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ABSTRACT

In this paper it is shown that if adjustment costs are symmetric, the
linear rational expectations version of the discrete time multivariate
adjustment costs model gives a closed form system of interrelated factor
demands, the structural parameters of which uniquely define the firm's
technology. The stability of this system dictates a joint restriction on
marginal factor products and marginal adjustment costs. The comparative
dynamics properties of the system are investigated. It is found that optimal

quasi-fixed factor stocks may oscillate.
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1. INTRODUCTION

Since its formulation in the late sixties and early seventies the
multivariate adjustment costs model of the firm (Lucas [9], Treadway [18], and
Mortensen [14]) has been the basis for many state of the art interrelated
dynamic factor demand studies. As 1s well known, this model distinguishes
between variable and quasi-fixed factors of production. The adjustment of the
latter is assumed to be a resource consuming process. The firm is assumed to
use factor services to produce output and make quasi-fixed factor adjust-
ments. The output sacrificed by devoting factor services to the adjustment
process, i.e., the adjustment cost, is a convex function of the rate or size
of the adjustment. The major advantage of this model is that it yields
testable dynamic factor demand functions by relying exclusively on the
intertemporal optimizing behavior of firms while allowing for a number of
possible interrelations among factors of production. A serious problem with
this model is the hypothesis of static expectations which, for all practical
purposes, makes the system of the interrelated dynamic factor demands derived
from this model subject to Lucas's [10] critique of econometric modelling.z
Recently, however, Hansen and Sargent [5] extended their univariate linear
rational expectations model to account for dynamically interrelated
variables. Their model may be specialized to a linear rational expectations
version of the multivariate adjustment costs model. The basic assumptions of
this model are that the representative firm's objective functional is
quadratic, its expectations are rational, and the objective laws of motion of
the exogenous variables are linear.3 The interrelated factor demands derived
from this model may be put into the form:

A (B) Axp(B) x(t) Bxx(B) BXP(B) Ef(t)

GO =

0 APP(B) p(t) Bpx(B) Bpp(B) ep(t)



where x(t) is an (n x 1) vector of quasi—fixed factor stocks at the end of
period t; p(t) is an (ﬁ x 1) vector of real quasi—-fixed factor prices in
period t; (ef(°), Ep(-))' is a (2n x 1) vector of mutually uncorrelated white
noise processes; and Aij(B) and Bij(B) (i,j = x,p) are (n X n) matrices the
elements of which are finite polynomials in nonnegative powers of B - the
backward shift operator defined by ka(t) = p(t - k).4 The coefficients of
these polynomials are uniquely defined by the "structural parameters” and the
"expectations parameters” of the model. The former are the parameters of the

underlying forward looking version of the quasi—fixed factor demands:
(2) x(e) = A x(t-1) + M(FIE [£(t) ~ p(t)]

where f(t) is an (nxl) vector of time~varying parameters that incorporate the
influence of random shocks in the production and quasi—-fixed factor adjustment
processes of the firm; E is the mathematical expectations operator and Et
denotes that expectations are conditioned on the firm's information at the
beginning of period t, Qt; and A and M(F) are (nxn) matrices and the elements
of the latter are infinite polynomials in nonnegative powers of F - the
forward shift operator defined by FkEtp(t) = Etp(t+k).5 On the other hand,
the expectations parameters of the model are the parameters of the objective
law of motion of the {f(¢), p(*)} process:
3 I’Cff(B) Cfp(B?] ,:f(t)]= [fo(B) Dfp(B):, l:ef(t)j,

Cpf(B) Cpp(B) p(t) Dfp(B) Dpp(B) Ep(t)
where Cij(B) and Dij(B) (i,j = £, p) are (nxn) matrices the elements of which

are finite polynomials in nonnegative powers of B.6 Major advantages of this

\model are its tractability and of course the fact that it is not subject to



Lucas's critique. However, some serious problems remain. First, unless there
are at most two quasi-fixed factors, i.e., n € 2, (2) is not a closed form
analytic solution. Second, the structural parameters in (2) do not uniquely
define the firm's technology. Further, as a consequence of these two
problems, the interpretation of the stability condition on and the investi-
gation of the comparative dynamics properties of (2) become infeasible tasks.
In this paper it is shown that if adjustment costs are symmetric, (2) is
a closed form analytic solution for all n and the structural parameters
uniquely define the firm's technology. Somewhat crudely put, adjustment costs
are symmetric if the effect of the existing stock of a quasi-fixed factor on
the adjustment of another quasi—-fixed factor is the same as the effect of the
existing stock of the second on the adjustment of the first. It follows that
those forms of adjustment costs where the effect of any existing quasi-fixed
factor stock on the adjustment of any other quasi-fixed factor stock is nil,
as is the case with the so called weakly separable and strongly separable
adjustment costs, are forms of symmetric adjustment costs. Adjustment costs
are strongly separable if they represent premiums for quick deliveries or when
only vériable factor inputs are used in carrying out the adjustment process.
Adjustment costs are weakly separable when the adjustment of a quasi-fixed
factor is carried out by means of variable inputs and the existing stock of
that factor hinders or facilitates its own adjustment in the sense of
increasing or decreasing adjustment costs.7 Actually in their examples of the
linear rational expectation version of the multivariate adjustment costs
model, Hansen and Sargent assume strongly separable adjustment costs. But
their solution procedures are such that their adjustment costs restriction is

not exploited.



Other results of this paper include an interpretation of the stability
condition on (2) and an investigation cof the comparative dynamics properties
of that system. The stability condition is the discrete time anzlogue of the
stability condition of the continuous time symmetric adjustment costs model
(Brock and Scheinkman [1], Magill [12] and Magill and Scheinkman [13]). This
condition imposes a joint restriction on marginal products and marginal
adjustment costs. The comparative dynamics results are similar to Mortemnsen's
[14] with one exception. If existing quasi-fixed factor stocks tend to hinder
quasi-~fixed factor adjustments, optimal quasi-fixed factor stocks may
oscillate.

Throughout this paper we employ the following notation: B denotes the n-
dimensional Euclidean spase and R: denotes the nonnegative orphant of Rn; if
xeRn, Ixl denotes the standard Euclidean norm of x; if A is a matrix,

|Al, UAK, and adjA denote the determinant, the uniform norm, and the adjoint
of A, respectively; A = [aij] (i,j=1,...,n) denotes an (nxn) matrix whose ijth
element is aij; A= diag[ai] (i=1,...,n) denotes an (nxn) diagonal matrix
whose ith main diagonal element is a3 I denotes the unit matrix; and the

symbol ' denotes transposition.

2. TBE MODEL

The representative firm takes all factor prices as given and at the
beginning of any period T it chooses a contingency plan for its net quasi-
fixed factor stock changes, {u(t)}:=T, so as to maximize its expected present

value:

(4) V[{x(t—l),u(t)}:=T;T] = EthTBt_T{¢[x(t—l),u(t);t] - px(t)'x(t—l) - pu(t)'u(tX



subject to a quadratic generalized production function:8

£ (£)q'~x(t-1 x(t=1)q ' £ f x(t-1)
X 1 XX Xu
£ (e)d Lu(t) u(t) £ £ u(t)
u ux uu

and the quasi-fixed factor stock transition constraints:

x(t) = x(t~1) + u(t), x(t) ¢ R:, and x(1-1) = x (given)

where 8—1 - 1 > 0 is the real discount rate of the firm in all periods;
pX(t) is an (nxl) vector of unit real quasi-fixed factor holding costs in
period t; pu(t) is an (nxl) vector of real quasi-fixed factor acquisition’
costs in period t; fx(t) >0 is an (nxl) vector of parameters that embody the
influence of random shocks in the productivity of quasi-fixed factors in
period t; fu(t) < 0 is an (nxl) vector of parameters that incorporate the
influence of random shocks in the adjustment of quasi—-fixed factors in period

t.9 It is assumed that

[T.1] fij' = fji (i,j = x,u)

f f
[T.2] [ XX xu] negative definite

£ £
ux uu

[T'3] fxu' = fxu

[T.4] & = fuu - fxu nonsingular

Assumptions [T.l] and [T.2] imply that ¢(+) is twice differentiable and

strictly concave. It follows that marginal products are decreasing and



marginal adjustment costs are increasing. [T.3] implies symmetric adjustment
costs. [T.4] involves no loss of generality. If A is singular then the
nuber of de facto quasi-fixed factor stocks is less than n. In this case the
firm's problem may be reformulated by treating some quasi-fixed factors as
variable so that the remaining quasi-fixed factors induce a nonsingular 4. The
fact that fxu is not restricted to be diagonal or null implies that adjustment
costs are not restricted to be weakly separable or strongly separable, respec-

tively. Let:

f(t)

£ (1) + 81 (e-1) - £ (&)
X u u

W

p(t) = p (£) + 8 p (e=1) = p (t)

The firm's stochastic environment is represented by the {f(e), p(*)} process
[~-]

. It
t t=1

and the firm's information by the sequence of information sets {Q

is assumed that

[E.I] @ C @ , for a1l t > 7T
t t+1

[E.2] {f(t), p(t), x(t-1), £(t-1), p(t-1), x(t-2),...} € Qt’ for all t » T

DEFINITION: A plan {x(t-1), u(t)}:=T is feasible if x(t) = x(t-1) + u(t),

x(t) € B, for all t *> T, x(1 = 1) = X.

* * -]
DEFINITION: A plan {x (t-1), u (t)}t=T is optimal if it is feasible and
* * ) )
Vi{x (t-1), u (t)}t=T;T] > VI{x(t-1), u(t)}t=T;T] for all feasible plans

x(e-1), uw(©))_.



Since our ultimate objective is to characterize aggregate factor demands, the

following is not really restrictive

[E.3] The firm's subjective law of motion about the {£(+), p(+)}
* *
process is such that if an optimal plan {x (t-1),u (t)}:=1 exists,

*
xi(t) >0, for all t » T and for all i (i = l,.ea,n).

We are interested in plans for which V{{x{(t~1), u(t)}:=T;T] assumes a finite
t=T)/2
B( )/

value. A necessary condition for this is that HETx(t)H >0 as t + o,

DEFINITION: A feasible plan {x(t-1), u(t:)}:;_r is said to be globally

=1/2 B(t—'t)/2

asymptotically accessible of order 8 if IIE_r x(£)ll » 0 as t » =, for

n
all x(t~-1) € R+.

To avoid unnecessary complications we shall consider only globally

asymptotically accessible plans of order 8-1/2. Also, in order to ensure the

(=]
finiteness of V{{x(t-1), u(t)}t=T;T] it is assumed that

[E.4] The {f(+), p(+)} process is of mean exponential order less than
8_1/2, in the semse that there exist Y, > 0 and Y, € (o, El/z

such that HET(f(t), peNl < v for all t » T.

"
1°2°

We shall be more explicit about the underlying stochastic nature of the

{f(*),p(*)} process later.

3. FORWARD LOOKING INTERRELATED FACTOR DEMANDS

Given [T.1] - [T.2] and [E.1] = [E.3], {x(t-1), u(t)}__ is optimal if

and only if



(6)  AEx(t+2) - TE_ x(c+l) + B_IA'Et x(t) = E_[£(t+1) = p(t+1)]

where

T=f - (£ +f )+ (146 )f_ negative definite,!!
Condition (6) is the discrete time analogue of the Euler-Lagrange condition of
the continuous time multivariate adjustment costs model (e.g., relation (7a)
in [14]).12 This condition implies that the output given up to acquire the
last unit of any factor in any period along an optimal plan must be equal to
the expected present value of the future net flow of output attributable to
that unit. The negative definiteness of T is the discrete time analogue of
the strong Legendre condition (e.g., relation (7b) in [l4]). The meaning of
this is that any increase in expected present value brought about by an
increase in factor stocks in any combination is decreasing.

Prior to solving (9) it is useful to formally relate this model with that
of Hansen and Sargent's. So far we have not used [T.3] and the preceding
model is not really different from their model. To see this, note that their
objective functional (i.e., expresssion (14) in [5]) is

oo

(43) E_L 8" {(h+s

Lo lt)-x(t) - x(t)'Hx(t) - [(Do+ DlB)x(t)]’[(Do + DIB)X(t)]}

where H is positive definite and is taken to represent the rates at which
marginal products or revenues decrease in any period with end of period quasi-
fixed factor stocks in the absence of adjustment costs; Do is nonsingular and
[(Do + DTB )x(t)]'[(Do + DIB )x(t)] is taken to represent adjustment costs;
and h + Slt is equivalent to B[f(t+]l) - p(t+l)].13 But (4') may be put into

the form indicated by (4) and (5) with

1] 1] + 1] 1] 1
[fxx fxu [Do Do + DoDl D1 Do + DlDl + H DO Do + Dl Do + Hj]
b3 f D' + D' +H D'D +H
ux o o o 1 o o



The corresponding Euler - Lagrange equation is

(6a) 2D'D E x(t+1) + 2(8'D 'D +D.'D. + 8 TH)E x(t) + 287D 'D
ot (o] (o] t (o]

1 11 E x(e=1)

1

= Et[f(t+l) - p(t+1)]

or

(6b) [H + (D + D BF)'(D_+ D, F'l)]Et x(t) = E_[£(t+1) = p(t+1)]

Hansen and Sargent solve (6b) by factoring the “spectral density like matrix"
in the left hand side of (6b). That is they re—express (6b) as

(6'c) (Co + Cl BF)'(CO + C ?—I)Etx(t) = Et[f(t+l) - p(t+1)]

1
Where Co and Cl are (nxn) matrices the elements of which are such that under
some regularity conditions the unique globally asymptotically accessible of
order Bl/z solution to (6c) is of the form (2). However, except when n < 2
the elements of Co and Cl cannot be expreséed analytically in terms of the
elements of Do’Dl’ and H. Moreover, the elements of Co and Cl do not uniquely
define the elements of Do’ Dl’ and H. Thus, as already mentioned Hansen and
Sargent's approach leads to interrelated factor demands that in general do not
have closed form and whose parameters do not uniquely define the firm's
technology. The latter problem is attributed to the nonuniqueness of the
factorization that leads to (6c). But actually the problem occurs earlier
when they try to solve (6b) rather than (6a) directly. In other words, the
elements of Do’ Dl’ and H cannot be defined uniquely by the elements of

2087t

o]
]

-1
| 1]
D0 D0 + Dl Dl + 8 "H)

and

A= 2D, 'D
o



_lo_

The elements of T and A, however, are all that can be possibly identified from
the backward looking version of (2) (i.e., system (1)).
Unfortunately, (6) cannot be solved analytically except when n < 2.14

This is because (6) cannot in general be reduced to n independent second order

difference equations whose coefficients are functions of the elements of

I' and A, The following then indicates the significance of [T.3].

LEMMA 1: Given [T.3] and [T.4] there exists a unique real nonsingular matrix
K = [Kij] (i,es0,n0) such that K' A K = § = diag [Gi] (i=1l,...,n), Gi # 0 for

all i, and - K'T X = I.

PROOF Given [T.3], A is symmetric. Then, since A and T are real symmetric

matrices and - I is positive definite it follows (see, e.g., Gantmacher [3,

p.314]) that there exists a unique real nonsingular matrix K such that K' AK = §
= diag [6 i] (i =1,ee.,n) and -K'TK = I. Given [T.2] A is nonsingular

and since A is nonsingular so must be 6.  Therefore, 6 ; # O for all i (i =

l,00s,0) Q.E.D.

An immediate consequence of Lemma 1 is that (6) is equivalent to the n

independent equations

(7) | Etyi(t+l) + Gi—lEt yi(t) + B_lEtyi(t—l) = G;IKi'Et[f(t+l) - p(t+l)]

where (yl(t),...,yn(t))' = y(t) = K_lx(t) and Ki' = (Kli,...,K DR The

characteristic equations associated with (7) are

(8) AT+ 8T A, +B =0 (i=1,.e.,m)



- 11 -

Clearly, if Xi is a root of (8) then so must be (B)\i)—1 and

@ A+ @)=t @=1,..00)
1 N 1 1

LEMMA 2: Let Ai be the smallest modulus root of (8), then

¢ 8_1/2

_ gL/

, if the roots of (8) are real and distinct
(i) 0K ]Ai]

, otherwise

(ii) The general solution of (7) is

@™

~1 k -t
= A - A ! -
(10)  Ey. (£) = \Ey (e=1) + [, + (BA) 7] kzl(sxip> kg 'ELECE)-p(E)] + (BA)) v,
where Vi is an arbitrary constant
PROOF: See, e.g., Sargent [17, pp. 195-200]

In matrix form and in original coordinates (10) gives

(11) Etx(t) = AEtx(t—l) + M(F)Et[f(t) - p(t)] + N(t)

where

(12) A=K XK' =K diag [Ai]K—l (1 = 1,e0.,n)
g -1 o Kk

(13)  M(F) = [ O+ BA) kg kT ] (BAF)
i=1 k=1

(14)  N(r) = (BA) Ty = (BA)_t(vl,...,vn)'



_12_

LEMMA 3: Suppose {x(t-1), u(t)}t=1 is optimal, then it is globally asympto-

tically accessible of order 8172 if ana only if [A ] < 871/2 ang v, = 0, for all

i (1i=1,e00,n).

PROOF: Since x(t) = Ky(t), [K| # 0, it follows that

(t=1)/2

lim 8 IE_ x(t)l = 0 if and only if
tr® T

lim B(t_T)/ZHE y(t)l = 0 or

£ T

lim B(t—T)/zlE y.(t)| = 0, for all i, or
€y Tl

1im 885725y (¢) = 0, for all i.

fae T 7i

Clearly then, {x(t-1), u(t)}t=T is globally asymptotically accessible of order

871/2 if and only if, for all y, (t-1) € R, lim gt=T)/2

£

Suppose that {x(t-1), u(t)}:;T is optimal. Given [E.1l], it follows from Lemma

E_ yi(t) = 0, for all i.

1 and lemma 2 that

(t-1)/2 _
B E. y;(£) = Eli(t) + 8y, (£) + £3i(t)
where:

_ _ 1/2, (t-1

£, (0 =y (=D A)

“1y 4,172, \t=T ct=T, =j « . .

£, () = (1 + @) Teyet/)" sz; T Jk£l<sxi)k E_[£(THi+k) = p(T++0)]
_ 1/2. t=1 o © %, 2. ~j

£y (£) = v, (B777A) jzo (8A))

-1/2
Given [E.4], it follows that if 0 < |Xi| < B / :



- 13 -

lim &

t >

(t)y =0

lim €2i(t) =0

)
0 . v, =0
lim £Bi(t) =
taw + « . v. # 0
- i
and if IAi| = 8—1/2:

6, ()] < |y, (=) for all t > T,

1/2 _ Jl/2 -2
|€21(t)| < 2Y1UK1"B Y2(l 8 Y2) for all t > T, and
0 , V. =20
lim &, _(t) = .
3i
t > +4+ ’\)_#0

- 1

8—1/2

The preceding results imply that 0 < Iki| < and v, = 0, for all i, are

sufficient for the global asymptotic accessibility of an optimal plan and that

vi = 0, for all i, is necessary for that purpose. To prove the necessity of

-1/2 -1/2

0 < |Xi| <B , for all i, note that if Ikil =B , for some i, and since

Ki ¢ 0, one can choose x(1-1) € R: such that

B(t—T)/zETyi(t) _ Eli(t) + gZi(t) # 0 for all t > T. Q.E.D.

-1/2

LEMMA 4: O < Ikil < B for all 1 (i = 1,...,n) if and only if

/2

[T.5] 0 < |x"Ax/x'Tx| < (1/2)8'/% for all x € E™ such that x # 0

-1
PROOF: From (9) 0 < IAiI < B /2 if and only if 0 < IGiI < (1/2)81/2



_14_

(i =1,...,n). By definition 6 = K' AK = (—K'FK)_IK'AK = K_l(—r)—lAK.
Therefore, the Gi's and the Ki's are the eigenvalues and eigenvectors,

. -1 3
respectively, of - ' "A, Hence, they satisfy the characteristic equations

[(‘F—I)A - 5iI]Ki =0(i=1,...,n) or
A -8 (-T)]k, =0 ({1 =1,ss.,n)
i i

Since A and -I' are real symmetric matrices and (~T) is positive definite the
preceding equations are the characteristic equations of the regular pencil of

quadratic forms
x' Ax - Gi x'"(- Dx

From the extremal properties of the eigenvalues of regular pencils of

quadratic forms (see, e.g., Gantmacher [3, pp. 317-326})

min[x'Ax/x'(~ T)x], for all xeR” such that x # 0
X

min {51,...,5 }
n

max[x"Ax/x'"(-T)x], for all xeR" such that x # 0
X

max {8 ,...,6 }
1 n

2
Clearly then, 0 < )Gil <1/2 Bl/ for all i (i = 1,...,n) if and only if [T.5]
holds. Q.E.D.
-1
Recall that T = fXx - (fxu + fux) + (1 +8 )fuu’ A= fuu - fxu’ and fxu =

fuxs It follows that [T.5] is equivalent to

/2 _ 1, x"(-M)x > 0

lx'(-BA)xl /2

i _ -1
B £+ E b f 28
2p71

+ 1, x'(-0)x <O



-.15._

Note then that - [fuu + B(fXx - fxu)] is the rate at which the expected
discounted future stream of mnet costs brought about by factor adjustments in
any period change with factor stocks at the beginning ¢f next period; and

- B(fuu - fux) = —BA is the rate at which the expected discounted future
stream of net benefits brought about by factor adjustments in amy period
change with factor stocks at the beginning of next period. Now, since along
any optimal plan these costs and benefits must be equal at the mrgin (i.e.,
(6) must be satisfied), —x'[fuu + B(fxx - fxu)]x and — X'B(fuu - fux)x are the
costs and benefits associated with a displacement x from the optimal plan for
quasi-fixed factor stocks. Therefore, [T.5] is a stability condition that
places a lower bound to the cost/benefit ratio associated with any
displacement x from the optimal plan for factor stocks. This bound is an
increasing function of the real discount rate and depeands on whether the firm
has an incentive to bring forward or postpone x. That is whether

x'(-8A) x > 0 (K 0). Condition [T.5] is the discrete time anilogue of the
global stability condition derived by Brock and Scheinkman [1], Magill [12]
and further specialized into the context of symmetric variatiomal problems by
Magill and Scheinkman [13}. But the implications of the two conditions on the
nature of the time profile of optimal factor stocks are different. Namely,
[T.5] allows for oscillatory time profiles. We shall return to this later.
From Lemma 2 and Lemmaz 4 we have the discrete time counterparts of two well

known continuous time results:
COROLLARY 1: Given [T.1] - [T.5], A, € B and k_¢ E” for all i (i = 1,...,n)

COROLLARY 2: [T.1] - [T.4], fXu negative semidefinite and fuu - fXu negative

definite imply [T.5].
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First, if adjustment costs are symmetric, asymptotic accessibility implies
that all structural parameters are real.ls Second, there is a restriction on
the way stocks interact with flows which is independent of discounting and yet

sufficient for asymptotic stability.16

That is, an increase in existing
factor stocks must increase marginal adjustment costs but at lower rates than
an equal increase in the size of current factor adjustments. A further by-
product of this result is that if adjustment costs are strongly separable
[T.1] - [T.2] imply asymptotic stability. Then, it should be noted that since
the global asymptotic stability implies restrictions on the firm's technology,
dynamic factor demands derived from Euler-Lagrange equations by ignoring

asymptotic stability are invalid unless adjustment costs are strongly

separable.17 The implications of [T.5] are summarized by the following.

(= -]
LEMMA 5: If {x(t-1), u(t)}t=T is optimal and globally asymptotically

accessible of order 8—1/2, VIi{x(t-1), u(t)}t=r; 1] < =,

PROOF: If {x(t-1), u(t)}:=T is optimal and globally asymptotically accessible

of order 8—1/2, it follows as in the proof of Lemma 3 that if

Y, € (max {y,, WAL}, 8_1/2), lim ¥y T—tHE x(t)lh = 0. Since every

4 2 £ oo 4 T
convergent series in B is bounded, it follows that there exists Y3 > 0 such
that YAT_tuET ()l < g for all t > 1. Now, if {x(t-1), u(t)}:=T is

optimal, {x(t)}:=T satisfies (6) and therefore

VI(x(e=1,u(e)}]_ 571 = v, + i >

E Bt T (- l.ETx(t)'TETX(t) + E_x(t)'AE_x(t+1)]

where V; is a constant. Then, it follows from the preceding result that

[VI{x(e-1), 00}, %,
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(-]

<v,| +8 ZTst‘Tu—L E_x(£)"TE_x(t) + E_x(t)'AE_x(t+1)i

2

t

o t=1,1 2
<V ]+ 8 ) BT T[S ITHIE_x(t)1° + NALIE_x(e)UIE_x(t+1)H]

1 o1 2 T T T
2.1 Sl t-T
[v |+ BY5ZITH + v, 1)) g (8Y,)
t=T

_ 2.1 a2yl
= lvll + BY5[3 ITL + v, 1AN] (1 - BY,) < Q.E.D.

Summarizing results, we have

PROPOSITION l: Given [T.1l] - [T.5] and [E.l] - [E.4] there exists a unique

-1/2 th

optimal and globally asymptotically accessible plan of order B at

satisfies (2) with A and M( ) given by (12) and (13), repectively. The

structural parameters Kij and Xi (i,j = 1,...,n) are all real and such that:
-1 9 -1 2 -1
= ' -— = 1
T _z KiKi and A _2 [Xi + (sxi) ]KiKi
i=1 i=1
where k.' = (K ,.eee,K. ).
i 1 in

3. COMPARATIVE DYNAMICS

The following is an immediate consequence of Proposition 1:

ox; (©) n -1, 2 k,.
COROLLARY 3:  pl—gs = _Z (A, + (8))) Jesi “BAD TG = 1,.00,m)
t ] i=1
ox . (t)
-1 k
= - U+ (B k. k. (BA)
BEtpz(t+k) jop 1 i ji i i

axl(t)
=7/ (3,8 =1,ce.,n)
BEtpj(t+k)
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That is, expected cross price effects are symmetric and expected own price
effects are negative if ki >0 for all i (i =1,...,n) or if k is odd. The
symmetry of cross price effects, as in the continuous time case (see,
Mortensen [14]), is due to the assumption of symmetric adjustment costs. The
symmetry of cross—price effects may be used to test for the hypothesis of
symmetric adjustment costs., Asymmetric adjustment costs may give rise to

18 It follows

symmetric cross—price effects but this is a "hairline" case.
that if some Ai's are negative it is possible that some expected own price
effects may be nonnegative. The sign of Ai's will be investigated shortly.

Corollary (3), also implies that current period own price effects are always

negative and it can be used to compute fixed or permanent price effects.

COROLLARY 4: Suppose E _p(t + k) = p = (51,...,5n)', for 211 k > 1.  Then,

B = - TPa+ mde. 2a -8 o
85 i1 i7731 i

That is permanent own price effects are always negative. Clearly, the greater
the number of negative ki's the weaker these effects will be. In general the
greater the number of negative Xi's the weaker the effect of expected price
changes. Negative Ai's introduce a kind of inertia in the response of the
firm to changes in the economic environment. First, recall that the signature
of a matrix is the difference between the number of its positive and the

number of its negative eigenvalues. The following indicates the relationship

between the signature of A and the firm's technology.

LEMMA 6: signature (A) = — signature (4).
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1
- Gi . It follows that ki > 0 as

PROOF: Recall [X, + (6>\i)_l]

<
<
di N 0. Hence, signature (A) = ~ signature (6). But, 6 and A are congruent
matrices (i.e, 6 = K' AK, |K| # 0) and therefore have the same signature
(see, e.g., Gantmacher [3 pp. 291-97]). Q.E.D.

's

Since fuu is negative definite, it follows that a necessary condition for some Ai
to be negative is f , be nonpositive definite. That is, some factor stocks

must hinder factor adjustments or equivalently some factor adjustments must

lower factor productivity. Intuitively then, the fact that

negative ki's introduce inertia into the firm's behavior is simply a

consequence of the lower marginal factor products resulting from the

interaction of the adjustment and production processes.

So far we have analyzed the affects of expected price changes on the
quasi-fixed factor demands of 2ny single period. Lemmza 6 is helpful in
explaining the effects of expected price changes on quasi—fixed factor demands
or optimal factor stocks over time. Clearly, if the eigenvalues of

A{i.e., the Xi‘s) are all positive the response of the firm to an expected
price change over time will follow a smooth exponential pattern but, if the
eigenvalues of A are negative the response of the firm to an expected price
change over time will tend to follow an oscillatory pattern. On the other
hand, if the eigenvalues of A are mixed the response of the firm may be of
either kind. Again this has a simple interpretation. If A is negative
definite, it follows that the firm has an incentive to bring forward any
combination of desired quasi-fixzxed factor adjustments. For example if the
firm anticipates a decrease in real factor prices next period, it has an
incentive to increase its quasi-fixed factor stocks in the current, as well

as, next period. But if existing quasi-fixed factor stocks hinder quasi-fixed
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factor adjustments at sufficiently high rates so that A is positive definite,
the firm has an incentive to decrease quasi-fixed factor stocks in the current
period so that the desired increase in factor stocks will take place only
during next period. This lumpy response of optimal quasi-fixed factor stocks
to expected changes in the exogenous variables is similar to the case of

19 Extra caution should be used in interpreting the

concave adjustment costs.
results when some Ai's are negative. The preceding interpretations are
meaningless as the length of the period tends to zero. Actually the

interpretations are meaningful only as long as the model is inherently

discrete and the length of the period reflects a natural gestation lag.

4. BACKWARD LOOKING INTERRELATED FACTOR DEMANDS

In this section the forward looking interrelated factor demands of (2)
are transformed into the backward looking interrelated factor demands of

(1). It is assumed that

[E.5] The firm's expectations are rational, in the sense that the objective
law of motion of the {f(+), p(¢)} process and the firm's subjective law
of motion of this process are identical.

[E.6] The objective law of motion of the {f(¢),p(+)} process is given by (2).

[E.7] The zeroes of |D(B)| = |[Dij(B)]| =0 (i,j = f£,p) are greater

than 1 in modulus.

Now, given [E.5) - [E.7], [E.4] is equivalent to
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[E.4'] The zeroces of |C(B)| = |[[C..(B)]| =0 (i,j = £,p) are greater
i

1/2
than B / in modulus.

The above mentioned transformation is essentially a consequence of the fol-

lowing

-1/2
LEMMA 7: Given [E.4] ~ [E.7], if |Bki| < B / then

F_(8) F_(8)[E(t)

£f fp
ET(BAiF)kEt [ﬁét§]= ine)| " _ _
= 1 1
pr(B) Fpp(B) p(t)
i .
RO

Fi(g) = C(BX,)adj D(B)II + B(B)D(sxi)'l- E(B)C(sxi)'ll C(BA) - |D(E

i
F B F B
pf( ) pps

Cff(B) Cfp(B) m, .
= c(8) = [c. (®)] = [] ] . (P81 (k1,000 ,20)
c_.(8) ¢, (8) J =0 7

fo(B) Dfp(B) 0 .
= D(8) = [D,, (B)] = [ §J d. (1)B"] (3,k=1,...,2n)
D g(8) D (B) J g=0 4

- - Pk Mk o+l 2-1
[choe) = 1§ 37 9. (m)(8r,) B "] (§,k=1,...,2n)
jk 2=1  meg € .

TR

5t (B) m=Lef1 (5,k=1,...,20)

n
-1 _ jk
[0, (8] = 1 22 dp (m) (BA))

PROOF: See Hansen and Sargent [6] or Kollintzas and Geerts [8].
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From Lemma 7 and Proposition 1, we have

PROPOSITION 2: Given [T.l1l] - [T.5] and [E.1l] - [E.7], there exists a unique

1/2

optimal and globally asymptotically accessible plan of order B~ such that

{x(t)}:=T satisfies (1) with

A (B) = lcff(B)IID(B)I(I - AB)

Axp(s) = lcff(s)lcp(a) + Gf(B)adeff(B)Cfp(B)
BXX(B) = Gf(B)adeff(B)fo(B)

Bxp(B) = Gf(B)adeff(B)Dfp(B)

App(B) = ICff(B)lep(B) - Cpf(B)adeff(B)Cfp(B)
Bpx(B) = ICff(B)IDpf(B) - Cpf(B)adeff(B)fo(B)
BPP(B) = lef(B)lep(B> - Cpf(B)adeff(B)Dfp(B)
G (8) = iz[xi + (B Ik kI L®) - Fli)f(B)]
o (= 1" Dy + (B2 I, < 'IE(8) - Fg (@)

i=1
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System (1) simplifies considerably if the objective law of motion of the
{f(*),p(*)} process follows an autoregressive pattern. In this case,

Fi(B) = - C(XiB) Ei(B) and Bxp(B) is null. Hansen and Sargent [4] impose the
additional restriction that Cpf(B) be null. In that case, Bpx(B) is null and

(1) reduces to

A (B) A (B) x(t+1) B (B) 0 e (t)
XX xp XX £

(1")

0 App(B) p(t) L 0 Bpp(B) ep(t)

In this case {x(*), p(*)} has an upper triangular Wold representation and
therefore {x(*)} is econometrically exogenous.20 However, because Afp(B) is
not null and it enters Fip(B), {x(*)} is not econometrically strictly
exogenous. If the elements of the {f(+)} process neither Granger cause nor
are Granger caused by the elements of the {p(*)} process, so that Cfp(B) =
Cpf(B) = Dfp(B) = Dpf(B) = 0, it follows that Fi(B) is block diagonal and (1)
simplifies to (1') but, now, there are no cross equation restrictions. In
this case {x(*)} is econometrically strictly exogenous and can be estimated
independently of the {p(*)} process. The last formulation corresponds to
Nerlove's [15] quasi-rational expectations model whereby all cross equation

restriction between {x(¢)} and {p(°*)} are ignored.

5. CONCLUDING REMARKS

As originally developed the multivariate adjustments costs model of the
firm assumes static expectations. As a result the systems of dynamic factor
demands derived from this model are subject to Lucas's critique. Hansen and

Sargent [5] have developed a general multivariate discrete time linear
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rational expectations model that may be used to characterize the solution of
linear rational expectations versions of the multivariate adjustment costs
model. Thus, one can obtain tractable systems of dynamic factor demands that
are not subject to Lucas's critique. 1In general however, these systems do mnot
have a closed form and do not identify uniquely the firm's techmology. In
this paper it was shown that these problems are overcomed if adjustment costs
are symmetric — a class of adjustment costs that incorporates the popular
separable adjustment costs. An analytic solution of the linear rational
expectations version of the multivariate adjustment costs model was
established. The stability of the ensuing system of dynamic factor demands
dictates a joint restriction on marginal products and marginal adjustment
costs. Under this restriction all structural parameters are real. Further, 2a
fairly complete picture of the comparative dynamic properties of the dynamic
factor demands was obtained. Cross price effects are symmetric. This gives
rise to a test for the hypothesis of symmetric adjustment costs. Current (one
period) and permanent (all future periods) own price effects are negative but
some expected own price effects may be nonnegative. A necessary condition for
the latter is that some factors hinder the adjustment process at sufficiently
high rates so that the firm has an incentive to _postpone some factor
adjustments., Also in this case some quasi-fixed factor stocks may exhibit
oscillatory motion. Further, research in this area should try to characterize
the stability and comparative dynamic properties of interrelated factor

demands when adjustment costs are asymmetric.



3.

5.

FOOTNOTES

I am grateful to Varadarajan Chari, George Hui, Dale Mortensen, Lars Muus

and Marc Nerlove for valuable comments and discussions.

Nerlove [15, pp. 231-232] makes essentially the same point.

Rational expectations, here, means that the representative firm's

subjective laws of motion of the exogenous variables and the objective

laws of motion of these variables are identical.

This is the form Hansen and Sargent put the demand for a single quasi-

fixed factor (see equation (22) in p. 26 of [4]).

It can be easily shown

that the interrelated factor demands derived in {5] can also be put into

the form (1).

Equation (2) is equivalent to equation (49) in p. 145 of [5].

6. In (3) and (1) p(t) may be substituted for p(t), where p(t)' =

(p(t)", p(t)")

and ;(') is an (mxl) vector of variables that the representative firm

finds useful in predicting the {f(e), p(*)} process (i.e., the elements

of the {;(')} process Granger cause the elements of the {f(°*),p(*)}

process relative to {Q}).

variables of the model follow an autoregressive law of motion.

Hansen and Sargent assume that the exogenous

Again,

their results can be easily extended to the case where the exogenous

variables follow a general linear (i.e., autoregressive moving — average)

law of motion.

See Section 4.
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7. Alternatively, adjustment costs are weakly separable if the adjustment of
a quasi-fixed factor affects that factor's marginal product but does not

affect the marginzl product of any other factor.

8. Multi-period gestation lags, variable factors, depreciation, and attrition
are ignored. These factors can be easily taken into account but they do

not alter the essence of the results.

9. This problem can also be thought of as the problem of 2 monopolist with
¢(+) being its normalized revenue function or as the problem of a social
planner with ¢(*) being normalized social benefits. In particular, if
$(*) represents the integral of the normalized product demand function,
the solution to the social planner's problem gives the rational
expectations equilibrium laws of motion in the product market (see Lucas
and Prescott [11], Sargent [17, pp. 342-343] and Hansen and Sargent {5,

pp. 130 - 133 and 145 - 149]).

-1/2
10. The term global asymptotic accessibility of order B 1/ is adapted from

Magill [12, p. 184]. The restriction that {x(¢)} be globally
/2

-1
asymptotically accessible of order 8

-1
exponential order less than 8 /2 are closely related to the requirement

and {f(*), p(*)} be of mean

that the system characterizing the law of motion of quasi-fixed factor
stocks when the firm's problem is stated in "controlability canonical

form" be stabilizable. If {f(¢),p(*)} follows (3), it can be shown by

-1

*
substituting u (t) = x(t) - (I - fuu £' ) x(t-1) for u(t) and by

Xu

following the transformations in pp. 134-138 of Hansen and Sargent [5]

that the firm's problem can be stated as a linear regulator problem



(i.e., in controlability canonical form). Then the preceding
restrictions amount to the requirment that the eigenvalues of the
associated "asymptotic closed loop system matrix” be less than 1 in

modulus (i.e., stabilizability).

11, It is straightforward to show that [T.2] implies I negative definite.

12, It is straightforward to verify that if the objective functional of the
continuous time multivariate adjustment costs model is quadratic and
time is divided in finite intervals, so that the rate of change of
quasi-fixed factors in these intervals is fixed, the representative
firm's problem is given by (4) and (5). This is the usual

discretization scheme, see, e.g., Dorato and Levis [1].

13. The interpretations suggested by Hansen and Sargent are invalid as the
length of the period tends to zero. That is, output in any period should
be produced by services derived from the quasi-fixed factor stocks
available at the beginning rather than the end of this period. But this
is not a2 crucial point. In fact as long as the length of the time period
is arbitrary, our formulation, where output in any period t is produced
by services derived from the quasi-fixed factor stocks available at the
beginning of this period, is no more valid than the formulation of Hansen
and Sargent. We may reformulate our model by assuming that output in any
period t is produced by means of services derived from a weighted average
of beginning of period and end of period quasi-fixed factor stocks.

This, however, will not alter the essense of the results.
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14, The charactereistic equation associated with (6) is IAXZ + T'A + B-lA'! = 0.
Clearly, the roots of this equation come in pairs so that if ki
(i=l,...,n) is a root then so must be (Bki)-l. But this information is
not sufficient to express the Xi's in terms of the elements of I and A
when n > 2. This is simply a consequence of the fact that one cannot

solve general scalar equations of higher order than the quartic. See also

the next footnote.

15. If adjustment costs are asymmetric (i.e., f;u # fxu so that A' # A) and

n = 2 the characteristic equation associated with (6) is

oy @ o+ 8l + 872 = 0 where
8= D850 F ¥pp0yy T (8 g ¥ 80178 1655 = 61585))
B 2 -l ~ 2 ~
o= [Y Yoy =¥y B TGy = 6,071 (8165 = 8156,))
r= [Yij] (i,j = 1,2) and A = [Gij] (i,j = 1,2). The roots of that

-1
equation are such that if X is a root then so is (BA) = and

A+ (8)\)_1 = (& j\JEz - 4p)/2. Since Ez < 4p is possible, it follows that
-1
A and (BX) ~ may be complex without being complex conjugates, so that

-1/2
A} < B L/ (i.e., the necessary condition for global asymptotic

1/

accessibility of order ‘. 2) does not preclude A from being complex, as

was the case in Lemma 2.

16. This is equivalent to the negative semidefiniteness of the so—called R
matrix in Brock and Scheinkman [1] and Magill [12]. 1In their seminal
studies these authors obtained asymptotic stability restrictions by using
the "“value-loss” function as a Lyapounov function. In a forthcoming
paper 2 variance of their approach is used to obtain asymptotic stability
restrictions for the asymmetric adjustment costs version of the present

model.



17. The method of estimating dynamic factor demands by estimating the Euler-—
Lagrange equation rather than the globally asymptotically stable backward

looking solution was pioneered by Kennan [7].

18, Suppose that adjustments costs are asymmetric. Let A = diag [Xi] (i =
1,..,n), where the Xi's are as in footnote l4. If the ki's are distinct

and if there exists a nonsingular matrix K such that

—lK'—lkz _ -1 1 1 -1 1

AA TA' "K' "A + 8 "A'A'" "K' © = 0 the unique optimal and

globally asymptotically accessible plan is given by (2) with

A= KAK_lA_lA' and M(F) = Z K(BAF)k(—K'AK)_lK' If follows that cross
k=1 A, § ..
. e if § = i_ _ji - oL
price effects are symmetric if 1 6ji or —— = = , where A [Sij] (i,]

h| ij
Also in this case permanent own price effects may be of either sign.

19. Rothschild [16] ignoring stock—flow interactions has shown that if
adjustment costs are strictly convex optimal quasi-fixed factor
adjustments are gradual but if adjustment costs are concave optimal

quasi—-fixed factor stocks are lumpy.

20. The matrix in the left hand side of (1°') may not be invertible. In this
case a transformation by Blaschke factors may be used to give
{x(+), p(*)} a moving-average representation (see Hansen and

Sargent [4, pp. 19-22]).
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