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Abstract. This paper considers multistage games with communication
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is a sequential communication equilibrium if and only if it never uses
codominated actions. Predominant communication equilibria are defined by

iterative elimination of codominated actions and are shown to exist.
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MULTISTAGE GAMES WITH COMMUNICATION
by
Roger B. Myerson

1. Introduction

When people try to exchange information or coordinate their activities in
a social system, they are constrained by the need to give each other correct
incentives. Individuals cannot be expected to testify against themselves, or
to exert efforts for which they will not be rewarded. The goal of this paper
is to develop a precise and tractable characterization of what rational
individuals can achieve with communication, subject to such incentive
constraints, in a dynamic social system.

In static or one-stage games, the limits of what rational players can
accomplish with communication has been characterized by the concepts of

correlated equilibrium, incentive compatibility, and the revelation principle

(see Aumann [1974], and Myerson [1979, 1982, 1983]).1! In dynamic or
multistage games, even without communication, the problem of characterizing
rational behavior is much more complicated, hecause of difficulties in
defining how a rational player should behave after observing an event that had

zero probability. Selten's [1975] concept of perfect equilibrium and Xreps'

and Wilson's [1982] concept of sequential equilibrium have been proposed as

characterizations of rational behavior in multistage games without

communication. This paper combines ideas from these two strands in the

1/ The term correlated equilibrium was first used by Aumann [1974] in the
context of pure moral-hazard problems, while the term Bayesian incentive
compatible mechanism was originally used in the case of pure adverse-selection
problems. For cases involving both adverse selection and moral hazard,
Myerson [1982,1983] continued to use the term "Bayesian incentive—compatible
mechanism” while Forges [1984] used the term communication equilibrium, This
paper follows Forges's terminology, because it is simpler and better indicates
the game-thoretic context of these ideas.




literature, to define a concept of sequential communication equilibrium for

multistage games with communication.

For one-stage games, let a (direct) communication mechanism be a

centralized communication system with the following structure: first, each
player makes a confidential report about all of his private information to
some central mediator (which may be either a trustworthy person, or a
specially designed machine); then the mediator computes a recommended action
for each player, as a (possibly random) function of these reports; and then
the mediator confidentially tells each player what is his recommended

action. A communication equilibrium (or incentive-compatible communication

mechanism) is any direct communication mechanism such that it would always be
rational for each player to report honestly and choose his action obediently
to the mediator, if all other players were expected to also be honest and
obedient.

The revelation principle asserts that, for any (centralized or

decentralized) communication system, and for any Nash equilibrium of
strategies that the players might use in this communication system, there
exists an equivalent communication equilibrium which always yields the same
outcomes. That is, there is no loss of generality in assuming that the
players use a centralized communication system, in which the players tell all
of their infomation to a mediator, who in turn tells each player only what is
necessary to guide his action. When the mediator knows all the players’
information, he can simply tell them to do whatever they would have done under
any other system. On the other hand, the more information that a player gets,
the harder it may be to prevent him from finding ways to gain by disobeying
the mediator. Thus, the only information that the mediator should transmit to

a player is the name of the action or move that is recommended for him. If a



communication mechanism is a communication equilibrium, then a rational player
should not need any further information to persuade him to obey the
recommendation. So the set of these direct communication equilibria completely
characterizes what the players can achieve by communication.

For multistage games, the same principle applies but matters are more
complicated, for several reasons. In each stage, there may be new information
available to each player that the mediator cannot prevent him from getting.
For example, if players can observe each others' actions, then each player's
information in the second stage must include his knowledge of what the other
players did in the first stage. Our model of the game must include a
description of all such unpreventable information flows. Furthermore, we must
recognize that each player in later stages will remember what the mediator has
told him in earlier stages.

To minimize a player's information in early stages of a multistage game,
the mediator should not tell the player about what his recommended actions
will be in later stages. Thus, at the beginning of the game, a mediator
should not to simply tell each player what strategy to use thereafter.
Instead, a new round of communication between players and mediator will be
necessary in every stage of the game. 1In each stage, the mediator should ask
each player to report all of his new information, and then the mediator should
tell each player his recommended action or move for that stage only. Because
we cannot assume that all communication occurs at the beginning of the game,
the normal form is not an adequate representation of a multistage game with
communication. This issue is discussed in Section 2.

Selten [1975] and Kreps and Wilson [1982] have shown that the simple
definition of Nash equilibrium is not sufficiently restrictive to characterize

rational behavior in multistage games without communication, and they have



proposed concepts of perfect equilibrium and sequential equilibrium to solve

this problem. In Nash equilibrium, it is only required that there should be
no event with positive probability in which a player.would expect to gain by
changing his strategy. In sequential equilibrium, it is required that there
should be no events at all (even with zero probability) in which a player
would expect to gain by changing his strategy. This may seem to be a fine
point, but it can be very important, as is shown in Section 3. 1In multistage
games, the probabilities of events in later stages may depend on the players'
strategies in earlier stages. Thus, events that have zero probability in one
equilibrium may have positive probability in another equilibrium, and so may
not be negligibie a priori. To characterize rational beliefs after zero-
probability events, we need the theory of conditional probaility systems
developed in Section 5.

Three solution concepts for multistage games with communication are

developed in this paper: communication equilibrium (in Section 4), sequential

communication equilibrium (in Section 6), and predominant communication

equilibrium (in Section 8). The first two of these concepts are analogous to
the concepts of Nash equilibrium and sequential equilibrium for games without
communication. The main result in this paper is the characterization of
sequential communication equilibria in terms of codominated actions, which are
defined in Section 7. We show that a communication equilibrium is a
sequential communication equilibrium if and only if it would never recommend a
codominated action to any player who has not lied to the mediator. This
concept of codomination is closely related to the more familiar concept of
domination of actions, discussed by Luce and Raiffa [1957]. Thus, this result
connects two important ideas in noncooperative game theory: sequential

rationality of equilibria and elimination of dominated actions. The process



of iterative elimination of codominated actions is considered, in Section 8,
to develop the concept of predominant communication equilibrium, which extends

Luce and Raiffa's [1957] concept of wide or iterative domination.

2. Insufficiency of the normal form

We begin by considering some illustrative examples. We represent our
examples in extensive form, using standard notation and terminology (see Luce
and Raiffa [1957], Chapter 3). The extensive form is slightly different from
the multistage form that is introduced in Section 4 of this paper, but the

translation between these two forms of representation can easily be made.

[Insert Figures 1 and 2 here.]

Consider now Examples 1 and 2. 1In Example 1, player 1 first chooses one
of the three actions: t, m, or b. If he chooses m or b, then player
2 must choose either L or r. The dotted curve indicates that player 2
does not know whether 1 chose m or b. The payoffs to players 1 and 2
respectively are shown at the right ends of the game tree. (All payoffs are
in units of von Neumann-Morgenstern utility functions).

Example 2 differs from Example 1 only in that player 1l's three-branch
decision node has been changed to a sequence of two—branch decision nodes.
That is, player 1 first chooses either t or -t; and if he chooses -t
then he must next choose either m or b. Notice that these two examples

have equivalent normal forms, as shown below.
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Player 2
2,2 2,2
Player 1 5,1 0,0
0,0 1,5

Thus, the Nash equilibria of these two games are the same (if the players
cannot communicate) because the set of Nash equilibria depend only on the
normal form.

However, the difference between Examples 1 and 2 becomes significant when
the players can communicate with a mediator. To be specific, consider a
coonmunication mechanism that assigns probability 1/2 to each of the outcomes
(m,2) and (b,r) (after -t), so that each player gets an expected payoff
of 3. 1In Example 1, this mechanism is not a communication equilibrium,
because player 1 would never want to use his action b, which is dominated
by ¢t. In Example 2, however, this is feasible as a communication
equilibrium. To implement it, a mediator should first recommend to player 1
that he choose the action -t at the first node. Then after player 1 has
made his choice between t and -t, the mediator should toss a fair coin.
If it is heads then he should recommend that 1 choose m and 2 choose £; if it
is tails then the mediator should recommend that 1 choose b and 2 choose Tr.
Neither player could ever expect to gain by disobeying the mediator's
recommendations, if the other player is expected to obey them. In particular,
player 1 gets expected utility 3 = .5(5) + .5(1) from choosing -t at his

first decision node, whereas he would only get 2 if he chose t.



The key to implementing this mechanism in Example 2 is that player 1 must
not learn whether m or b 1is recommended for him until after it is too late
for him to select t. In Example 2, there is a point in time when m and b
are still available as options for player 1 but t 1s not available; whereas
in Example 1 there is mno such point in time. (In Example 2, if the first node
represents a decision to be made on Monday, and the second node represents a
decision to be made on Wednesday, then the mediator's coin could be tossed on
Tuesday.) If all communication had to occur before the beginning of the game
then this distinction would not matter. But under the assumption that the
players can communicate with each other or with a mediator at any point in the
game, the set of communication equilibria is strictly larger in Example 2 than
in Example 1, even though these two examples have equivalent normal forms.

Since von Neumann and Morgenstern [1944], game theorists have preferred
to study games in normal (or strategic) form, rather than in the conceptually
more complicated multistage or extensive form. There was no harm in doing so
as long as the solution concept being applied was Nash equilibrium, because
the Nash equilibria of an extensive game are the same as the Nash equilibria
of its normal form representation. Thus it is disturbing to discover that, if
communication equilibria are the solutions that we want to compute, then it is
not sufficient to study the normal form; we must consider the extensive
dynamic structure of the game.

Since changing our solution concept from Nash equilibrium to
comnunication equilibrium is so analytically costly, it is impdrtant to
understand what we gain by it. When we say that the players in a game can
communicate freely with each other, we are saying that they have a wide range
of actions available that affect each other's information but do not affect

payoffs. They can send each other messages in any language; they can toss



coins or spin roulette wheels and observe the outcomes; they can even (as
suggested by Aumann [1974]) build a machine or hire a mediator to send each of
them confidential messages that are generated from any joint probability
distribution. In principle, one could try to list all of these possibilities
for communication as part of the explicit structure of the game, and then
study its Nash equilibria. But the resulting game (with infinitely many
options to toss coins, send messages, etc.) would be overwhelmingly
complicated. By the revelation principle, we know that any equilibrium of
this game with explicit communication possibilities is equivalent to some
communication equilibrium of the original game, in which the communication
possibilities are not explicitly modelled. Thus, when we change our solution
concept from Nash equilibrium to communication equilibrium, we gain the right
to simplify our model of the game by omitting the details of how players

communicate and coordinate their actions.

3. Perfect equilibria and communication

As Selten [1975] has argued, the concept of Nash equilibrium is too weak
to be an exact characterization of rational behavior in dynamic games. For a
simple example to illustrate how irrational Nash equilibria can arise,

consider Example 3.

[Insert Figure 3 here.]

In this example, (b,c) 1is a Nash equilibrium because player 1 would
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Example 3

Figure 3



prefer b (giving him 1) over a (giving him 0) if he expected player 2 to
choose c¢; and player 2 could never gain from switching from ¢ to d if
player 1 were sure to choose b. However, (b,c) 1is an imperfect
equilibrium, in the sense of Selten [1975)], because if player 1 did choose

a then player 2 would know that d was strictly better for him than ¢, and
so player 1 should expect 2 to choose d after a. Since d after a

leads to a better outcome for player 1 than ¢, we conclude that the unique
perfect equilibrium for this game is (a,d).

The problem with the concept of Nash equilibrium is that it permits
players to behave irrationally in events that have zero probability. Although
this may sound innocuous, it is not, because the events in a game that have
zero probability are determined endogenously by the equilibrium strategies, so
events of zero probability cannot be dismissed a priori (as they are in
probability theory). 1In the Nash equilibrium (b,c) for this example, player
2 behaves irrationally in the zero—probability event that player 1 chooses
a, and the event that player 1 chooses a has zero probability because player
is expected to play irrationally in this event. To rule out this kind of
bizarre logic, we need stronger concepts of equilibrium that require
rationality of all players in all possible events, not just the positive-
probability events.

Selten's [1975] concepts of subgame perfect and trembling-hand perfect

equilibrium, and Kreps and Wilson's [1982] concept of sequential equilibrium
are three such stronger concepts of equilibrium that have been offered in the
literature. However, when players can communicate, these concepts may

eliminate too many Nash equilibria, as Example 4 illustrates.
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Example 4

Figure 4
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[Insert Figure 4 here.]

Example 4 differs from Example 3 in that there are two more players (3
and 4) who have actions to choose only if player 1 chooses a and player 2
chooses c. The dashed curve at right indicates that, when player 4 chooses
between g and h, he does not know whether player 3 chose e or f.

After a and ¢, players 3 and 4 are in a subgame for which the unique
equilibrium is for both players to use randomized strategies in which each
action has probability 1/2. When they use these strategies, player 2 gets an
expected utility of 2 after a and ¢, just as in Example 3. It then
follows that the only subgame-perfect equilibrium for Example 4 is the one in
which player 1 chooses a and player 2 chooses d, with resulting payoffs
(2,3,0,0) for players 1 through 4. This (2,3,0,0) outcome is also the unique
trembling-hand perfect equilibrium and the unique sequential equilibrium for
this example (since these are stronger solution concepts).

Now consider the following Nash equilibrium: player 1 chooses b,
giving outcome (1,9,0,0), because player 2 plans to choose c¢ after a,
player 3 plans to choose e and player 4 plans to randomly choose either g
or h with equal probability if a and ¢ occur. This equilibrium is not
perfect or sequential because player 4's randomized strategy is not his best
response to e. However, 1f the players can communicate then it is possible

to make this imperfect Nash equilibrium into a perfect sequential equilibrium.
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[Insert Figure 5 here.]

The essential idea is to convert Example 4 into Figure -5 by adding a
payoff-irrelevant random event which is observed by players 1, 2, and 3, but
is not observed by player 4. The event is either "Up"”, with probability
1 - g, or "Down”, with probability €. In either case, the game after the
random event is exactly as in Example 4; exéept that the actions of the three
players who observe the event can be correlated with it.

The numbers in parentheses are probabilities forming a sequential
equilibrium for this modified example. If the initial event is 6p, then
player 1 chooses b, 2 plans to choose ¢, and 3 plans to choose e if the
opportunity to act arises. If the initial event is Down, then 1 chooses a,
2 chooses d, and 3 plans to choose f. Player 4 plans to randomly choose
either action with equal probability. It is straightforward to check that
these actions are rational for each of the first three players given the
others' plans: if 3 would choose e then 2 would prefer ¢, and so 1
prefers b; if 3 would choose f then 2 prefers d and 1 prefers a; and
player 3 is willing to choose either e or f if 4 is randomizing equally.

So, as before, it remains to show why player 4 might rationally choose to
randomize his action. If player 4 found himself in a position to act, then he
would know that either player 1 or player 2 must have made a mistake. Either
the initial event was Up and 1 mistakenly chose a, in which case the play
would be at the top node of player 4's information set, or the initial event
was Down and 2 mistakenly chose ¢, in which case the play would be at the

bottom node of 4's information set. Then it is consistent with the rules of
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rational inference to suppose that player 4 might assign equal probability to
these top and bottom nodes, and zero probability to the two middle nodes (as
indicated in the figure) if he found himself in a position to act. Even if ¢
is very small, these beliefs are not irrational, as player 4 might believe
that player 1 is much less likely to make a mistake than player 2. With these
beliefs, player 4 would get an expected utility of .5 from either action, so
he is willing to randomize. Now, as we let & go to zero, the sequential
equilibrium shown for Figure 5 gives the outcome (1,9,0,0) with probability
one.

In Section 6, we develop a concept of sequential communication
equilibrium, for-multistage games with communication. When we consider
Example 4 as a game with communication, we implicitly recognize that the
players can transform the structure of information to that of Figure 5, by
asking a mediator to do the initial randomization and communicate the results
to players 1, 2, and 3. Thus, the imperfect equilibrium that gives outcome
(1,9,0,0) should be (and is) a sequential communication equilibrium for
Example 4, even though it is not a sequential equilibrium in the sense of
Kreps and Wilson [1982}. 1In general, the set of sequential communication
equilibria that are also Nash equilibria may be strictly larger than the set
of Kreps-Wilson sequential equilibria. As Example 4 illustrates, even if
communication is not actually needed to implement some given communication
equilibrium (so that it is also a Nash equilibrium), the possibility of
communication may make the equilibrium sequentially rational where it

otherwise would not have been.
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4. Basic definitions

In this paper, we analyze a general model of dynamic multistage games, in

a form that is somewhat different from Kuhn's [1953] definition of the
extensive form.

We let N = {1,...,n} denote the set of players. We assume that the
play of the game occurs in K sequential stages, which are numbered from 1
(first) to K (the last stage). We may refer to the end of the game, after all
active play is finished, as stage K+1.

The overall structure of each stage is as follows. First, each player
observes some signal, which may depend probabilistically on the actions and
signals of earlier stages. Then the players have an opportunity to
communicate with a mediator. ¥Finally, each player must choose some action
among the actions that are feasible for him.

For any player i and any stage k, we let CE denote the set of actions
that player i can choose among in stage k. Suppose that R% denotes the set of
possible signals that player i can observe at the beginning of stage k. Since
we are assuming that the players have perfect recall, the additional
information available to player 1 at the beginning of stage k that was not

available at the beginning of stage k-1 is described by a point in TE, where

we let
Ti = Ri, T§+1 = Cf, and
TI; = c‘i"1 x Rli‘, ¥e{2, ...,k .
(We define T§+1 = C? here because, at the end of the game, player i knows

what action he chose at the last stage, in addition to everything that he knew
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before that.)
n X+1

We let T denote the subset of X X T? that consists of all
i=1 k=1
possible outcomes of the game. That is, T 1is the set of all possible states
of all players' information at the end of the game. (We exclude from T

impossible combinations of information states, such as when two players

disagree about an event that they both have perfectly observed.) Given any

kyn K+l . .
vector t = ((ti)i=l)k=1 in T, we may denote various subvectors of t as follows:
k k k 1 K+1
t = (tl,...,tn), £y = (ti,...,ti ),
<k 1 k <k 1 k
t = (tT,eee,t ), ti = (ti,...,ti).

(Read t<k as "t up to k.”) The sets of all such subvectors are denoted

™= ter, T, ={]| e,

Tk = {tgk' t € T}, Tik = {tikl t € T}.

Thus, Tik is the set of all possible states of player i's information at the
beginning of stage k; and T<k is the set of all possible states of all
players' joint information at the beginning of stage k. We may refer to Ti
as the set of possible types for player i at stage k.

Other related notation that we shall use is:

<k, <k <k <k <k <k <k <k
T_ () = {t_i = (tj )j¢i' t €T} ¥, € T
< + R+ < <
T>k(t k) = {t>k = (tk 1,...,tK 1)] t € T} ¥t koo <k,
<k, <

That is, T_i(t;k) is the set of all possible types for all players other than

i at the beginning of stage k, if tik is i's type. When

<k . T§k <k . T<k <k

t, in and t . in . (
i -i -i

< .
tik is the vector

) are given, then t
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in T<k that is formed by merging these two vectors. We may write
<k _ ,. <k <k
t = (t_i,ti Y.

Similarly, we let

n K ' n K k
Ck = X Cl;-', Ci = X Cl;-, C = x X C};, C%k = X Ci.
i=1 k=1 i=1 k=1 S 55|
Generally, ck = (c?,...,cﬁ) denotes a vector in Ck, and c; = (ci,...,cg)

= H

denotes a vector in C;, and so on. When a vector ¢ in C is given, then ¢, is

H

<
the (i,k)—-component of ¢, and cik is the subvector (ci,...,c?), and so on.

1

We let pl(tl) denote the probability that t* in Tl will be the state of

all players' information at the beginning of the first stage of the game. For
any k > 1, we let pk+1(tk+1|ck,t<k) denote the probability that tk+l 4p rk+l
will be the vector of new information for the players at the beginning of
stage k+1l, if ck in ck is the vector of actions at stage k and t<k in %K 35

the state of all information that the players have learned through the

beginning of stage k. Of course, if tk+1 = ((bk,rk+1)2=1) and b? # c? for

i’"i
< . . .
some i, then pk+1(tk+1'ck,t k) = 0, since each player i knows his past

k

action ¢y as well as his new signal r§+1 in stage kt+l. Similarly, at the end

of the game,

K+l , K+l| K <K
poe fene) = . KH | X

n K+1
To justify our interpretation of T as the subset of X x T, that
i=l k=1

consists of all possible outcomes of the game, we assume that t i1s in T if and

only if there exists some ¢ in C such that

K

1,1

p(t?) « I
k=1

pk+1(tk+1,ck,t<k) > 0.
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Of course, we also have

+ < < <
pk 1(tk+1lck,t k) =1, ¥k > 1, Vck € Ck, ¥t k eT k;
Sl k]
and N preely = 1.
tler!

The preferences of player i are characterized by a von Neumann-

Morgenstern utility function on T,

uy: T > R.

Notice that the final information states in T record the action—choices in C
as well as the signals in the sets Rg, s0 each player's payoff can depend on

all signals and actions. These structures

_ k. K k K+1 n k K+1
I'= ((Cmy> (TPpmys ¥ )imys T (P )

complete our description of the multistage game I'. We assume throughout this
k k . s
paper that the sets Ci and Ti are all finite.

(To keep the notation from being even more complicated, we have assumed
that the set of actions available to a player at any given stage 1is
independent of his type. However, none of the results in thls paper depends
on this assumption. Suppose instead that for each player i, the set of

. 2k, <k . <k
feasible actions were some function Ci(ti ) of his type t;". Given any such
game, it is straightforward to construct an equivalent game in which the sets
of feasible actions are independent of type. For any player 1, at any stage

2 < . .
k, if the sets C?(tik) all have the same number of actions, then it is only
necessary to relabel the actions using the same set of labels C? for all

types; and there does not need to be any significance attached to the way in

which actions for different types are identified in this common set of
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labels. If the sets Ef(tjk) have different numbers of actions then we4can
make the numbers of actions equal by adding irrelevant duplicates of existing
actions, with the same effect on all payoffs and observations, in the sets
that have fewer actions.)

Suppose now that a mediator is helping the players to coordinate their
actions. 1In each stage k, the mediator first asks each player i to report his
new information in T%, and then the mediator recommends some action in C% to
each player i. We assume that all players communicate confidentially with the
mediator, so that no player directly observes the reports or recommendations
of the other players.

Such a mediator should constrain each player i to choose his reports so
that the reports up to each stage k form a vector in Tik, which is the set of
possible information states for player 1 up to the beginning of stage k.

k
(Recall that Tik may be a proper subset of X Tx.) Any sequence of reports

g=1 1

outside of Tik would obviously include lies. (To effectively constrain a
player to send reports that remain within this set, the mediator could first
designate one member of the set and then announce that any report that is not
in the set —-— including the "report™ of total silence —- will be interpreted
as actually meaning this designated report.)

Thus, the set of possible sequences of reports that the mediator could

get from the players in the first k stages is

o< .
Notice that T<K may be a proper subset of T k. If so, the mediator cannot

<k

constrain the players to send joint report—-sequences in without sometimes

conveying information to them about each others' reports. We also let
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We let F denote the set of feedback rules that such a mediator could use

to determine the recommended actions in each period, as a function of the

given reports. Formally,

- k. K k. 2<k k
F={f=(£) ] f:T »c, wl.
So if the mediator uses the feedback rule £ in F, then f?(t<k) is the
recommended action for player i at stage k when t<K 1s the history of reports
< < <
from the players to the mediator. (Here fk(t k) = (fﬁ(t<k),...,fg(t<k)).)

We may write

c = f(t)

iff c? = f?(tgk) for every player i and every stage k.

For any f in F and t in T, we let P(tlf) denote the probability that t
will be the final state of all players' information if the players coordinate
their actions according to the rule f, being honest and obedient to the
mediator at every stage. Thus,

X

p(t]) = p(r) o @
k=1

y, <Ky,

k+1, k+ly k, <k
A (i A C )
Notice that, by definition of T, for every t in T there exists some f in F

such that P(t'f) > 0. We let U;(f) denote the expected utility payoff for

player i if rule f is used, so that

U, (f) = P(t}f) u,(t).
(7610 v
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Suppose now that a mediator is helping the players to coordinate their
actions according to the rule f. 1In each stage k, the mediator first asks
each player 1 to report the state of his new information in TE, and then the
mediator recommends to each player i that he should choose the action in CE
that is designated by f% for the reported information states. We assume that
all players communicate confidentially with the mediator, so that no player
directly observes the reports or recommendations of the other players.

" Any player can manipulate such a feedback rule by lying to the mediator
or disobeying his recommendation. In stage k, player i could choose his
k

report in TE as any function 1 of the mediator's past recommendations (in

Cik_l) and of i's information from playing the game (in Tik). Player i's

action in stage k could be any function YE of the mediator's recommendations

through stage k (in Cik) and of i's information from playing (in Ték). A

manipulative strategy for player i is any pair (yi,ri) = ((y?)i;l, (T?)E=1)
k <k <k, <k-1 <k,

where, for each k, yj maps Ci X Ti into Tg, r% maps Ci X Ti into

ck  (so 1+ 7! into TV d 14 d £ rts
i vy maps Ty into Tj), and 7, cou never send a sequence of repo

<
outside of TiK. We let M; denote the set of all manipulative strategies for

player i. That is,

_ kK kK
(ryswg) €My IEF vy = (s 75 = Oy
T L L TE DL L
i i i i i 71 i i
L, <2-1 <2 \K <K
and ('\:i(ci sty ))£=1 € Ti s V(ci,ti) € Ci x Ti'

For any (y;,t4) in M;, we let f o (y;,74) represent the feedback rule

that would actually be implemented if the mediator tried to implement f but
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player i used the manipulative strategy (Yi’Ti) while all other players were
honest and obedient to the mediator. Thus, f o (Yi’Ti) is a feedback rule
such that ¢ = (f o (yi,mi))(t) iff there exist s; in Ti and di in C4 such

that, for all k,

k k, . <k-1 <k k k, <k <k k k,.<k <k

g i(di s te ), di = fl(t-i’ Sy ) c; = 1(di s B ),
k .k, <k <k L s

and cj = fj(t—i’ Sy ) ¥ # 1i.

(Here, sg would be player i's report to the mediator and d? would be the
mediator's recommendation to player i in stage k.) We may call

fo (Yi,Ti) the effective transformation of f by (Yi,Ti).

For greatest generality, we allow that a mediator could be instructed to
choose a feedback rule at random, according to any probability distribution
over F, so that the players may not know which rule is being used. Thus, we

say that a communication mechanism for the n players is any probability

distribution p over the set of decision rules F, where pu(f) denotes the
probability that the mediator will use rule f.

For a communication mechanism to be feasible, it is necessary that no
player should expect to gain by manipulating it when the others are not
manipulating. Otherwise, the assumption that all players are participating
honestly and obediently in the communication mechanism would be a self-denying

prophecy. Thus, we say that a communication mechanism p is a communication

equilibrium iff, for every player i and every manipulative strategy (Yi’Ti)

in M,

(4.1) Yoou(E) U(E) > ) u(f) U.(f o (y,,t.)).
fEF * f£EF * ol
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Notice that these incentive constraints (4.1) are linear inequalities
in p. Thus, the set of communication equilibria is a closed and convex subset
of the set of communication mechanisms. The sets M; and F may be enormously
large in a multistage game, as a result of the combinatorial complexity that
inevitably arises in dynamic games with communication, in which each player's
action can be a function of anything that any player has observed earlier. 1In
practice, therefore, the incentive constraints (4.1) may not be
computationally tractable. Nevertheless, it is helpful to know that the set
of communication equilibria has the simple mathematical structure of a compact
polyhedron, defined by a finite collection of linear inequalities. The set of
Nash equilibria of a game has no such structural simplicity.

The set of communication equilibria includes all of the Nash equilibria
of the game, including irrational equilibria such as (b,c) in Example 3
above. Thus, we need a more restrictive solution concept to accurately
characterize rational behavior in multistage games with communication.
Ex ante, by (4.1), no player can expect to gain by planning to manipulate in a 7
communication equilibrium. Furthermore, this implies that no player could
expect to gain by manipulating after any event that is observable by him and
that has positive probability of occuring (in the equilibrium). To strengthen
our solution concept, we need to require that no player should ever expect to
gain by manipulating after any possible event that is observable by him,
including events that have zero probability in equilibrium. To make this
restriction, we must first develop a theory of rational beliefs conditional on
events of zero probability. In Section 5, we review and extend ideas of Kreps
and Wilson [1982], to develop such a theory. Then, in Section 6, we return to

define sequential communication equilibria for multistage games.
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5. Conditional probability systems

To develop a theory of conditional probability systems, let us consider
any nonempty finite set Q. We may interpret Q as the set of possible "states
of the world.” We let A(Q) denote the set of all probability distributions
on R

Given any distribution p in A(R), if X c @ then pu(X) is the probability
of the event X under the distribution u. Suppose that a rational individual's
beliefs about the unknown state in @ were as given by the distribution p, but
he has now just received the additional information that the actual state is
in the set Z, where Q 2Z # @. If p(2) > 0, then his conditional

probability of the event X given Z, denoted p(X‘Z), should now be
(5.1) L(x|2) = uX 0 2)/u(2).

On the other hand, if u(Z) = 0, then p(XlZ) is not defined by the
probability distribution p. To define all conditional probabilities, we must
construct a complete conditional probability system.

A conditional probability system is any function p that specifies a

nonnegative number p(X‘Z) for every X and Z such that X ¢ Q@ and

322z < Q, and that satisfies the following three properties, for every X, Y,
and Z such that X ¢ @, Yc Q, and (1 I 4 c

(5.2) if X0Y =0 then p(Xu7Y|2) =px|2) +ux|2);

(5.3) wmelz) = uzlz) = 1;

(5.4) if XcYcz and Y# 9 then p(x|2) = ux|D) netl2.
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Conditions (5.2) and (5.3) assert that p(-‘Z) is a probability distribution
over @ that puts all probability weight on the given set Z. Condition (5.4)
asserts that the conditional probabilities given Y are consistent with the
conditional probabilities given Z. Notice that, if p(Y‘Z) > 0 then the

formula in (5.4) becomes

px|V) = px|2)/uer|2);

so this equation asserts that the probability that an individual would assign
to event X if event Y were known is equal to the probability that he would
compute for X by Bayes formula if he learned that Y occurred when he already
knew Z.

We let A*(Q) denote the set of all conditional probability systems
on Q. Given any probability distribution n in A(Q), we say that a conditional

probability system p in A*(Q) is an extension of n iff
wx|e) = n), ¥xco.

One way to construct a conditionél probability system on 2 is to start
with a probability distribution that assigns positive probability to every
point in Q. If u(Z) > 0 for every nonempty set Z, then the conditional
probabilities that are defined by equation (5.1) do satisfy (5.2)-(5.4), as is
straightforward to check. In fact, every conditional probability system on Q
can be characterized as the limit of conditional probability systems that are

constructed in this way.
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Theorem 1. p is a conditional probability system on Q if and only if

there exists a sequence of probability distributions {nj}? such that

=1

ﬂj({w}) >0, ¥j, ¥w € Q; and
p,(XIZ) = lim nj(x n z)/nj(z), ¥X, ¥Z # 0.
j—>w

Proof. The proof is deferred to Section 9.

Theorem 1 explains the role of small mistakes or "trembling hands” in
Selten's [1975] theory of perfect equilibrium. Every outcome has positive
probability in each equilibrium of Selten's perturbed games, with small
probabilities of mistakes. Then as the probabilities of mistakes go to zero,
a limit of these equilibria generates a conditional probability system on the
set of outcomes of the game, as in Theorem 1. Each agent's strategy in the
limiting equilibrium is rational for him conditional on any event that he may
observe in the game, if his beliefs in that event are as ‘specified by the
conditional probability system.

In a game with communication, there is no clear reason why one should
assume that players' mistakes must be stochastically independent of each
other. Thus we omit here the assumption that players tremble independently,
which Kreps and Wilson [1982] used to restrict the class of permissible
beliefs in their definition of sequential equilibrium. Nevertheless,

Theorem 1 implies that, whenever we speak of conditional probability systems
in the next section, we could equivalently speak of limits of perturbed games
with small probabilities of players' mistakes, in terms similar to those of

Selten [1975] and Xreps and Wilson [1982].
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6. Sequential communication equilibria

To develop the concept of sequential communication equilibrium, we first
need more definitions.

Let P(t>k| f,t<k) denote the probability that the information revealed in

>k

the game after stage k would be as in t if the players used the feedback

rule f. That is,

A+, A+ L, <R <L
poe

X
P(t>kl f,t<k) = II £y, £t 7).

A=k

(

Let Ui(f|t<k) denote the conditional expected utility for player i from rule

<k

f, given that t is the state of all players' information in stage k, so that

Ui(f|t<k) = p(e”] £,c¢% u, ().
PSkepk <k

<k Ok

(Here t = (t t" ™M)

R

We let M, denote the set of manipulative strategies for player i in

5

which he is honest and obedient in all stages before stage k, so that

k _ ¢ L, <2 L, _ X
Mi = :(Yi, Ti) € Mi ¥ < k, ¥c, ¥t, yi(ci >ty ) = <y
and ,1%(c§l_1, tfl) = t% .
ivi i i
*k

We let Mi denote the set of manipulative strategies for player 1 in which
he is honest and obedient in all stages before stage k, and he also reports
his type honestly at the beginning of stage k,

*

k k k, <k-1 <
Mo = {(y;,7)) € Mil ¥c, ¥t, T.(c.

<k k
HORRNENOE S NE
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Thus, if player i decided to begin manipulating for the first time at the
beginning of stage k, then he would have to choose a manipulative strategy
in M?. If he decided to begin manipulating for the first time at the end of
stage k, after he has reported his information in TE honestly, but before he
chooses his action in CE, then he would have to choose a manipulative strategy
in M:k.

We want to guarantee that it should always be rational for each player to
obey the mediator's recommendations, even if the player has mistakenly
disobeyed (or trembled) in the past. However, there are some cases in which a
particular action could never be rationallj chosen by a player. TFor example,
if the mediator in Example 3 ever asked player 2 to use his dominated action
"e¢", then player 2 would certainly prefer to disobey. In general, it may be
necessary to impose some restrictions on the sequences of actions that the
mediator can recommend to each player.

To understand the need for such restrictions, we must reconsider the
argument for the revelation principle. There is no loss of generality in
assuming that each player reports all of his new information at each stage and
then receives in return only the recommendation of an action, hecause such
communication systems maximize the mediator's information and minimize the
player's information (and hence minimize his opportunities to find profitable
ways to cheat). 8So, without loss of generality, we can assume that the
vocabulary in which player i can report to the mediator at stage k is a subset
of T?, and the vocabulary in which the mediator speaks to player i is a subset
of C?. In fact, we argued in Section 4 that the mediator could require that
player i must send his reports so that, at each stage k, the sequence of past

k

<
reports should form a sequence in Ti s but no smaller set of possible reports

could be uninformatively specified, because the player's true information
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could be anywhere in this set. Now we must ask, can we assume without any
loss of generality that the set of possible recommendations that the mediator
can send to player i at stage k must always be all of CE? Unfortunately, the
answer to this question may be No, if we want to require that honesty and
obedience should be rational for every player in any event that he can
perceive. The problem is that, when we decrease the set of possible
recommendations that the mediator could send to player i, we decrease the set
of possible events that i could perceive, and this may make it easier to
guarantee that honesty and obedience is rational in all such events. Thus,
for maximum generality, we must allow that the mediator might, in some
circumstances, restrict the set of actions that he could possibly recommend to
a player, if the result of this restriction is to decrease the set of events
that are considered possible for the player to perceive.

Since the goal of these restictions on the mediator is only to reduce the
set of events that a player could perceive, there is no loss of generality in
assuming that the range of recommendations that the mediator can send to

player i at stage k depends only on the communications between the mediator

and player i up to stage k. Thus, we let a mediation range Q be a function

that specifies, for each player i, each stage k, each type t?k in Tﬁk, and

each cik-l in Cik—l, a set Q(cik_l,tik) such that
<k-1 <k k
Q(ci ,ti ) ¢ Ci'
<k-1 k

We interpret Q(ci ,ti) as the set of all actions that the mediator could
<
possibly recommmend to player i at the end of stage k if tik were the vector
<k-1

of past reports from player i and s were the vector of past

recommendations to player i. Given such a mediation range Q, we define
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\k 1 <k) V'k}

fo)
]

= {(Ci’ti) € Ci X Ti| ci € Q(e

fe)
1

k _ <k-1 <k
{770 (egutp) € q,

i i i

*k <k <k
Q= {(e st 0] (egst) € qy),
and
k <k-1, <k-1 <k . ~
G(Q) = {£ € | fi(t ky e QUE; - (t ),t; ), ¥, ¥k, ¥t €T }.
< = = = 'y
(Here fik(t<k) = c;k iff ci = fi(t<l) for every % < k.) ) Thus, Q; is

the set of all possible sequences of recommendations and type-reports for
player i when the mediator is restricted by the mediation range Q.
Similarly, Q? [or Q:k] is the set of all possible sequences of type-reports
and recommendations for player i up to the beginning [or end] of stage k if
the mediator is restricted by Q. G(Q) is the set of all feedback rules that
satisfy the restriction imposed by the mediation range Q for all permissible
sequences of reports from the players. (Notice that t ranges over % in the
definition of G(Q).)

We are now ready to state the main definition of this paper.

A communication mechanism p in A(F) is a sequential communication

equilibrium (or, more fully, a sequentially rational communication

equilibrium) iff there exists a mediation range Q and a conditional

- *
probability system p in A (G(Q) x T) such that:

(6.1)  p(f,t) = u(H) P(t|f), ¥f € G(Q), ¥ €T

<k
, L

6.2) (e, t|e ey = Gee|e ey peK e, e Ny, we e o, vre T, W
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<k <k, <k
£ €T (e fGG(Q)

<ky <k-1 <k <k
P4 2 z |J.(f t l C:L ti ) Ui(f o (Yi,Ti)lt )9

<k _ <k, <k
£ €T (t)  fe6(Q)

. <k-1 <k k k

¥i, ¥k, V(ci , ti ) € Qi’ V(yi,Ti) € Mi;

and
< <k < <

(6.4) ) DooucEess] e $5e5 v ] et®

£Rer e Ky fec() rorot

-1 T-it7i Q

<k <k <k <k
>
<k <« Z p(f t 1' ¢y oty ) Ui(f o (Yi,Ti)lt

eT (t Yy feG(Q)

. <k <k *k *k
¥i, Wk, V(ci ,ti ) € Qi . V(yi,ri) € Mi .

(Hdere we use the following notation:

p(£,0) = p (£,0} 6@ x D;

nee,t e, e = R, o @R <k, gt =t =k

~ <k <k - 2 2 2 2
RCE|E5,6D = nde) x T/{Gg,) ¥ <k, g = £, 5" = £]);
and w(E, tgk' cil tik) =
- \k A X X A S
= 5,9 ] 855 = S5 (@] (™)L, = et siF = )

where each indicated set is a subset of G(Q) x T.)
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Condition (6.1) asserts that the conditional probability system it is
consistent with p and the given dynamics of the game in all events that have
positive probability ex ante. Notice that (6.1) implies that u(f) =0 for

any f that is not in G(Q), since

) w(H) =} ] uw(f,0) =1l
£f€G(Q) feG(Q) te€T
In any stage k, the players jointly know the state t“K and the mediator
knows the components of the feedback rule f<k = (fl)§=1 that he has bheen
using. Condition (6.2) asserts that, given all this information in stage k,

it 1s expected that the future states 7k

will depend on the feedback rule as
required by the given dynamics of the game (when all players are homnest and
obedient). Condition (6.2) also implies that future actions by the players

are not expected to influence the feedback rule.

Condition (6.3) contains the informational or adverse-selection incentive

constraints for each stage. It asserts that, at the beginning of each stage
k, given any history of recommendations and observations in QE, player 1
should not expect to gain by starting to use a manipulative strategy of lying
and disobedience if he has never lied to the mediator before. Similarly,

condition (6.4) contains the strategic or moral—-hazard incentive constraints

for each stage. It asserts that, at the end of stage k, given any history of
recommendations and observations in Q;k, player i should not expect to gain by
starting to use a manipulative strategy if he has never lied before. Thus,
conditions (6.3) and (6.4) guarantee that, for any event that player i could
perceive in the course of the game when the mediator restricts his ‘

recommendations to those permitted by Q, it is always rational for player i to

be honest and obedient if he has never lied before. That is, if the mediator
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restricts himself to feedback rules in G(Q), the beliefs specified by u
guarantee that no player i would ever want to disobey or lie to the mediator
in the sequential communication equilibrium, even after zero-probability
events in which some players (not including i) have lied and some players
(possibly including i) have disobeyed the mediator in the past.

In the definition of sequential communication equilibrium, we have not
bothered to specify what a player would do or believe if he found that he
had (accidently) lied to the mediator at some previous stage. We can
ignore such situations because no player could ever observe anything that
would prove to him that another player had lied. Dishonesty is
fundamentally different from disobedience in this respect, because we allow

that players can directly observe each other's actions (in that t? may

depend on K1y,

i That is, if player j at stage k observed that player i
k-1

at the previous stage, and if ck_l is never in the mediation

used c¢ y

range, then player j would know that player i had disobeyed the mediator.
Under these circumstances, the future behavior and beliefs of player i
would be relevant to player j and so must be described in a sequential
communication équilibrium. On the other hand, there is no event that a
player could perceive that could only be explained by some other player
having lied, because players do not directly observe each other's reports
to the mediator. Thus, there is nothing to prevent us from assuming that
every player always assigns probability zero to the event that any other
players have lied to the mediator. Under this assumption, no player ever
cares about what a dishonest player would do or believe.

This begs the question of whether we could get a larger set of
sequentially rational communication equilibria i1f we allowed players to assign

positive probability to the event that others have lied to the mediator.
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Fortunately, by the revelation principle, this set would not be any larger.
Given any mechanism in which a player lies to the mediator with positive
probability after some event, there is an equivalent mechanism in which the
player does not lie and the mediator makes recommendations exactly as 1f the
player had lied in the given mechanism.

Existence of sequential communication equilibria is easy to verify (for
finite games) because any sequential equilibrium in the sense of Xreps and
Wilson [19821 is a sequential communication equilibrium. Also, it is easy to
check that (6.1)-(6.4) imply (4.1), so every sequential communication

equilibrium is indeed a communication equilibrium.

7. Codominated actions

The definition of sequential communication equilibrium in Section 6 is
nmuch more complicated that the definition of communication equilibrium in
Section 4. 1In this section we show that the set of sequential communication
equilibria of a game may be actually quite easy to characterize, using a new

concept of codomination, which is closely related to more familiar notions of

domination of strategies in games.

Let B be a correspondence that specifies sets B(tik) such that

<k k <k_, <k
(7.1) B(t; ) S C;, ¥i, ¥k, ¥t €T .

Given any such correspondence we define

7-2) Ek(B) = {f € F|Vi’ ¥4 > k, Vtgl € Tgl’ fi(tgl) é B(tik)}.
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That is, Ek(B) is the set of all feedback rules that would never recommend
actions in B(til) to any type til in of any player i at any stage & that is

after stage k, even if players other than i lied. (Notice the T\l in (7.2).)

k <k

For any cgy in C% and any sj in Tik, we define

k

Kk <k; <k <k .k, <k k
¢ (ey»s }

<k
) = {(f,t e Fx T ti =85 fi(t Y = ¢

He A
=

<
That is, ¢k(ci,sik) is the set of pairs consisting of a feedback rule and a

=~

<k

stage—k state such that player i's type is s{", and player i's recommended

action is c?- We let ¢ (B) denote the union of all sets ¢k(ck gk) over all

\k k

i,t;y", and cg{ in B(ti ) That is

¢k(B) {(f,t<k) ET x T<k| di such that fli((tgk) € B(t<k) }

We say that B is a (sequential) codomination correspondence iff, for

every stage k and every probability distribution m in A(F x Tgk), if

(7.3) sESB) x T =1 ana  1(5(B)) > 0
then there exists some player i, some tik in Tik, some c% in B(tik), and some

(yi{,74) in Mzk such that

(7.5) y (e @ | - U (2 0 (v, e <o

(5,60 (e, T)

That 1s, if there is a positive probability that some players may be asked to
use codominated actions in stage k, but no players would ever be asked to use
codominated actions after stage k, then at least one player should expect to

be able to gain by planning to manipulate in the event that he is told to use

an action in B. (A related concept of weak codomination is introduced
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elsewhere, by Myerson [1985]. The concept of codomination used here may be

called sequential codomination whenever it is necessary to distinguish it from

weak codomination.)

If B and % are two codomination correspondences, then B U % is also a
codomination correspondence. (Here (B U %)(tik) = B(tik) U %(tik).) This
is because, if p satisfies (7.3) for B uU % (in place of B), then p must

satisfy (7.3) for B or B, so that p must satisfy (7.4) in at least one case

<k

< ~
where c? is in B(tik) or B(ti

Y.

With finite type sets and action sets, there can be at most finitely many
codomination correspondences. So let D be the union of all codomination
correspondences. Thus, D is the maximal codomination correspondence,
containing all others. In general, we may say that an action c% is

k

<koof player i at stage k iff c; € D(tik).

codominated for type tj

When an action for player i is dominated in the sense of Nash [1951] or
Luce and Raiffa [1957], it means that, in any mechanism that would ask i to
use that action with positive probability, player i could expect to gain by
planning to disobey after being told to use that action. The idea of
codomination is that, in any mechanism that would recommend one or more
codominated actions with positive probability, at least one player could
expect to gain by planning to manipulate after being told to use a codominated
action (but, for a different mechanism, it might be a different player or a
different action). Thus, dominated actions are codominated.

Our main result is that a communication equilibrium (satisfying (4.1)) ic
sequentially rational if and only if the mediator would never recommend a
codominated action to any player in any event. In our notation (from (7.2)),
EO(D) denotes the set of all feedback rules that would never recommend a

codominated action to any player.
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Theorem 2. A communication equilibrium p is a sequential communication

equilibrium if and only if
0
(7.5) pE @) = 1.
Proof. The proof is deferred to Section 9.

By Theorem 2, once D is known, it is easy to check whether a mechanism p
is a sequential communication equilibrium, because it suffices to verify the
ex ante incentive constraints (4.1) and the support condition (7.5). Equation
(7.5) is satisfied if and only if p assigns zero probability to every feedback
rule ouside of EO(D). Since (4.1) and (7.5) are both linear in y, Theorem 2
implies that the set of sequential communication equilibria 1is convex.

Furthermore, when verifying that a mechanism is a communication
equilibrium, it is actually unnecessary to check incentive constraints that
involve disobedience to codominated actions. To express this result formally
as a theorem, let L; denote the set of all manipulative strategies for player

i in which player i never uses a codominated action; that is,

<k-1 <k

k <k
L, = {(yy,1)) € Mil v;(ey 5t; ) ¢ D(£;), ¥c,EC,, ¥t

i €T,, Wk} .

i

Theorem 3. For any mechanism pu in A(F), if p(EO(D)) =1 and
p satisfies (4.1) for every player i and every (y;,73) in L;, then p is a

sequential communication equilibrium.
Proof. The proof is given in Section 9.

Let Q be the mediation range consisting of all actions that are not

codominated. That is

<k-1 <k
c

¢ <k-1 <k-1 <k, <k
i 7

k <k .
) =€\ D(t;), ¥, Wk, ¥e, €C , We e T,

Q( i
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Thus G(Q) = EO(D)- (Notice that Q(c?k_l,ték) actually depends only on the

type » not on the history of past recommendations cik_l-) As in Section 6,

Qi denotes the set of all possible histories of recommendations and

<k
ty

type—-reports for player i when the mediator is restricted to the mediation

range Q. In the proof of Theorem 2, we shall also show the following result.

Corollary 1. If conditions (6.1)~(6.4) can be satisfied with the

mediation range Q for some sequential communication equilibrium, then
Qi 5_61 for every player i. Furthermore, conditions (6.1)-(6.4) can be

satisfied with the mediation range Q for every sequential communication

equilibrium.

To get a practical method for finding codominated actions, we need a bit

. * . .
more notation. We let A" be the set of all functions a that specify a

nonnegative number a(yi,1i|c§,t§k) for every player i, stage k,
% < . < .
(yi,xi) in Mik, c% in CE, and tik in Tik. That is,
% <
K n M kakxT.k)
* i i1
A = x X Ig+ .
k=1 i=1

We interpret a(yi,t.'ck

<k .
.,t. ) as a shadow price for the strategic incentive
i17i’>"1

constraint (6.4) that says that player i should not expect to gain by

beginning to use the manipulative strategy (yi,xi) when his informational type

is tik and the mediator has just recommended the action c%-

We define the function VX: F x T<K x A% R by

(7.6) (£, t5k o) =

n
k, <k <k
=7 ) alyy,t [E5CED, £

) (0 = v, 0 ().
*
i=1 (yi,ri)EMik



- 37 -~

That is, Vk(f,tgk,a) is a weighted sum of the contributions that f can make to
the satisfaction of the incentive constraints (6.4) at t<k. We may refer to

Vk(f,tgk,a) as the aggregate incentive value of the feedback rule f, k at the

information state tgk, with respect to the shadow prices a.

*
We say that (B,a) is a (sequential) codomination system iff o is in A",

B is a correspondence satisfying (7.1) such that

. <k <k k k *k
(7.7) ¥i, ¥k, ¥t € T,°, ¥o. € C;, ¥(y,,v,) €M,
. Kk <k koo<k,
if c; ¢ B(ti ) then a(yi,1i|ci, ti ) = 03
and
(7.8) ¥, ¥k, ¥t % %%, 3£ € 85,

< <
e £5(c) € Bel) then vE(£,tM0) <o,

Condition (7.7) asserts that the a shadow prices are positive only for
potential manipulations beginning when a player is asked to use a codominated
action. Condition (7.8) asserts that, if the rule f would recommend an action
in B to some player in state <k but £ would never recommend any actions in B
after stage k, then the aggregate incentive value of f at t<k must be strictly

negative.

Theorem 4. B is a codomination correspondence if and only if there

*
exists some @ in A" such that (B,a) is a codomination system.
Proof. The proof is given in Section 9.

This result gives us a method to computationally show that actions are
codominated. One notable aspect of this result is that it involves only the

strategic incentive constraints (6.4); the informational incentive
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constraints (6.3) after the first stage do not play any role. To understand
this asymmetry, notice that it is easy to construct communication equilibria
in which every player would be willing to report honestly in every information
state. For example, any Kreps—Wilson sequential equilibrium of the game
without communication can be reinterpreted as such a communication
equilibrium, in which the mediator simply recommends to each player that he
should use the actions designated for him in the Kreps-Wilson equilibrium on
the basis of his own reported information. Since each player's reports affect
only his own recommendations, he could never gain by lying. On the other
hand, there are recommendations which a player would be unwilling to obey, no
matter what communication mechanism is being implemented. TFor example, we
have remarked that player 2 would not be willing to obey a recommendation to
use his dominated acfion "¢" in Example 3. Thus, there are codominated
recommendations to which obedience would be impossible to motivate; but there
are no information states in which honesty would be impossible to motivate.

To show that codomination actually eliminates more actions than other
concepts of domination, consider Example 5, defined as follows. (This example
is adapted from an example proposed by J. Farrell.) In the first stage,
player 1 chooses either wy or x;. 1In the second stage, players 2 and 3 are
informed as to what player l's first—-stage choice was, and then each player i
in {2,3} can choose Xis Yi» Or zg. If player 1 chose w; in the first stage,
then the final payoffs are (ujp,us,u3) = (1,9,9), no matter what happens in
the second stage. If player 1 chose x; in the first stage, then the final
payoffs depend on the actions of players 2 and 3 in the second stage as

follows:
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Player 3
After x7y: X3 ¥3 z3
X9 2,1,1 0,2,0 0,2,0
Player 2 y9 0,0,2 0,3,0 0,0,3
z9 0,0,2 0,0,3 v 0,3,0

There are no dominated actions in this game, in the sense of WNash [1951],
but y; and z; are codominated for i=2 and i=3 in the second stage after player
1 chooses xy. Furthermore, if y,, y3, z9, and zg3 are codominated, then wy 1is
codominated for player 1 in the first stage (since he gets a payoff of 2 from
Xy followed by x5 and X3, whereas he gets a payoff of 1 from wy). Thus, the
unique sequential communication equilibrium has player 1 choosing %) in the
first stage, and players 2 and 3 choosing (X5,%x3) in the second stage. There
are other Nash equilibria, in which player 1 chooses w; in the first stage
because players 2 and 3 would each choose y; or z; if he chose x, but these
are not sequential communication equilibria.

To check that y; and z; are codominated actions for players 2 and 3 after
player 1 chooses x, let a(xilyi,"xl") = a(xilzi,"xl") =1 for i =2 and
i= 3, (Here, a(xi|yi,"x1") is the shadow price for the incentive constraint
that player i should not expect to gain in stage 2 by choosing x; 1f yy is
recomnended, when his type is tiz = "x1"; that is, he knows that player 1
chose X1+.) Then the aggregate incentive values equal -1 at each of the eight
cells other than (x9, x3) in the payoff matrix after x;. For example, at

(Yz,}'3) we get V2

=0+ (3 -2)+ (0 ~-2)=-1, and at (x,z3) we get
v2Z =0+0+ (0 -1) = -1.

It is worth remarking here that there are no codominated actions in

Example 4. Thus, although the sets of sequential communication equilibria and
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subgame-perfect equilibria coincide for Example 5, they do not coincide for

Example 4.

8. Predominant actions and equilibria

In Example 5, we first established that actions y,, Zy, Y3, 23 are
codominated actions for players 2 and 3 at stage 2. Then, having eliminated
all actions after x| except x, and X3, we could conclude that wy is
codominated (even dominated, in fact) at stage 1. Without the elimination of
the ¥i and z4 actions at the second stage, no clear comparison between x; and
Wy could have been made.

Consider now Example 6, which differsAfrom Example 5 only in that player
1 now has a third action y, available to him in stage 1. If player 1 chooses
action y; then players 2 and 3 get the same observation at stage 2 as if x;
had been chosen; that is, players 2 and 3 at stage 2 cannot distinguish
between actions x; and yj (but they can distinguish w;). The final payoffs

(uq,up,uq) if player 1 chooses y; depend on the actions of players 2 and 3 as

follows
Player 3
After y,: X4 V3 zq
X9 0,0,0 0,0,0 | 0,0,0
Player 2 1y, 0,0,0 0,1,1 0,0,0
zy 0,0,0 ] 0,0,0 0,0,0

In Example 6, action y, is dominated by w, for player 1, since w,; gives
1 1 1

him a payoff of 1 for sure and y; always gives him a payoff of 0. Thus y; is
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a codominated action. Unfortunately, yq is also the only codominated action
in Example 6. In fact, there is a sequential equilibrium in which player 1
chooses Wy because he expects that players 2 and 3 would choose y, and yq if
he chose x; or y15 and players 2 and 3 would be willing to choose y, and yj3
because, if they saw that player 1 did not choose w; then they would assign
probability one to the event that he chose Y1+

Thus, identifying codominated actions at stage 2 can help to identify
more codominated actions at stage 1, as in Example 5; but, as in Example 6,
identifying codominated actions at stage 1 does not help to identify more
codominated actions at stage 2. In general, codominated actions are
identified by an analysis that begins with the last stage of the game and
works backwards. In terms of the definition of codomination, this backwards
analysis is derived from the appearance of Ek(B) in condition (7.3). More
fundamentally, it arises in our theory because players at any stage must
always assign probability one to the event that everyone will obey the
mediator at all future stages. Thus, if the mediator can never recommend
codominated actions, then all players are sure that no codominated actions
will be used in later stages. On the other hand, after an event of
probability zero, players at some given stage may assign positive probability
to the event that some players disobeyed the mediator and used codominated
actions at earlier stages in the game. This asymmetry between backward and
forward perceptions explains intuitively why we work backwards through the
game, but not forwards, in the process of identifying codominated actions.

It is natural, however to impose some additional restrictions on the
beliefs that rational players may have about past actions. Because no player
would ever rationally choose a codominated action, one might suppose that a

§

rational player, given any history of recommendations and observations at any
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stage, should not assign positive probability to the event that any players
have chosen codominated actions in the past, unless there is no other
explanation for his observations. (Of course, if a player has directly
observed players choosing codominated actions, then he must assign probability
one to this event.) Such a restriction will generally decrease the set of
"rational” communication equilibria and increase the set of actions that could
never be rationally chosen by any given type of a player. Using this larger
set of irrational actions, we may then impose further similar restrictions on
players' beliefs about the past; and thus we may continue iteratively until
no further “irrational” actions can be identified. vWe now develop a formal
model of such iterative elimination of irrational actions.

Given any correspondence B that satisfies (7.1), let S(B) be the set of

all outcomes of the game that could have positive probability when no player

ever uses an action in B. That is
S(B) = {t € T| 3f € E'(B) such that P(t|f) > 0 }.

Analogous to earlier notation, we may also define

s%(B) = {t<k| t € s(B)}, Sik(B) = {tikl tesm), s*m = x 5

JEN

(B).

< <
So t ke S k(B) iff <k is a vector of players' types that could actually
occur in stage k if all players always avoid actions in B.

We now inductively define, for any positive integer m, the correspondence

%
Dm and the concept of m—iterative codomination. To begin, let

For any m > 1 and any B satisfying (7.1), we say that B is an m—iterative

<
codomination correspondence iff, for every stage k and every © in A(F x T k),
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k

i w(E (B x s =1 and (e (B) >0

<k k Sk)

. . . < * .
then there exists some player i, some t; in Sik(Dm—l)’ some ci in B(ti

R *k
and some (yi,ri) in Mi such that
k
)

Z n(f,tg

k

I (W, (£]e) = 0 (£ 0 (v;,7)]e) < 05
< <

2 2

*k _ 0, * . 4 a<h, 2, <R <
where E C(B) = {f € E(D__ )| ¥, ¥ >k, ¥ e s7(D__ ), £7(t70) £ BT}

That is, B must satisfy the same conditions as in the definition of a
codomination correspondence, except that we ignore all states that are
impossible when all players avoid actions in D;_l. It is easy to check that
any union of m—iferative codomination correspondences is also an m-iterative
codomination correspondence. Thus, we inductively define D; to be the maximal
m-iterative codomination correspondence.

It is straightforward to verify that, for every m
D D * S D*
n-1 = “m and S(Dm--l) SR m)°

Thus, since there are only finitely many actions, there must exist some m and

*
some correspondence D_ such that

D* = D* D* D
T Tmtl m2 T et
. k . k . . . <k
We say that an action c¢j in C§ is (sequentially) predominant for type t;

k

of player i at stage k iff c¢j is not in D:. Similarly, we say that a

communication equilibrium g is (sequentially) predominant iff the mediator

would always recommend only predominant actions. That is, p is sequentially

%
predominant iff p(EO(Dm)) = 1. (A related concept of weak predominance is

introduced elsewhere, by Myerson [1985]. The concept of predominance defined
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here may be called sequential prodominance whenever it is necessary to

distinguish it from weak predominance.)
. * 0 0,.* .
Since D<c D and E (D) 2 E'(D_), Theorem 2 implies that any
predominant communication equilibrium is a sequential communication
equilibrium.

Given any multistage game, its codominant residue is the game that

remains when we eliminate all codominated actions from the feasible set of
each type of each player at each stage of the game. (Thus, the codominant -
residue is generally a game in which the set of feasible actions for a player
may depend on his type. However, as noted parenthetically in Section 4, all
of the results in this paper can be extended to such games.) Similarly, let

the m~iterative residue of a game be the game that remains when all

m—iteratively codominated actions are eliminated. It is straightforward to
check that the miterative residue is the codominant residue of the
(m-1)~iterative residue.

In the codominant residue, the mediator is restricted to mechanism such
that u(EO(D)) =1, “and each player can only use manipulative strategies
in L;. Thus, reinterpreting Theorems 2 and 3, the set of sequential
communication equilibria of a multistage game is just the set of all
communication equilibria of its codominant residue. More generally, the set
of communication equilibria of the miterative residue is the set of all
sequential communication equilibria of the (m-1)~iterative residue of the
game. But the set of sequential communication equilibria of any finite
multistage game is a nonempty subset of its communication equilibria. Thus,
by induction, for any m, the set of communication equilibria of the
m-iterative residue is a nonempty subset of the communication equilibria of

the original game. TFor some sufficiently large m*, the predominant
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comnunication equilibria are the communication equilibria of the m*-iterative
residue. The Nash equilibria of this residue are, of course, a nonempty
subset of its communication equilibria. Thus, we have derived the following

general existence theorem.

Theorem 5. The set of predominant communication equilibria is nonempty

and includes at least one Nash (communicationless) equilibrium.

In Example 6, only ¥, 1s codominated. Thus, the codominant residue of
Example 6 is just the game in Example 5. Since everything except %y, X5, and
X3 1s codominated in Example 5, (Xl,XZ,X3) is the unique predominant

equilibrium in Example 6.

9. Proofs.

Theorem 1. u is a conditional probability system on @ if and only if
there exists a sequence of probability distributions {nJ}?=1 such that
e}y >0, ¥j, ¥we9; and

px|z) = un ndx 0 i@y, W, ¥z 2o

J—)w

Proof of Theorem 1.

Suppose first that there exists a sequence of probability distributions

{nj}?=1 such that nj({w}) > 0 for every j and w in Q, and

u(X‘Z) = 1im nj(XnZ)/nj(Z), ¥X, ¥Z # 0.
j—)w

Then (5.2)-(5.4) can be checked as follows. If XnY =@ then
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w(xn¥|z) = 1im nd((xnyynzy /mIcz)

J—)m

1im nj(xnz)/nj(Z) + 1im nj(YﬂZ)/nj(Z)
Jre Jreo

w(xX|Z) + uctl2).

1 = Lin n3(2)/n(2) = wz|2)
j-)cn

= 1in n3@n2) /2y = wa|2)-
j—)m

If XcY<cZ and Y # @ then

w(x|2) = 1im 17 xnz) 12y =
j—)m

= 11n ((nI@ mI) Iy mi))
e

= (Lim nj(XnY)/nj(Y))({im ndcenzy mic2y)

J->m J->cn
= w(x]v) w(yl2).
Thus, p is a conditional probability system.

Conversely, suppose now that u is a conditional probability system. We

construct {nj}?=1 as follows. Let Wy = Q and then inductively define W, for

h>1 by

W= [w e Wh—l' p({w}'wh_l) = 0}.
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Since these sets are strictly decreasing in size and Q is finite, there exists

some H such that Wy # @ and Wy = 0. For any X < Q, let

1

- y - i 1,k
@) = (——=) I w&|w) (3"

i- /H" bh=0
Each nj is a probability distribution on Q, giving positive probability to
every point. Given any sets X and Z such that Z # @, 1let g be the highest
number such that Z ¢ W,. Then p(Z‘Wg) > 0 and p(Z‘Wh) = 0 for every

g
h < g. Thus, using (5.4),

u(XﬂZ|Wg)

ROZ[2) = s -

n(x|z)

pexnzliy F

| o~

h|
= 1lin & ﬁ = 1ip X0 Q.E.D.
oo 1.h jroe T]J(Z)
L welv)
h=g J

We prove Theorem 4 and a series of lemmas before proving Theorem 2.

Theorem 4. B is a codomination correspondence if and only if there

. . * . .
exists some a in A" such that (B,a) is a codomination system.

Proof of Theorem 4

Let B be any correspondence satisfying (7.1). Let Ek(B) and ¢k(B) be as

defined in Section 7. Let
~k k <k k
E(B) = (E(B) xT ) n ¢ (B)

Thus (f,t<k) € Ek(B) if f would never recommend any actions in B after stage

k, but f does recommend an action in B(ték) for some player i in stage k. By



- 48 ~

the separating hyperplane theorem, the following two propositions are

equivalent.

(1) There does not exist any probability distribution m such that

n(ﬁk(B)) =1~ and - S o

y n(f,tgk)(Ui(fltgk) -U,E 0 Gy e > 0
(£,69e0 (e ot

<
vi, v € e ¢k k
1 1

k < *

(2) There exist nonnegative numbers a(yi,r c?,sik ik € Tik,
* A
Vc? € B(sik), ¥(yi,1i) € Mik) such that, for every (f,tgk) in Ek(B)

)y (¥i, ¥s

;|

oo D (el lege™,e
{ilfi(t\ )EB(ti )} (Yi,Ti)EMik

<k <k
« W U (E o (v ]eTN) <o,
It is straightforward to check that (B,a) is a codomination system if and

only if (B,a) satisfies (2) for every stage k. Similarly, B is a codomination

correspondence if and only if B satisfies (1) for every stage in k. Q.E.D.

Lemma 1. Suppose (B,a) is a codomination system and (Q,u) satisfies the

conditions (6.2)-(6.4) for a sequential communication equilibrium. TFor any

player i, any stage k, and any (Ci’ti) in Q, c? is not in B(tik)-

Proof. 1If the lemma fails, then let k be the maximal number such that
< <
{(f,t) € G(Q) x TI 3i such that f?(t k) € B(tik)} + 0.

Let X denote this nonempty set. Then
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- <k <k k <k
D S T (L CORR SICICOR N Ell e
<
i tik cik (Yi,Ti)GMik

c ] DREE e e - v o (ryrp €)=
N

-1

= Y neet] vEE,e R0 <o,
(£,)ex

We use the maximality of k to guarantee that any f in G(Q) is in Ek(D); then
(7.5) gives us the strict negativity result. Thus, at least one strategic

constraint in (6.4) must be violated. Q.E.D.

Lemma 2. There exist B, Q, and o such that (6.2)-(6.4) are satisfied

A

(when p = o and Q = Q) and

- k , 5 <k .
Qi = {(ci’ti) € Ci X Til Ci é B(ti ) V'k}, ¥i.

Proof. For any ¢ between 0 and 1, we can construct an e-perturbed game
(in the sense of Selten [1975]) from our game I' as follows. In each stage and
every possible state, each player has an independent £ probability of
trembling, in which case every action is equally likely. By the general
existence theorem of Nash equilibria for finite games, an equilibrium exists

for each e-perturbed game. Since all the action sets are finite, there exists

A

©
some correspondence B and an infinite sequence {sj}

4=1 such that

lim Ej = 0, each e; > 0, and, for each j, there exists an equilibrium of
oo

A

the sj-perturbed game such that, for every player i, every stage %k, and every
RS
tik in Tik, B(tik) is the set of all actions to which player i gives zero

probability in stage k if he is not trembling and his information state is

ték. Let Q be derived from D as in the statement of the lemma.
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Suppose that, before the game begins, a mediator offers to perform all
the independent randomizations planned by all the players for all stages and
all states in their equilibrium strategies for the ej—perturbed game. After
i performing these randomizatipns, the mediator will have generated a feedback
rule in G(&). Let O be the probability distribution o&é; Gtgi ; T wheﬁ tﬁe .
mediator selects his feedback rule in this way and then implements it in the

ej—perturbed game. (So each player is assumed to obey the mediator with

independent probability 1 - € in every stage, and to tremble uniformly over

his actions with probability ej.) Because each f?(th) is chosen

independently by the mediator, with full support over C? \ B(tik), and
because every action has positive probability in a tremble, the probability
distribution of o has full support over G(&) x T.

Choosing a subsequence if necessary (to guarantee that all conditional
probabilities converge), we can let G be the conditional probability system on
G(a) x T generated by {oj}§=l (as in Theorem 1). Then (6.2) is satisfied
(when [ = o) because the probability of any trembles in stage k or thereafter
goes to zero as €3 + 0, given any information about the mediator and the
players up to the beginning of stage k. The incentive constraints (6.3) and
(6.4) are satisfied because each of represents an equilibrium of the

ej-perturbed game, in which every information state occurs with positive

probability. ) Q.E.D.

Lemma 3. There exist B, Q, and g such that 3 is a conditional
probability system on G(Q) x T, (6.2)-(6.4) are satisfied by Q and p, B is a

codomination correspondence, and

Q; = {(ey,ty) € C; x T, c1i< ¢ B(tik) ¥}, ¥
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Proof. Let %, Ois and ¢ be as in Lemma 2 and its proof. If % is a
codomination correspondence, then we are done; so suppose that it is not. Let
B” = B. Then there must exist some finite sequence of correspondences
(Bl,...,BH), such that BY is a codomina;ion correspondence

< - < < <
Bh(tik) E_Bh 1(tik) ¥i, ¥k, Vtik € Tik, ¥h € {1,...,1},

and, for every h and every k, there exists some probability distribution phk
such that nhk(Ek(Bh 1) b Tgk) =1 and, for every player i and
<k . <k
every ti in Ti ,
hk k k < k -1, < h, <
(0 ety >0 wel e BTN (ONBN(E ),
<
hk(¢k(ck gk)) =0 ¥k e Bh(t k), and
i i i
hk <k <k <k
y m (e E[ET = U o (v, > 0

ko k, k <k

*% ok h-1, <k
V(Yi,ri) € Mi , ici € B (ti Y.

These 8P and nhk are constructed inductively as follows. If 8071 is not a
codomination correspondence, then there exists some stage £ and some
probability distribution m such that condition (7.3) is satisfied (for

B =30 and k= 2) but condition (7.4) (the violation of some incen®ive

constraint) does not hold. Then let nhl =g and let

)I u(¢x

(c >t
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For every stage k # %, let
hk <k - <ky . <k
mo(E,t ) = o(f,t|6(Q) x T), ¥E, ¥t o,

and

h, <k h~1,6 <k <k Wék
B (ti ) =8B (ti Y, ¥i, Vti € Ti .

In this construction, the nonnegative integer

h, <
DD OLY
<k *
ik t,
i
strictly decreases with every increase in h. Thus, the construction must
eventually terminate at a codomination correspondence. (Notice that the
correspondence that always selects the empty set is a codomination
correspondence.)
Let B = BH, and let Q be derived from B so as to satisfy the equation
in the statement of Lemma 3. It now remains for us to construct Q.
Let G°(Q) = {f € 7| 3g € G(Q) such that ¥2 <k £* = g!}. That

is, Gk(Q) is the set of all feedback rules that look like rules in G(Q) before

stage k.
We can extend each nhk to be a probability distribution over G(Q) x T
by letting
hk hk < k <
n (£,t) = n (f,t k) P(t> |f,t k).
So nhk is consistent with the given dynamics of the game after stage k.

Notice that we did not use any properties of £2 for £ < k in our construction

of the nhk(f,t) numbers. Thus, we can assume with no loss of generality that
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AS(E,8) =0 if £ € GYQ),

and

Akl\ l

WK, 0) = 1 (g,0) 1f £ € GN(Q), g €GN, and £' = g%, ¥ k.

Thus, for the components of the feedback rule before stage k, LS

gives the
same marginal distribution as the uniform distribution on G(a).
By renumbering the {cj} sequence if necessary, we can assume that there
exists some J such that, for every j > J,
csj(f,t) > 1/, ¥f € G(E)), ¥t € T.
(Recall that each o5 has full support over G(é) x T.) For each j, let 6j be

a probability distribution over G(Q) x T defined so that

K 1

8. (£,£) = o, (£,£) + i VA
J J k=1 h=1

(k-1)H+ht1 nhk(f,t).

Given any event that has positive probability in o, the conditional

probabilities generated by 6j approach those generated by o4 as j becomes

large. 1In any stage k, if the event that the mediator has used fgk and the
players have learned tgk has positive probability under 6j but has zero
probability under Gj’ then the conditional probabilities generated by 6j given
this event must approach (as j + =) the conditional probabilities generated by
the first mit distribution in which this event has positive probability.

(Here "first" 1M means the lowest possible %, and then lowest h given this

< = L]
bl that gives (f k,t<k) positive probability must

satisfy & < k if 93 gives zero probability to (fgk,tgk). (This is because,

X.) Furthermore, the first =

when 2 > k, ahd gives positive probability to (fgk,tgk) only if ¢; does

J

also.)
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In any event that has positive probability under all 6j, the conditions
(6.2)-(6.4) are satisfied by the limiting conditional probability system that

is generated as j + ». The dynamics—consistency condition (6.2) is satisfied

" condition satisfies it in every stage k < L, The incentive

he..

because each =n

is the first-to-give-positive---

x = <
probability to the event that i observes (c;k,t;k) [or (c, k -1 <k)] through

“ constraints are satisfied because,; if =

the end of [or the beginning of] stage k, then 2 < k and

ci € h 1( )\B (t ); and 2™ was constructed so that mno player could

expect to gain by manipulating in any event that he could observe with

positive probability after getting such a recommendation cJl in state t‘l

If X is in B(tik) (that is, BH(tik)) then there is a positive

i
probability under every 6j that c% will be recommended at stage k to type tik

of player i, after some history of past recommendations cik_l, but not

*
k-1 5uch that (cik,tfk) € Qik. We now need to

necessarily after every cj N

perturb the {éj} sequence slightly so that every history

*k

<k <k, .
(c ti ) in Qi

P should have positive probability, without losing incentive

compatibility in the limit. Furthermore, these perturbed distributions should
have full support over G(Q) x T, so as to generate, in the limit, a
conditional probability system on G(Q) x T satisfying the dynamic
consistency condition (6.2).

We need some further notation. Let

< <
Y?(t k) |3(g,r) such that g = fk, r ko t , and 6&.(g,r) > 0}
k-1
<.k( <k) = X ‘l’%(t
j g=1 3
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) éj(g,t)/lwgk(tgk)l ir £ ¢ Y?k(tgk),
. 2e3"(£)
Ej(f,t) =
0 if £% ¢ Y?k(t<k)-

Notice that g;(f,t) = 5j(f,t). let Z =X +H+ 1, and let

R+ R+l ,
Ao = 3 a/pFPZ e + T a/p®FTm e s, M.
] 2=1 ] =1

Finally, for any (f,t) in G(Q) x T, let

RSNV G D AR WER P
g€G(Q) sET
For each j, M is a probability distribution with full support over
G(Q) x T (because we let P(t"®|f,t®) =1 when m =K + 1, in the
definition of xj(f,t)). Choosing a subsequence if necessary, let p be the
conditional probability system on G(Q) x T generated by 3 as 7 «, in the

sense of Theorem l. We now show that &t satisfies (6.2)-(6.4).
vk
J

k, the mediator uses a feedback rule that has positive probability under §

(tgk) is the set of feedback rules such that, in every stage before

js
given the current state. Thus, E?

that there are two mediators: one manifest and the other subliminal. The

can be interpreted as follows. Suppose

players are coordinated by the subliminal mediator throughout the game
according to the 5j distribution. In stage k and thereafter, the manifest
mediator uses the saﬁe feedback rule as the subliminal mediator. Before stage
k, the manifest mediator has no influence over the players. For each L < k,
the manifest mediator selects his feedback function for stage & at random

(uniformly) from Y?(t<l), if tgl is the current state of the players'
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information. Then g? is the joint distribution of the manifest mediator's

feedback rule and the outcome of the game, under this (unusual) procedure.
Z is greater than the highest power of (1/j) that is used in the

definition of éj. Thus, for any event X ¢ G(Q) x T, the conditional

probabilities ﬁ(-lX) are completely determined by the term in the definition

of xj that has the lowest power of (1/j), among all terms that are positive
< .
for at least one point in X. Any event (fgk,t k) that has positive

probability under i% for some 2 > k must also have positive probability under

Ek because of the definition of Y?(tgk). Thus, if fl

<
s € Y?(t l) for every

2 < k, for all j sufficiently large, then the conditional probabilities
;(.'fgk,tgk) are determined by the sequence {gl}m

1
A sq s s - <k <k . s .
the conditional probabilities u(-|f ot ) will be consistent with the

for some & < k3 and thus

dynamics of the game as required by (6.2), since the conditional probabilities
generated by i% as j > » are consistent with these dynamics after stage &
(when the manifest and subliminal mediators coincide). On the other hand, if

fl ¢ Y?(t<l) for some 2 < k, for all j sufficiently large, then let m be the

>k

lowest number such that there exists some t and f>k such that

< .
P(t>m|f,t m) > 0. This m will not be greater than k, and the conditional
- <
probabilities u(-lf<k,t k) will be completely determined by the term for this
m in the second summation in the definition of xj. Thus, (6.2) is satisfied

in this case as well.

k t<k+1

<
Given any player i and any (c i

<k, . % <k
;£ ) in QF for (e},

L

i

) in Q§+1] let
£ be the highest number such that the recommendation ¢y would have probability

zero under the éj distributions, for all j sufficiently large, after a

recommendation-history of cil_l and an information type til. Clearly
L € k. Then player i's conditional beliefs ;(-Icik,tik) for p(e csk,t<k+1)]

are completely determined by the {g?}w sequence. Thus, player i believes

j=1
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that, although the manifest mediator diverged from the subliminal mediator
before stage &, the conditional probabilities that are generated by the 6j
distributions as j > = accurately characterize the current state of all
information and the behavior of all individuals from stage 1 on. Since the
relevant—incentive constraints were -satisfied by-the beliefs generated by the — ——
8 s sequence, p satisfies these constraints (6.3) and (6.4) as well.

3
Q.E.D.

Lemma 4. Let B and Q be as in Lemma 3, and let D and Q be as defined in

Section 7. Then D =D and Q = Q.

Proof. By Lemma 1, mediation ranges that are consistent with (6.2)-(6.4)
cannot include any codominated actions. By Lemma 3, Q is consistent with
(6.2)-(6.4) and, in every state, allows all the actions that are not in the
codomination correspondence B. Thus, B is equal to D, the maximal

codomination correspondence, and Q is equal to Q. Q.E.D.

Theorem 2. A communication equilibrium p is a sequential communication

equilibrium if and only if p(EO(D)) = 1.

Proof of Theorem 2 and Corollary 1.

If u is a sequential communication equilibrium, then there is some
mediation range Q on which (6.2)-(6.4) can be satisfied and such that
u(G(Q)) = 1. But by Lemma 1, Q¢ 6, because Q must avoid all codominated
actions, and so u(G(Q)) = 1. (Recall G(Q) = EO(D).)

Conversely, suppose that p is a communication equilibrium and
p(G(a)) = 1. Let nj be as in the proof of Lemma 3. Then we can define a
sequence of probability distributions Pj with full support over G(a) x T by

letting
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py(F,t) = (L = (/) u(®) P(t|f) + /1) ny(£,6), ¥fe G(Q), ¥t € T.

Then let p be the conditional probability system generated by P as j > «.

. For any event X, the conditional probabilities u(+[X) are the same as under
peP if X has positive probability under p+P; otherwise the conditional
probabilities are the same as those generated by the njy as j > @ But peP is
consistent with the given dynamics of the game, and satisfies the incentive
constraints in all events that have positive probability, since p is a
communication equilibrium. As shown in the proof of Lemma 3, the nj generate
conditional probabilities that satisfy (6.2)-(6.4) with the mediation range a.

Thus, (6.2)-(6.4) are satisfied by E and 5, and (6.1) follows immediately from

the definition of Py Q.E.D.

Theorem 3. If u(EO(D)) =1 and p satisfies (4.1) for every i and every

(Yi,Ti) in L;, then p is a sequential communication equilibrium.

Proof of Theorem 3.

Suppose that, contrary to the theorem, p(EO(D)) =1 and p satisfies (4.1)
for every (yi,Ti) in Li’ but p is not a communication equilibrium. Then there
exists some player i who could expect (ex ante) to gain by using some manipulative
stategy that uses codominated actions with positive probability. Among the
(finitely many) manipulative strategies that are optimal for player i against p,
in terms of his ex ante exante expected utility, we can choose (yi,Ti) so that,
for the lowest possible number k, y; would never select a codominated action after
stage k. Let v be the mechanism that effectively results when player i

manipulates p by (y;,74), so that

v(£) = ps] g0 (v, = £ D
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< .
Let m be the probability distribution over F x T k induced by v, so that

n(£,6%%y = v(ey T pee]e).
>k

Notice that n(Ek(D) X T<k) = 1, since no player is being told to use codominated
~actions after stage k. Also, ﬁ(d;k(ﬁ)) > 0, because player i must be using =
codominated actions with positive probability in stage k. (If player i were using
codominated actions in stage k with zero probability only, then we could have
found another manipulative strategy that is also optimal for i against p and that
never uses codominated actions after stage k-1, contradicting the minimality of
k.) Thus, by definition of codomination, there must be some player who can expect
to gain by planning to manipulate against m (or, equivalently, against v) after he
gets a recommendation to use a codominated action at stage k. But that player
must be player i, because no other player ever gets a codominated recommendation
under w. But if player i could expect to gain by planning to manipulate against
n, then (Yi,Ti) could not have been an optimal manipulation against p. This

contradiction proves the theorem. Q.E.D.
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