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In the Bayesian analysis of dichotomous dependent variable models (c.f.,
Zellner and Rossi [1984]), the posterior expectation of various functions of
the model parameters must be calculated. For example, the usual Bayes
estimators of model parameters are the posterior means of those parameters.
Integrals of the form I = fh(@)p(@lD)d@, are considered where p(&'D) is

the posterior density of B. Using Bayes theorem, I can be rewritten as

I =[[h(@)p@)@|Dds]/ [[p(e)e(g|D)dp)]

where l(@'D) is the likelihood function and p(B) 1is the prior density. In
some cases, a diffuse prior (p(B) « k) is employed and the convergence of I
depends on the convergence of fl(Q'D)dg and the behavior of h(B)

function. 1In this note, necessary and sufficient conditions for the

convergence of fl(@|D)d§ are derived for the logit model.

The logit model is a sequence of binomial trails.
1 with prob. Pi

Y. = i= l,ses,n
0] with prob. (1 - Pi)

with P, = 1/(1 + exp(-gi'g))

The likelihood function for this model can be written

n Yi 1-Y
2@[p) = 1 P @I - P(B))

i=1

i

t
We seek conditions under which I = IH$_X(Q‘D)dB converges. The

convergence of 1’ depends on the behavior of l(ﬁlD) for large (in the



sense of 1Bl) B vectors. Not only must l(@lD) damp off to zero but it
also must do so at a fast enough rate. In the logit model, the tails of
K(QID) will either approach zero or a constant limit at an exponential
rate. Thus, we must determine under what conditions 1lim l(@ID) =k
g1+

where k 1is a noa-zero constant. 1If there are directions along which

lim X(QID) # 0, then the integral of K(&lD) over T will not be

I B>
defined. 1In the section below, precise mathematical arguments are developed
to support these intuitive arguments. 1In addition, our convergence conditions
are compared to the conditions for the existence of a unique waximum

likelihood estimator developed by Silvapulle (1981) and to the Zellner-Rossi

sufficient conditions for the two~dimensional case.

Limiting Behavior of %(8|D)

t
For the logit model, we choose Pi = 1/(1 + exp(—gig)). The tail
behavior of the likelihood function depends on the limiting properties of each

of the Pi'

Consider some increasing sequence of (B) vectors, {@1} with

lim Bl =« . All that is necessary for £(+) to damp off to zero along
isw
this sequence is for one of the P; to tend to O or 1 depending on the

value of Y;. Ordering the observations so that Y; =0 for i= l,...,m and

Y; =1 for i= mtl,...,n, we write the likelihood function as

I
J
.
.
.

2(8) Po(1-2 )eee (1-P).

m+1

Since each term (Pi or (l—Pi)) in the product which makes up f(8) 1is

bounded, only one term is necessary to drive f£(+) to zero. Thus, in order



to produce a non-zero limit of 2(+) along a given sequence of {'s, we must
drive each of the terms in AR2(8) to some non-zero number. The following
lemma determines the possible limiting values of 2(¢) and establishes that
it is only necessary to inspect sequences of g8's along rays extended from

the origin.

Lemma 1. Consider any increasing sequence of @'s, {gi} lim MBlH = o,
ireo
(a) lim l(gl) = 0or 1 if the design matrix is of full rank.
i>o
(b) {Qll} is a sequence such that 1lim l(gll) # 0 iff 3 a sequence
jro
{QZl} along a ray (@2(i+1) = kQZi) with 1im 2(@21) # 0,
ire
Proof of Lemma 1:
] . i . o
(a) Since %1m g™l =, %1m gig = + or .
i ir
1
1 if lim x,8 = 4o
-i
t o
i 1 !
lim P,(87) = lim = 0 if linxp = =
i+ J jro —)E i@- j>oo
(I +e ) .5 if lim x,8 = 0

i o
FEach P; tends to 1, 0, or .5.

]

If all P; tend to .5, then lim 2(8Y) = (.5)" However, in this case,
i>w

the sequence {ﬁi} must approach a nontrivial solution to X g8 = Q which
does not exist if X 1is of full rank.
If all Pj tend to 1 (j= 1,...,m) and 0 (j= mt+l,...,n), then
lim 2(8%) = 1.
i>e
1f any Pj tends to 0 (j=1l,...,m) or 1 (j= m+l,...,n), then

lim 2(8") = 0 since 2(+) 1is bounded.

irm



(b) Consider a sequence {gll} with 1lim 2(@1) = 1. For large enough 1,

3 * l-m

there is a @11= B  which satisfies

'k
(la) §j§ >0 j=l,.e.,m

v
(1b) gj@ <0 j = m+l,...,n.

21 * .
Construct the sequence {Q = kB k=1,2,... }. Along this sequence,

1im 2321 = 1.

1->®

Integral Convergence

In order to better understand integral convergence conditions, we examine
first the situations in which [R(B)dB will diverge. [2(B)dp will diverge
when there are tail regions where R(B) does not damp off to zero. This
occurs when 2(8) tends to 1 along some ray.

*
Lemma 2. If there is a directiom, 8, with 1im (k8 ) = 1, then [2(8)d)

1>

will diverge. We note that 2(+) approaches either 0 or 1 along any

increasing sequence (see Lemma 1).

*
Proof of lemma 2. Take a direction, Q* for which 1im 2(k8 ) = 1. By

ko>

definition, we can find a K such that for all k > X,

lr™y - 1] <e/2

Now let us use the continuity of R(+) to choose a sequence of non-

overlapping & neighborhoods of points along the ray in the direction of § .



By continuity of 2(s+), we can pick a sequence of {ki, i= 1,...,n}
i *
such that ‘l(é) - 2 (k"B )l( e/2 for all R ¢ A; where

Ai = {@: g - kig*n< éi} and Ai n Aj = p for i#j
[2@)aB > T [, 2@)B > ] (1 - e,
i i i

By increasing the number of terms in the sequence of ki, we can make
Yy (1 - a)éi as large as possible.
i
If the tails of R&(+) damp off to zero in all directions, is this

sufficient to ensure convergence of R(¢)?

Theorem 1. fl(g)dg is finite under the following conditions:

(i) The design matrix, X , 1is of full column rank.
nxk

(i) Let A ={g: x8 >0 i =1,...,n} and

B={g:xB <0 i=mHl,...,n} then An B = 4§,

Proof of Theorem 1: If 3 &* such that X &* = 0 and &* # 0 then

*
lim (k8 ) = (.5)". Lemma 2 tells us that under those conditions [2(B)dB

koo

will diverge. If X 1is of full rank, we cannot find this g. If 3

*
B € An B, then

* 1%
lim P (kB ) = 1/(1 + exp(-kx B8 )) =1 i=1,.0.,m
kro 1
and
. * 3
lim Pi(kg )y =0 i=ml,...,n.
ko

Again, by Lemma 2 fl(@)dg diverges. Lemma 1 indicates that it is sufficient

to examine only those directions along rays.



*
If lim 2(kB ) = 0 for all ﬁ*, will [R(8)dB converge? To establish
koo
that this is true, we convert to polar coordinates--that is, we first pick a

direction, integrate along that ray, and then Integrate over all possible

directions

Jr@)s = [ [ 2 (kg " )dkdg *
where

* * %2
s={[_3_:;312+...+¢3k = 1}

Fix &* and find a term in 2(+) which approaches zero. This will
occur either if P; » 0 for any i between 1 and m or if P; » 1 for any i
between m+l and n. P; > 1 only if xi&* > 0, and P; > 1 only if §£§ > 0.
Condition (i) ensures that we can find a xiﬁ* which is not zero. Condition
(ii) implies that for every direction ﬁ* some term (Pi or (1 ~ Pi)) will

approach zero.

* t % ! % ' * [ *

R _ -r ) .
Define r(B ) = max[—gig yeessy X B, §m+1§ ,...,§n§ l. e (8 is the
rate at which 1(k§*) approaches zero as k increases.,

- *
Define r = inf {r(g )}. Conditions (i) and (ii) assure that
*
B €S

r(ﬁ*) > 0. Since r(g*) is a continuous function defined on the compact

* . . . . — —
set, r(R") attains its infinum, r. Therefore, T > O.

* * * % *
(kg ) =P (k8 ) ... P_(k8 )1 -P (k8)) ... (1 -P (k8))

m n
= 1I ! . I !

i=1 [1 + exp(—kx;Q*)] i=m+1l [1 + exp(kxgg*)]




4"——}“‘”_‘
1 + exp(kr)
Thus,
fo Ioa0e™ < [ f% ——t—— awag
1 + exp(kr)

3
~

*

< IS f% e_krdkdg fS dg <= as S is bounded.

"Hlv—-

The Two Dimensional Case

In this section, we examine the conditions (i) and (ii) required for
integral convergence in the two—dimensional case. We also relate these
conditions to the sufficient conditions developed by Zellner-Rossi (1984).

For k = 2, condition (ii) can be rewritten as the system of

inequalities

BO-+BIX1 >0

BO + lem >0
BO + lem+1 <0

50 + len <0

The likelihood function is integrable only if there is no non-zero 8 which



satsifies the above inequalities. In the two dimensional case, two

restrictions on the x; ensure that there is no solution to the system of

i

inequalities.

(i) max(xl,...,xm) > mln(xm+1,...,xn)
and

(ii) mln(xl,...,xm) < max(xm+1,...,xn)

These conditions require that there is some "overlap" between the x values
for which Y =1 and for which Y = 0. 1If there is no overlap, then the
likelihood function will increase and asymptote to one along some direction
from the origin. 1In Zellner and Rossi (1984), a simple, three observation

sample is considered (m=1, n=3).

i 1 2 3
Y 0 1 1 with P = 1/(1 + exp(-8 -8 x )
i i 0 1 i
x | -1 0 1
i

By increasing f,, the logit curve bends to fit the sample proportions. The

key to understanding the example is the monotonic increase in xj;. Any

ordered dataset with monotonically increasing x; will generate a non-—

integrable likelihood function.



Relationship to Zellner—-Rossi Sufficient Conditioms

Zellner and Rossi (1984) develop sufficient conditions for integral

1

convergence in the case k = 2.

Zellner—-Rossi conditions:

Fx > T x

(ZR1) X, V X

i=1 1 i=1 (1)
m m—2

(ZR2) in < Z x(n 1)

1
Here X(4) is the ith order statistic of the sample (Xl"“’xn)‘
Theorem 2. (ZR1) and (ZR2) imply conditions (i) and (ii) above.

Proof of Theorem 2. Let us look at the contrapositive. Suppose

max(xq,eee,x ) < mia(xgyy,eee,xy). Then

H“45

m
2 X => 2 X + x > X,
L =1 (1) " {mD) 12=1 1

Suppose min(xl,...,xm) > max(xm+l,...,xn). Then

m-2

m
_z X(n-i) = izlxi - min(xl,...,xm) => 2 x(n 1)

u“ﬂs
%
'—l

The Zellner and Rossi conditions are not equivalent to our conditions (i)
and (ii) above. The Zellner-Rossi conditions are sufficient but not
necessary., Consider the following example of a dataset which satisfies (i)

and (ii) but not (ZR1) and (ZR2).
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i 1 2 3 4

Y. 0 0 1 1 m=2, n=4
i

X, 1 2 1.5 3
i

2
Z x., =3<1+ 2+ 1.5=4,5 (violates (ZR1l))

i=1 *

and
max(l, 2) > min(1l.5, 3) (condition (i))
min(l, 2) < max(l.5, 3) (condition (ii))

Relationship to Conditions Guaranteeing the Existence of MLE

Silvapulle (1981) investigates conditions under which the maximum
likelihood estimator of slope coefficient vector, 8, exists and is unique.
Silvapulle considers the general model where Prob(Yi = 1) = G(gig). For the
logit case, the maximum likelihood estimator of 8 exists and is unique if
and only if the following condition is met.

Let S, F be the relative interiors* of the convex cones generated by
KlseeerXp (the values of independent variables for the first m in ordered

observations with Y; = 0) and Eqt]se &y respectively.

n

w
]
———
o
0

[}

*In the sense of Rockafellar (1972).
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The MLE of 8 exists and is unique if and only if

(S1) SnF#+ ¢

(51) ensures that there is some overlap between the cone generated by
observations with Y; = 0 and that cone generated by observations with
Y; = 1. This is exactly the same intuition behind our conditions in Theorem 1
which ensure the existence of moments of the posterior distribution. We will

now show the equivalence of our integral convergence conditions with

Silvapulle's conditions.

Theorem 3. S n F# @ if and only if AN B = where S,F are defined

above and A,B are defined in Theorem 1.

Proof of Theorem 3. Recall that

and

A 1is the polar cone* of F. B 1is the negative of the polar cone of S. We

can rewrite the conditions as follows

*
*The polar cone of a set C, denoted C° = {x*: X 'g < 0, xe C}.
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SnF# @ iff (-89 n F° =9

In Figure la, we illustrate the case where S N F =@ and in Figure 1b the
case of non-null intersection is shown.

ANn B =f implies there is no solution to the system

m > Xa-m)

X(m)= [)_{_1, vy {m]) X(n_m)= [).(.m+1’ MR} )ifll'

- -1
(*) Xg>» 0 with X ={X
nxk nx 1

SNF #P implies there exists k > 0 such that
nx1

To show equivalence, we must demonstrate that either there exists a solution

to the system

(¥'y Xg <0

or that (**) obtains, but never both. Clearly, (*') and (**) cannot both be

~ ~ ~ V=
true. If B satisfies (*') and k satisfies (**), k X8 < 0 and

’ o~
Xg = 0. We must show that if there i1s no g which solves (*') then

150

there exists k » 0 such that (**) obtains. We use a version of Farkas'

Lemma.
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Figure 1.

Illustration of Equivalence of Integral Convergence Conditions

a. SNF 9P ’So
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1]
Farkas' Lemma. b x 2 0 1is a consequence of A x < 0 if and only if there

exists k > 0 such that A'k = b.

Proof of lemma:. See Rockafellar, Corollary 22.3.1, pp. 200.

If there is no § satisfying XB < 0, then there is no negative number, §,
such that

XB < &1 for all B , here v =(1, ..., 1) .

1 t t

1 —
let x =(,8), b=(l, 0) and A= [1,- X ], then it can be concluded from

Farkas' Lemma that

1

bx =62 0 holds for 6  + X g >0

»al
[l
1o

?
if and only if there exists k » 0 such that 1 k =1 and

Hence, we have found a k which solves (*%),

Verification of Integral Convergence and Existence of MLE

The conditions which ensure integrability of the likelihood function can
be verified by application of simple linear programming techniques. According
to Theorem 3, we may use either Silvapulle's or our own conditions to verify
integrability. It is most convenient to use the conditions in Theorem 2 since
verification only involves determining if there exists a solution to a system
of linear inequalities. Let us rewrite the conditions given in Theorem 2 in
matrix form.

The likelihood function is not integrable if there exists a non-zero

solution to the following set of inequalities
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P
W
A
[Re)

In order to apply the Simplex algorithm, we must reduce the system to a
standard linear programming problem. The 8 vector is written as

B = v - u where v, u> 0. The system of inequalities can be rewritten as

To determine if there are non-zero solutions to the above system of
inequalities, we introduce a vector of artificial variables to this set of
inequalities and minimize the sum of artificial variables. If any of the
artificial variables remain in the basis on termination, there are no 8

vectors satisfying 2@ < 0 except Q0 and the integral converges.

We solve the linear program

1]
minimize ¥

s.t. Xv -X

e
+

I
I

1o

We initiate the linear program with nonzero y (artificial) variables. This
procedure is generally termed (see, for example, Luenberger (1973)) phase I of

the simplex algorithm.
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