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Abstract. This paper considers two bilateral trading problems with
incomplete information: the symmetric uniform trading problem, and the lemon
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ANALYSIS OF TWO BARGAINING PROBLEMS WITH INCOMPLETE INFORMATION

by
Roger B. Myerson

1. Introduction

To analyze a cooperative game with incomplete information, there are
three kinds of solution concepts that should be considered. First, we should
characterize the set of coordination mechanisms or decision rules that are
feasible for the players when they cooperate, taking account of the incentive
constraints that arise because the players cannot always trust each other.
Second, we should characterize the mechanisms that are efficient within this
feasible set. Efficiency criteria for games with incomplete information have
been discussed in detail by Holmstrom and Myerson [1983]. Third, we should
try to identify equitable mechanisms on the efficient frontier that are likely
to actually be implemented by the plavers if thev are sophisticated
negotiators with squal bargaining ability. (We might also want to consider
cases where one player has more bargaining ability than the others, as in

principal-agent problems.) For this analysis, a concept of neutral bhargaining

solution has been axiomatically derived by Myerson [1983, 1984].
In this paper, we analyze two bilateral trading problems with incomplete
information in terms of these three solution concepts. In Sections 2, 3, and

4, we consider the symmetric uniform trading problem, a simple problem in

which the buyver and seller each have private information about how much the
object being traded is worth to him. This problem was first studied by
Chatterjee and Samielson [1983], and was also considered by Myerson and

Satterthwaite [1983]. 1In Sections 5 and 6, we consider the lemon problem, in

which only the seller has private information, but the value of the object to

the buyer may depend on this information. Akerlof [1970] first studied a



version of the lemon problem, in a market context, and Samuelson [1981]
characterized the seller's ex—ante optimal mechanisms.

Section 7 contains the more technical proofs relating to the neutral
bargaining solutions. A reader who is not familiar with the earlier papers on

this subject may prefer to omit this final section.

2. The Symmetric Uniform Trading Problem: Feasibility

In this section and the next two, we consider a bargaining problem in
which there is only one seller (trader #1) and one potential buyer (trader #2)
for a single indivisible object. Both buyer and seller have risk-neutral

utility for money. We let V1 denote the value of the object tn the seller

~ ~

and V2 denote the value to the huyer. We assume that V1 and V2 are
independent random variables, and that each is uniformly distributed over the

interval from 0 to 1 (in some monetary scale). Thus, the bargaining situation

may be referred to as the svmmetric uniform trading problem.

We assume that each trader i knows his own valuation %i at the time of
bargaining, but he considers the other's valuation as a random variable.
Furthermore, neither trader can directly observe the other's valuation. The
traders can communicate with each other, but each would be free to lie ahout
the value of the object to him, if he expected to get a better price by doing
SO.

A direct trading mechanism is one in which each trader simultaneously

reports his valuation to a mediator or broker, who then determines whether the
object is transferred from seller to buyer and how much the buyer must pay the

seller. A direct mechanism is thus characterized by two outcome functions,

denoted by p(e,*) and x(+,*), where p(vy,v9) is the probability that the



object is transferred to the buyer and x(vl,vz) is the exnected payment to the
seller if vy and vy are the reported valuations of the seller and buyer. A

direct mechanism is (Bayesian) incentive compatihle if honest reporting forms

a Bayesian Nash equilibrium. That is, in an incentive—compatible mechanism,
each trader can maximize his expected utility by reporting his true valuation,
given that the other trader is expected to report honestly.

We can, without loss of generality, restrict our attention to incentive-—
compatible direct mechanisms. This is because, for any Bayesian equilibrium
of any bargaining game, there is an equivalent incentive—compatible direct
mechanism that always yields the same outcomes (when the honest equilibrium is
played). This result, which is well known and very general, is called the

revelation principle. The essential idea is that, given any equilibrium of

any bargaining game, we can construct an equivalent incentive—compatible
direct mechanism as follows. First we ask the buyer and seller each to
confidentially report his valuation; then we compute what each would have done
in the given equilibrium strategies with these valuations; and then we
implement the outcome (transfers of monev and the object) as in the given game
for this computed behavior. If either individual had any incentive to lie to
us in this direct mechanism, then he would have had an incentive to lie to
himself in the original game, which is a contradiction of the premise that he
was in equilibrium in the original game. (For more on this revelation
principle, see Myerson [1979].)

Given a direct mechanism with outcome functions (p,x), we define the

following quantities

- ! - _rl
X, v ) = IO x(vy,t,) dt, , x,(v,) = fo x(ty,v,) Aty,



- 1 - 1
pl(Vl) = fo p(Vl;tz) dtz s Dz(Vz) "fo D(tl,Vz) dtla
Ul(vl,p,x) = xl(vl) - vy pl(vl), UZ(VZ’p’X) =v, pZ(VZ) - xz(vz).

Thus, Ul(vl,p,x) is the expected profits or gains from trade for the seller if
his valuation is v, since il(vl) is his expected revenue and ﬁl(vl) is his
probability of losing the object given %1 =V Similarlyv, Uz(vz,p,x) is
the expected gains from trade for the buyver, §2(v2) is the huver's expected
payment, and 52(v2) is the buyer's probability of getting the object, if his

valuation is Voo

In this formal notation, (p,x) is incentive compatible iff

Ul(vl,p,x) > §1(t1) - vy 51(t1)
and

Up(@55P5%) 2 V) Dolt,) = xy(t)
for every Vis Vo, By, and to between 0 and 1. These two inequalities assert
that neither trader should expect to gain in the mechanism by reporting

valuation ty when vy is his true valuation.

We say that a mechanism (p,x) is individually rational iff each trader

gets nonnegative expected gains from trade given any valuation, that is,
Ul(vl,p,x) > 0 and UZ(VZ’p’X) >0

for every v and Vo between 0 and 1. Since each individual already knows his
valuation when he enters the bargaining process and neither individual can bhe
forced to trade, a feasible mechanism should he individually rational in this
sense, as well as incentive compatible. We say that a mechanism is feasible
iff it is both individually rational and incentive compatible.

Many bargaining games satisfy a stronger individual-rationality



condition: that neither individual ever consents to a trade that leaves him
worse off ex post. Formally this condition is

X(VI’VZ) —le(vl,vz)>0 and VZP(VI,VZ)—X(VI,V2)> 0
for every vy and vog. If (p,x) satisfies this condition, then we must have

Ul(l,p,x) =0 and U2(O,p,x) =0,

That is, the seller expects no gains from trade if %1 = 1, since he knows
that the buyer's valuation is lower; and similarly the buyer expects no gains
from trade if %2 = 0, We may say that a feasible mechanism (p,x) is normal
iff U;(1,p,x) = 0 = Uy(0,p,x).

The following proposition completely characterizes the set of feasible

mechanisms for the symmetric uniform trading problem.

Proposition l. Given any function p:[0,1]x[0,1] +» [0,1], there exists

some function x(¢,*) such that (p,x) is a feasible mechanism for the symmetric
uniform trading problem if and only if 51(-) is a weakly decreasing function,

52(°) is a weakly increasing function, and

(1) 0 < fé fé (v2 vy T .5) p(vl,vz) dv dvz.

1

Furthermore, X can be constructed so that (p,x) is normal if and only if (1)
is satisfied with equality. In general, for any incentive-commatible

mechanism (p,x)

, - 1 rl _ -
(2) Ul(l,p,x) + UZ(O,p,x) 2 IO IO (v2 vy .5) p(vl,vz) dv1 dv2
and, for every v; and v,,

— 1 iy
(3) Ul(vl,p,x) Ul(l,p,x) + fv pl(sl) s,

1

v
- 2 -
(4) U2(V2,p,x) = U2(O,p,x) + IO pZ(SZ) dsz.



Proof. This proposition is a special case of Theorem 1 of Myerson and

Satterthwaite [1983]. Q.E.D.

It is straightforward to check that
1 A2
jo jo (v, =v, = (1/3)) dv  dv, = 0.

Thus, conditional on the event that V2 > V1 (so that the individuals have

~ ~

something to gain from trading), the expected value of V2 - Vl equals 1/3.
However, condition (1) asserts that, conditional on the event that a trade
actually occurs, the expected value of %2 - %1 mist be at least 1/2, for any
feasible mechanism. Thus, it is not possible to construct a feasible
mechanism in which trade occurs if and only if %2 > 61.

Condition (1) has experimentally testable implications. TIf we ohserve
many instances of the symmetric uniform trading problem, with %1 and %2 chosen
independently each time, and with each huver and seller facing each other at
most once (to avoid the complications of a repeated game), then the average

~ ~

difference V2 - V1 in those instances where trade occurs should he close to
1/2. This prediction hoids true no matter what are the social conventions
that regulate the negotiation process. We only need to assume that buyer and
seller in each instance are playing some Bayesian NWash equilibrium of some
bargaining game in which neither individual ever has to trade at a loss.

To interpret Proposition 1 geometrically, consider Figure 0. The dotted
line represents the set of points where vy =V + 1/2. If we Araw any
increasing curve in the unit square such that the center of gravity of the
region above the curve lies on or above the dotted line, then there exists

sonme feasible mechanism such that trade occurs if and only if (VI’VZ) is above

the curve. For a normal mechanism, the center of gravity mist he exactly on



the dotted line.

[Insert Figure O here]

3. The Symmetric Uniform Trading Problem: Efficient Mechanisms

If two individuals can communicate effectively in a bargaining problem,
then we mav expect them to use a trading mechanism that is efficient, in the
sense that there is no other incentive—compatible mechanism which they both
would surely prefer. That is, we may say that an incentive—compatible
mechanism (p,x) is efficient iff there does not exist any other incentive-

compatible mechanism (p,x) such that

A~

Ul(vl,p,x) > Ul(vl,p,x) and Uz(vl,p,x) > dz(vz,p,x)

for every v; and v, between O and 1. 1In the terminologyv of Holmstrdm and
Myer son ﬁ983], this concept of efficiency corresponds to a weak form of

interim incentive efficiency.

Using a standard separation argument, one can show that this definition
is equivalent to the following more tractable characterization. A given
incentive—compatible mechanism is efficient iff there exist two weakly
increasing functions LI:[O,I] + [0,1] and LZ:[O,I] + [0,1], with
Li(0) = L2(O) =0 and Ll(l) = Ly(1) =1, such that the given mechanism

maximizes
(5) Lo @ p) AL, v ) + [L U (v,,p,x) AL, (v.)
o "1V P 11 0 U2tV oP> 2V 2

over all incentive—compatible mechanisms (p,x). (It can he easily shown that

Ll(l) - LI(O) must equal Lz(l) - L2(O), because otherwise a lump~sum transfer



of money could make (5) arbitrarily large.) TIf L; and Lo are differentiable,

1
with Ly = Zi, then the Riemann-Stieltjes integrals in (5) mav be rewritten

as
fl U. (v x) &.(v,))dv_  + fl U, (v x) _.(v,) dv
0 "1+ 1°P> 11 1 0 "1V 2P 2%V 9 2°

Proposition 2 below gives us a direct computational procedure for verifying

efficiency of a mechanism.

Proposition 2. Suppose that (p,x) is an incentive—compatible mechanism

for the symmetric uniform trading problem and T;(¢) and L,(¢) are weakly
increasing functions such that Ll(O) = L2(0) =0 and Ll(l) = L2(1) =1,

Suppose also that, for every v; and v, between 0 and 1,

I if v - L) < v, - LG,

LO if 2v1 - Ll(vl) > 2v2 - L2(v2).

Then (p,x) is efficient.
Proof. By Proposition 1, if (p,x) is incentive compatible, then
[Yu . p,x) dL v ) + L U (v, ,p,x) dL (v,) =
o 11’7 171 0 127 272

1 41 - 1 Vo2 -
Ul(l,p,x) + fO fvl pl(sl)dsldLl(vl) + U2(O,p,x) + IO fO p2(s2)d52dL2(v2)

1 - 1 -
U (L,p,%) + U,(0,p,%) + [ L (s) py(s) ds) + [ (1 -1,(s)) p,(s,) ds,

_ 1r1 _ _ 1r1 _ a
fofo (2v2 2v1 l)p(vl,vz)dvldv2 + IOIO (Ll(sl) + 1 Lz(sz))p(sl,sz)dsl-‘s2

= fé fé ((ZVZ - L2(v2)) - (ZV1 - Ll(vl))) p(vl,vz) dv1 dvz.



The conditions in Proposition 2 imply that p maximizes this double integral

over all functions from [0,1]x[0,1] to [0,1]. N.E.D.

Let us now consider three specific mechanisms which were studied by
Chatterjee and Sarmmelson [1983].

The first mechanism corresponds to a game in which the seller has the
authority to demand any price for his object, and then the buyer can either

take it or leave it. The seller's optimal price in this game is

~

q = (1 + Vl)/2, which maximizes his expected profit (1 - ql)(q1 - Vl)'

Thus, this mechanism is represented by (pl,xl) where

1 if v, > (1 + vl)/2,
1

0 if Vo < (1 + vl)/2,

((1 + vl)/2 if v, > (1 + vl)/Z,

xl(vl,vz) =
0

if v, < (1 + vl)/2.

It is straightforward to verify that (pl,xl) is efficient, using Proposition 2

with

0 if v, =0,

L =vy Ly =

1 if v, > 0.

Figure 1 shows the trading region for this mechanism (pl,xl).
[Insert Figure 1 here]

The second mechanism corresponds to a game in which the buyer can commit

himself to any offer price for the object, and then the seller can only accept



it or reject it. The buyer's optimal price in this game is qq = V2/2,

- 10 -

maximizes his expected profit qz(Vz - qz). Thus, this mechanism is

represented by (pz,xz), where

(1

2 - <
p (Vl,vz) - [

Lo

v2/2

xz(vl,vz) =
Lo

To verify that (pz,xz) is efficient, use

L?_(Vz) =V, Ll(vl) =7\
1

1’

<

1’

Figure 2 shows the trading region for (pz,xz).

[Insert Figure 2 here]

which

The third mechanism corresmonds to a game in which the seller and buyver

each simultaneously announce a bid price.

If the seller's bid is lower than

the buyer's bid, then the buyer gets the object for the average of the two

bids. On the other hand, if the seller's bid is higher than the buyer's bid,

then there is no trade. Chatterjee and Sammuelson {1983] have shown that the

equilibrium bids for this game are

Notice 9 > q, if and only if

represented by (p3,x3) where

25 41 2y 4 L
3 V1 + i and q2 3 V2 +-T§.
+-%. Thus this mechanism is



po(v, w.) =1
12 1
0 if v, < v + 7
1
, (v1 + Vo + .5)/3 if v, > vy + 7
x (v,,v,)
1°°2 1
0 if v, < v1 + 7"

2

379 if vy <1,
Ll(v1)=

1 if v, = 1,

0 if vV, = 0,
LZ(VZ) =

2 1 .

§\72+3 if V2>O.

Figure 3 shows the trading region for (p3,x3).
[Insert Figure 3 here]

Myerson and Satterthwaite [1983] showed that (p3,x3) maximizes the
expected sum of the two traders' profits over all feasible mechanisms. To
verify this, let Ll and LZ be as in the preceeding paragraph, and ohserve that

1 1
IO Ul(vl,p,x) dLl(Vl) + fO Uz(vz,p,x) dLZ(Vz)

2.1 1 1 1
= §[f0 Ul(vl,p,x)dv1 + fO Uz(vz,p,x)dv2 + 5 Ul(l,p,x) + 5 UZ(O,D,X)].

The expression in brackets may be interpreted as the Lagrangian function for

the problem of maximizing the expected sum of the traders' profits, when we



give a shadow price of 1/2 to each of the individual-rationalitv constraints
U;(1,p,x) > 0 and Uy(0,p,x) > O. Since (p3,X3) maximizes this expression
over all incentive-—compatible mechanisms (by the proof of Proposition 2) and
satisfies these two individual-rationality constraints with equality, it

maximizes the expected sum of profits over all feasible mechanisms.

4, The Symmetric Uniform Trading Problem: Neutral Solutions

Let us suppose now that the seller and buyer in the symmetric uniform
trading problem can negotiate face to face (perhaps with some time limit) to
try to determine a mutually acceptable price for the ohject. TIn a realistic
setting, such negotiations would he much more complicated than the three
simple games that we discussed in the preceding section. In real
negotiations, each trader's strategy is a plan for making a sequence of
demands, offers, and arguments, which may he chosen from the infinite richness
of human language. Obviously, we have no simple mathematical model of the
traders' strategy sets in such face-to-face negotiations. However, if one
could construct a realistic model of face-to-face negotiations as a
noncooperative game in strategic form, any equilibrium of the model would
still correspond to some feasible mechanism, by the revelation principle.
Thus, instead of trying to model the negotiation process as a game in
strategic form, we may try to model the negotiation process as a direct
mechanism. That is, by analyzing the various incentive—compatible mechanisms,
we may hope to find one that is a realistic description of face-to-face
negotiations.

A concept of neutral bargaining solutions has been defined by Myerson [1984]

for general bargaining problems with incomplete information. This solution



concept generalizes Nash's [1950] bargaining solution, and is based on axioms
of equity, efficiency, and independence of irrelevant alternatives. For the
symmetric uniform trading problem, this solution concept identifies a new
efficient mechanism, different from the three mechanisms that were discussed
in the preceding section. However, before we consider this mechanism and
argue why it mav be a good model of face-to-face negotiations for this
symmetric uniform trading prohlem, let us reconsider the mechanism (p3,x3)
discussed in the preceding section.

At first, (p3,x3) seems to have many good properties to recommend it to
us as a bargaining solution for symmetric uniform trading. As we have seen,

(p3,x3) is efficient. 1t treats the two traders symmetrically. It is also

ex—ante efficient, in the sense that, among all feasible mechanisms for the

symmetric uniform problem, (p3,x3) maximizes the sum of the two traders' ex-
ante expected gains from trade., Thus, if the traders could commit thenselves
to a mechanism before either learns his own valuation %i’ then the best
symmetric mechanism for hoth would be (p3,x3).

However, each trader already knows his actual valuation Qi when he
negotiates, and this is not assumed to be a repeated game. Thus, each trader
cares only about his conditionally expected gains given his actual
valuation. Ex-ante expected gains are not relevant to the actual traders
during negotiations, so ex-ante efficiency should be irrelevant to our theory
of negotiations. In fact, if the seller's valuation is higher than .75, then
the mechanism (p3,x3) is among the seller's least-preferred mechanisms,
since Ul(vl,pB,XB) =0 for all v, 2 .75,

Suppose, for example, that the seller's valuation is %1 = .8, and he is
negotiating with a buyer who wants to play the simultaneous-tid split-the-

difference game with the equilibrium that is equivalent to (p3,x3). The
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seller knows that he has nothing to gain by playing this game, as the buyer
will never bid ahove .75 in it. Thus, the seller has nothing to lose by
refusing to play by its rules, and instead trying to make a nonnegotiable
first—-and-final offer to sell at price 0.9. The buyer may be antagonized by
such an arrogant "Boulware™ strategy, but if %2 > .9, there should he at
least some positive probability that the buyer would accept. Thus, the seller
would be strictly better off than in the mechanism (p3,x3).

Similarly, U2(v2,p3,x3) =0 if vy € .25, so the buyer would have
nothing to lose by refusing to participate in the (D3,x3) mechanism and
instead trying to make a nonnegotiable first—-and-final offer to buy at some
low price. Thus, the mechanism that accurately describes the real negotiation
process should have more trade occuring when %1 > .75 or %2 < .25 than in
the (p3,x3) mechanism. To satisfv the "center of gravity” condition (1) of
Proposition 1, the mechanism must also have less trade fhan (p3,x3) under some
other circumstances, when 61 and 62 are in the middle of their range.

The following mechanism (p4,x4) satisfies the conditions for a neutral
bargaining solution from Myerson [1984], and it differs qualitatively from

(p3,x3) exactly as described above.

A 1, if v2>3v1 or 3v2—2>v1,
P (vy,W,) =
0, if Vo <3 vy and 3 Vy = 2 < Vo
4(v v,)va./2 if v, €1 ~-v
4 P WYy Yy 2 1
x (v,,v,) =
12 4
p (vl,vz) (1 +-v1)/2 if & >1 - vy o.

Figure 4 shows the trading region for (p4,x4). (The kink in the boundary of

the trading region is at (.25, .75).)



[Insert Figure 4 here]

It is straightforward to check that this neutral mechanism (pA,XA) is
/
incentive compatible and individually rational. To check that (pa,x4) is

efficient, use Proposition 2 with

. 1

0 if ! < Z
(6) LG =
4 v, - i if v, » 1
371 3 1 4
% 23 if 23 < 2 s
LZ(VZ) = ;

1 if v, > Z "

We say that the seller is in a strong bargaining position if V1 is close
to 1, since he has very little to lose by not trading. Similarly, we say that
the buyer is in a strong bargaining position if V, is close to 0. The formula

7 ~ ~
for x* can then be interpreted as follows. If V2 <1-vV then the bhuyer

1’
is in a stronger bargaining position than the seller (since 62 is closer to O
than %1 is to 1). In this case, if trade occurs then it is at price %2/2,
which is the buyer's optimal first—and-final offer, as in (oz,xz). If

%2 > 1 - %1 then the seller is in a stronger bargaining position than the
buyer, and any trade is at the seller's optimal first—and-final offer

(1 + %1)/2, as in (pl,xl). Thus, if the seller is stronger than the buver,
then the neutral bargaining solution (pa,xa) resembles the mechanism (pl,xl),
in which the seller controls the price, except that the trading region is
slightly smaller (compare the upper wedge in Figure 4 with Figure 1).
Similarly, if the buyer is stronger than the seller, then the neutral

bargaining solution (p4,X4) resembles the mechanism (p2,x2) in which the buyer

controls the price, except again the trading region is slightly smaller.
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(Compare the lower wedge in Figure 4 with Figure 2.)

The neutral bargaining solution concept of Myerson [1984] is meant to be
applied to two—person bargaining problems with incomplete information in which
the two players have equal bargaining ability. Here "bargaining ability”
means the ability to argue articulately and persuasively in the negotiation
process. Myerson [1983] defined a theory of solutions for cooperative games
with incomplete information in which one individual has all of the bargaining
ability. In the terminology of that paper, if the seller had all of the

bargaining ability than (pl,xl) would be the seller's neutral optimum (because

it is undominated for the seller and is safe, in the sense that it would be
incentive compatible and individually rational even if the buyer knew the
seller's valuation). Similarly, (pz,xz) would be the buyer's neutral optimum
if he had all of the bargaining ability.

Thus, the neutral bargaining solution (p4,x4) is a first illustration of

the following important property, which we may call arrogance of strength. If

two individuals of symmetric bargaining ability negotiate with each other, but
one individual has a surprisingly strong bargaining position (that is, the
range of agreements that would be better for him than the disagreement outcome
is smaller than the other individual expects), then tﬁe outcome of the neutral
bargaining solution tends to be similar to what would have been the outcome if
the strong individual had had all of the bargaining ability, except that the
probability of disagreement (no trade) is higher,

The proof that (p4,x4) is a neutral bargaining solution for the symmetric
uniform trading problem is given in Section 7. However, it may be helpful to
discuss here the essential properties of (p4,x4) that identify it as a
bargaining solution. The neutral bargaining solutions were defined by Myerson

[1984] using axioms that generalize the axioms of Nash's [1950] bargaining
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solution. Then, in a theorem, it was shown that these neutral bargaining

solutions can also be characterized by two properties: efficiency and virtual

equity. The efficiency property has already been discussed above, but the
virtual equity property needs more explanation.

Given any L1 and L2 as in Proposition 2, we define functions Wl and W2 by
Wl(vl) =2 v1 - Ll(vl), WZ(VZ) =2 v2 - L2(v2).

We call Wi(vi) the virtual valuation of the object to trader i if vy is his

true valuation. For L1 and L2 as in (6) the virtual valuations are

. 1
2 v, if vy < 7
(7 Wl(vl) = .
(2 v1+ 1)/3 if M RAVAR
% v, if v, < % s
WZ(VZ) = ,
L2 O 1 if \2 > 7

By Proposition 1, for any feasible mechanism there must be a positive
probability of negotiations ending without a trade when the object is worth
more to the buyer than to the seller. Such a conclusion may seem paradoxical
if the traders have the option to continue negotiating. Why should they stop
negotiating when they know that there is still a possibility of mutual gains
from trade? One possible explanation is that each trader i deliberately
distorts his preferences in bargaining, in response to the other's distrust,
and acts as if the object was worth the virtual valuation Wi(Qi) to him,
instead of the actual valuation %i' (In (7), Wl(vl) > v and
Wy(vy) < Vo, So the seller is overstating and the buyer is understating the
object's value.) The mechanism (p4,x4) has trade occuring if and only if

W2(V2) > Wl(vl)’ so there is no possibility of further virtual gains from
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trade after (p4,x4).
0f course, any efficient mechanism that satisfies Proposition 2 would

satisfy a similar property (which we may call virtual ex-post efficiency) in

terms of some other virtual valuation function. But (p4,x4) is also virtually
equitable, in terms of the same virtual valuations (7) that make it virtually
ex post efficient. To see this, consider any v; > 1/4. If the seller's

true valuation is v;, then his conditionally expected virtual gains in (p4,x4) are
1, 4 4
IO (x (vl,vz) - Wl(vl) P (vl,vz)) dv2

- ((1+v)/2 - (2v) + 1D/3) dv

(v, +2)/3 2

(1 -vp?is,

which is equal to his conditional expectation of the buyer's virtual gains in

(p4,x4)=

[3 (iy0v) p v vy = x'(v v dv,

- J! (C2v

- 1) -1+ vl)/Z) dv
(v1+2)/3

2 2

(1 - v?/18,

Similarly, if 62 = v, < 3/4, then the buyer's conditional expectation of his
own virtual gains in (p4,x4)
v2/3 9
IO (2v2/3 - v2/2) dv1 = (v2) /18

is equal to his conditional expectation of the seller's virtual gains
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v2/3 9
IO (v2/2 - 2v1) dv1 = (vz) /18.

For v; € 1/4 or v, > 3/4, these equalities do mot hold, but L; and L, from
(6) are constant over these intervals, so that the corresponding obhjective
function (5) puts no weight on these valuations. Thus, with respect to the
virtual valuations in (7), (p4,x4) is both virtually ex post efficient and
virtually equitable, except for some weak types that get no weight in the
corresponding objective function. These are necessary conditions for a
neutral bargaining solution derived in Myerson [1984]. PRut more importantlv,
they demonstrate that (p4,x4) can be justified as both efficient and

equitable, in a newly recognized sense.

5. The Lemon Problem: Feasibilitv and Efficiency

Let us now consider some trading problems in which the seller has private
information related to the qualitv of the object being sold, so that the value
of the object to the buver is a function of the seller's valuation. To keep
the problem tractable, let us assume that the seller knows this function and

the buyer has no private information. We may call this the lemon problen,

after Akerlof's [1970] seminal paper, "The Market for Lemons,"” which studied a
special case of this problem, in a market context. (In colloquial American, a
bad used car is a "lemon.")

So again let trader #1 be the only seller and trader #2 be the only
potential buyer of a single indivisible obhject. Both have risk-neutral
utility for money. The quality of the object, which is known onlv to the
seller, is measured by the random variable %1, which is the value of the
object to the seller. The buyer has a probability distribution for %1 with

cumulative distribution F(vl) = Pr(V1 < Vl)’ and with a continuous density
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|
f(vl) = F (Vl) that is positive over a bounded interval 0 < vy € M. The
value of the object to the buyer is g(Vl), where g:[0,M] + R is a
continuous function.

A direct trading mechanism for the lemon problem is characterized by two

outcome functions p:[0,M] » [0,1] and =x:[0,M] + IR, where p(vy) is the
probability of trade occuring and x(vl) is the expected revenue to the seller,
if the seller's valuation equals Ve The expected gain to the buyer fronm

(p,x) is
_ .
Uy(p,x) = [ (8(v) p(v) = x(v ) dF(v ).
The expected gain to the seller from (p,x) if his valution equals vy is
Ul(vl,p,x) = x(vl) - vy p(vl).

In this context, mechanism (p,x) is incentive compatible iff, for every vy and

t]. in [O,M]
Ul(vl,p,x) > x(tl) -V, p(tl).

Mechanism (p,x) is individually rational iff U,(p,x) > O and, for every v,

in [O,M], Ul(vl,p,x) > 0, As bhefore, a mechanism is feasible iff it is
incentive compatible and individually rational.

(In this formulation, we are assuming that the terms of trade cannot be
made conditional on the actual qualitv of the object, only on the seller’'s
report of it. Presumably the buyer will eventually learn the quality of the
object if he buys it, but too late to renegotiate the price.)

The following proposition characterizes the set of feasihle mechanisms.
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Proposition 3. Given any function p:[0,M] » [0,1], there exists some

function x(e¢) such that (p,x) is a feasible mechanism for the lemon problem if

and only if p(*) is a weakly decreasing function andi
M
fo (g(vl) - v, = Fv)/E@))) p(v,) £(v) dv > O.

In general, for any incentive—compatible mechanism (p,x), p(*) is weakly

decreasing,

M
UI(M,p,X) + U?_(p,X) = IO (g(vl) - v, F(vl)/f(vl)) p(vl) f(vl) dv,
and, for every v; in [O,M],
M
U, v, ,p,x) =0 (M,p,x) + f p(s) ds.
171 1 vy
Proof. The proof of the equation for Ul(vl,p,x) and of p decreasing is
exactly as in the proof of Theorem 1 of Myerson and Satterthwaite [1983]. The

equation for UI(M,p,x) + Uz(p,x) is derived from the following chain of

equalities:

f% (g(vl) - vl) p(vl) f(vl) dv1

M
[o U G 5psx) £(v)) dvy + Uy(p,x)

f?f fj',{l p(s) ds f(vl) dv1 + Ul(M,D,X) + UZ(D,X)

M
IO F(vl) p(vl) dv1 + UI(M,p,x) + U2(p,x).

Finally, if p is weakly decreasing and satisfies the inequality in Proposition

3, then one can construct a feasible mechanism by using
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X(VI) =v, p(vl) + fgl p(s) ds,

as is straightforward to check. Q.E.D.

As in the symmetric uniform example, our next task is to characterize the
efficient mechanisms for the lemon problem. As before, we use the term
"efficient"” in the sense of weak interim incentive—efficiency: (p,x) is
efficient iff there is no other incentive—compatible mechanism (;,;) such that
Uz(;,;) > Uz(p,x) and, for every v, UI(VI,;,;) > Ul(vl,p,x).

For any number s between 0 and M, let (p(s),x(s)) denote the mechanism

1 if v, € s,

p(s)(vl)
0 if v

s if v, € s,
x(s)(vl) _ ;ﬂ 1
0 if v, > s.

(S

We may refer to any such mechanism (x(s),p(s)) as a simple mechanism, since
there are only two possible outcomes: either the object is sold for s dollars
(if %1 € 8) or it is not sold at all. These simple mechanisms are important
because they are the extreme points of the set of incentive-—compatible
mechanisms for the lemon problem, up to addition of a lump-sum transfer
between buyer and seller. To see why, notice that any incentive-compatible
mechanism differs by a lump-sum transfer (a constant added to x(+)) from an
incentive—compatible mechanism with Ul(M,p,x) = 0. By Proposition 3, any
such mechanism is then completely characterized by the weakly decreasing
function p; and each Ul(vl) and U, are linear functions of p. But any weakly
decreasing function from [0,M] into [0,1] can be approximated arbitrarily
closely (except possibly on a countable set) by a convex combination of the

step-functions {p(s)}. Since we are assuming that F is a continuous



_23_

distribution, changing p on a countable set would not change any of the
expected payoffs in Proposition 3. (Without this continuity assumption, we
would have to distinguish (p(s),x(s)) from the mechanism in which the object
is sold for s dollars if and only if %1 < s, and we would add such mechanisms
also to the list of extreme points.)

A mechanism is efficient for the lemon problem if and only if it

maximizes some linear functional of the form
(8) My . ,p,x) dL, (v,) + U, (p,x)
0 1 1°7 171 2 72

over the set of all incentive-compatible mechanisms, where Ll(-) is weakly
increasing, LI(O) = 0, and LI(M) = 1. But the maximum of anv such linear
functional must be attained at some simple mechanism (p(s),x(s)), hecause
these are the extreme points. Samelson's [1981] result that the ex ante
optimunm for the seller is always a simple mechanism can be derived from this
fact.

To characterize the set of efficient mechanisms for the lemon problem, we
need some further definitions. Let Y(s) denote the expected gain to the buver

from mechanism (p(s),x(s)), that is
Y(s) = Uz(p(s),x(s)) = [ (atv)) - &) £ v,

Let Y:[0,M] + IR be the lowest concave function that is greater than or equal
to Y(*) and has a slope between 0 and -1 everywhere. That is, Y differs from
the concave hull of Y only in that Y is constant over the interval where the
concave hull is increasing, and Y has a slope -1 over any interval where the
concave hull is decreasing at a steeper slope than ~1, Finally, let

% *
L :[0,M] > [0,1] be defined so that Ly(0) =0, L0 = 1, and

LiGy) = =¥ (v
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*
1
1

o * . - 3
continuity when Y jumps.) Notice that L1 is an increasing function, since

_1
at every vy in (0,M) where the derivative Y is defined. (Define L, by lef

is concave. Notice also that Y(0) = maximum Y(s).
se[0,M]

[Insert Figure 5 here]

The set of efficient mechanisms for the lemon problem has a remarkably

t

Y

simple structure: it is a flat set contained in a hyperplane. That is, given

any two efficient mechanisms, their convex combination is also efficient.
* . . .
function L, gives us the normal to this flat efficient set, as shown in the

following proposition.

The

Proposition 4. Let (p,x) be any incentive-compatible mechanism for the

lemon problem. Then (p,x) is efficient if and only if
(9) IM U.(v,,p,%x) dL*(V ) + U, (p,x) = Y(0).
0o 11’7 11 AL

Equivalently, (p,x) is efficient if and only if p satisfies the following

three conditions: p(0) =1 4if ¥(0) > 0; pM) =0 if TIM) > Y(M); and
[0 ((v)) = ¥(v))) dp(v)) = 0
0 1 1 1 ’
so that p must be constant over any interval in which Y > Y.

Proof. Notice first that, from the definition of Y,
1
Y(0) = 0, and Y (Vl) = (g(vl) - Vl) f(vl) - F(vl).

Now, using Proposition 3, for any incentive-compatible mechanism (p,x):
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M, *
fo Jl(vl,P,x) dLl(Vl) + U,y (p,x)

M M *
fo fvlp(s) ds dL(v,) + UI(M,p,x) + U, (p,%)

i) e av, + [0 (el - v)) €)= B ) plv)) vy

[P w) =T @) ply) dvy

\

7(0) p(0) - (T - YN p(1) + [ (F(v,) = ¥(v ) dp(v,)-

Since ?(vl) P Y(vl) for all Vs the decreasing function p that maximizes the
last expression must have p(0Q) =1 if Y(0) > 0, p(M) =0 if YO > Y(M),
and must be constant over any interval in which Y > Y. (Motice that the
integral is nonpositive, because p is decreasing.) Such a function p does
exist and gives the maximum value Y(0). Thus, p is efficient if it
satisfies (9).

Let ry be the lowest number in [0,M] such that ?(rl) = Y(rl), and let
Ty be the highest such number. (See FTigure 5.) Now consider anv simple

mechani sm (p(s),x(s)) that does not satisfy (9). Then
Y(0) > fg Ul(vl,p(s),x(s)) dLT(vl) + Uz(p(s),x(s))
= Y(0) - (Y¥(s) - Y(s)),

and so Y(s) > Y(s). We shall show that (p(s),x(s)) is not efficient. There
are three cases to consider: s < rys S > 1 H and r; < s« Toe

If s < r{, then Y(s) < Y(rl) = Y(0). So the buyer would strictly
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(r;) (r;) _
prefer (p WX ) over (p(s),x(s)). The seller also
(r;) (r))
prefers (p ,X ) over (p(s),x(s)), since
Ul(vl,p(s),x(s)) = max{O, s — vl}

is increasing in s. So (p(s),x(s)) is not efficient.
If s> ry then Y(s) < Y(rz) + (r2 - s), since the slope of ¥ is -1
for all ‘Vl > Toe So the buyer would strictly prefer to pay s - ry as a

(rz) (r,)

lump-sun transfer and then implement (p ,X ). It is easy to see that
the seller would also prefer this change, so (p(s),x(s)) is not efficient.,
If ry < s <ry, then there exist numbers s;, sy, and X such that

s = As, + (1 - A)sz, 0< A< 1, and Y(s) < AY(sl) + (1 - A)Y(s7). So the

1
(s) (s
buyer would strictly prefer to randomize between (p »X ) with
(SZ) (sy)
probability A and (p » X ) with probability 1 - A, rather than use

(p(s),x(s)). Since Ul(vl,p(s),x(s)) is a convex function of s, the seller
would prefer this randomization also. Thus (p(s),x(s)) is not efficient if it
violates (9).

Any efficient mechanism must be equal to some convex combination of
efficient simple mechanisms plus a lump-sum transfer. Thus, any efficient

mechanism must satisfy condition (9) in Proposition 4. Q.E.D.

To illustrate these results, consider first the example studiel by
Akerlof [1970], in which M = 2, F(vl) = ,5 Vi and g(vl) = 1.5 Vi That
is, the seller's valuation is uniformly distributed over [0,2], and the object
would always be worth 50% more to the buyver, if he knew the seller's

valuation. For this example
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g(vl) V- F(vl)/f(vl) =-5v < 0.

S0 by Proposition 3, there does not exist any feasible mechanism with a
positive probability of trade for Akerlof's example.
For a second example, let M =1, F(vy) =v; amd g(v;) =v +a,

where 0 < a < 1. We may call this the uniform additive lemon problem. For

this example, there are many feasible mechanisms (for example, (p(s),x(s)) for

every s < 2a). To apply Proposition 4,

Y(s) = fg (v1 +a — 8) dv1 =0 8 — .5 52,
and so 2
o s - .5 s =7Y(s), if a € s< 1,
Y(s) =
.5 a2 > Y(s), if s < a.

Thusg, an incentive—compatible mechanism (p,x) is efficient if and only if

p(vy) =1 for every v such that 0 < v < a.

6. The Uniform Additive Lemon Problem: WNeutral Solutions

As in Section 4, let us now try to make some prediction as to which
efficient mechanism may actually be implemented bhv the seller and buver in the
lenon problem if they negotiate face to face. To simplify the analysis, we
will consider only one specific case: the uniform additive case with
a = 0.4, That is, the seller knows his valuation %1, which is a uniform
random variable on [0,1], and if the buyer gets the object then it will he
ultimately worth %1 + .4 to him. The seller is free to make statements to
the buyer about %1, but there is no way for the buyer to verifv whether these
claims are true or false until after the negotiations end and the terms of

trade are fixed.
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For simplicity, let us begin with the assumption that the buyer has all
of the bargaining ability, perhaps because he is much more articulate and
persuasive in negotiations. The best feasible mechanism for the buyer is the
simple mechanism (p('4),x(‘4)). That is, if the buyer can control the
negotiations, he wants to make a nonnegotiable first-and-final offer to huy
the object for a price of 0.4. To see that this mechanism is optimal, notice

that

Y(s) = fg (vl + .4 - s) v, = dos - .5 g

which is maximized at s = 0.4. The buyer's expected gain from his optimal
mechanism is Y(.4) = 0.08,

Now, let us assume that the seller has all of the bargaining ability.
The problen of determining which mechanism he should implement is a problem of
mechanism design by an informed principal, as stulied in Myerson [1983].

(s)

Among the simple mechanisms, Ul(vl,p ,x(s)) is increasing in s, and
Uz(p(s),x(s)) > 0 if and only if s < 0.8. That is, for anv price s that is
higher than 0.8, the expected value of the object to the huyer conditional on
61 < s 1is ,5s + .4, which is less than s, so the buyver expects to lose.
Thus, if thé seller were to implement a simple mechanism, his best one would
be (p'g),x('s)). (Even though the object is always worth more to the buver
than to the seller, there is no feasible mechanism in which the buyer always
gets the object, because the inequality in Proposition 3 would fail if
p(vl) =1 for all Vl’)

The mechanism (p(‘8),x('8)) maximizes hoth the probability of trade and
the seller's ex-ante expected gains (fé Ul(vl,p,x) dvl) over all feasible

mechanisms for this example. Thus, if the seller could have selected any

feasible mechanism before he learned %1, he would certainly have selected
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(p('8),x(‘8)). However, this argument is not necessarily relevant to our

analysis of negotiations, because we are assuming that the seller already

knows %1 when the negotiations begin, and this is not a repeated game.
There exist other mechanisms that the seller would prefer to

(p('8),x('8)) if %1 is relatively high. (Notice that Ul(vl,p('g),x('g)) =0

A A

if vy ? 0.8.) For example, consider (p,x) defined by

R avl/.4 . A
P(vl) = e R X(vl) = (vl + .4) p(vl)-

That is, the seller demands that the buyer should pay the full value

—(q—.4)/.4.

q = V1 + .4, and the buyer accepts with probability e It is

straightforward to check that (;,;) is individually rational and incentive
compatible, If the seller demanded a higher price, the decrease in
probability of acceptance would be just enough to prevent him from gaining
more. Among all mechanisms in which the buyer never loses ex post QEEES
mechanisms, in the terminology of Myerson [1983]), (;,;) is the bhest for the

seller., If %1 ? .74 then the seller would prefer (p,x) over (p('g),x(‘g))

(.4e_-74/-4 >

8 = J74).,

One theory of negotiations which cannot be valid is to suggest that the
seller would implement (p('8),x(‘8)) if 61 < 74 and would
implement (;,;) if 61 > J74. The buyer would refuse to buy the object for
.8 1f he believed that the seller would only make this demand when
61 < .74, because the conditionally expected value of the object to him would
be only .74/2 + 4 = .77. On the other hand, the buyer would never expect
losses in (;,;), even if he inferred that %1 > 74, So (p(_S\’X(,g)) is

blocked for the seller by (p,x), since the buyer knows that (p('g),x('S))

would be implemented by the seller only if Ql were in [0,.74], where the buyer
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expects to lose on average.

However, (;,;) is not an efficient mechanism, because any efficient
mechanism rmist have p(vl) = 1 for all vy in the interval [0, .4) (where
?(vl) > Y(vl)), as was shown at the end of Section 5. For example, (;,;) is

dominated by the mechanism (p*,x*) defined hy

1 if v, < .4,
* 1
p (v)) =
—(vl—.4)/.4
.5 e if vy > W4,
.6 if v, < .4,
* 1
X (vl) =
(v1 + .4) p(vl) if \2] 2 .4 .

It is straightforward to check that (p*,x*) is incentive compatible,

Uz(p*,x*) = UZ(;’;) = 0, and Ul(vl,p*,x*) > Ul(vl’;’;) for all v;. Also,
(p*,x*) is efficient because a sale will occur for sure if O < %1 < Jh. If
vy 2 .4 then the seller insists on getting the buyer's reservation price

V1 + .4, and the buyer's probability of acceptance decreases in the price in
such a way as to keep the seller honest. Tt can be shown (see Section 7) that
this mechanism (p*,x*) is a neutral optimum for the seller, in the sense of
Myerson [1983].

Thus, we predict that outcome of negotiations would be as in
(p('A),x(‘4)) if the buyer had all of the bargaining ability, and would be as
in (p*,x*) if the seller had all of the bargaining ability.

Let us now assume that the buyer and seller have equal bargaining
ability. In this case, the solution theory of Myerson [1984] identifies the
average of these mechanisms (p°,x°) = .S(p(‘4),x('4)) + .S(p*,x*) as a

neutral bargaining solution. That is, the neutral bargaining solution is
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1 if v < W4,

po(vl) =
—(vl—.4)/.4

.25 e if v, ? A,

.5 if v < Wb
xo(vl) =

) .
(v1+.4)p(v1) if v, 2 Ao

Notice that if V; > .4, the seller fully exploits the huyer in (p°,x°)
by charging him %1 + .4 when trade occurs, just as in (p*,x*). However, the
probability of trade occurring when %1 > .4 in (p°,x°) is half of what it is

. k% . .
in (p ,xh). Thus, the neutral bargaining solution (p?,x°®) has the property

called arrogance of strength in Section 4. That is, if the traders have equal

bargaining ability but the seller is in a surprisingly strong hargaining
position, then the outcome is like when the seller has all of the bargaining
ability, except that the probability of disagreement is higher.

The mechanism (p®,x°) may seem more equitable when we look at virtual-
utility payoffs. T¥Vor this example, the function LT which supports all

efficient mechanisms (as stated in Proposition 4) is

0 if vy < L4
Ll(vl) = -Y (vl) = }vl - .4 if A < v, <1
{ . =
{1 if vy = 1

Because the seller's valuation is uniformly distributed over [0,1}, his
virtual valuation is 261 - LT(%I) (as in the symmetric uniform trading
problem), which equals 61 + 4 if %1 2 .4 (except at the endpoint

%1 = 1, which has zero probability). Thus, when 61 > .4, the seller's
virtual valuation equals the buyer's valuation, and so %1 + .4 is the only
virtually equitable price. (Since the buver has no private information in

this example, his virtual and real valuations are equal.) When Vl is the

interval [0,.4), the seller's average virtual valuation (2 Vl) is .4, and the
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buyer's average valuation (V1 + .4) is .6, so the price .5 in (p?,x°) is

virtually equitable on average.

7. Derivation of the Neutral Solutions

To show how the solution concepts of Myerson [1983] and [1984] are
applied to the examples of this paper, let us first consider a discrete
approximation to the lemon problem. That is, let § be a small number, and let
T, = {0,6,26,36,...,M} be the set of possible seller's valuations for the

object. Let f(vl)G = F(vl) - F(v,-6) be the probability that %1 = v, for

1
any v that is a multiple of 8. Given an increasing function Ly as in (3),

let l(vl) = (Ll(vl) - Ll(vl—G))/G. Thus, the discrete analogue of (8) is

(10) L (=) =vy pd) 20v)) 8 + (g0 ) plv)) - x(v ) £(v) 8).
VIETI

It can be shown that, for the discrete lemon problem, local incentive-
compatibility implies global incentive-compatibility. (That is, if for every
Vs the seller with valuation v could not gain by reporting vy + § or
vy T 8§, then the seller cannot gain by anv lie.) Furthermore, in most cases,
the binding incentive constraint for the seller is the one in the upward
direction: that the seller should not gain by reporting vy + 8§ when his
valuation is Ve Sé let A(vl) denote the shadow price of this incentive
constraint in the problem of maximizing (10) among all incentive-~compatible

mechanisms. Then the Lagrangian function for this problem can be written
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an  § ((xG) = vy pv) &) 8+ (g(v)) plv)) - x(v))) £(v,) 8

vleTl

+ A(vl) ((x(vl) -V p(vl)) - (x(vl+ 8) - v, p(v1+ §))))

= I (G 8 + A )D)(xv) = v, p(v))) = Alv = )(x(v)) = (v;= 8)p(v)))]

vleTl

+ (gCvy) plvy) = x(v))) £(v)) 8).

The coefficient of X(Vl) in this Lagrangian must be zero, since x(vl) is
an unconstrained variable. Thus, we must have, for all Vi,
A(vl) - A(vl—é) = f(vl)G - £(v1)5,
and so
A(vy) = F(vy) - Ly(vy).

The seller's virtual utility is defined in Myerson [1984] as the

bracketed expression in the above Lagrangian formula divided by the
probability f(vl)G. That is, if the seller's valuation is v; and his expected
revenue is y = x(vl) and his probability of sale is q = p(v;), then his

virtual-utility payoff z;(v;) is defined to be

20 () = 1) 8 + A NG = v @) = Ay~ §)(y = (v)= 8) DI/ (E(v)) )

F(v;=8) - L, (v;=8)

= + .

Equivalently, if we let wu;(v;) =y - v;q denote the seller's actual utility
payoff when his valuation is v, (and let u(vl—G) =y - (vl—G)q), then the

seller's virtual-utility payoff can be rewritten
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F(v.-8) - L. (v,=-8) u,(v,) - u, (v, -68)
1 11 11 1'1
2 (v)) =u (v) +( ) I( 5 ).

At the maximum of (10), the product of incentive constraint times shadow

price is always zero, by complementary slackness, so (11) implies that

I o) =vypv)) 2v) 8= § z,(v) £(v)) 8.

vleT1 vleT1

Now, letting S8 go to zero, let us return to the continuous version of the

lemon problem. The above three equations become

F(Vl) - Ll(vI)

(12) Zl(vl) = x(vl) + (vl + f(Vl) 1) p(vl),
F(v)) = LiGv))
(13) 2 (v)) =u (v + ) ) v (v,
(14) fo (v dL ) = [0z (v) £(v)) dvy,
where L (v.) = 1im L (v,~ §).
1''1 540 1'1

The seller's virtual valuation for the object is, from (12),

(15) Wo(v) = v, + (F(v)) = L (v )/E(v)).

1
In the uniform case with F(Vl) = v, on [0,1}, when L1 is continuous this
virtual valuation is just Wl(vl) =2 vy~ Ll(vl)’ as in Section 4,

Since the buyer has no private information in the lemon problem and gets
a weight of 1 in the objective functions (8) and (10), the buyer's virtual

utility is the same as his real utility.
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We are now ready to verify that (p®,x°) is the neutral bargaining
solution for the uniform—additive lemon problem with g(vl) =V + 4. To
prove this, we must apply Theorem 4 of Myerson [1984], which gives necessary
and sufficient conditions for a neutral bargaining solution. This theorem
requires us to consider a sequence of virtual-utility scales, each of which is
generated by an objective function that puts positive weight on all types of
all players. (For the lemon problem, this means that L, mst be strictly
increasing over the whole range of possible valuations.) For each virtual-

utility scale, we must first compute the virtually—equitable allocations, in

which the traders plan to divide the available virtual gains equally among

themselves in every state; then we must solve equations (13) and (14) to find
what allocations of real utility would correspond to the equitable allocations
of wvirtual utility. The corresponding allocations of real utility are called

the warranted claims of the seller and the buyer. If the limit of these

warranted claims (over the sequence of virtual-utility scales) does not exceed
the actual expected utility generated by our mechanism for any type, then that
mechanism is a neutral bargaining solution.

The sequence of objectives that supports (p°,x°) is

€ v, if 0 < vy < G4/ (1),
€ ,
Ll(vl) =< v, - 4 if W4/ (1-e) € vy <1,
1 if v, =1,

. . - . . € .
where the index € is positive and converging to zero. Notice that each L1 is

*
strictly increasing over [0,1], and converges to L1 of Section 6 as € goes to
Zero.

With respect to Ll = Li, if the seller's actual valuation is vy then

his virtual valuation (from (15)) is
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(2-¢) \ if 0 < v, < .4/(1-¢),

v, + .4 if W4/ (1l-e) < vy € 1;

and so the total available virtual gains from trade are

4 - (1-€) vy if 0< v, < .4/(1-¢),

= 1
g(v) - W (v) = éf

L 0 if W4/ (l-e) € 4 < 1.

The virtually-equitable allocation with respect to Li would give the seller

half of these virtual gains; that is, he would get

z,(v) =

in virtual uvtility when his valuation is vi. The seller's warranted claims
with respect to Li are the values of ul(vl) that satisfy (13) and (14) for

this z; function. That 1is, u; must satisfy

.2 - .5 (1-€) v, = ul(vl) + (1-¢) \8) ul(vl) if 0« vy < G4/ (1-e),

0 = u (v,) + o4 u;(vl) if 4/(1-) < v, < 1,
1
Jo (:2 =5 (1-e) v dv, =
f.h/(l—e) fl
= u,(v.) € dv, + u, (v, ) dv, + .4 u (1).
0 11 1 4/(1ey L1 1 1

(The term .4 ul(vl) comes from the jump in Li at vy= 1.) The unique

solution to these equations is

1-¢

2 - .5 (E:E) 4 if 0<v, < A/ (1-€),
u v = ey (1/(1-e) = v /.4y -
o2 (E:E e if 4/(1-€) € vy <1,

As € goes to zero, these warranted claims converge to
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2 - v

/4 if 0<v, < .4,

u,(v,) =
11 ~(v =8/ b
.l e if A4 <v, €1,

5 - v if 0< v, < .4,

1 1
Ul(vl,pO x0) =
~(v =.4) /.4
.1 e if .4 < V4 <1,
T o _o .
s0 Jl(vl,p X ) 2 ul(vl) for all vy in {0,1].

Since the buyer has only one possible type in this problem, his warranted

€

claim with respect to L1

is simply half of the expected virtual gains from

trade:
u, = 37 (2 = .5 (1-e) v)) dv, = .04 (l+e).

As € goes to zero, this converges to .04 = Uz(po,xo).

So the mechanism (p®,x®) fulfills all of the limiting warranted claims,
and therefore is a meutral bargaining solution, by Theorem 4 of Myerson [1984].

If the seller had all of the bargaining ability then the seller's
warranted claims for each type would be computed in the same way, except that
he would get all of the virtual gains from trade, jnstead of half. This wonuld
simply double the values of z1 and u; throughout the above derivation. Since
Ul(vl,p*,x*) =2 Ul(vl,po,xo) for all v, (p*,x*) satisfies the conditions
for a seller's neutral optimum, given in Theorem 7 of Myerson [1983].

Let us now consider the symmetric uniform trading problem and show that
(p4,x4) is a neutral bargaining solution, as was claimed in Section 5. The
formulas for the seller's virtual utility (12)-(15) can be derived for the
symmetric uniform trading problem exactly as in the lemon problem. (Wow

M=1, F(v;) =v;, and f£(vy) = 1.) Analogous formulas define virtual
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utility for the buyer, who now also has private information.

For any small € > 0, we let

€ v, if 0< v, <1/(4-28),
LT(v,) =
11 4-3¢ 1-¢
(—3‘.:‘2‘5) vy~ (3375) if 1/(4-2¢) < v, <1,
4-3¢ . 3-2¢
WG P <
(3—28) V2 if 0 Vo < (4-28)’
8 - —
LZ(JZ) i 3-2¢
ev, * (1 - ¢) if (7F3EJ <v, < L.

R e . . , .
Notice that each Li is strictly increasing over {0,1], and converges to L; of
equation (b) as € goes to zero.

The seller's warranted claims with respect to Li and LZ are determined by

the following equations:
€ 1
a, (V) + vy - L)) uvy) = zl(vl),
1 €, = rl 3
fo ) vy) ALy ) fo 2 (v ) dvy,
where

zl(vl) = ,5 fé maX{O, Wz(vz) - Wl(vl)} dv2,

. -
Nl(vl) 2 vy Ll(vl)’

T = -— €
Nz(vz) 2 v, L2(v2).

It can be shown (somewhat tediously) that the unique solution to these

equations is

3¢ 2—€ 2 .
Gfgjgé) —- 5 A2 + Q—Z—)(vl) if 0 < v < 1/(4-2¢),
{ =
ul\vl) 2-¢ 2
(=) = v if 1/(4=28) < v, < L.
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As € converges to zero, these warranted claims converge to

+8(v1)2)/16 if 0 <v. < .25,

(3 - 8w 1

1

u vy = X
(1—v1) /6 if J25<v,; < L.

If the seller's valuation is v;, then his actual expected utility from the

mechani sm (p4,x4) is

(6 - 15v, + 12(v1)2)/32 i1f 0< v, < .25,

4 4
U, 0 p % ) =

(1 -v /6 if .25 < v, < L
It is straightforward to check that Ul(vl,pa,xa) > ul(vl) for every vy, so
(pa,x4) fulfills all of the seller's limiting warranted claims, A symmetric
argument shows that (p4,x4) satisfies the buyer's limiting warranted claims
for every vy as well. Thus (pa,x4) satisfies the conditions for a neutral

bargaining solution.

A final remark about the uniqueness of these solutions is in order. The s
general conditions for a neutral bargaining solution are well—letermined, in
the sense of giving us as many equations as unknowns (see Theorem 5 of Myerson
[1984]), but there is no general uniqueness theorem. For the symmetric
uniform trading problem, some inessential nonuniqueness is known. There exist
other functions x such that (p4,x) is a feasibhle mechanism, and all of these
mechanisms are neutral bargaining solutions giving the same expected utility
allocations as (pa,x4). But other than this nonuniqueness in x, it is this
author's unproven belief that (p4,i4) is probably the unique neutral
bargaining solution for the symmetric uniform trading problem, and that
(po,xo) is the unique neutral bargaining solution for the uniform—additive

lemon problem considered in Section 6.
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