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A MONOTONIC SOLUTION TO GENERAL COOPERATIVE GAMES

by
Ehud Kalai and Dov Samet

1. Introduction

The cooperative games that are discussed here are multiperson coalitional
form games where utility is not assumed to be transferable. These games are
also often refered to as characteristic function games without sidepayments
and as nontransferable utility games. In such games a set of feasible utility
allocations (vectors) is described for every coalition of players. The main
question is to determine the final utility allocation that the players will
agree to or that an arbitrator will recommend.

We follow an established tradition of game theory by seeking an axiomatic
solution to the questions above (see, for example, Nash [1950] and Shapley
[1953]). That is, we postulate conditions, or axioms, which we feel are
desirable for a solution to satisfy and investigate the logical and
mathematical consequences of these axioms. As it turns out, the axioms
disucssed in this paper are strong enough to determine essentially a unique
solution.

Two subclasses of this general class of games have been studied
extensively., The first is the class of games with transferable utility. In
this class the feasible sets of the coalitions are such that if a utility
allocation is feasible then every other allocation which yields the same total
utility (summed over all the players in the coalition) is also feasible.

Thus, it is implicitly assumed that it is feasible for players to transfer
utility from one to another. The most prominent and established axiomatic
solution for this subclass is the Shapley [1953b] value.

The second subclass of games that has been studied extensively consists



of the bargaining games. 1In this subclass utility is not assumed to be
transferable but there is a restriction that only the coalition of all
players, the grand coalition, has profitable feasible utility allocations.
Here the most prominent axiomatic solution is the one proposed by Nash [1950].

Until recently there were no axiomatic solutions to the general class of
coalitional form games. What researchers tried to do was to define solutioms
for the general class that coincide with the prominent solutions on the two
subclasses mentioned above. Solutions of this type were proposed by Shapley
[1969], Harsanyi [1963], Owen [1972] and others. Recently Aumann {1983]
succeeded in axiomatizing for the first time a value of this type, the one
proposed by Shapley, which is called the NTU (nontransferable utility)
value. With a similar set of axioms Hart (from verbal communications)
characterized the Harsanyi solution.

One of the appealing properties that the Shapley value exhibits on the
subclass of transferable utility games is one of monotonicity. This condition
states that if the feasible set of one of the coalitions increases, and the
feasible sets of all other coalitions remain the same, then none of the
members of this coalition should become worse off because of this change.
This condition is appealing as a fundamental principle for cooperation but it
must also hold for many cooperative games from noncooperative principles of
individual utility maximization. In many such games an alternative is
feasible for a given coalition if and only if every member of the given
coalition supports it. In other words, every player can veto every feasible
alternative of a coalition to which he belongs. 1In such situations, if
contrary to the monotonicity condition, a player of a given coalition stands
to lose because of the the availability of new alternatives, he would veto

these new alternatives, reduce the situation back to the o0ld one and lose



nothing. With this veto option available to the players, and under a utility
maximization assumption, it follows from the above argument that a solution
must be monotonic. Conversely, if a solution is monotonic, then none of the
players has incentives to veto any alternative, destroy or misrepresent his
resources, and in this sense a maximal level of cooperation should result (see
Section 10 for a formal discussion of these ideas).

Turning to the subclass of bargaining games, we know that the Nash
solution does not satisfy the monotonicity condition (for references see Roth
[1979] and Kalai [1983]). The only solution which is monotonic (in the
presence of other standard conditions) is the egalitarian solution introduced
by Kalai [1977] (under the name of proportional solution).

In this paper we introduce an axiomatic solution to the general class of
coalitional form game. This solution generalizes the Shapley value on the
subclass of transferable utility games and the egalitarian solution on the
subclass of bargaining games. We call it the egalitarian solution. The
egalitarian solution is monotonic and we show that in the presence of other
weak and standard conditions it is the only monotonic solution.

Studies of the monotonicity axiom and related conditions have been
numerous. For some of these studies and further references we refer the
reader to Luce-Raiffa [1957], Owen [1968b], Roth [1979], Megiddo [1974],
Kalai-Smorodinsky [1975], Thomson-Myerson [1980], Thomson [1982], and Young
[1982].

We defer further discussion of the egalitarian solution, its relationship to
other éolutions, and its properties, for the later sections in the paper after

presenting the above ideas formally.

2. An Example

We consider three players, called 1, 2 and 3, faced with the following



situation. Every player acting alone can secure a payoff of zero utility for
himself. Cooperation of any two players does not change outcomes and thus
when any two player coalition cooperates the result will still be a payoff of
zero to every one of its members. However, the cooperation of all three
players is potentially profitable. When all three players cooperate they can

bring about any one of the following three payoff vectors:

(4,4,4) (7,0,0) (0,12,0).

We assume also that every convex combination of these three payoffs is
feasible for the players. We refer to this situation as game A.
When we apply the Harsanyi extended solution or the Shapley NTU extension

to the game A it follows that

the outcome of A = (4,4,4).

Assume now that players 1 and 2 found a new vehicle with which they can
cooperate. Under cooperation the two of them can now bring about any of the

two payoffs

(7,0) (0,12)

and any convex combination of them. We now face a new cooperative game, which
we call B. B is the same as A except for the coalition of players 1 and 2.

If we apply the same solutions as before to the game B, we observe that

the outcome of B = (3.5, 6, 0).



This example illustrates the lack of monotonicity discussed in the
introduction. The new ability of players 1 and 2 to cooperate improved the
outcome of player 2 by 2 units but brought about a loss: =-0.5 units to player
1. If the underlying situation that gave rise to the games A and B is such
that player 1 has control over his own cooperation then the outcome of game B
should be at least as good for him as the outcome of game A because player 1
can reduce the game B back to the game A.

The symmetric egalitarian solution presented in this paper will choose

the

outcome of A = (4,4,4), and the

outcome of B (4.421, 4.421, 0),

and will satisfy the monotonicity condition.

3. Notations and Definitions

We let N = {1,...,n} denote the set of players (n > 1). A coalition is a
subset of N. The n-dimensional Euclidean space is denoted by'EN. For x,
y € R and a coalition S, X 2g y means x%; 2 y; for each 1 € S, x >g y means
X 2g ¥, and for some i € S, xi > Yi, and X >g y means Xy > ¥i for each
ie S, For S =N we omit the subscript N. For each coalition S, we denote
B ={xe®|x; =0, i¢5s}, B ={xerx 20} and
H£+ ={xe¢ H§!x > 0}. For a vector x € R we denote by xg the
projection of x on H@, i.e., (xS)i = x; for i € S and (XS)i =0 for i ¢ S.
We use the notation AC B to denote that A is a proper subset of B and AC_E B

to denote that A is a subset of B.

An n-person characteristic function game without side payments v (a game




for short) is a function from the set of all coalitions to subsets ofimN such
that for every ST N the following conditions are satisfied.
1. (@) = {0}
2. v(S) is a closed, nonempty subset of =S,
3. v(8) is comprehensive, i.e., if x, y € E@, x € v(S) and y £ x, then
y £ v(S).
4, v(S) is bounded in the sense that there exists no monotonically
increasing unbounded sequence of points in v(8), i.e., if {xt}:=1 is
a sequence of points in v(S) with Xpy1 2 X for t=1,2,..., then
there is a point y ¢ & such that x. £y for each t.
We let T denote the set of games satisfying the conditions stated
above. For every player i we let 6; = max{xilxev({i})} and we denote by & the

vector (ei)ieN‘ A point x ¢ ® is individually rational for the coalition S

in the game v if x 25 0. An individually rational point for N is said to be

individually rational. A point x e B is (weakly) Pareto optimal for a

coalition S (or in v(S)) in a game v if x € v(S) and there is no y € v(S) with

y >g X. The point x eimN is strongly Pareto optimal for S if x € v(S) and

there is no y € v(8) with y >¢ x.

4, The Axioms

A solution for T is a function ¢: T > 1Y,

Next we discuss five axioms that we impose on solutions for T.

We first introduce a condition under which a solution of a game v should
be individually rational. The condition is that each individual player while
joining coalition S does not hurt it by eliminating alternatives that S had

without him. More specifically, we say that a game v is montononic if for

each coalition S and j ¢ S, if x is individually rational for S, then there



L L .
exists an x in v(S8S (/{J}) such that Xy = Xyq for each i € S and xj > Gj.

(1) 1Individual Rationality

If a game v is monotonic then ¢(v) is individually rational.

Observe that this axiom resembles an analogous condition which guarantees
individual rationality of the Shapley value for games with side payment,
namely that the contribution of each player to each coalition is nonnegative.

The next axiom is analogous to the carrier axiom which is used in
axiomatic characterizations of the Shapley value. A coalition S is called a

.T}
carrier of the game v if for each coalition T, v(T) =v(TNG) -R+
*

(2) Carrier. If S is a carrier of the game v then ¢(v) is Pareto

optimal for 8.

For a vector a € IRY we denote by ;S’ the game in which the coalition S
bargains over the vector ag. Formally, for every coalition T, QS(T) =0 - qu
if T i S and ;S(T) =a - R}‘_ if T2 S. A vector a is called acceptable to S if
¢(;S) = ag. ‘

The next axiom is a generalization of the translation invariance which
most of the solutions for bargaining problems and cooperative games have (see
Aumann [1983] for additional discussion of this condition). A solution has
the translation invariance property if by adding a constant to the utility of
a player the payoff of this player in the solution changes by the same
constant. Formally, it means that ¢(v + ;{i}) =¢(v) + a{i} for each game v,
player i, and a ¢ RN. This property can also be interpreted as saying that if

player i has a personal endowment and he adds it to the game then his payoff

in the solution will be changed exactly by his personal endowment. We



generalize this axiom by considering personal endowments given to the players
of a coalition S when these players are cooperating. Here again we require
that by adding endowments to the game the solution will change just by the

~

addition of these endowments——i.e., ¢(v + as) = ¢ (v) + a_, but since the

S’
endowments S depend on the cooperation of all members of S we restrict the

requirement only to those cases in which S considers the vector ag as a "fair”

alloction--i.e., when ag is acceptable.

(3) Translation Invariance. If the vector a is acceptable to S then

o (v + ;S) = ¢(v) + ag for each game v.

Alternatively, the axiom can be viewed as a weak version of the
additivity axiom of the Shapley value. Notice that this axiom by itself does

not imply that there are vectors which are not acceptable to S.

4) Monotonicity. If for the games v and w, v(T) = w(T) for each T# S

and v(S) ) w(S) then ¢(V);S p(w).

This axiom is an obvious extension of the monotonicity axiom used in
Kalai [1977] to characterize the egalitarian solution for bargaining
problems. It is also a property of the Shapley value.

We define a topology on T as follows. A sequence of games {vt}:=l

converges to v iff for each coalition S, {vt(S)}:=1 converges to v(S) in the

Housdorff topology. Given this topology on I' we require:
(5) Continuity. ¢ is continuous on T,

Finally, a solution for T which satisfies the axioms (1) individual
rationality, (2) carrier, (3) translation invariance, (4) monotonicity, and

(5) continuity is called a value.



5. The Egalitarian Solution

We define the symmetric egalitarian solution for a given game v,
E(v), by inductively constructing two functions Z and D defined from the
set of all coalitions to?mN.

We first define
D(v,$) = 0 and Z(v,$) = 0.
Then for each coalition S,
z(v,8) = ) D(v,T)
TC S

and

D(v,8) = e, max{t|(z(v,s) + teg) € v(s)}

S

where e is the vectorimp with e; = 1 for each 1 ¢ N. Finally, define

Observe that the existence of t for which (Z(v,S) + teS)EV(S) is due to the
comprehensiveness of v(S) and that the finiteness of the maximum is guaranteed
by the boundedness condition on v(S). D(S) can be described as a vector of
dividends allocated by S to its members. All the members of S receive from S
the same dividend, and the total amount of the dividend vectors allocated by

all subcoalitions of S (as well as S8) is a Pareto optimal point in v(S).
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The nonsymmetric egalitarian solution is obtained when dividends are
allocated not equally but according to some prescribed positive weights. For
A & B, the egalitarian solution E* is defined by D*(v,0) = 0, Z'(v,4) = O,

M (v,8) =} 0" (v,T), D (v,S) = Ag max{t|(z}(v,5) + thg)ev(s)} and

T<S
Ek(v) = ZS e N DX(V,S). Observe that the strict positivity of X is required
and sufficignt in order that the set over which the max is taken is not empty.
An equivalent way of computing BN is by rescaling the utilities of the
ﬁlayers and then applying to the rescaled game the symmetric egalitarian
solution. In other words, the egalitarian solution is determined uniquely up

to individual rescaling of utilities. This is done as follows.

For every vector X ¢ E£+ define

M

Ll
N

»
=

. -1 1
% = % = (= ———— —
Py X ()\IXI, )\2}(2,...,)\ X ) and A X SN ,..-,)\ ).

it
N

For a game v € T define the game Alx g by

-1

07l xwis) =aT sy = 7L x xlx e ws)).

It is easy to verify that EM(v) =X * EQ~L1 * y).

6. A Characterization of the Egalitarian Solution

Theorem 1. A solution ¢ defined on T is a value (i.e., satisfies axioms 1-5)

if and only if it is egalitarian.

We first prove that the symmetric egalitarian solution E is a value. 1t
is easy to check that this implies that EX is also a value for each X ¢
Bﬁh, We leave it to the reader to verify that the carrier and translation

invariance axioms are satisfied by E and prove it for the remaining three
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axioms. We denote E(v,S) = ZT C:SD(V’T)' When the game v is clear from the
context we write instead E(S), z(S) and D(S).

The following equality will be used in the sequel:

(*) For every coalition S and every i,j € S:

Z. (V’S) - Z. (V’S) = z D. (V’T) - 2 D.(V)T) =
t J ieTes t jeTcs J
= z D,(v,T) - z D.(v,T) =
ieTcs-{3} * jeTc s-{i}

= Ei(v,S-{j}) - Ej(v,S—{i}).

Lemma 1., E satisfies the individual rationality axiom.

Proof. Let v be a monotonic game. We prove by induction on the coalition

size, k, that E(S) 23 0 for each S. This is clearly true for S of size 1.
Assume that this inequality holds for all coalitions of size k and let S be a fixed
coaltion of size k+l. Let Z (S) = 98_ =min, (Z,(S) -0,), and define
j j ieS" i i

F = Z(S) - (Zj(S) - Sj)es. Obviously, F 2 6, Fj = ej and by (%)

. = E.(S—1{3 - E.(S-11i + 8. i -1 3t
F; = E;(S {iH EJ(S {iH {5} for each i ¢ S-{j}
By the induction hypothesis F; < Ei(S—{j}) for all i # j, and therefore by the

A ]

monotonicity of v there exists F e v(S) such that FS—{j} = FS—{j} and
F; > ej. Since F sS F', F is in V(S) and by the definition of E(S), E(S) gs F

2 6. Q.E.D.

Lemma 2. The egalitarian solution E satisfies the monotonicity axiom.

Proof. Let v and v' be two games and S a coalition such that v(S)EE'v'(S) and

v'(T) = v(T) for each T # S. Observe first that for each T‘;b S, Z(v',T) =
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Z(v,T) and for each Tgé S D(v,T) = D(v',T) and E(v,T) = E(v',T). We prove now
by induction on the size of T that Ei(v',T) > Ei(v,T) for each TD S and i ¢
S. Since Z(v',S) = Z(v,S) and v'(S);a'v(S), clearly Ei(vﬁS) > Ei(v,S) for
each 1 € S. Suppose now that the inequality is proved for all T D S of size

k, and let T O S be of size k+l. We show that

(%) 2,(v ,T) = 2,(v,T) > 2,(v ,D) = Z,(v,)

for each 1 € S and j € T. Indeed, by equality (*) and since T—{i}jé S

z,(v ,T) - Zj(v',T) = Ei(v',T—{j}) - Ej(v',T-{i}) = Ei(v',T-{j}) - Ej(v,T—{i})
and
2, 1) - 2,01 = B (0,731 - B (v, 7{1h).

Therefore, subtracting the left hand side of the last two equalities and using

the induction hypothesis
2,7 \1) - 2,Gv D] - [2,00,D) - 2,(,D)] = B, 3] - By (v, T3] > 0

and (**) follows readily. Next we show that from (**) follows Ei(v',T) >
E;(v,T) for each i ¢ S. Let E(v,T) = Z(v,T) + aep. Let i e S and denote
B =a + Zi(v,T) - Zi(v',T) (by (**) the difference in the right hand side is
the same for all i € S), and let F = Z(v',T) + BeT. By (**) for each je T

and i € S
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B+ z;(v ,T) = [o + 2;(v,1)] € B+ 25(v ,T) = [+ 25(v,1)] = 0

and thus F gT ET(V,T) and by the comprehensiveness of v(T), F e v(T), so also
]
F e v (T). By the definition of E(v',T), E(v',T) 2 F; moreover F; = Ei(v,T)

for each i ¢ S, and therefore E(v ,T) 2g E(v,T). Q.E.D.
Lemma 3. EM is continuous for every A € BQLJ

Proof. Since the operations of individual utility rescaling are continuous it
suffices to show that the symmetric egalitarian solution is continuous.

Recall that since E(v) = z D(v,S8) it suffices to show that for every

SC N
coalition S, D(v,S) is continuous in v. This can easily be shown by induction
on the size of S. Recall that D(v,$) = Z(v,8) +@.max{t|(2(v,8) + tg)ev(8)}.

Z(v,S8) is continuous by the induction hypothesis since Z(v,S) is a finite sum

of dividends of coalitions of strictly smaller size., The max is then seen to

be continuous by the comprehensiveness of v. Q.E.D.

We turn now to prove that each value is an egalitarian solution
A game v is said to be inessential if 0 i1s Pareto optimal for each

coalition,
Lemma 4. If v is an inessential game and ¢ is a value then ¢(v) = 0.

Proof. Assume first that 0 is strongly Pareto optimal for each S. 1In this
case the game is monotonic. By individual rationality ¢(v) > 0, and therefore
é(v) = 0. An inessential game in which 0 is weakly Pareto optimal for some S
can be approximated as follows. For a real number € > 0 define

_ . _ wN _ .
A, = {x Eimylxi > —& for each i e N, z X, > 0}, and B, = R Ag. Define a

ieN
£

game v° by vE(S) = v(S) B, for each coalition S. Clearly in v  zero is

strongly Pareto optimal for each S since vF(S) N Eﬁ = {0}, and therefore
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¢(v€) = 0. But A ~—> v and therefore by the continuity of ¢, ¢(v) = O,
>0
Q.E.D,

We call a game v a bargaining game for the coalition S if for each

coalition T, v(T) = 0 - EE whenver T 3 S and v(T) = v(S) —IRE whenever
T

T DO S. We let BS be the set of all bargaining games for the coalition S.

Lemma 5. If ¢ is a value then for each coalition S there exists a unique

positive vector, up to a multiplication by positive constants, 2S e Bﬁz_such

that for each v ¢ BS, p(v) = A S max{t'tks € v(S)}.

Proof. Let S be a fixed coalition and define for each number t a game ug by

ug(T) =0 - EE for Tjé S and ug(T) = {x € E@T XiaS Xy < t} - EE for

T2 S. Let At ¢(u§). By the carrier and the individual rationaltiy

axioms, ) k; =t, ate H@, and for t > O, At 25 0. Let t be fixed. For a
ieS§ - R

real number € > 0 define p® = At + €eg and consider the game ug and the game

v® which is defined by v#(T) = ug(T)f)ﬁ%(T) for each T. By the Pareto

optimality of ¢(v®) in v®(S) either Xies ¢i(v€) =t or ¢i(v€) = k; + ¢ for

some i € S. On the other hand, by monotonicity At = ¢(u§) 2g $(v®) and

A

therefore ¢ (v®) = AL, Since v& = AL it follows that ¢(k§) = xt, i.e., At is
e+>0
acceptable to S. By the translation invariance axiom for each t and s,
+ ~
AFT ¢(u;+s) = ¢(u; +2g) = At +2%, i.e., AL is additive in t. By the

monotonicity, if t > s, At > S, Therefore, At is homogeneous of degree one

in t and with the notation 2S =l we conclude that tks(=kt) is acceptable to

S. To see that AS >S 0 observe that if for some i € 8§, A% = 0 then Ag is

inessential and thus by Lemma 4 XS = ¢(k§) = 0 which contradicts

S
Lieg i = 1t

Now let v e BS and let tg = max{tltks > v(S)}. The max is well defined

since v(S) is comprehensive and AS >g 0. by the boundedness condition on
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v(S), tg < ®». Consider now the game w defined by w(T) = 0 - R$ for'T;é S and
w(T) = v(T) - toks for T D S. The game is inessential and w + toig = v,

Therefore, ¢(v) = ¢(w) + ¢(t0ig) = toig as required. Q.E.D.

The next lemma relates the As's of different coalitions to each other.

The vector Ag in the following is the projection of AN on E@.

Lemma 6. let ¢ be a value and for each coalition S let A5 be the vector
described in Lemma 4. Then for every coalition S there exists k > 0 such that

N _ S
XS = ki",

Proof. Since A5 is determined up to a multiplicative positive constant we may

assume that minj.g X?/Ag = 1, In particular, AN 2g As. Consider now the game
v defined by v(T) = ;z(T) for each T # N and v(N) = AN _ &Y,  observe that
the game v is obtained from the game ii by successively increasing v(T) for
coalitions T containing S and therefore by monotonicity ¢(v) 2g ¢(i§) =N
which implies ¢;(v) = A? for each i € S. On the other hand, consider the game
w defined by w(T) = 0 - IR_'{ for T __:_ﬁ_ S and w(T) = v(T) - AS for T> Ss.

Clearly, by the choice of XS, w is inessential and w + ig = v and therefore

$(v) =25, i.e., xliq - xi for each i € S. Q.E.D.

Lemma 7 Let ¢ and ¢ be two values on V. If ¢$(v) = ¢(v) for each v e BN then

¢ = v.

Proof. By Lemmas 5 and 6 there exists a vector X € E£+ such that for each
v € BS, dp(v) =P(v) = XS max{t'tks £ v(S)}. Moreover, for any constant k and
each coalition S, k\ is aceptable to S with either ¢ or ¢.

We denote by Iy (k=0,...,n) the set of all games in V for which 0 is
Pareto optimal for all coalitions of size not greater than k. Clearly

To =T. We will show by backwards induction on k that ¢ and ¥ coincide on
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each Ty. For Pn this was proved in Lemma 4. Suppose ¢ and § coincide on T
for some 1 € k € n, and let v e Pk—l' For each S of size k define mS = AS
max{t‘tks € v(S)}. Consider the game w defined by w(T) = v(T) if T is of size

less than k and

w(T) = w(T) = J
SCT
|s]=k
for T of size greater than or equal to k. Observe that v = w + Z|S|=k mz,

S

W E Pk and that m° is acceptable for S with both ¢ and $. Therefore

$(v) = ¢(w) + X|Sl=kms = P(w) + X|S|=k o = P(v). Q.E.D.

To finish the proof of Theorem 1 we observe that if ¢ is a value then by

Lemma 5 for some A ¢ H&L_¢ and EA coincide on BN, By Lemma 7 it follows that

o = B,

7. The Harsanyi and Myerson Solutions

Harsanyi [1965] used the egalitarian solution as part of his solution for
general coopgrqtive games. Harsanyi's solution tries to capture two notions
of "fairness" based on interpersonal utility comparison; one requires equality
of utility, and the other requires transfers that increase total welfare.
Formally a vector u in v(N) is Harsanyi's solution to v if there exists X ¢
RY, such that u = El(v) and 2 NA_lu = max 2 NA—lx .

= ieN'i "1 xev(N) LieN'i 71

We observe that while the Harsanyi solution of a game v is of the form
Ek(v) it is different from the egalitarian solution. 1In the Harsanyi solution
the A depends on the game under consideration and it changes as we vary the
game. In the egalitarian solution A is fixed over all the games (as long as
the players do not change their utility scale) which is essential in order to

obtain the monotonicity property.
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Another solution which is related to the egalitarian solution is the fair
allocation rule of Myerson [1980] which is defined as follows. Consider a

fixed game v. A set Q of coalitions is called a conference structure. For a

given conference structure Q, define the equivalence relation ~ as follows.,
For i,je N, i \Q j if i=j or if there are players i = il,iz;...,im=j such
that for each k (k = 1,...,m) there exists S € Q such that i sipyp € S. We
denote by N/Q the set of all equivalence classes defined on N by ~Q' A fair
allocation rule for a a game v is a function X which assigns to each
conference structure Q a vector X(Q) simN such that:

(1) For each Q and S £ N/Q, Xg(Q) is Pareto optimal for S.

(2) For each Q, S e Q and i,j e S,
X;(Q) - %= {sh) = %, - X;(Q={sh).

Myerson proved for each game v the existence and uniqueness of a fair
allocation rule. In the following theorem, we identify this rule with an
extension of the egalitarian solution, and provide as a byproduct a short
proof for the existence of the fair allocation rule. For a conference
structure Q denote 6 = 'Q.) (N/Q'). The conference structure a can
alternatively be describgd %thhe set which contains all individual players
(N/{¢}) and all the unions of coalitions in Q which are Q-connected
coalitions., Clearly E)Ez (N/Q), and moreover each S ¢ N/Q is a maximal element

in Q. We define now inductively two functions Z and D from 6 to IR,
Z(¢) =D(¢) =0

and for each S ¢ a,
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Z(s) = )}  D(T)
TC S
Tea
D(S) = esmax{t|(Z(S) + teS) € v(S)}

and finally define

Y D(S).
Sea

]

X(Q)

Obviously for the conference structure Q which contains all the subcoalitions

of N, X(Q) is the symmetric egalitarian solution for v.
Theorem 2. X as defined above is the unique fair allocation rule for v.

Proof. Since by Theorem 1 in Myerson [1980] a fair allocation rule for v is
unique it is enough to show that X satisfies the two requirements (1) and

(2). Observe that for each coalition S € a, Z DS(T) is Pareto optimal

TC S
for S. It follows then from the fact that all the coalitions of N/Q are
maximal in 6 that (1) is satisfied. Next, for S € Q denote Q' = Q-{S}.

Observe that Q2 Q , and that the coalitons which are in Q and are not in Q ,

are exactly those coalitions in Q which contain S. Therefore

But the right hand side is a multiple of eg by a constant and thus all members

of S lose or gain the same by eliminating S from Q. Q.E.D.
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8. Further Properties of the Egalitarian Solution

Consider the restriction of the game v to a coaltion S and its subsets.
By ignoring the coordiantes of players outside S (which are anyway zero), this
restriction is a game for which S is the grand coalition. We denote the
restriction of v to S by Vge The symmetric egalitarian solution for vg is a

byproduct of the inductive construction of the solution for v--i.e.,

E(vg) =E(v,8) = ] D(v,T)
TCS

The first property we discuss is strong independence of irrelevant
alternatives (SITA). This is a generalization of Nash's independence of
irrelevant alternatives axiom (IIA) which is used to characterize Nash's
solution to bargaining problems. SIIR requires that the solution for v
depends on the alternative available for S and its subcoalitions, only through
the solution for the game played by S, vg. In other words, changing vg while

keeping the solution of vg does not change the solution for v.

Proposition 1. The egalitarian solution has the SIIR property--i.e., for

games v and w and a coalition S, if v(T) = w(T) for each T # S, v(S) SE'W(S),

and E(vs) £ w(S) then E(v) = E(w).

Proof. This is an immediate consequence of the inductive definition of E.

Proposition 2. If v(N) = W(N) and for each i ¢ N E(v,N—{i}) = E(W,N-{i})

then E(v) = E(w).

Proof. From property (*) of section 5 we observe that

Ei(v) - Ej(v) = Ei(v,N—{j}) - Ej(v,N—{i}) for every i,j € N.
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Thus, we obtain n-1 independent conditions on the vector E(v) from the values
of the n~1 players' coalitions. The fact that E(v) is Pareto optimal yields
an additional indepedent condition which shows that E(v) is determined by v(N)

and the E(v, N-{i})'s. Q.E.D.

We observe that Proposition 2 makes the inductive computation of E(v)
much easier since the computation of E(v,S) depends on the values E(v,T) for
S's subcoalitions T, consisting of s-1 members only. Thus we avoid the
repetitive addition of dividends and remembering dividends for all the
subcoalitions of S (as given in the definition of E).

Another interesting property of the egalitarian solution is what we may

describe as equality among partners. We call a coalition S a coalition of

partners if for every TC S and for every MC N - T,

, _ RMYT s . .
vIMU T) = v(M) - R, ~ ~. In other words, a coalition of partners is one in
which no subset of the partners can contribute anything to any of the

coalitions unless all the partners are present.

Proposition 3. If S is a coalition of partners in the game v then for every

two partners i and j in S, Ei(v) = Ej(v).

Clearly the properties discussed in Propositions 1, 2, and 3 can be
formulated and proved mutatis mutandis for the general egalitarian solution
E.

Our last remark concerns the behavior of the solutions E* on the family
of games with side payments. A game v in T is said to be with side payment if
there exists a function ; which assigns to each coalitions a real number ;(S)

< v(S)}. (When only games with

- S
such that for each S, v(S) = {x ¢ DRlXies x, £

sidepayments are considered the function v rather than v is considered as the
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game.) The set of games with side payments PO is a finite dimension linear
where for each two games v and w, (v + w)(S) = v(8) + w(S) and for each scalar

a, (av)(S) = av(S). It is well known that the set of unanimity games

{uS}S € N is a basis for T, where the game ug is defined by the function &S
which is defined by &S(T) =1 for T2 S and uS(T) = 0 otherwise. We cosnider

the restriction of EX to PO'

Proposition 3. The egalitarian solution F* is linear on PO'

Proof. Without loss of generality we assume that EieN Ai = 1.
Now let v = Zagug be a game in I'j. Tt can be easily shown that

v=0+ 2 aSAS where 0 is the game defined by 6 which is the function
$#S N

that vanishes for all coalitions. By the translation invariance and since 0

is an inessential game Ek(v) = ZaSAS. The linearity of Er on I'y follows

readily. Q.E.D.

As for the egalitarian solution for unanimity games one can easily show
that for each S, Ek(us)= AS. This last fact with the linearity of EA on FO
shows that EM restricted to FO is exactly the weighted Shapley valued (Shapley
[1953a]). Observe that when all the components of A are the same, E' is the
Shapely value. An axiomitization of the weighted Shapley value using the
equality of partners' property is discussed by the authors elsewhere (see
Kalai-Samet [1983]). A special meaning of A in the context of games with

sidepayment is discussed in the following section.

9. Discussion of the Weights

The usefullness of the egalitarian solution depends crucially on the
choice of the vector A. If we consider an arbitrator arbitrating a game then

A is a parameter left to the arbitrator's discretion. However, the
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egalitarian solution does supply him with a substantial simplification. The
arbitrator may decide on the A's for an imiginary simple game (maybe the
simplest bargaining game) and then use these A's to compute the dividends and
to determine the egalitarian solution for the game being considered.

A similar simplification is possible when we try to predict the outcome
of a game. If the players have played some games in the past then the A's are
available from these past games. If no previous games have been played in the
past then we need to predict the outcome of a simple imaginary game and again
use these resulting A's to g;dict the outcome for the more complicated game.

For a fixed A, the egalitarian solution, EA, does depend on the scale of
the utilities chosen to represent individual preferences. More specifically,
given A, a game v and its solution Ex(v), let us consider a different game v
which is obtained when, say, player 1 multiplies his scale of utility by a

factor of, say 2,

v(s) = {(2x)xy,00ix ) x & v(S)).

For the solution to be invariant under multiplicative scale changes we should

have

B (3) = (28)(¥), Ep(v),eeEN()-

This can easily be shown not to be the case for EA by almost every
nondegenerate example of a game v and seems to present a fundamental
difficulty with the egalitarian solution. However this difficulty disappears
if we observe that with a change of scale for player 1l's utility we should

carry a corresponding change of scale in his A. Thus if player 1's scale was
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changed by a multiplicative factor of 2 then we should use
X = (2A,A,,...,) ) and indeed
(3 - (28)(v), E3(v), .0 BNV,
n
Thus, we do obtain invariance for the general process which includes the
choice of A (to depend on the utility scales) in addition to the application
Br.

To illustrate how the A's may be chosen to be in accordance with the
discussion above we present the following example. We emphasize that this is
an example of how the mechanics of the procedure may work and not an
endoresement of the particular choices of the parameters.

The arbitrator decides that a unit of leisure time is a fair unit to
compare the utility gains of the players. Faced with a game v he chooses A
with A; being player i's utility for a unit of liesure at the present status
quo. With this vector A he then applies E' to the game v. We observe that if
a player's utility scale is changed by some multiplicative factor, then so
does his utility for leisure and therefore his A is changed by the same
multiplicative factor as discussed above. Thus the real outcome chosen by the
arbitrator is not affected by the individual choices of scales.

An equivalent way of describing this procedure is the following. The
arbitrator rescales the utility of the players in such a way that in the
rescaled version every player's utility for a unit of leisure time is 1. He
then applies the symmetric egalitarian solution to the rescaled game in order
to determine the final choice. It is obvious that whatever initial choice of
scale was done by a player, its effect is washed away when the arbitrator does

the rescaling.
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From the above discussion it is apparent that a good interpretation of
the A;'s are as interpersonal weights to compare the utility of the
individuals for fixed scales used by them. Before we proceed with other
possible interpretations we discuss two examples of simple games and their
egalitarian solutions.

The first game is the simplest 3-person bargaining game, sometimes

refered to as divide-the-dollar game. Formally, we define it by
=0 - RS 3
d(s) = 0 - ®y if S # {1,2,3} and

= 3, y3
a({1,2,3}) = {xe ®: } | x < 1}.
The second game we consider is the 3-person majority game with sidepayments.

It is defined by
n(i) = 0 - ®i} for i-1,2,3,

m(i,j) = {x € ® 1.3}, x; + Xs

ng} for i # j, and

m(1,2,3) ={x ¢ ®: x; + xy + x5 ¢ 1}.

In the first game, d, the consent of all three players is required in order to
"receive the dollar” while in the second game, m, any majority can receive the
dollar. The symmetric egalitarian solution, coinciding with the Shapley value
for the game with transferable utility, allocates (1/3, 1/3, 1/3) in both
games., We are interested in the allocation of the nonsymmetric egalitarian

solution for these two games.
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Consider A = (1,1,M) where we think of M as a large positive number. It

is obvious that

1
2+ M

Y (d) = (1,1,4)
and the player with the large A receives most of the dollar. To understand
this with the illustration given above in mind we observe that in the present
scale of utility of player 3, a unit of leisure is comparable to many
utiles. Since the arbitrator uses a unit of leisure as a fair comparison it
follows that in his present scale the third player should recieve a relatively
large payoff.

To compute the solution of the second game, Ek(m), we compute the

dividends inductively.

p({i}) = (0,0,0,) for i=1,2,3.

p({1,2}) = (.5, .5, 0)

p({1,3}) = T3 (1,0,

p({2,3}) = 75w 0s 1, M)

Now

) D(S) =-1—:£—-ﬁ (1.5 + .5M, 1.5 + .5M, 2M) = Z(N).

ScN

To compoute D(N) we should find t such that Z(N) + t\A would have coordinates
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adding up to 1.
20 + £(1,1,M) = e (L5 + .5+ £[14], 1.5+ .SM+ t[14M], 20 + e[ L))
Solving for t we obtain
t = -2(1 + M)/(2 + 3M + M2),
Substituting for t we obtain

B (m) = Z(N) + £(1,1,M)

1 2[1 + M]

- 2[1 + M] 2M[1 + M]
T (LS + oM R —

Tim > M 7T M

1.5+ ,5M -
and by simple inspection we see that

A

E (m) » (.5, .5, 0) as M » o,

Thus what we observe is that while in the bargaining game the player with the
big A receives a high payoff--in the majority game he receives a small
payoff. We find this outcome to be quite intuitive, In the bargaining game
his participation is necessary and given his A he must be highly paid. 1In the
majority game on the other hand, the other two players can do without him and
including him is very costly. Therefore in such a game the high A person is
likely to be left out yielding him a low payoff.

It was suggested to us that the different A's may also indicate

nonsymmetric bargaining ability on the part of the players. This, however,
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does not seem to be consistent with the examples above. We feel that if a big
A indicated a high level of bargaining ability then such a player would be

wise enough to lessen his demands in the majority game and improve his

outcome.

It turns out that when we restrict our attention to games with
transferable utility, the (possibly nonsymmetric) egalitarian solution, EX,
coincides with Shapley's [1953] generalization of his value to weighted
value. For this generalization Owen [1968a] exhibited an interesting
interpretation to the weights A; as rates of slowness to arrive to the
bargaining. Quoting from Owen's [1968a] paper (with some change in symbols to

be consistent with ours) we read:

"Let us consider the following model: suppose the n players
agree to meet some place at a given time. Their individual times
of arrival will be random variables; assume that player i's arriv-—
al time is a random variable Xi with distribution

A
pr{Xi < x} =x T

for x € [0,1]. 1If player i is preceded by the members of S, he
receives the payoff v(S U {i}) - v(S) [these are the real numbers
v(T) from the transferable utility representation of the game].

Then, we shall see that Eé is the expectation of this payoff.”

10. The Necessity and Sufficiency of Monotonicity

It was argued in the previous sections that monotonicity of a solution is
a necessary and sufficient condition in order to bring about full cooper-

ation. 1In this section we present one model of a noncooperative prebargaining
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game to illustrate this point.

The analysis of this noncooperative prebargaining game is necessary in
situations under which players can control their level of cooperation with
different coalitions. In other words, if we have a given cooperative game, v,
the players can choose to alter the feasible sets v(S)'s by manipulating parts
of the environment that they individually control, changing the game v to a
game v in which their individual payoffs may be better. These types of
manipulations can be observed when players choose to destroy some initial
resources at their disposal, breaking lines of communications with other
players, or vetoing some of the alternatives available to a coalition by
threatening to break cooperation.

When such manipulations are available a game v would be played rather
than the original game v. Of course, the game v that the players individually
choose to play depends on the cooperative solution that an arbitrator, or the
group of players, chooses to impose. Thus we must analyze the combination of
the noncooperative prebargaining choices simultaneously with the cooperative
solution that we apply.

To make the analysis possible we take this ability to manipulate to an
extreme. We assume that every player can veto any feasible alternative of a
coalition to which he belongs.

We start with a given cooperative solution ¢ and a cooperative game v. A
strategy for player i in the prebargaining game is a list (Vi(S))S:iES where
each Vi(S) E_v(S) and Gi(S) is required to satisfy the conditions in the
definition of a game. Our interpretation is that for a given i and S, Gi(S)
contains precisely the alternatives in v(S) that i is willing to support if he
bargains with S. Equivalently, we could think that player i chooses to veto

all thealtneratives in v(S) - Vi(S) when he bargains with the coalition S.
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Given n strategies of this type we define a resulting remaining game v by

38 = N 7).

ieS

v(S) contains precisely all the alternatives that have a unanimous support by
all the members of S.

We define the outcome of the prebargaining game by ¢(¥).

Proposition 4. If ¢ is a monotonic solution then for every player i

-i
V" (3Ngu5eg = VNg4eg
is a dominant strategy in the prebargaining game.

The proof of this proposition is immediate and it shows that if we use a

monotonic solution ¢, then in the prebargaining game all the players have a
strong incentive to cooperate and not to veto any feasible alternative.

A stronger version of the converse to this proposition also holds.

Proposition 5. Let ¢ be a solution such that for every game v the strategies

(;i(s))s:ies = (vi(s))S:ies are a Nash equilibrium of the prebargaining
game, then ¢ is monotonic.

The proof of this proposition is also obvious. It shows that if we want
our players to fully cooperate and keep the game v as it is, without reducing
feasible alternatives by vetoing then we must use monotonic solutiomns.

It follows from the above two propositions that when we apply monotonic
solutions to cooperative games then prebargaining manipulations will not take
place. Also, for no manipulation to take place, and assuming a noncooperative

Nash equilibrium behavior, we mist use monotonic solutions. If we apply
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nonmonotonic solutions to cooperative games and assume noncooperative Nash
behavior in the prebargaining game it is hard to predict what properties the

outcome will have. One very plausible guess is that Pareto optimality will be

violated.
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