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STRATEGY-PROOFNESS: THE EXISTENCE OF

DOMINANT STRATEGY MECHANISMS

by

Eitan Muller
and

Mark A. Satterthwaite

1. INTRODUCTION

Economic theory takes as axiomatic that individuals have preferences over
possible allocations and that they seek their most preferred allocation.
Except in unusual and happy circumstances the result is conflict: the several
agents disagree over which outcomes are preferable and they resolve their
conflict within the rules of whatever allocation mechanism under which they
happen to be operating. Since the outcome is important each agent devises a
strategy that he believes will be effective in securing, as nearly as
possible, an outcome that is highly preferred by his own lights.

This penchant that individuals have for strategizing causes economic
theorists trouble because the essence of an individual's strategic choice is
to correctly guess the actions of other individuals and to then choose the
action that results in the best attainable outcome. This means that the

properties of a particular allocation mechanism can not be determined in any
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simple way. Specifically, an allocation mechanism might be thought to operate
by asking agents to state their preferences and then calculating from this
information an outcome that meets an appropriate optimality criterion.
Strategic behavior confounds this process because an individual may calculate,
given the probable strategies of other agents, that misrepresenting his
preferences may result in a more preferred outcome than stating them
truthfully. Therefore in studying the properties of a particular allocation
mechanism the theorist must not only understand how the mechanism aggregates
the information individuals input into it, he must also model the information
each agent has about every other agent and how each agent uses this
information to decide what information to input into the mechanism. This is
difficult.

Strategy-proof mechanisms represent the most direct and elegant means
conceivable for cutting through the problems that strategic behavior poses for
our understanding of allocation mechanisms' performance. An allocation
mechanism is defined to be strategy-proof if and only if telling the truth is
always a dominant strategy for every agent. A strategy is dominant for an
agent if, irrespective of what strategies the other agents play, no other
strategy results in an outcome that the agent prefers. An agent who has a
dominant strategy need not guess what other agents are likely to do because
that guessing has no utility; the agent's dominant strategy is best no matter
what other agents do. Therefore for strategy-proof mechanisms the question of
strategy never arises because every agent has no reason not to follow the
dominant strategy of truth telling. This makes the analysis of strategy-proof
mechanisms trivial in comparison to the analysis of mechanisms that are not
strategy~-proof because questions of the information that agents possess about

other agents can be ignored.
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This paper's purpose is to explore the current state of our knowledge
concerning the possibilities for constructing strategy-proof mechanisms. We
focus on strategy-proof mechanisms rather than dominant strategy mechanisms
because every dominant strategy mechanism is equivalent to some strategy—proof
mechanism. Consequently no generality is lost by our focus on strategy-
proofness rather than dominant strategies. Section 2 of the paper presents an
important, base line result: the Gibbard-Satterthwaite Theorem. It states
that reasonable strategy-proof allocation mechanisms, while exceedingly
attractive in the abstract, simply do not exist when agents' admissible
preferences over the set of feasible alternatives are not a priori restricted
to some subset of the set of all possible transitive orderings of the feasible
alternatives. Thus, in the most general case, strategizing can not be taken
out of economic behavior by cleverly designing the allocation mechanism.

The remainder of the paper explores the degree to which the general case
must be specialized in order to make the construction of a reasonable
strategy-proof mechanism feasible. We pursue two approaches to this
problem. In Section 3 we specify with increasing precision what we mean by a
reasonable strategy-proof mechanism and then investigate how tightly the set
of admissible preference orderings must be restricted in order to make
construction of the specified mechanism possible. In Section 4 we reverse the
procedure. There we specify restrictions on the set of a priori admissible
preference orderings in ways that have economic relevance and then ask what
reasonable strategy-proof mechanisms can be constructed given those particular
restrictions on domains. Conceptually these two approaches are dual to each
other; in practice, however, no one has succeeded in making an adequate formal
connection between them. Therefore we present them seperately.

No completely unambiguous conclusion can be drawn from the work discussed
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in this paper. As reported in Section 4, for several specific domains of
admissible preferences the results are negative in that no reasonable
strategy-proof mechanism can be constructed. 1In Section 3 we report results
that show the existence of domains that (i) are large relative to the size of
the unrestricted domain and (ii) do permit construction of reasonable
strategy-proof mechanisms. Nevertheless no examples have as yet been
constructed that succeed in showing that these relatively large restricted
domains have relevance to the types of restrictions on admissible preferences
that naturally occur in economics.

This paper is not a survey. We only report on a small fraction of the
interesting work that has been done on the existence of strategy-proof
mechanisms. We have tried to present some essential ideas from this body of
research in a manner that contributes to the reader's intuition and

understanding.

2. PROBLEM FORMULATION AND A BASIC THEOREM

Basic Model. Most of the work on strategy-proof mechanisms has been
conducted in a very simple framework that focuses on agents' preferences and
the incentives they have may have to follow dominant strategies in revealing
those preferences.l A group I = {1, 2,..., n} is a fixed set of n individuals
who must select an alternative from a feasible set of alternatives. The set A
= {x, y, Z,+0., w} is the set of all conceivable resource allocations; it has
cardinality of ‘A,. Each individual 1 € I has a transitive binary preference
relation P; over the set A. Thus, for all pairs of alternatives X,y € A and
for every individual i € I, one of three cases is true: xP;y denoting strict
preference for x over y, yPyx denoting strict preference for y over x, or

neither XxP;y nor yP,;x denoting indifference between x and y. Indifference
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between x and y 1s alternatively denoted by x;iy.

Not every preference ordering is necessarily admissible. Let © be the
set of all complete and transitive preference orderings P; that any individual
i might rationally hold. In other words, if Pi ¢ 2, then P; is a preference
ordering that, while being transitive, violates some principle of rationality
that clearly applies to the situation in question. For example, in economic
contexts if the two-dimensional vector x represents a commodity bundle and
that bundle dominates both components of a second bundle y, then the principle
of nonsatiation implies that an ordering P; for which xP;y may be admissible
(and thus be an element of ) while an ordering P; for which yP;x can not be
admissible. The set Q" is the n-fold cartesian product of 2. The group's
preference profile is the n-tuple, (Pl""’Pn) € Qn, of the individual
orderings.

The set of feasible allocations, B, may be either A in its entirety or a
subset of it. The group's task 1s to select a single allocation from B. They
do this, in effect, by voting. Each individual i reports a preference
ordering Qi € Q for input into the allocation mechanism F that aggregates the
profile of reported preferences down to a single element of B. Formally, let
A be the set of subsets of A. An allocation mechanism is a function F:

QN x A > A. Thus F(Q, B) is the group's choice when the profile of reported
preferences is Q and the feasible set is B. The preference ordering Qi an
individual reports may or may not be identical to his preferences P;; the
choice of what to report is his since preferences are private and impossible
for outsiders to ascertain.

That individuals can not be forced to report their preferences Py
sincerely for input into the allocation mechanism is the crux of the problem

this paper considers. Each individual agent may calculate whether it is in
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his or her interest to report honestly. An agent i with preferences P; has an
incentive to manipulate the mechanism F at profile P/Pi e 9" and feasible set
Be A if
F(P/Qi, B) Py F(P/P;, B) (2.01)
where Q; € @, (P/Q) = (P ,eeesQyyeesP ) € ", and (P/Py) = P = (P|,...,

Piyeees P ). The content of (2.01) is that if agent i is to be able to

n
manipulate the outcome at profile P = P/Pi, then he must have available an
admissible ordering Qi that, when played as a substitute for his true

preferences P;, results in an outcome he strictly prefers.

Dominance and Strategy-proofness. A mechanism F is strategy-proof if no

admissible profile P ¢ Qn, no feasible set B € A, and no agent i exists such
that at profile P agent i can manipulate mechanism F. Individuals never have
an interest in not reporting their preferences accurately when the mechanism
is strategy-proof. An implication is that if a mechanism is strategy-proof,
then every agent always has a dominant strategy. Formally, a strategy

Qi €  is dominant at feasible set B € A for agent i with preferences p; if
no profile P/Qi e 9" exists such that

F(P/Q], B) P, F(P/Q,, B). (2.02)

In other words, the ordering Qi is dominant for agent i if and only if no
profile exists for which playing another ordering Qi would result in the
realization of a strictly preferred outcome for agent i. A mechanism, F, is a

dominant strategy mechanism if, at every P ¢ " and B € A, every agent has a

dominant strategy.

The great attraction of dominant strategy mechanisms is that agents need
no information about other agents' preferences in order to play optimally.
Suppose F is not a mechanism for which agents have dominant strategies.

Inspection of (2.02) shows that if agent i is to successfully manipulate
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mechanism F at profile P, then he or she mist know that profile P/Qi is being
realized rather than, for example, profile P'/Qi. To know this requires good
information on i's part about other agents' preferences and strategizing.
None of this information is needed if F always gives individual i a dominant
strategy. No matter what profile is realized he plays that ordering Qi that
is dominant for his true preference ordering Ps.

The set of all possible strategy~proof mechanisms is clearly a subset of
the set of mechanisms that always give every agent a dominant strategy. We
restrict ourselves to considering only strategy-proof mechanisms because, as
Gibbard (1973) showed, every dominant strategy mechanism that is not strategy-
proof is equivalent to a strategy-proof mechanism. No generality is gained by
looking at the broader class. This equivalence is seen as follows. Suppose F
is a dominant strategy mechanism. Therefore for each agent i a
function oi: 2+ Q2 exists that associates his true preference ordering Py
with his dominant strategy Qi for that particular ordering, i.e.,

oi(Pi) = Qi' Define a new mechanism, F°, as the composition of the F

and o functions:

PP ,eee’P , B) = Flo)(P),..u, 0_(P), B). (2.03)
The mechanism FO is strategy-proof. If, contrary to the assertion, it were
not strategy-proof, then an agent i, a profile P € Qn, a feasible set B € A,
and an ordering Qi € 2 would exist such that i would have an incentive to
manipulate Fo:

FG(P/Qi, B) P, FO(P/Pi,B). (2.04)
Relation (2.04) may be rewritten in terms of the original mechanism F:

F(Q/Q;, B) Pi F(Q/Qi, B) (2.05)
where Q = [ol(Pl),..., on(Pn)] is the vector of the agents' dominant

strategies, Qi = oi(Pi) is agent i's dominant strategy when his preferences
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are P;, and Q; = ci(Q;) is agent i's dominant strategy when his preferences
are Qi. But (2.05) contradicts the hypothesis that Qi = ci(Pi) is a dominant
strategy for agent i because he does better playing Q;. Therefore F° is a
strategy-proof mechanism because if it were not, then F would not be a
dominant strategy mechanism as initially assumed. Finally, in addition to
being strategy-proof, F° is equivalent to F for agent i because if, in
utilizing each mechanism, every agent always plays his dominant strategy,
then, for any preference profile, F and FO give identical payoffs.2

Impossibility Theorem. Can strategy-proof mechanisms be constructed?

Certainly, inasmuch as we can easily identify four general types:

1. Let, for all admissible profiles P ¢ Qn, F(P, B) = x where x is a
fixed element of A. This is an imposed mechanism. It is strategy-
proof because, since agents' preferences do not influence the
outcome, each agent has nothing to gain from misrepresenting his
preferences.

2. Let, for some i, all admissible sets B € A, and all admissible
profiles P ¢ Qn, F(P, B) = maxB(Pi) where maxB(-) picks the element
of B that is maximal according to the ordering Pi‘3 This is a
dictatorial mechanism where agent i is the dictator. It is
strategy-proof because agent i gets his most preferred alternative
if he reports his preferences truthfully and no other agent has any
influence on the decision.

3. Let A consist of only two elements, {x, y}, and define F to be
majority rule: select y if the number of agents i for whom yP;x
exceeds the number for whom xPiy and x otherwise (including ties).
This is strategy-proof because, with only two alternatives, voting

against one's preferred alternative can lead to it losing and can
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not lead to it winning.

4, Let A = {x, y, z} and let the set of admissible preference orderings
consist of two orderings: Q = {(xzy), (yzx)}. The notation (xzy)
stands for the ordering xP;z, xP;y, and zP;y. If the feasible set
is the full set A, define F to be majority rule as before except
that z is selected in the case of a tie between x and y. If the
feasible set is just two elements, define F to be majority rule as
in the previous example. This, too, is a strategy—-proof mechanism
because, with @ restricted to two elements, the addition of the
third alternative z changes nothing essential.

The first two of these mechanisms are unsatisfactory because they do not give
sufficient scope for each agent's preferences to affect the choice. The
second two mechanisms are unsatisfactory because they only apply to restricted
situations: two alternatives in the case of (3) and a severely restricted set
of admissible preferences in the case of (4).

Therefore the real question is: Do strategy-proof mechanisms exist that
can accomodate any size feasible set, gives agents' preferences an opportunity
to affect the group's choice, and apply to a broad class of preference
profiles? These three requirements are easily formalized. The first is
simple: feasible sets of three or more elements should be admissible.

Second, a mechanism should give agents influence over the outcome at least to
the extent of satisfying the unanimity requirement of the Pareto principle and

being nondictatorial. A mechanism F satisfies the Pareto criterion if, for

any set B € A, for any profile P ¢ Qn, and for any x, y € B, xP;y for all

i € T implies F(P, B) # y. It is strongly nondictatorial if no agent i exists

such that, for at least one feasible set B € A (fo > 2), F(p, B) = maxB(Pi)

for all P ¢ o, Finally, let £ _. be the set of all possible complete and
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transitive orderings that are defined on the conceivable set A, A somewhat
narrower, but still very broad set is the set of all possible complete and
transitive orderings that are strict, i.e., indifference is excluded. We
denote this set by I. Therefore, for a mechanism F to be maximally flexible
and applicable, setting © equal to either I_or I is desirable.

This set of requirements is impossible to meet. Gibbard (1973) and

Satterthwaite (1973, 1975) showed this basic impossibility result.

THEOREM 2.1 (Gibbard-Satterthwaite Theorem). If IAI > 3 and preferences
are unrestricted (2 = I_or I), then an allocation mechanism F can
not simultaneously be strategy-proof and satisfy both the Pareto
criterion and strong nondictatorship.

Feldman (1979) has devised a simple proof of the Theorem for the special case
of three alternatives, two agents, and domain 22. We present his proof here
because its construction yields insight into how the conditions of Theorem 2.1
may be modified in order to obtain possibility results.

The proof is this. The mechanism F is defined for the set A

= {x, y, z} and on the domain 22. Table 2.1 shows the restrictions that the
the Pareto criterion imposes on F when the feasible set is A. For example, if
agent one has preferences (xyz) and agent two has preferences (zxy), then F
can not select y because to do so would violate the Pareto criterion. Note
that, because F is strategy-proof and thus induces truthful revelation, we
need not make a distinction between reported preferences and true

preferences. If both report (xyz), then the Pareto criterion requires
selection of x. An entry that is a "?" indicates that the Pareto criterion
places no restrictions on which alternative is selected.

The mechanism F is single-valued. Therefore a single element of A must

be assigned to each cell that does not have a determinate element. Suppose
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element x is assigned to the cell labeled 1 (as indicated by the superscript
1). This violates neither the Proposition nor the Pareto criterion. This
assignment, however, implies that agent one is a dictator when the feasible
set is A. We see this as follows.
Assigning x to cell 1 implies that x must be assigned to cell 2. Suppose
to the contrary that the only other possibility, z, were assigned to cell 2.
Agent one would then have an incentive to manipulate profile {(xyz), (zxy)] by
reporting (xzy) instead of (xyz). That would give him the preferred outcome
of x rather than z. Therefore x must be assigned to cell 1 because to assign
z to it would be to violate strategy-proofness. This same logic can be used
to fill every indeterminate cell on Table 1.
Table 2.2 reports this logic for all cells above the diagonal. Consider
as an example the assignment of y to cell 1ll. Since the Proposition rules x
out as a possibility for cell 11, the only alternative outcome that could have
been assigned to it is z. If, however, z were assigned, then agent two could
manipulate F at the profile {(yzx), (zyx)] = (4,6) by playing the manipulative
strategy (zxy):
[Fl(yzx), (zxy), Al=z} P, [Fl(yzx), (zyx), Al=y}. (2.06)
In the notation of Table 2.2 where each of the six orderings of A are assigned
an integer label, (2.06) becomes
{F(4,5) = z} P, {F(a,6) = y}. (2.07)
The assignment of outcome y to F[(yzx), (zyx), A] was made on the previous
line of Table 2.2. Therefore z can not be assigned to cell 11, which leaves y
as the sole possibility.
Filling in each indeterminate cell in this manner, both above and below
the diagonal, results in agent one being a dictator for F(*, A) and therefore

completes Feldman's proof. If, at the beginning, for cell 1 we had assigned
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alternative z instead of alternative x, then agent two would have ended up as

F's dictator.

Comment. Theorem 2.1 is a negative result. The remainder of this paper
is concerned almost exclusively with how Theorem 2.1's conditions can be
relaxed in order to obtain existence of a strategy—-proof mechanism rather than
nonexistence. Examination of the theorem's conditions shows immediately that
only one condition—--the assumption of unrestricted preferences——-can sensibly
be relaxed. Nondictatorship and the Pareto criterion are minimal conditions
on how power should be distributed among the agents. If anything, they should
be strengthened, not weakened. The definition of a voting mechanism can not
be relaxed in any obvious way.4 The number of alternatives that the mechanism
can handle certainly must be maintained at three or more.

Theorem 2.1 applies only when preferences are unrestricted, i.e., 2 = I.
Within Feldman's proof if admissible preferences are restricted by, for
example, excluding the ordering (zyx) from 2, then the rightmost column and
the bottom row are struck from Table 2.1 because the mechanism would not have
to be defined for profiles that involve the ordering (zyx). But striking
column six affects the construction of Table 2.2. Our demonstration that cell
11 must be filled with alternative y depended on cell 10, which is in column
six, being filled with alternative y in the proof's previous step. Column
six's presence is essential for this argument. If enough rows and columns are
struck, then the chain of inference that we constructed in Table 2.2 may break
causing existence rather than nonexistence.

Relationship with Arrow's Impossibility Theorem. Strategy-proof

allocation mechanisms are intimately related to the social welfare functions
about which Arrow (1963) proved his famous impossibility theorem. In order to

understand the conditions under which reasonable strategy-proof mechanisms
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exist one must understand the basics of this relationship. A social welfare
function for A is a singlevalued function f that maps the set o" of admissible
preference profiles into the set I (or Z\) of transitive orderings of A.
Thus f: " » £. 1In other words, a social welfare function orders the set A,
presumably from best to worse. Associated with every social welfare function
f is an allocation mechanism: Ff(P, B) = maxB[f(P)]. If an allocation
mechanism F has associated with it a social welfare function, then F is a
rational allocation mechanism. Such a mechanism Fe earns this title because
it selects that element of B that the social welfare function f ranks
highest. Clearly not every allocation mechanism is rational.

Arrow investigated the existence of social welfare functions f whose
associated rational allocation mechanisms F; satisfy the Pareto criterion,
weak nondictatorship, and two additional conditions, independence of

irrelevant alternatives and monotonicity. A mechanism F satisfies weak

nondictatorship if no agent i £ I exists such that, for all feasible sets

B e A, F(P, B) = maxB(Pi) for all P ¢ ©". Contrast this with strong
dictatorship where an individual is classified a dictator if he is dictator
over even a single feasible set B (IB' > 2) while here he is classified a
dictator only if he is dictator over every feasible set.

A mechanism satisfies independence of irrelevant alternatives (IIA) if

whenever any two profiles, P, Q ¢ Qn, agree on the feasible set B € A, then
Fe(P, B) = Fg(Q, B). Profiles P and Q agree on B if, for all agents i and for
all pairs of allocations (x, y) € B x B, xP;y if and ounly if iny.
Independence means that agents' preferences over the feasible set should be
the only determinant of the group's choice; preferences over the feasible
set's complement should be irrelevent.

To define monotonicity, let B € A be a feasible set, let x € B be an
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allocation within the feasible set, and let C = B-x be the feasible set less

the element x. The mechanism satisfies monotonicity if whenever (i) two

profiles P, Q ¢ Q" agree on C and (ii) xPyy implies iny for all y € C, then
Fe(P, B) = x implies Fe(Q, B) = x. Monotonicity means that if one or more
agents move a feasible allocation x up in their preference orderings relative
to other feasible allocations, then that can not cause x to be dropped as the
group's choice. Rational choice on the part of individuals obeys both of
these conditions and as such they are reasonable requirments to place on group
choice.5

Exactly as in Theorem 1.2, Arrow's conditions are impossible to meet when
A contains at least three elements and preferences are unrestricted.

THEOREM 1.2 (Arrow's Theorem). If 'AI > 3 and preferences are
unrestricted (Q = Z\ or ), then a social welfare function f and its
associated allocation mechanism Ff can not simultaneously satisfy
the Pareto criterion, weak nondictatorship, independence of
irrelevant alternatives, and monotonicity.

Social welfare functions that satisfy Arrow's requirements are
inextricably intertwined with strategy-proof allocations mechanisms. If
preferences are unrestricted and a social welfare function with its associated
allocation mechanism satisfy ITIA and monotonicity, then the mechanism is
strategy—proof.6 This permits Theorem 2.2 (Arrow) to be proved directly from
Theorem 2.1 (Gibbard-Satterthwaite). Specifically, for the case of 'Al > 3
and unrestricted preferences, suppose that—-contrary to Arrow's theorem—-a
social welfare function exists that satisfies the Pareto criterion,
nondictatorship, independence of irrelevant alternatives, and monotonicty.
Then the associated rational allocation mechanism is strategy-proof. This,

however, is impossible because no strategy-proof allocation mechanism (whether
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rational or not) exists that satisfies the Pareto criterion and non-
dictatorship for the case of IAI > 3 and unrestricted preferences. Therefore
Arrow's Theorem is true.

In the opposite direction, if preferences are unrestricted and an
allocation mechanism is rational and strategy-proof, then it also satisfies
independence of irrelevant alternatives and positive association.7 This
result together with Arrow's Theorem can be used to show directly that, for
the case of lAl > 3 and unrestricted preferences, no rational, strategy-proof
allocation mechanism exists that satisfies the Pareto criterion and weak
nondictatorship. This nonexistence result concerning rational, weakly
nondictatorial, strategy-proof allocation mechanisms generalizes with some
effort to Theorem 2.1, which applies to both rational and nonrational

mechanisms and to strong nondictatorship as well as weak nondictatorship.8

3. SUFFICIENTLY RESTRICTED DOMAINS AND STRATEGY-PROOFNESS

Within the general theme of restricting the domain of admissible
preferences, three approaches have been followed in trying to resolve the
fundumental problem that Theorem 2.1 poses for the construction of strategy-
proof mechanisms. The first approach begins with a specific allocation
mechanism (e.g., majority rule) and searches for domain restrictions that are
sufficient to make the mechanism strategy—proof.9 We do not explore this
approach in this paper since it is the least general of the three
approaches. The second approach begins with a fixed restricted domain,
expressed in terms of economic restrictions such as convexity, continuity and
the like, and then looks for nondictatorial strategy-proof mechanisms. We
discuss this approach in Section 4. The third approach, which is the most

general, fixes neither the domain nor the aggregation rule. It looks for
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necessary and sufficient conditions on preferences such that the resulting
domain, 2, permits construction of a strategy-proof mechanism that satisfies
the Pareto criterion and nondictatorship plus, in some cases, additional
criteria on the distribution of power. This is the approach we explore in
this section.

In the previous section we discussed the relationship between rational,
strategy-proof allocation mechanisms and social welfare functions that satisfy
the conditions of monotonicity and IIA. This relationship is intensively
exploited in this Section; with one exception all the results presented apply
exclusively to rational allocation mechanisms. Thus the typical result for
this section is: 1if Q satisfies the following conditions, then @ admits the
construction of a weakly nondictatorial and rational strategy-proof allocation
mechanism. This technique, however, is not costless. We discuss the
rationality condition in greater depth at the end of this section and show an
example of a domain that (i) permits construction of a nonrational, strongly
nondictatorial, strategy-proof allocation mechanism and (ii) does not permit
construction of a rational, weakly nondictatorial social welfare function.
Thus requiring rationality, as this section does, creates a binding
constraint. To what extent the results of this section can be generalized 1if
the rationality constraint were dropped is an open question.

Characterization of the domains that admit rational strategy-proof
mechanisms requires some notation whose purpose is to allow the structure of a

given domain, , to be examined. The set of ordered triples within a domain Q

is defined as t(Q) = {(xyz)l P £ Q exists such that xPsz}. Two domains Ql
and 92 are equivalent if they share the same set of ordered triples, i.e.,
t(Ql) = t(QZ). Two domains may be disjoint and equivalent. For example, if

Ql = {(xyzw),(yxwz)}, 92 = {(xywz), (yxzw)}, the t(Ql) = t(Qz) = {(xyz),
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(yxz), (xyw), (yxw), (xzw), (xwz), (yzw), (ywz)}. The importance of the
equivalence relation that t(R) defines on the set of posssible domains 1s that
if two domains are equivalent, then the first domain permits construction of a
strategy-proof, nondictatorial, rational mechanism if and only if the second
domain permits construction of such a mechanism.

The set of ordered pairs within Q is T(Q) = {(xy) £ AxA | x¢y}. The set

of trivial ordered pairs within Q is TR(R) = {(xy) ' a Pe Q exists such that

xPy and no Q £ 9 exists such that ny}. A trivial pair is a pair of
alternatives over which no controversy exists because every agent, no matter
what element of { describes his preferences, agrees on how those two
alternatives should be ranked.

Decisiveness Implications. The concept of decisiveness implications is

of great importance because it constitutes the technology that has made the
statements and proofs of the theorems presented in this section possible.

This technology is inextricably bound up with the rationality requirement that
we have imposed for this entire section; decisiveness implications do not work
for nonrational mechanisms. The thrust behind this technology may be
summarized as follows.

Given a rational mechanism F, the members of J are said to be decisive
for a over b if a is selected when the feasible set is {a, b} and the members
of J report preferences that rank a over b. Formally, J is decisive over the
ordered pair (ab) if F(P, {a, b}) = a for all P ¢ o" such that, for all
ieJ, aPib. In terms of social welfare functions, decisiveness means that
coalition J can force a social preference for a over b. A dictator is
decisive over all pairs in A because, no matter what other agents vote, he
secures the outcome he desires.

Suppose a rational, strategy-proof mechanism F that satisfies the Pareto
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criterion is defined on a domain Q7. Because F is rational, a social welfare
function fF that satisfies the Pareto criterion underlies F. Because the
mechanism is strategy-proof, both F and fF satisfy monotonicity and IIA.10
Now suppose that a coalition Jc I is decisive for an alternative
a € A against another alternative b € A. Suppose additionally that an
alternative ¢ € A exists such that the ordered triples (abc) and (bca) are in
t(Q), i.e., (abe), (bca) e t(Q). Let the coalition J vote (abc) while its
complement votes (bca). In other words, the reported profile P has the
property that aPibPic for all 1 € J and bPicPia for all 1 ¢ J. Since J is
decisive over (ab), a is socially preferred to b. Application of the Pareto
criterion implies that b is socially preferred to c and, as a consequence of
transitivity, a is socially preferred to c¢. Coalition J is therefore decisive

for a over c because (i) a = max{ fF(P) = F(P, {a, ¢}) and (ii) fF's

a,c}
monotonicity and ITA together imply that no matter how members of J's
complement change their votes, the outcome is fixed at a. Therefore, we can
conclude, if (abc) and (bca) are in t(Q), then any individual or coalition
that is decisive over (ab) is necessarily decisive over (ac) as well. This is
decisiveness implication number one. Note the central role that transitivity
(i.e., rationality) played in its derivation. Our use of the labels a, b, and
¢ here for the elements of A is to emphasize that the implication applies to
any ordered triple, e.g., in a particular application a may be assigned the
value y, b the value z, and ¢ the value x.

Parallel arguments lead to declsiveness implications numbers two through
four: (ii) if (abc), (bca) & t(Q) and a coalition J is decisive over (ca),
then J is necessarily decisive over (ba); (iii) if (abc) e t(Q), (bca)

¢ t(2), and coalition J is decisive over (ab) and (bc), then J is also

decisive over (ac); (iv) if (abc) e t(Q), (bca) £ t(Q), and a coalition J is
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decisive over (ca), then J is decisive over either (ba) or (cb).

Consider a domain  of admissible preferences and a set of ordered pairs
R ¢ T. The question is: does a rational, strategy-proof mechanism, F,
satisfying the Pareto criterion exist such that some coalition J is decisive
over exactly the set of pairs contained in R. The answer 1is: for such a
mechanism, the set R can be the collection of pairs over which coalition J is
decisive only if R is closed with respect to the four decisiveness

implications. The set R is closed with respect to the decisiveness

implications if for every (ab) ¢ R, then, given Q and R, none of the

decisiveness implications implies that J must be decisive over (ab). The idea
underlying the definition is that if J can be shown to be decisive over the
pair (ab), then by definition (ab) belongs to R already. The domain 9 is

decomposable if such a closed set R exists that is a strict subset of the set

of all pairs and is a strict superset of the set of trivial pairs. Thus if R
is decomposable, then TR(Q) % R % T.

Nondictatorial Strategy-proof Mechanisms. Kalai and Muller (1977) used

the concept of decomposibility to characterize the domains on which
nondictatorial strategy-proof mechanisms can be constructed.

THEOREM 3.1. For n > 2 an n-person, weakly nondictatorial, rational,
strategy-proof mechanism on @ ¢ ¥ exists if and only if a two-
person, weakly nondictatoral, rational, strategy-proof mechanism on
 exists.

THEOREM 3.2. For n 2 2, the following three statements are equivalent
for every Q.

a. 2 e £ 1is decomposable.
b. The equivalence class of ? permits construction of an n-

person weakly nondictatorial, rational, strategy-proof
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mechanism that satisfies the Pareto criterion.

Co The equivalence class of  permits construction of an n-
person weakly nondictatorial social welfare function that
satisfies the Pareto criterion and IIA.

Consider, for simplicity, the two agent case (n=2). The necessity
that Q@ be decomposable for construction of a nondictatorial strategy-proof
mechanism follows directly from the observation that if the only set of pairs
R that is closed and nontrivial 1s the set, T, of all ordered pairs, then one
agent must be a dictator. Suppose, contrary to the observation, neither agent
is a dictator and their orderings in the profile P disagree on the nontrivial
pair {x, y}. Since F(P, {x, y}) is singlevalued, one agent or the other must
get his way and is thus decisive on the pair. But if he is decisive over one
pair, he is decisive on all pairs because the only closed nontrivial R is
identical to T. Therefore the agent is a dictator.

As for the sufficiency of decomposability, i1f a closed set of ordered
pairs R S T exists, define R, as the set of ordered pairs whose inverses are
not in R;. With this we eliminate the risk of an agent being decisive over a
pair (ab) while another agent is decisive over the inverse pair (ba). Define
the following social welfare function: Let agent one be decisive over the
pairs in R,. Let agent two be decisive over the pairs in Ry,.  Let the
coalition of agents one and two be decisive over all pairs. If there are more
agents, let them be dummies who have no effect on the outcome. It can be
shown that this function is a weakly nondictatorial social welfare function
satisfying the Pareto criterion and IIA and that it underlies a
nondictatorial, strategy-proof mechanism. That this mechanism may be only
weakly nondictatorial follows from the fact that--in the sense of strong

dictatorship—~—agent one is a dictator whenever the feasible set is a pair of
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alternatives, {a, b}, € A, for which (ab), (ba) ¢ Rl' Agent one is then
decisive over both (ab) and (ba); consequently F(P, {a, b}) = max{a,b}Pl'

The statement of parts (b) and (c¢) of the equivalence in Theorem 3.2 has
a surprising feature. It would have been more intuitive, simpler to prove,
and more consistent with the other theorems reported in this section to state
in (¢) that the social welfare function, f, satisfies the Pareto criterion,
ITA, and monotonicity. In the theorem, however, monotonicity is not assumed
and thus cannot be used. Instead when existence of a strategy—-proof mechanism
is to be established given that a nondictatorial n-person social welfare
function exists, Theorem 3.1 implies the existence of a two-person
nondictatorial social welfare function. Observe that a two-person social
welfare function satisfying the Pareto criterion is necessarily monotonic and
thus the two-person allocation mechanism that it underlies is strategy-
proof. To construct the n-agent, nondictatorial, strategy-proof mechanism,
which is the goal of the exercise, add the remaining n-2 agents as dummies.

The generalization of Theorem 3.1 for allocation mechanisms that are not
rational has been proven by Kim and Rousch (1981). To our knowledge this 1is
the only result of this section that has been generalized from the rational
case to the nonrational case.

Graphical Representation. The graph that the decisiveness implications

creates among the elements of the set of all pairs helps understand the
decomposability condition. As a first step, consider Feldman's proof of
Theorem 2.1, which we presented in Section 2, for the special case of two
agents and three alternatives. Here we use decisiveness implications to
create an analogous proof for a somewhat weaker result: for three
alternatives and two agents every strategy-proof, rational mechanism that

satisfies the Pareto criterion is dictatorial. The result 1s weaker because
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this section's technique only applies to rational mechanisms; Feldman's

technique applies to both rational and nonrational mechanisms.

The domain, @, = I, consists of all six strict orderings that are

1

possible when the number of alternatives 1is three. In Figure 3.1 the nodes of

the graph counsists of all the ordered pairs T. The directed branches

represent application of decisiveness implications (i) and (ii) to each of the

six orderings. For example, if agent one is decisive over a pair (xy) and, as

is the case, (xyz), (yzx) ¢ Qy, then decisiveness implication (i1) implies

that he has to be decisive over (xz) as well. Thus a directed branch connects

(xy) to (xz) because (xyz), (yzx) ¢ Q). This follows from the first

decisiveness implication if x is assigned to a, y to b, and z to c.

Similarly, decisiveness implication (i) implies that a directed branch

. If all

connects (xy) to (zy) because (yzx), (zxy) ¢ Ql

in, the graph in Figure 3.] results. It is evident that
generated by decisiveness implications (i) and (ii) span
pairs. No sinks (i.e. closed sets of ordered pairs that
T) exist there. A set R is identified graphically to be
only go into it while none come out of it. Agent one is
decisive over all six pairs and is a dictator.

A slightly different way to see that one agent must

branches are filled
the direct branches
the whole set of

are strict subsets of
a sink if branches

therefore necessarily

be a dictator is to

replicate for rational mechinisms the several steps of Feldman's proof (see

Section 2) that led to the conclusion that if alternative x is assigned to

cell 1, then agent one is necessarily a dictator. Assignment of X to cell 1

means that we resolve in favor of agent one the conflict over the

pair {x, z} that occurs when agent one votes (xzy) and agent two votes (zxy)

The Pareto criterion eliminates alternative y as a possible outcome. Thus

that assignment makes voter one decisive over (xz). It also implies that x
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must be assigned to cells 2 and 3 because agent one is decisive over (xz) and
the Pareto criterion eliminates y from consideration. 1In cell 4 agent one's
decisiveness over (xz) eliminates z as a possible outcome. If x is assigned
to a, z to b, and y to ¢, then decisiveness implication (ii) states that agent
one is decisive over (xy) because he is decisive over (xz). This process may
be continued until all cells are assigned agent one's preferred choice.

If we delete even one ordering out of I, then a number of sinks result,
which means that the resulting @ is decomposable and, according to Theorem
3.2, a rational, nondictatorial, strategy-proof allocation mechanism can be
constructed on 2. To be specific, let (zyx) be deleted from I and call the
resulting domain Qz. Figure 3.2 shows its graph. It differs from Figure 3.1
as follows. The two direct branches from (yx) to (zx) and from (xz) to (xy)
that decisiveness implications (i) and (ii) respectively would generate if
(zyx) were an element of Qz are deleted. But because {(xzy) ¢ Q5 and (zyx) ¢

QZ both a joining branch and a splitting branch are eligible to be added.

Decisiveness implication (iii) generates the joining branch; it connects both

(xz) and (zy) to (xy) and means that if R contains both (xz) and (zy), then it
must also contain (xy). It is not drawn because the decisiveness implication
(zy) *» (Xy) makes this joining branch redundant. Decisiveness implication

(iv) generates the splitting branch; it connects (yx) to both (zx) and (yz)

and means that if R contains (yx), then it must also contain either (zx) or
(yz). 1It, too, is not shown because it is redundant. Note, however, that if
in addition (yzx) were dropped as an element of QZ’ then neither the joining
nor the splitting branch would be redundant.

These changes cause Figure 3.2 to have four sinks: Ry = {(xz)}, R, =
{(zy), (x2), (xy)}, Ry = {(x2), (y2), (yx)}, and R, = Ry, 4 Ry =T = (zx).

Associated with each sink is a distinct, weakly nondictatorial, strategy-proof
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mechanism. Therefore four distinct, strategy—-proof, nondictatorial, rational
mechanisms can be constructed on the domain QZ' Note that R, includes (xy)
and its inverse (yx) and (yz) and its inverse (zy); this means the mechanism
that is associated with it is not strongly nondictatorial because whenever B
= {x, y} or {z, y} the agent who is decisive over the elements of R, dictates
the choice. A similar argument applies for Ry, but not for R, or Rj. Thus 1if
lAl = 3, the deletion of a single ordering from I is sufficient to reverse the

Theorem 2.1's impossibility result.

Essentiality and Symmetry. In the discussion that followed Theorems 3.1

and 3.2 we described how to construct a nondictatorial, strategy-proof
mechanism when @ is decomposable. That mechanism, however, distributes power
with unacceptable uneveness: n-2 of the individuals are dummies. As this
particular mechanism illustrates, requiring that a mechanism satisfy
nondictatorship is a toothless requirement that comes nowhere near describing
the criteria by which we judge a distribution of power acceptable or not
acceptable. Nondictatorship (strong or weak) is a necessary, but not
sufficient, condition for a mechanism to be acceptable and as such is useful
within the context of impossibility theorems. Possibility theorems need
additional conditions that capture what we mean when we judge a particular
power distribution acceptable.

Two such conditions are essentiality and symmetry. For a mechanism F an
agent i is essential if a preference profile P ¢ Q" and ordering Qi e 0 exist
such that if agent i changes his ordering from P; to Qq» then the outcome
changes from F(P, B) to F(P/Qi, B) # F(P, B). A mechanism is essential if all
agents are essential. In essential mechanisms each individual has some,
though not necessarily equal, power. Symmetry, on the other hand, mandates

equal power without specifying the magnitude of the power. A mechanism F is
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symmetric (sometimes called anonymous) if any permutation of the individuals
leaves the outcome unchanged: for all P ¢ Qn, B ¢ A, and permutations p:

{1,eee, n} > {1,..., n}, F(""Pi’”" B) = F(euu, B). Neither of

Pp(i)""’
these conditions completely supplants the strong nondictatorship conditions or
the Pareto criterion. For example, an imposed mechaninism is symmetric
because under such a mechanism every individual is identical in having no
influence over the outcome.

For the case of essential mechanisms Blair and Muller (1983) have
generalized the concept of decisiveness implications and proved the natural
extension of Theorem 3.2. The example, which follows, of an essential
mechanism and the domain on which it is constructed shows that essential
mechanisms, while an improvement over weakly nondictatorial mechanisms, only
incompletely captures the considerations that enter our evaluations of whether
a particular distribution of power is acceptable. Let A = [Xl,...,XK] where
each Xi is a vector of three alternatives. The domain  consists of all
orderings in which the elements of Xk appears always above X2 for
all k < £ and, within Xk, the three alternatives form a free triple, i.e., all
six orderings of the three elements of Xk are permissible. Let each voter be
a dictator on at least one of the free triples. The result is an essential
monotonic SWF for K or fewer voters. Any additional voters must be dummies
and are therefore not essential,

Symmetry is a more stringent condition than that of essentiality. It too

can be approached using the technology of decisiveness implications. A domain

2 is transitively decomposable if a nontrivial set R exists that is (i) closed

under decisiveness implications one through four and (ii) transitive.
Transitivity in this context means that R must satisfy: (i) if (xy), (yz) ¢

R, then (xz) € R and (ii) (xy) € R if and only if (yx) ¢ R. The following two
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theorems summarize the symmetric case, and are adapted from Muller (1982).
The equivalence between the second and third parts of Theorem 3.4 are
extensions that are not proven in the original paper, but can
straightforwardly be shown by means similar to those used in Blair and Muller
(1983).

THEOREM 3.3. A symmetric, n-person, rational strategy-proof mechanism on
 exists for all n > 3 if and only if a symmetric, three-person
rational strategy-proof mechanism on Q exists.

THEOREM 3.4. The following three statements are equivalent for every

Qe I

a. ? is transitively decomposable.

b. For all n > 3 the equivalence class of Q permits
construction of a symmetric, monotonic, social welfare
function that satisfies the Pareto criterion and ITA.

C. For all n > 3 the equivalence class of Q permits
construction of a symmetric, rational, strategy-proof
mechanism that satisfies the Pareto criterion.

The social welfare function in part (b) is required to be monotonic because,
unlike in the case of Theorems 3.1 and 3.2, no theorem exists that reduces the
n—-person case to the two-person case. Indeed, with respect to Theorem 3.3,

an Q exists for which a a symmetric two-person social wnlfare function may be
constructed, but not a symmetric three-person social welfare function. In
parts (b) and (c¢) no reference is made to nondictatorship because any
symmetric mechanism that satisfies the Pareto criterion also satisfies strong
nondictatorship.

Group Strategy—-proofness. A mechanism is strategy-proof if no single

individual ever has an incentive to misrepresent his preferences. Blair and



July 13, 1983
_27._

Muller (1983) have shown the suprising result that, for rational mechanisms,
strategy-proofness for individuals is equivalent to strategy-proofness for
coalitions of individuals. A coalition J, .Jl = k < n, has an incentive to
manipulate the mechanism F at profile P and feasible set B € A if orderings
Q; € 2 exist such that, for all i e J,

F[P/Q, B] Py F(P, B) (3.01)

where Q = {Qi} A mechanism F is group strategy-proof if no admissible

ieJ*®

profile P ¢ Qn, no set B, and no coalition J exists such that at profile P
coalition J can manipulate mechanism F.

The driving force behind this equivalence of group strategy—-proofness and
individual strategy-proofness is the rationality condition. To show this we
first observe that if a mechanism is group strategy-proof, then by definition
it is individually strategy-proof. We then show that a rational mechanism
that is individually strategy-proof is also group strategy-proof by
demonstrating that if a mechanism is manipulable by some coalition, then it is
also manipulable by some individual within the coalition. Therefore an
individually strategy-proof mechanism must also be group strategy-proof.

Suppose, in order to see that group manipulability implies individual
manipulability, that a group J = {1,...,k}, k < n, can manipulate F at profile
P and feasible set B:

F(Q»e++» Q> Ppi[s+++» Py» B) Py F(P, B). (3.02)
Let F(Ql,..., Qs> Pyypsecss Py B) = x and F(P, B) = y. Note that xPyy for
all i € J. The rationality of F implies that F(Qp,eee, Qs Pyryysecss

P, {x, y}) =x and F(P, {x, y}) = y. Therefore (3.02) continues to be true

n,
when B is replaced as the feasible set by {x, y}. Moreover, because

F(p, {x, y}) e {x, y} for all P ¢ Qn, a j € J must exist such that F(Q,...,

Q-15 Pjs Pygpseces Ppo {x, y}) = x and F(Qq,..., Q-1> Qs Pygpsees
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P {x, y}) =y, i.e. j € J is the critical voter who switches the outcome.
Voter j, as a member of J, has preferences xP;y; therefore he can individually
manipulate F at feasible set {x, y} and profile (Qrseees Qj—l’ Pj’ Prylscees
Pn)' Note that the rationality requirement was what allowed us to reduce the
problem to that of selection between two alternatives.

The Private Goods Case. The discussion to this point has considered only

a perfectly general conceivable set, A, that has no a priori structure imposed
on it. Suppose, however, that each alternative within A is a vector of n
distinct private goods' bundles, each one of which is to be allocated to one
of the n agents. To accomodate this change, let A represent each individual's
consumption set, X; € A be the bundle of private goods agent i consumes, P; be
his preferences over A, and let @ CI_ be the set of orderings over A to which
P; is a priori restricted. Note that indifference is permitted as indicated
by § being contained in I_ rather than IZ. Also, note that every individual i
is selfish in that he is concerned only with his own component of the
alternative x = (xl,...,xn).

An allocation x = (xl,..., xn) e A" is the n-vector of the agents'
private goods' bundles. Redefine, for this subsection, an allocation

. . n
mechanism to be a function F: @Q

x A > A", Thus F(P, B) = [Fy(P, B),..n,
F,(P, B),..., Fn(P, B)] is a vector of n functions where the ith function,
Fi(P, B) € B, specifies the allocation of private goods agent i receives.
Two new definitions must be introduced in order to characterize the
domains on which weakly nondictatorial, strategy-proof mechanisms can be

constructed. First is a strengthening of the Pareto criterion. A mechanism F

satisfies the strong Pareto criterion if, for any pair x, y € B, xP;y for at

least one agent and yP;x for no agent, then F(P, B) # y. This strong version

differs from the weak version in that the strong version does not require
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unanimity and permits some agents to be indifferent between x and y, i.e. it
may apply even if xﬁiy for some agents.
The second new condition is Ritz's (1981, 1983) noncorruptibility

condition. A mechanism is noncorruptible if for all sets B € A, all profiles

P e 9%, all agents i € I, and all orderings Q; € 2, F;(P, Q) ii Fi(P/Qi’ B)
implies Fj(P, B) = Fj(P/Qi’ B) for all agents (j j #*# i). Recall

that 51 signifies indifference. Thus, for a noncorruptible mechanism, an
agent must change the utility value of the outcome to himself in order to
affect the physical outcome of other agents. Informally, if a mechanism is
corruptible, then agent i, who may be thought of as a potential corruptor or
boss, does not directly improve his own outcome as is the case in
manipulation. Rather, he changes the value of the outcome to others. He thus
creates a possibility of indirectly improving his position by threatening
other agents and demanding side payments. Thus corruptibility sets the stage
for indirect manipulation as opposed to the direct manipulation with which
strategy—proofness is concerned.

Kalai and Ritz (1980) and Ritz (1981, 1983) have used the technology of
decisiveness implications and decomposability to make substantial progress on
the private goods case. The private goods decisiveness implications to which
the following theorem of Ritz (1981, 1983) makes reference are not reproduced
here in the interests of brevity. They may be found in Ritz's original
papers.12

THEOREM 3.5. For the private goods case, when n > 2, the following three

statements are equivalent for every :
a. ! is decomposable over private alternatives.
b. 2 permits construction of an n-person, weakly

nondictatorial social welfare function that satifies the
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strong Pareto criterion and ITA.

C. ! permits construction of an n-person, weakly
nondictatorial, rational, noncorruptible strategy-proof
mechanism that satisfies the strong Pareto criterion.

This theorem parallels Theorem 3.2 in not requiring the social welfare
function in part (b) of the theorem to be monotonic. The reason is that Ritz,
like Kalai and Muller, exploited the permissiveness of the nondictatorship
condition to construct through the use of dummies n-person mechanisms from two
person mechanisms.

Restrictiveness of the Decomposability Conditions. The results presented

in this section succeed in characterizing for several contexts the domains on
which construction of strategy—-proof mechanisms is possible. The question
that remains is: How restrictive are these conditions? The ideal way to
answer this question would be to determine, for a variety of different
economic environments, if the a priori restrictions on agents' preferences
that those environments naturally induce satisfy the characterizations for
strategy-proof domains that have been presented. This approach has not been
successfully carried out. A second approach, which has met with some success,
is to calculate how close to unity the ratio ’Ql/lzl can be made to come

when  is restricted to admit the construction of a nondictatorial, strategy-
proof mechanism. If examples exist in which, even with a large number of
alternatives, the size of the restriced domain is still "respectable” relative
to the size of the full domain, then that is an indication that these
characterizations are not very restrictive.

Kim and Roush (1981) have shown that if lAI = m, then

m!/2 + (m - 1)! _
m! N

1
b1 (3.03)

N} —
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is the upper bound on IQ’/IZ‘ for weakly nondictatorial, rational, strategy-
proof mechanisms satisfying the Pareto criterion. Because essential and
symmetric mechanisms are also weakly nondictatorial, (3.03) is also the upper
bound for domains that permit construction of essential or symmetric) rational
strategy-proof mechanisms. Blair and Muller (1983), based on the work of
Kalai and Ritz (1979), have constructed an example of an essential mechanism
that achieves this bound. Expression (3.03) is thus a least lower bound for
essential and weakly nondictatorial mechanisms.

The domain, 2 C I, for Blair and Muller's example is defined by a single
restriction: it contains an ordered pair, (xy) ¢ T(Q), with the property
that no alternative z € A and ordering P; € ! exist such that xP;zP;y, 1i.e. no
z € A exists such that (xzy) € t(R). The pair (xy) is thus inseparable in the
sense that an admissible ordering can rank x immediately above y or someplace
below y. Given this domain, an essential rational mechanism is this. Let
voter one be decisive over all ordered pairs (ab) e T(R) except (xy) and let
each other individual have veto power over (xy). Thus x = F(P, {x, y}) if and
only if xP;y for all i € {2, 3,..., n}. This defines a social welfare
function that, with one exception, makes agent one the dictator in the sense
that his ordering becomes the social ordering. The exception occurs when
agent one ranks X just above y and some other agent (the vetoer) objects by
ranking y above x. In that event the social ordering is modified by placing y
immediately above x. It 1s straightforward to check that this defines an
essential, monotonic, weakly nondictatorial social welfare function that
satisfies the Pareto critierion and IIA. It thus also defines an essential,
weakly nondictatorial, strategy-proof, rational allocation mechanism that

satisfies the Pareto criterion.
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The size of this domain is m!/2 + (m - 1)!. This formula is easily
derived by considering that subset of @ for which XP;y seperately from that
subset for which yPix. Since m alternatives may be strongly ordered in m!
different ways, the in/,Zl ratio equals the value of (3.03). The weakness of
this example 1is the already emphasized fact that essential mechanisms may
incorporate an unacceptable distribution of power among the participating
individuals. 1In this particular example that is surely the case because agent
one is nearly a dictator. Therefore this particular example is not convincing
as evidence that the decomposability conditions are relatively unrestrictive.

Examples for the symmetric case, which might be more convincing, have not
been constructed yet. Kim and Roush (1981) showed that if mechanisms that
give agents veto power are excluded from consideration, then the .Q|/|Z| ratio
goes to zero as m goes to infinity. This, however, is not convincing evidence
in the opposite direction because, since symmetric mechanisms with veto power
may be constructed, no compelling reason to prohibit the use of the veto is
apparent.

The Rationality Requirement. Throughout this section we have only

considered rational allocation mechanisms. This is not a benign

requirement. If the rationality condition is dropped, then the opportunities
for constructing strategy-proof mechanisms increase. This point is made most
concretely by an example due to Maskin (1976). His example identifies a
domain, §, that has two important properties: (i) a strategy-proof, strongly
nondictatorial mechanism satisfying the Pareto criterion exists on it and (ii)
no weakly nondictatorial social welfare function satisfying the Pareto
criterion and IIA exists on it.

We present in this subsection a corrected and much simplified version of
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Maskin's example. Let @ = {(xzyw), (yzwx), (yxwz), (wxzy), (zwxy), (wzyx)}.
Denote these six admissible orderings by Py, i=l,...,6, according to the order
they appear in Q. It is straightforward to check that the mechanism defined
in Table 3.2 is strategy-proof when the feasible set consists of all four
alternatives in A = {w, x, y, z}.

The nonrationality of F means that, for each of the four feasible sets B
containing three of the four alternatives in A ({x, y, z}, {w, x, y}, etc.),
the mechanism F(+, B) may be defined without reference to the way Table 3.2
defines it for the case where A is the feasible set. Inspection of the
orderings contained within Q shows that if one alternative is eliminated from
each of its constituent orderings, then five (out of the six possible)
distinct orderings of the three remaining alternatives are left. For example,
if B = {x, y, 2z}, then the domain that results by striking w from each
ordering in Q@ is

Q{x,y,z} = {(xzy), (yxz), (yzx), (zxy), (zyx)} =3 - (xyz). (3.04)
Earlier in this section we showed that, when ,A, = 3, elimination of one
ordering from I is sufficient to permit construction of a strongly
nondictatorial, rational mechanism on that feasible set. Define F(+, B) to be
one of those mechanisms whenever IBl =3 or |B| = 2. The result is a
nonrational, strongly nondictatorial strategy-proof mechanism that satisfies
the Pareto criterion.

To complete the example we have to show that this domain does not permit
construction of a weakly nondictatorial social welfare function that satisfies
the Pareto criterion and ITIA. This is easily done by constructing the graph
of & to arrive at Figure 3.3. Since that graph does not contain any sink
Theorem 3.2 implies that a weakly nondictatorial social welfare function does

not exist on Q.
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This example shows that the upper bounds on the |Q|/|Z| ratio that Kim
and Roush (1981) derived for rational mechanisms do not necessarily hold for
nonrational mechanisms. This emphasizes that our knowledge is quite imperfect
concerning the degree to which the admissible domain must be restricted in

order to permit construction of a reasonable strategy-proof mechanism.

4. STRATEGY-PROOFNESS ON SPECIFIC RESTRICTED DOMAINS

The last section reported on work that has been done to characterize
those domains of preferences that are restrictive enough to permit the
construction of strategy-proof allocation mechanisms that share power among a
group's members in some acceptably democratic way. Considerable progress has
been made on this approach, but as yet no researcher has succeeded in relating
those characterizations to the domains of admissible preferences that occur in
economic situations. This section reports on work that has taken the less
general approach of beginning with a domain where preferences are restricted
to belong to a class that naturally arise in economic environments and then
characterizing the strategy-proof allocation mechanisms that can be
constructed on that domain. In other words, the methodology of the last
section is turned on its head here: 1instead of beginning with properties that
a strategy-proof mechanism should possess and deriving those domains that are
consistent with those properties, we begin with a domain and derive the
properties of the mechanisms that are consistent with that domain.

Economists often represent bundles of commodities as points in Euclidean
space. Therefore, in this section where we are concerned exclusively with
economic environments, A is no longer a set of discrete points without
structure. Instead an alternative x = (xl,..., xz) is a point within a

consumption set A that is itself a subset of 2-dimensional Euclidean space.
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The interpretation of X, the k-th component of x, is that the bundle x
contains x, units of good k. Imposition of this Euclidean structure on A
enables us to utilize the concepts of continuity and differentiability.
Specifically, given this structure on A, a natural restriction to place on the
admissible preferences of agents is that they be representable by twice
differentiable, strictly concave utility functions, ui(x), that are increasing
with respect to each of their arguments.

Clearly such a restriction on 2, the set of admissible preferences, is
strong. It strength can be seen by letting £ = 2 and considering a sequence
of ten points {xl,..., xlo} that are randomly selected from a convex
consumption set A that has a nonempty interior. The probability that the

2...x10) is consistent with @ is minuscule--certainly less than

ordering (xl X
0.5. It therefore is in some sense a stronger restriction than some of the
restrictions on preferences identified in Section 3. Recall, in particular,
Blair and Muller's (1983) example of a domain Q that (i) contains more than
half the possible orderings that can be defined on A and (ii) admits the
construction of a rational, weakly nondictatorial, strategy—proof mechanism
satisfying both essentiality and the Pareto criterion.

In addition to restricting ourselves in this discussion to preferences
that are sufficiently smooth, we also restrict ourselves to mechanisms that
have continuous derivatives. A sensible allocation mechanism in an economic
environment can not be everywhere nondifferentiable. To be nondifferentiable
everywhere would mean that whenever an individual agent perturbed his
preferences, then the outcome would jump in a new direction. Clearly,
however, an allocation mechanism need not be smooth everywhere; it is quite

acceptable for the allocation to jump at some points. This means that the

results reported in this section should be considered to be local
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characterizations of the possible strategy-proof mechanisms. As a consequence
we do not discuss the results, for example, of Border and Jordan (1983) who
for a very restrictive domain of admissible preferences consider strategy-
proof mechanisms that are nondifferentiable at isolated points.

These ideas are easily formalized provided that we change the manner in
which the agent i reports his preferences from being P;, a binary relation on
A, to u;, a real valued utility function on A. A utility
function ui(-) represents the preference ordering P; if: xP;y if and only if

u(x) > ug(y). 13

Let A, the set of admissible alternatives, be a compact,
L

convex subset of R with nonempty interior. Redefine @ to be the set of

admissible utility functions on A. We assume that every u, € ! 1s twice

continuously differentiable and that Q itself is a convex subset of a linear

function space that is endowed with the C2 14

topology.
Rationality plays no role in this section. Therefore the feasible set,
B € A, can be fixed equal to A because, with rationality no longer an issue,
permitting B to vary serves no function. An allocation mechanism within
economic environments is therefore a function F: o > A Note that, since

the feasible set is fixed, B is dropped as an argument. A mechanism F is

strategy-proof if, for all profiles u ¢ Qn, all utility functions ui e 2, and

all agents i, ui[F(u)] > ui[F(u/ui)].

Let C2(A) be the set of all twice continuously differentiable functions
on A. The mechanism F is continuously differentiable at u € " if for all
ve [cfn®,

D F(u) =lim,, T2V = Flo) (4.01)

exists, is continuous in both u and v, and has the standard property that
Dcv+dwF(u) = chF(u) + dDwF(u) for all scalars c,d € R and all functions v,

wE [CZ(A)]n. Note that v and w are vectors of n distinct C2 functions. This
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means that D is defined in terms of all n of the agents' utility functions
being perturbed simultaneously. To represent the more restrictive case where
only one agent's utility function is perturbed, let (v/i) be the element
of [CZ(A)]n that has as its ith component the function v, € CZ(A) and has as
its other n-1 components the constant function with value zero. The
derivative D(v/i)F is therefore the direction within A in which the allocation
F(u) moves as the function vy perturbs agent 1's utility function uj;. Agent i

affects the allocation F(u) at u € Q" it av; e C2(A) exists such that

D(v/i)F(u) # 0. Agent i affects agent j's utility at u € Q" if a

v; € CZ(A) exists such that D(v/i)ui[F(u)] # 0 where D(v/i)ui[F(u)] represents
the derivative of agent i's utility when his utility function is perturbed by
Vi

1

The Simplest Case. The constraints that strategy-proofness places on the

design of allocation mechanisms within economic environments are most easily
seen within the simple one agent, two good implementation problem (i.e., n =1
and 2 = 2) that Guesneri and Laffont (1982) have analyzed. Let the function
to be implemented be G:  + A where A is convex subset of RZ. Thus if

u €  represents the agent's true prefences, then the outcome should be G(u) =
x € A, The goal, as it always is in dominant strategy implementation
problems, is to devise a mechanism F such that (i) the agent has an iIncentive
to report u accurately and (ii) the outcome that reporting u acccurately
generates is G(u). The second requirement means that F must be identical to
G; otherwise F would not select G(u) when it induces accurate revelation.
Consequently G is implementable in dominant strategies if and only if G is a
strategy-proof mechanism.

Let u, u' € © be smooth and strictly concave utility functions defined on

A and let, for all x € A and all 6 ¢ {0, 11, ue(x) = Bu(x) + (1-68)u(x) be a
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linear combination of u and u'. Define the single agent's admissible
preferences to be = {ue l 5 ¢ [0, 1]}, i.e., 92 is the family of smooth and
strictly concave functions u and u' generate. The agent reports his
preferences to the mechanism by reporting an n € [0, 1]. He then receives
allocation G(un) € A. Therefore as 8 (or n) varies between zero and one the
image of G(ue) traces out a curve in A. This curve is the choice set for the
agent. Depending on his true value of 8 he reports the n that maximizes his
true preferences.

The solid curves T and T'' that appear in Figures 4.1 and 4.2 respectively
represent two possible images of G. 1In both figures point a corresponds
to G(ue) when 9 = 0.0, point b to G(ue) when 6 = 0.3, and point ¢ to G(ue)
when 6 = 0.5. The dotted curves represent the indifference curves that u

8

generates: the left pair of dotted curves in each diagram are for u d

0.3 "

the right pair are for u Figure 4.1 is consistent with G being strategy-

0.5°
proof because at points b and c respectively the indifference curves

of and u are tangent with I'. Therefore, subject to the constraint

0.3 0.5

that he must pick a point on I'; the agent maximizes his utility by reporting
his preferences truthfully: n = 8. Figure 4.2 is inconsistent with strategy-
proofness because the indifference curves of ugp, 3 are not tangent to I'' at
point b and the indifference curves of ug,5 are not tangent at point c.

Figure 4.2 is the generic case while Figure 4.1 is the exceptional

case. Given a family of utility functions such as u, and an arbitrary

8
function G, then typically a not strategy-proof situation like Figure 4.2

occurs. It, in an informal sense, is an exceptional event (occuring with zero
probability) that Figure 4.1 with its very special, carefully drawn tangencies

occurs. More formally, Guesnerie and Laffont's (1982) result is that

generically in the single agent case an arbitrary function G can not be
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implemented in dominant strategies.

An Impossibility Theorem for Many Agents. Satterthwaite and Sonnenschein

(1981) have shown that the Gibbard-Satterthwaite Theorem carries over to

economic environments whenever public goods only are being allocated and the
mechanism F is broadly applicable. Public goods only means that agents care
about and have preferences over all £ dimensions of the consumption set. A

mechanism is broadly applicable if 2, the set of admissible utility functions,

is open. The openess of 2, coupled with its linearity and C2 topology, has an

important implication: 1if @ is open, u; € @, and v ¢ CZ, then a § > 0 exits

i
such that (ui + Av) £ Q for all X ¢ [0, 8). 1In other words, if a mechanism is
broadly applicable, then any admissible utility function remains an admlssible
utility function when it is perturbed slightly through the addition of another
C2 function, Av. The logic behind the broad applicability requirement is
that a perturbed admissible utility function should itself be admissible
because “"while preferences within an economic environment may have
considerable a priori structure such as strict convexity, preferences are not
naturally limited to any particular parametric form."15
Let Ti(u_i) = {X £ A l X = F(u/ui) where ui £ Q} be the choice set of

agent i. Note that Fi only varies with u_; = (ul,..., Us_1s Ujgqoeees Upde A

profile u € Q" is a regular point of a strategy-proof mechanism F if:

a. The mechanism, F, is continuously differentiable in u.
b.  For all i and all u', in some neighborhood of u, Fi(u_i) is
continuously differentiable in u_y and is a ki—

dimensional, 0 € k, < 2-1, smooth manifold in a neighborhood of the

i
allocation F(u).

C. For all i, F(u) is the unique and well behaved maximizer of uy

on Fi(u_i).
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A regular point therefore is a point where each agent faces a smooth choice
set that changes position smoothly as the other agents' preferences change.

These definitions and notation allow us to state Satterthwaite and
Sonnenschein's (1981, Theorem 3) public goods only result.

THEOREM 4.1 If an allocation mechanism F allocates public goods only, is

strategy-proof, and is broadly applicable, then at every regular
point u € Q" an agent i exists who is a dictator at u.
A dictator within this context is an agent who selects his most preferred
point from an exogenously given set of achievable points. 1In other words, an
agent i is a dictator if Fi(u—i) is a constant as u_; varies.

Several comments should be made about this result. First, the result 1is
true only for public goods. The private goods analogue is discussed below.
Second, the result is local. 1If agent i1 is a dicatator in some neighborhood
of u, then a second regular point u', which is seperated from u, may exist at
which some different agent is the dictator. Satterthwalte and Sonnenschein
observe, however, that if the set of regular points is a connected set and the
mechanism, for all regular points, is total, then a single agent i is the
dictator at all the regular points. In the of public goods only context, a
mechanism is total if at every regular point u at least one agent affects the
allocation F(u).

Third, the Theorem is stated without the Pareto criterion. Therefore
imposed mechanisms are consistent with the Theorem. An imposed mechanism
permits no individual to influence the choice of outcome, i.e., F(u) is a
constant function as u varies. Thus if a mechanism is imposed at u, then, for
all agents i, the manifold Fi(u_i) is a zero dimensional, nonvarying point
within A, which means formally that every agent is an (inconsequential)

dictator. Fourth, if a mechanism is not imposed and agent i is dicatator at
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u, then for all agents j (j#i), Fj(u_j) is the point within A that agent i,
the dictator, selects from his exogenously given choice set Fi.
The most interesting step in the proof of Satterthwaite and
Sonnenschein's proof of Theorem 4.1 is contained in their Lemma 2. That Lemma
in the public goods only case is this: If at a regular point u of a broadly
applicable and strategy—-proof mechanism an agent 1 exists who affects the
utility of some other agent j, then agent j can not affect the utility of
agent i. To begin a simple proof by contradiction, suppose that each of the
two agents can affect the other's utility, the mechanism F is both broadly
applicable and strategy—-proof, and that (without loss of generality) n=2
and £=2.
Figure 4.3 shows what this supposition means. Point a is the base point
for the proof and is the allocation F(u) = F(ul, uz) where (ul, uz) > 92 is a
regular point. At u agent one's choice set is Fl(uz) and agent two's
is Fz(ul). The indifference curves of agents one and two that pass through
point a are the dotted lines labeled respectively uy and Uy in conformance
with the requirements of strategy-proofness and regularity they are tangent to
their respective choice sets. If agent one perturbs his preferences uy
slightly to become ui, which is admissible because the mechanism is broadly
applicable, then his most preferred point on his choice set, Fl(uz), becomes
F(ui, uz), which is labeled as point b, His indifference curve through point
b is labeled ui. This changes agent two's achievable set to become Fz(ui).
Note that agent two prefers point b to point a; therefore the hypothesis that
agent one can affect agent two's utllity is met.
Figure 4.4 develops the contradiction from the basic situation of Figure

4.3, Because F is broadly applicable agent two can construct a small

|

perturbation of his preferences from uy to u,

so that the following three
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specifications hold simultaneously:
a. Point ¢ is F(ul, ué). The indifference curve for ué is tangent
to Pz(ul) at point c. Agent 1, when his utility function is up,
prefers point c to point a, which means that agent two affects agent
one's utility as the proof's initial hypothesis requires.

b. Point b, by construction, is F(ui, ué) as well as F(ui, uz).

C. Again by construction, agent one's choice set becomes Pl(ué) when

agent two perturbs his utility function from uy to ué. Note

that Pl(ué) crosses Pl(uz) at point b.
Because point b is F(ui, ué), strategy-proofness and regularity require that
point b be that point on Fl(ué) where agent one's utility is maximized when
his preferences are u!, i.e, the ui indifference curve mist be tangent to
Pl(ué) at point b. But this is a contradiction because the ui indifference
curve through point b is necessarily tangent to Pl(uz) and, at b, Pl(ué)
crosses Pl(uz). Therefore the proof is complete: at a regular point of a
broadly applicable and strategy-proof mechanism agents one and two can not
each affect the other's utility.

Theorem 4.1 generalizes from the public goods only case to settings that
include private as well as public goods. To accomodate this change from
public to public and private goods, let A be each agent's consumption set and
redefine an allocation mechanism to be a function F: Qn + An. Thus F(u)
= [Fl(u)""’ Fi(u)""’ Fn(u)] is a vector of n functions where the ith
function, F;: - A, specifies the allocation ageant i recieves. The

function F; itself has & components: F; = [Fil,..., FiQ] where Fik is the
amount agent i receives of good k. If some components of each agent's

allocation is a public good, then all the functions F; are constrained to give

each agent the same amount of the public good. Thus if good one is a public
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good, then F11 = Fy) =eee= Fnl' Agents are assumed to have preferences over
only their own consumption set, e.g., agent i's utility is ui[Fi(u)]'
Satterthwaite and Sonnenschein call a mechanism nonbossy if, for all

u € Qn, all agents i, and all u{ e 9, Fi(u) = Fi(u/ui) implies Fj(u)
= Fj(u/ui) for all agents j. The idea of nonbossiness is that if an agent 1
changes his preferences in a manner that leaves his own allocation unchanged,
then the allocations that all other agents receive should also remain
unchanged. This condition, which has intuitive appeal, is satisfied at most

points by the competitive allocation mechanism.16

It is closely related to
Ritz's noncorruptibility condition; in fact, noncorruptibility implies
nonbossiness. Within the private goods setting agent i affects agent j at a
regular point u ¢ Q" if a (v/1i) ¢ [CZ(A)]n exists such that D(v/i)Fj(u) + 0.
At each regular point the affects relation defines a binary relation among the
agents; we write iH(u)j if agent i affects agent j at u.

The private-public goods version of Theorem 4.1 is this. If an
allocation mechanism is broadly applicable, nonbossy, and strategy—proof, then
at each regular point u € Q" the affects relation H is acyclic. This means if
agent i affects agent j, then no agent k (or sequence of agents) can exist who
is affected by agent j and who in turn affects agent i. Thus the theorem
states that agents can not mutually accomodate each other's preferences; all
accomodation must consist of agents who rank lower on an exogenously given
hierarchy adjusting to the preferences of those agents who rank higher on the
hierarchy.

Serial dictatorship is an example of a strategy—proof mechanism that is
nonbossy, broadly applicable, and--as the result requires——acyclic in the
affects relation. The canonical serial dictatorship is the mechanism where

agent 1 selects from an exogenously fixed feasible set Pl, agent 2 selects
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from a feasible set F2(u1) that depends on agent one's choice (or,
equivalently, his utility function provided nonbossiness is respected), etc.
Serial dictatorship is unattractive because the distribution of power is
lopsided and, as Satterthwaite and Sonnenschein showed, the outcome generally
violates Pareto optimality whenever the production possibility frontier is not

linear.

5. Conclusions

This paper has used two approaches to examine the possibility of
constructing stategy-proof (i.e., dominant strategy implementable)
mechanisms. The first approach begins with the environment within which the
mechanism is to be applied and then characterizes the strategy-proof
mechanisms that are possible within it. 1In Section 2 we applied this approach
to the most unstructured of environments: discrete alternatives and all
preference orderings admissible, The main result for this environment is
negative: if there are at least three alternatives, then all strategy-proof
mechanisms that satisfy the Pareto criterion are dictatorial. 1In Section 4 we
applied this approach to the structured environments found in economic
models: the alternative set is a subset of Euclidean space and preferences
are a priori restricted, for example, to be representable by a twice
differentiable utility function. There we reported additional negative
results.17

The second approach, which we employed in Section 3, is exactly the
opposite of the first approach. 1In it we first specify the properties the
mechanism should possess in addition to strategy-proofness and then
characterize the environments in which that mechanism can exist. Substantial

progress has been made in this area, though it difficult to characterize this
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progress as either positive or negative. The positive aspect is that
nondicatorial, strategy—-proof mechanisms do exist for particular environments
in which preferences are restricted only slightly. The negative aspect is
that the environments for which these reasonable mechanisms do exist have, as
of yet, no known relation to environments of the sort that naturally arise in
economic models.

From the results that are presented and developed in this paper, we
believe there are three main lessons that can be drawn. First, the theory of
strategy-proof mechanisms is not a neatly finished body of knowledge. Numbers
of interesting questions are still open. For example, on the technical side,
the two approaches we have used in this paper need to be drawn together, i.e.,
how do the results of Section 3 relate to the results in Section 47 A
tantalizing, but unexploited, connection is the parallel that exists between
Ritz's noncorruptibility condition and Satterthwaite and Sonnenschein's
nonbossiness condition. On the substantive side, very little work has been
done on strategy-proofness in repetitive situations. Our intuition is that an
important reason why individuals often choose not to misrepresent their
desires in group decision situations is that they do not find it in their
interest to acquire the reputation of a manipulator.

Second, with only one important exception, economic life is by and large
not straightforward in the sense of always giving each agent a dominant
strategy. Even though the theory as it currently stands is not absolutely
conclusive concerning the impossibility of constructing strategy-proof
mechanisms for economic environments, it has clearly established that
strategy—proofness can only be achieved in certain environments and then only
By using carefully designed mechanisms. Thus an economic agent in his

individual optimizing behavior does generally find it in his interest to worry
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about other agents' intentions and to play the game of trying to correctly
anticipate their actions in planning his own actions even as they try to
anticipate his actions in planning their actions. The exception to this
generalization is the large number of agents case. For example, in an
exchange economy that has a continuum of competitors, every agent is unable to
influence prices, becomes a price taker, and finds it a dominant strategy to
report his demand function accurately and without consideration of the demands
that other agents are reporting. 1If, however, the number of agents is small,
then each agent can affect the price and no longer has a dominant strategy.
The demand function an agent wants to report then depends importantly on the
demands other agents are expected to report.18
Finally, the theory of strategy-proof mechanisms has philosophical

implications. Bok (1978, ch. 1) in her book that reviews and expands the
ethical arguments extant against lying defines a lie to be an intentionally
misleading statement. By this definition, in those situations where a group's
decision process can usefully be represented by an allocation mechanism, an
agent who misrepresents his preferences may sometimes legitimately be said to
be lying. The impossibility results concerning strategy-proof mechanisms
suggest that, no matter how well we redesign the social system, agents from
time to time have an incentive to lie. This incentive is intrinsic to social
mechanisms. It is as much a reflection of the imperfectability of society
generally as it is of the imperfectness of society specifically. Therefore an
individual's decision to be honest and not to lie is truly an ethical decision
because, even in principle, society can not be designed so that honesty is
self enforcing. The excuse that a lie 1is society's fault since its structure
gave the liar the incentive to perpetrate his deception is empty because a

society that gives no incentive to lie is logically inconceivable.
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NOTES

1. An exception is Postlewaite (1979) who wrote about the incentives
individuals may have to misrepresent their initial endowments.

2. This is the revelation principle in its original and simplest form.

3. If more than one element of B is maximal, then the max operator uses
an arbitrary rule to pick one element from among the set of maximal elements.

4. We have defined an allocation mechanism to be a singlevalued
function. This definition may appear to be a candidate for relaxation. For
example, an allocation mechanism could be permitted to select as its output
probability mixtures of two or more allocations that are contained in B, the
set of feasible allocations. This relaxation, however, is an illusion because
A, the set of conceivable outcomes, should be defined for such an allocation
mechanism as all possible probability mixtures of the conceivable allocations,
not simply as the set of conceivable allocations. Once this is done, then the
allocation mechanism is again singlevalued and, unless preferences over this
set of probability distributions are restricted, Theorem 2.1 continues to
apply. For example, the assumption that each agent evaluates probability
mixtures in accordance with a von Neumann-Morgenstern utility function is a
strong restriction on agents' preferences. Two examples of papers that
explore the consequences of permitting probability mixtures to be outcomes are
Barbera (1977) and Gibbard (1978).

S. Blin and Satterthwaite (1978) discuss the parallels that exist
between an individual's choices and a group's choices.

6. Blin and Satterthwaite (1978, Theorem 2) stated this result for the
case of unrestricted preferences.

7. This result is stated in exactly this form in Blin and Satterthwaite
(1978, Theorem 4). Its forebears include Satterthwaite (1975, Lemma 8), an
intermediate result of Gibbard (1973), and Pattanaik (1973, Theorem 2).

8. See Blin and Satterthwaite (1978, Theorem 5). That particular proof
was based on a proof of Schmeidler and Sonnenschein (1978), which in turn had
been based on Gibbard's (1973) original proof of Theorem 1.1. All three of
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these proofs of Theorem 2.1 have the common feature of using Arrow's theorem
to create a contradiction. Satterthwaite's (1973, 1975) original proof of
Theorem 2.1 and a second proof of Schmeidler and Sonnenschein (1978) are
constructive and do not use Arrow's theorem. Thus the discussion of using
Theorem 2.1 to prove Arrow's theorem is not empty.

9. See, for example, Sen and Pattanaik (1969). Their paper does not
deal explicitly with strategy-proofness; rather it deals with the
transitivity of majority rule. But, as the results of Section 3 show, if a
mechanism is transitive and satisfies IIA as majority rule does over
appropriately restricted domains, then it is also strategy-proof.

10. For a rational mechanism F defined on some 2, strategy-proofness is
equivalent to monotonicity and ITIA. This may be seen in two steps. For the
first step, suppose voter i can manipulate F at profile P and feasible set B
by playing Q- There then exists a pair of alternatives, x and y, such that
x = F(P, B), v = F(P/Qi, B), and yP; %, This means, because F is rational and
has a social welfare function fp underlying it, xfp(P)y and yfF(P/Qi)x. 1f
yQ;x then fF violates IIA. If xQ;y then f is nonmonotonic since, when agent i
changes his reported preference from yPix to xQy, the social ordering changes
perversely for xf(P)y to yf(P/Qi)x. This proves that strategy—-proofness
implies monotonicity and IIA. For the second step, study the violation of IIA
and the violation of monotonicity that are set up in the first step.
Inspection shows that if either occurs, then agent i can manipulate F.
Therefore, for rational mechanisms, monotonicity and IIA imply strategy-
proofness. Blin and Satterthwaite (1978, Theorem 2) and Blair and Muller
(1983) stated this result for unrestricted preferences and restricted
preferences respectively.

11. Muller (1982) developed this graphical analysis.

12. Ritz's theorem is true as stated here only if Q permits an agent to
have the strict preference ordering (abc) over some three alternatives a, b,
and c¢ contained in A. This is a very weak condition that is satisfied by any
interesting Q.

13. For a given P; many utility representations u; exist. This
indeterminancy has no effect on the results that we present in this section
because the results are impossibility theorems.

14. Under the c2 topology two utility functions, u and u', are close to
each other if at every point within A their values are close, their vectors of
first derivatives are close, and their matrices of second derivatives are
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close.
15. Satterthwaite and Sounenschein (1981, p. 591).

16. ©Note that nonbossiness is trivially satisfied in the public goods
only case because every agent receives the same allocation. In the private
goods only case the competitive mechanism satisfies nonbossiness except, as
Mark Walker has privately pointed out, in special circumstances where a
continuum of equilibria exist. BSatterthwaite and Sonnenschein (1981)
incorrectly assert that the competitive mechanism is nonbossy at all regular
points.

17. Sections 2 and 4 neglected two well known cases of preference
restrictions: single-peaked profiles and transferable utility. For the case
of single-peaked profiles majority rule is strategy-proof. See Blin and
Satterthwaite (1976). For the case of public goods in the presence of
transferable utility Groves schemes are strategy-proof. A large literature
exists on Groves schemes, e.g. Groves (1970), Clarke (1971), Groves and Loeb
(1975), Green and Laffont (1979), and Holmstrom (1979). We have not included
these two cases in this paper for reasons of space and because our judgement
is that they are special cases that do not generalize.

18. Pazner and Wesley (1977, 1978) analyzed the properties of voting
procedures for the large number of agents case. Roberts and Postlewaite

(1976) investigated the incentive to become a price taker in an exchange
economy as the number of agents increases.
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TABLE 2.1
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Restrictions on F(e+, A) Imposed by the Pareto Criterion

AGENT 2
1 2 3 4 5 6
(xyz) (xzy) (yxz) (yzx) (zxy) (zyx)
I (ayz) x x F2 5 423 oyt 0h
2 (xzy) x X #z 7 ? 8 #y 1 £y 3
3 (yxz) #z #z y y 7 12 #x 9
b (yzx) #2 ? y y #x 11 4y 10
5 (zxy) #y #y ? #x z z
6 (zyx) ? #y #x #x z z
TABLE 2.2
Details of Feldman's Proof
Assigned Alternative Manip. Manip. Manip. Manip.
Cell Outcome Outcome Situation Agent  Strategy Outcome
2 z F(1,5)==z one F(2,5) = pls
3 z F(2,5)=x two F(2,6) = z
4 y or z F(1,6)=y or z one F(2,6) = x
5 y F(1,6)=x two F(1,4) = y
6 v F(1,6)=x two F(1,3) = y
7 y F(2,3)=y one F(1,3) = X
8 y or z F(2,4)=y or z one F(1,4) = pld
9 z F(3,6)=z one F(2,6) = X
10 z F(4,6)=2z one F(3,6) = y
11 z F(4,6)=y two F(4,5) = z
12 X OY z F(3,5)=x or z one F(4.5) = y
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iii.

iv.
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TABLE 3.1
Decisiveness Implications

Domain Conditions Implication Name

(abc) € t(Q) (bea) € £(Q) (ca) (ba) Direct Branch
(abe) € t(Q) (bea) € t(R) (ab) (ac) Direct Branch
(abe) e £(2)  (bea) ¢ t(Q) g;g; (ac) Joining Branch
(abc) € t() (bca) ¢ t(2) (ca) E:g; Splitting Branch

(xzyw)

(yzwx)

(yxwz)

(wxzy)

(zwxy)

(wzyx)

TABLE 3.2

Nonrational, Strategy-proof Mechanism

AGENT 1
1 2 3 4 5 6

(xzyw) (yzwx) (yxwz) (wxzy) (zwxy) (wzyx)

X y y X z z
y y y y y y
y y y y y y
X y y w z w
z y y z z z
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(xy) o (zy) 2 (zx)
! h
(x2) . (y2) 2 (yx)

Figure 3.1. Ql = I = {xyz ,yzx, zxy, zyx, yxz, Xzyl}.

(xy) - (zy) <= (zx)
(xz) -  (y&) . (yx)

Figure 3.2. Q5= I - {zyx} = {xyz, yzx, zxy, yxz, xz2y}.
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