-1 T a.s
ln ) d_.] ——> 0, and (A.21)
t0
t=1
% 1oz a
Yoo nT ) a4 ] 2= 0, (A.22)
tT
=] t=1+1

uniformly in B, where & = 0(nY), 0 < ¥y <8/(r+8).

To show (A.22) first note that

2 21 n 2 _1 n
sup ) | a ] dtT( < )] sup | n ) d I
8e® 1=} t=T+] =1 ©8e© t=T+1

The dtT are continuous uniformly in both t and T. Assumption 4 and the Cauchy-

(A.19) °



Schwartz inequality ensure that the dtT are dominated by ] + § integrable
functions for all 7T. By Lemma A.3 of White and Domowitz (1981), the mixing

requirements of Theorem 2.5 of Domowitz and White (1982) are satisfied for

7 n
all 1=1,...,=%, such that for n large, supe'(n--r)Y L ) dtrl <&,
t=T+1

uniformly for 0 <y < &/(ry + &), and it follows that

L 1B _
s 1 1aT D e i<t
9e® T1=1 t=T+1

for n large and almost every sequence {Xt,st}. The sets F2 of sequences {Xt,et}

Y-1 zn

£=1 dtr ] —/—> 0 for 1=1l,...,% given 2 = O(nY),

such that Supg [n
0 <y <&/(r; +8), constitute an increasing sequence of sets of measure

zero, such that P(U = 0, establishing (A.22). (A.21) holds as a

2=1%2

consequence of (A.13).
From the mean value theorem of Jennrich (1969), and the triangle

inequality, for i, j = 1,..., p, |§;j (én) - Eij (BO)} <V §ij (én-ﬁo)l <

1.P ]BEij/BB_I | B . -8 . |, where B_ lies on the segment connecting
i=1 n i ni oi n

-~

Bn and Bo, and Bn(B) is the matrix with elements Eij(B). Assumptions 4 and 5
ensure that |8§ij (E;)/BBi] < An' + A, A { =, for all i, so that

~ij o0 ¥ < a¥-Y2 5 p ~ L 7P .
B, (8) - 87 (8 )] n Zi=l a8 -8 ) |+ Zizl; B -8B

ni oi

- 1,2 =
Since B é;f;_>80 and n / (Bn—BO) is Op(l) as a consequence of the asymptotic
n

normality result, and since Y < 1/2, the left-hand side of the last inequality

is op(l) by 2c¢.4 (x.a) and 2c.4 (xiii) of Rao (1973). Therefore,

B (8)-B (8 ) —2—> o.
n et n o

a

A S .S. ~ - ~ e
i - - —B -
Since B -~ B (8) > 0, Bn(Bn) Bn(BO) > 0, and Bn(SO) B > 0,

n

n
it follows that B - B P > 0.
n n



n

£ -1 _1
Proof of Theorem 4.1: Define Bn=M [n Zt=l

E(Xt gt(Zt))]. A slight

oL

modification of the argument in White (1980a, Theorem 2) establishes that 8
n

is identifiably unique (Domowitz and White (1982), Definition 2.1] relative to

Gn . Given Assumption 1!,

5 ’ -1 1D
Bn=(X X/n) [n tzl tht(Zt)].

The X, are measurable functions of the Z¢, and by Lemma 2.1 of White and

Domowitz (1981), the X, are mixing with size properties given in Assumption

_1
2'. As in the proof of Theorem 2.1, (X'X/n) —Mn + 0 a.s.

Since the g (Zy), t = 1,2,..., are measurable functions of
1
. . -4 n . _ .
Zt’ it follows similarly that |n zt=l[xtgt(zt) E(tht(zt)] | >0,

a.s. The result follows directly.

Proof of Theorem 4.2: The proof proceeds completely analogously to that of
Theorem 2.1, noting that the weights are positive functions taking values on a

compact interval, and are mixing with the size properties of the Z, by Lemma

2.1 of White and Domowitz (1981).

Proof of Theorem 4.3: Consider the quantity
‘l/zzn X'u , where u = g (Z_ ) - X 8> Assumption 3' allows the
’ t Ctt t n

n
t=l"t t

application of Theorem 2.6 of Domowitz and White (1981), yielding

~1/2
Yo B* / 22 Xéut 2 N(O,Ip). An argument similar to that in the proof of
n =

1

Theorem 3.2 completes the proof.

Proof of Theorem 5.3: The proof is identical to that of Theorem 2, Corollary

1, of White (1980b), except that Theorem 2.6 of Domowitz and White (1982) is




applied instead of the Liapounov central limit theorem, Theorem 2.5 of
Domowitz and White (1982) is applied instead of Lemma 2.3 of White (1980c),
and the Markov strong law of large numbers is replaced by Theorem 2.10 of

MclLeish (1975).

Proof of Theorem 5.4: For 7T > 1, define

_1n
DnT=(n—T) N

(X -X _8)(Y, __-X___8)
t=T+] tT t t t-T

t-T

where ¥y 1is the lxk_ vector with elements X. X. , 1,3 €
tT T it 3t-71

{l,...p}, and where it is recognized that DnTis a function of 8,

~

. . - - o
suppressing the extra notation. Let D = Dy (Sn) and DDT— Dnr(SO)' If
1/2 _1/2 o a
(n-1) \Y < DnT ~ N(O,Ik ),
T
.A _ p - ~
A vl > O for some V__, and (A.31)
1/2 _1/2 ~ o
- ~ p

[(p=t) “ Vv ° D _~D Il —>0, (A.32)

then White's (1980c) Lemma 3.3 may be applied to establish
~oalla g2
(n - 1) DnT nTonT XkT (4.33)
2

and the desired result follows by showing that (A.33) is (n—T)RO from the

artificial regression (5.2).
2 1/2

l —
Consider (A.30). By definition, (n-T1) / Dﬁrz (n—T) n y

z £ € .
t=T+1 tT t t-71

(A.29)

(A.30)




An argument as in the proof of Theorem 3.4 establishes that the elements of

the summand are appropriately dominated, under Assumptions 3 and 6. Given

1
- n
Assumption 7, the average covarian trix is = -T K_. Z ! .
P R g ce ma V. (n-1) . t=T+lE(lptT tT)

Lemma 2.1 of White and Domowitz (1981), together with the mixing conditions of

Assumption 3, then allow the application of Theorem 2.6 of Domowitz and White

1/2 _1/2 o a
(1982), establishing (n-T1) Y . DnT ~ N(O,Ik ).
T - A
- . - - 3 — _— - n
Now consider (A.31). An estimator for VT is given by VnT—(n T) KTZt=T+lwtrth’

-~ -~

~ 2 2
(Yt—XtBn) (Yt— -X B ) . It is straightforward

where x_ = (n-T)_l p)
T T t=-Tn

o}
=1+l

to verify that appropriate dominating functions exist under Assumption 6 such

that Theorem 2.5 of Domowitz and White (1982) may be applied, ensuring that

1 o 2 2
| (n-1) t=§+l[(yt—xt8) (Y _ "X _.8)
2 2
“EN(Y X B) (Y, _ -X __B) 1] > 0 a.s.

uniformly in 8. Under the assumptions, Theorem 2.10 of McLeish (1975) may be
applied to show that

n

=1
(=0 L [ mECGR b )]
t=1+l

> 0 a.s.

-~

Since B

> B

o 0 a.s., Theorem 2.3 of Domowitz and White (1982) may be

applied, and it follows that (&nT—VT[ —> 0 a.s.
In order to establish (A.32), a mean value expansion is applied to
DDT. The assumptions allow the application of Lemma 3 of Jennrich (1969), a
mean value theorem for random functions. The expansion applies to a sequence
tail-equivalent to én’ but to simplify things, the notation will not be

changed. With this proviso,

1/2A 1/2

o 1/2V-— -
(n-1) Dnr-(n-f) Dnr+(n*f) Dm(Bn - B

o’



where VD . is the Jacobian of D . with columns i=1l,...,p, evaluated at
n n
suitable mean values E'(l) lying on the segment connecting
n
Bnand SO. Rearranging,
/%00 o

[DHT—DnT]

1 1/2 ~
| (n-1) | = |((a=1)/n) % VDnT(Bn - SO)I . (A.34)
Now, |fH (én-SO)l is bounded in probability by Theorem 3.1, which holds under
the assumptions given. Also, (n-T)/n > 1 as n * = . Taking the indicated

derivatives,

~(3)ng _ LT D =)
8Dnr 88j_ (n=1) t=§+l l‘br:‘r[(Yt XtBn )th—r * (Yt~r Xt—an )th]

where is the appropriate mean value. Assumption 6 ensures that

B (1)
n
[wéT(Xt—XtB)th{ is appropriately dominated, so that Theorem 2.5 of Domowitz

and White (1982) may be applied to establish that

n

-1
| (n-1) ool (Y -X )X, +(Y_ X _B)X_ ]
t=T+1 tT t t jt-T t-T t-T jt

_E(wér[(Yt—th)th—T + (Yt—T_Xt—TB)th])] >0 a.s.,

uniformly in B. Since én* BO a.s., Theorem 2. 3 of Domowitz and White (1982)

may be applied to establish that
3530 /38 £330 /38 1 > 0 a.s., j=1,....p.
nT j nt 3j

Finally, given Assumption 7, the expectations above vanish, so that

35(1233_+ 0, a.s., j=l,...,p. The symmetric positive definite matrix square
n J



root V;l/z is well defined for n large, and has uniformly bounded elements
under Assumptions 6 and 7. (A.32) therefore follows from (A.35).

Lemma 3.3 of White (1980c) establishes (A.33), given (A.30), (A.31), and
(A.32). From equation (5.2) of the text, the OLS estimates of @ from the

artifical regression are

i - (@07 ] o™ 1wl ]
a= |(n-1) Loy (n-1) y! e e _
t=1+41 0 T t=1+1 T b T
where ¢ = Y, - X B Thus,
t t"n
A Al - - 1 o N

D! V._D _=a' [(a-1) ] ¥ ¥ _] o/«

nT nT nT TtT
t=1+1 ttt

2
which is RO (Theil (1971, p. 164)] for the regression (5.2). The result

T

follows.

Proof of Theorem 5.5: The argument is identical to that of Theorem 4 of White

(1980a), except that Komolgorov's strong law of large numbers is replaced by

~

-1 1
Theorem 2.10 of McLeish (1975), provided that [S -S | B> 0. The latter

follows under the assumptions given, if |Sn - S[ —E 5 0. This is demonstrated

b lyi th ent of Theorem 3.4 t
y applying e argum o} Bln’ an, and Rn’

noting that the weights in all cases are positive, measurable, mixing random

variables taking values on a compact interval.
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"FOUTNOTES

lIn what follows, the qualifiers "all" and “sufficiently” in such statements

will be implicitly understood.

Economists usually think of o— algebras as information sets. We
write E(Xtl}t—l)=E(Xt|Xt-l,Xt—2"“) to mean the expectation of Xt given
information in the form of lagged X's available at time t-1, for
example. Formally, a o- algebra is a collectionIB of subsets (events) of
a set (sample space) {2 such that: (i) ¢ and § belong to ;B ; (ii) if B
belong to;B, then BC belong to;B; (iii) if {Bn} is a sequence of sets in,
then U:=an belongs to;B. The reader may consult Billingsley (1979) for

further details.

3General nonlinear hypotheses h(BO) = 0, where h is a continuously
differentiable function in B with bounded Jacobian, Vh, having full row
rank (at 80) may be handled completely analogously. Asymptotically,
Vh is like R.
4In this case, limiting results also follow by assuming the errors to be

2- dependent (cf. Billingsley (1968, page 167)), an assumption also used

extensively by Anderson (1971).

5The mathematical aspects of the linear least squares approximation are

rigorously discussed in Rice (1969), chapters 2 and 12, and in Sard

(1963).

61 am indebted to Halbert White for suggesting this line of proof.
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