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On Weighted Shapley Values

by
Ehud Kalai and Dov Samet

Abstract

Nonsymmetric Shapley values for coalitional form games without
transferable utility are studied. The nonsymmetries are modeléd through
nonsymmetric weight systems defined on the players of the games. It is shown
axiomatically that two families of solutions of this type are possible. These
families are strongly related to each other through the duality relationship
on games. While the first family lends itself to applications of nonsymmetric
revenue sharing problems the second family is suitable for applicatisons of
cost allocation problems. The intersection of these two families consists
essentially of the symmetric Shapley value. These families are also
characterized by a probabilistic arrival time to the game approach. It is
also demonstrated that lack of symmetries may arise naturally when players in

a game represent nonequal size constituencies.






On Weighted Shapley Values

by
Ehud Kalai and Dov Samet

1. Introduction

The Shapley [1953b] value is considered by many game theorists amd
economists as the main solution concept to cooperative games with transferable
utility. These games and this solution concept have been applied to problems
of revenue sharing and cost allocations.

One of the main axioms that characterize the Shapley value is one of
symmetry. The underlying motivation for using this axiom is the assumption
that except for the parameters of the games, the players are completely
symmetric. However, in many applications this assumption of symmetry seems
unrealistic for the situation that is being modeled and the use of
nonsymmetric generalizations of the Shapley value was proposed in such cases.

Consider, for example, a situation involving two players. If the two
players cooperate in a joint project they can generate a unit profit which is
to be divided between them. On their own they can generate no profit. The
Shapley value views this situation as being symmetric and would allocate the
profit from cooperation equally between the two players. However, in some
applications lack of symmetry may be present in the underlying situation. It
may be, for example, that a greater effort is needed on the part of player one
than on the part of player two in order for the project to succeed. Another
example arises in situations where player one represents a large constituency
with many individuals and player two's constituency is composed of a small
number of individuals. Other examples where lack of symmetry is present can
easily be constructed for problems of cost allocations. Also, lack of

symmetry may arise when different bargaining abilities for different players



are modelled.

The family of weighted Shapley values was introduced by Shapley
[1953a)l. Each weighted Shapley value associates a positive weight with each
player. These weights are the proportions in which the players share in
unanimity games. The symmetric Shapley value is the special case where all
the weights are the same. In this paper we extend the notion of "weights” to
"weight systems™ enabling a weight of zero for some players. We then define
in section 2 the notion of the weighted Shapley value with a given weight
system and relate it to a procedure of dividend allocation that was proposed
by Harsanyi [1959] (sece also Owen [1982]) for games without sidepayments. In
section 3 we give an equivalent definition of the weighted Shapley value by
random orders which generalize the random order approach to the symmetric
Shapley value. In section 4 we give an axiomatic characterization of the
family of weighted Shapley values——that is, we provide a list of properties of
a solution which is satisfied by and only by weighted Shapley values.

Shapley [1981] proposed also a family of weighted cost allocations
schemes and axiomatically characterized, for exogenously given weights, the
scheme associated with these weights. This family of solutions is related to
the weighted Shapley values by duality. We explore further the relationship
between these two families, provide an axiomatization of the latter family
(which does not use the weights explicitly in the axioms as Shapley's axioms
do) and get as a result an axiomatization of the symmetric Shapley value which
does not use the symmetry axiom.

Owen [1968 and 1972] showed that weighted Shapley values can be computed
by a "diagonal formula™ providing another interpretation of the weights
associated with the players. In section 6 we extend the “diagonal formula"

for weight systems and allocation schemes.



Finally, we note that if one accepts the axioms in section 4, one is
obliged to use a weighted Shapley value but no recommendation of the weights
is implied by the axioms. The weights should be determined by considering
such factors as bargaining ability, patience rates, or past experience., In
section 7 we examine cases in which the "size"” of the players (where the
players themselves are groups of individuals) are appropriate weights for the

players.

2. Weighted Shapley Values

Let N be a finite set, the members of which will be called players.

Subsets of N are called coalitions and N is called the grand coalition. Set

|N| = n. For each coalition S we denote by ES the 'Sl-dimensional Fuclidian
space indexed by the players of S. A game v is a function which assigns to
each coalition a real number and in particular v(f) = 0. The set of all games
is denoted by I'. Addition of two games v and w in T is defined by (v + w)(S)
= v(S) + w(S) for each S and multiplication of the game v by a scalar a is
defined by (av){(5) = av(S) for each coalition S. Thus I' is a vector space.

For each coalition S the unanimity game of the coalition S, ug, is defined by

ug(T) =1 if T > S and ug(T) = 0 otherwise. It is well known that the family

of games {uS}S is a basis for T.

c N
The Shaplé; value ¢ is the linear function ¢: T = EN, which for each

unanimity game ug is defined by ¢i(uS) = TéT-if i €8 and ¢i(uS) =0

otherwise. Intuitively, in the game ug any coalition which contains S can

split one unit between its members and therefore players outside S do not

contribute anything to the coalition they join. Hence, ¢i(uS) = 0 for

i ¢ S. The members of S on the other hand split equally the one unit between

themselves, Since {uS}S is a basis to I' and ¢ is linear, ¢ is defined for

c N
all the games. A weighted Shapley value generalizes the Shapley value by



allowing different ways to split one unit between the members of S in ug. We

prescribe a vector of positive weights )\ = (}\i)ie and in each ug players

N
split proportionally to their weights. We want to allow some players to have
weight zero. This means that if they split one unit with players who have
positive weights, they get zero. But then we have to specify how these zero-
weight players split a unit when no positive-weight player is with them. This
brings us to the following lexicographic definition of a weight system.

A weight system w is a pair (\,r) where A € E§+ and £ = (Sy,+++,5;) is an

ordered partition of N. A weight system w = (A,f) is called simple if

% = (N). The weighted Shapley value with weight system p is the linear map

o, T EN which is defined for each unanimity game ug as follows.

Let k = max{jISj nS ¢ @} and denote S =S n S;. Then

M

Yo,
_3
j€s

(¢w)i(us) =

for i € S and (¢w)i(us) = 0 otherwise.

In other words, the weights of players in 8; are 0 with respect to
players in Sj with j > i. The positive weights of players in S; are used only
for games ug such that no player from Sj with j > 1 is in S. Observe that ¢,
is the (symmetric) Shapley value if and only if = (\,(N)) and A is
proportional to the vector (1,1,...,1). Another computation procedure of
¢w(w) is along the lines proposed by Harsanyi [1959]. In this procedure each
coalition S allocates dividends to its members after all the proper
subcoalitions of S have done it. The dividend allocation proceeds as
follows. We first allocate to each player i his worth v({i}). Suppose that

1

all the coalitions of size k or less have already allocated dividends and let

S be a coalition of size k + 1. Denote by 2z(S) the sum of the dividends that



members of S were paid by proper subcoalitions of S. Then v(S) - z(S8) (which
is possibly 0) is the amount that S will allocate to its members. To
determine how the amount is divided, we define the coalition g (which is a
subset of S5) as above. The members of g will divide v(S) - z(S) in proportion
to their weights while the rest of the players in S get nothing. The total
amount that each player accumulated at the end of the procedure (i.e., after N
allocated its dividends) is exactly (¢w)i(v). To see this one can easily
prove by induction that if v = SzNaSuS then for each coalition S, v(S) - z(S)
ong
= ag and the dividend allocation is therefore the allocation of the
coefficients ag in accordance with the definition of ¢.

A generalization of this procedure for the computation of the Shapley
value was proposed by Maschler [1982]. The same generalization applies also
for b,» We start by choosing any coalition S with v(S) # 0 and allocating
v(S) according to w. In later steps of the computation we choose for dividend
allocation any S for which v(S) - z(S) # 0 where 2z(S) is the sum of the
dividends paid for the players in S by subcoalitions of S which already
allocated dividends (notice that a coalition may be chosen several times in
this procedure). The procedure ends when v(S) - z(S) = 0 for all the
coalitions. The proof that such procedure always terminates and gives indeed
¢, 15 the same as in Maschler [1982]. Harsanyi [1959] defined also a
procedure of weighted dividend allocation for games without sidepayments. A
family of solutions obtained by these procedures was axiomatized by Kalai and
Samet [1983]. They refer to these solutions as egalitarian, and it is shown
there that the restriction of each egalitarian solution to games with
sidepayments is a weighted Shapley wvalue.

In the next section we provide a probabilistic approach to the weighted

Shapley values, one which generalizes the probabilistic formula of the



(symmetric) Shapley value.

3. Probabilistic Definition of Weighted Shapley Values

Let R(S) denote the set of all orders R of players in the coalition S.
For an order R in R(N) we denote by BRI the set of players preceding i in
the order R. For an ordered partition ¥ = (Sl,...,Sm) of N, Ry is the set of
orders for N in which all the players of S; precede those of Sj;; for
i=1l,...,m-1. Each R in R; can be described as R = (Rj,...,R;) where
R; € R(8;), i=l,...,m.

Let 'Sl = s and let A € E>,. We associate with A a probability

distribution P, over R(S). For R = (ij,+..,15) in R(S), we define

L

1,
s J
P(R) = T, ———
, R) EE R
k=1 "i

k

One way to obtain this probability distribution is by arranging the players of
S in an order, starting from the end, such that the probability of adding a
player to the beginning of a partially created line is the ratio between his
weight and the total weight of the players of S that are not yet in the line.

With each weight system w = (\,%) where T = (Sl,...,Sm) we assoclate a
probability distribution P over R(N) as follows. The distribution P,
vanishes outside R;, and for R = (Rj,«..,R)) in R, Pw(R) = ?=1 PKS-(Ri),
where xsi is the projection of A on Esi. '

For a given game v and order R in R(N) the contribution of player i is

C;(v,R) = v(BR:1 y {iH) - v(BR>1), We prove now:

Theorem 1. For each player i € N, weight system w, and game v,

(6,);(v) = Ep (€;(v,+))

w



where the right hand side is the expected contribution of player i with

respect to the probability distribution Pm’

Proof. We say that i is last for S in the order R if 1 € S and

S c BR’l U {i}. For a given order R and player i the coalition

N (B8R y {i}) is called the tail of i in R. A coalition T is said to be a

tail for R if for some i, T is a tail of i in R,

Let w = (A,(S3,...,8,)) be a weight system and let S be a coalition.

Denote k

max{jIS n Sj # ¢} and S = S n 5. We show that for each i € S\S,
P (i is last for S) = 0, for each i € S, L (i is last for S) > 0, and for

each j, i € S:

Pw(i is last for S) A
Pw(j is last for 8) A

(*)

Indeed, if i ¢ S\S then in order to be last for S, i must be preceded by

players from S, which occurs with probability 0. Now suppose i,j € S. ILet

A=(u St)\S then we have
t>k

P (i is last for §) = ) P (T is a tail of i) =
W TcA w

J P (T is a tail of i|T is a tail)P (T is a tail) =
TcA

TZAAi(llire(N\T)nSk AJP (T is a tail) =

A;H where H is positive,

Similarly, Pm(j is last for S) = xjH and (*) follows.



Now consider the game ug. The contribution of i £ S is 0 in each order
and thus Ep (Ci(us,-)) =0 = (¢w)(us). The contribution of i € § in the
A

order R is 1 if i is last for S in R, and is O otherwise. If i € S\S then
EPw(Ci(uS,-)) = Pw(i is last for §) =0 = (¢w)i(us).

If i,j € S, then

By (Cy(ug,)) P (i is last for S) .
[O}] ] 1

EPw(Cj(uS,')) Pw(J is last for §) kj

But

E, (C,(ug,*)) =E;, ( C,(u,,*)) =E;, (1) = 1.
iéN Pw i’ S Pw izN i*’S Pw

On the other hand, as we have shown:

L Ep (C(ug,e) = ] Ep (C;(ug,*))

1eN v jes @
and therefore for each i ¢ S
- i _
Ep (C,(ug,e)) = (8,0 (ug)
w z A
_J
ieS

Clearly Ep (Cj(v,+)) is a linear map from T to E and so is (¢ );(v) and
w
therefore, since they coincide on the basis consisting of the unanimity games,

they coincide on T. Q.E.D,



4, An Axiomatic Characterization of the Weighted Shapley Value

A solution for T' is a function ¢ from T to EN, For a coalition S we
denote by ¢{(v)(S) the sum zies¢i(v). A coalition S is said to be a coalition

of partners or a p—type coalition, in the game v, if for each T ; S and each

R = MS, v(Ru T) = v(R).

Consider now the following axioms imposed on ¢. For all games v, w € Tt

l. Efficiency. p(v)(W) = v(N)

2. Aditivity. o(v +w) = o(v) + ¢(w)

3. Positivity. If v is monotonic (i.e., v(T) > v(S) for each T and S such
that T > S) then ¢§(v) 2 0.

4, Dummy Player., If i is a dummy player in the game v (i.e.,

for each S v(S v {i}) = v(S)) then ¢5(v) = 0.
5. Partnership. If S is a p-type coalition in v then

¢i(v) = ¢i(¢(v)(S)uS), for each i € S.

Axioms l1-4 are standard in various axiomatizations of the Shapley

value. In order to examine axiom 5 consider first the character of a p-type
coalition. A p-type coalition S in the game v behaves in a certain sense like
one individual in the game v since all its subcoalitions are completely
powerless. In this sense S behaves internally the same in V as in ug. One
can expect therefore that S will take its share in the game v as one
individual and then bargain over this share. This is the content of
axiom 5. ¢(v)(S)ug is a unanimity game in which the members of S bargain over
$(v) (S) which is what they received together in ¢(v). ¢;(¢(v)(S)ug) is what i
receives as a result of this bargaining. This should be exactly what he

received in v.

Theorem 2. A solution ¢ satisfies axioms 1-5 if and only if there exists a



- 10 -

weight system w such that ¢ is the weighted Shapley value Oyy®

Proof. We first show that for w = (A,(Sy,...,5;)), 6, satisfies axioms 1-5.
To prove efficiency we observe that for each v and R, XieNCi(v,R) = v(N) and

therefore
6, (MM =5, (), =Ty Bp €00 =E (G G5 (v, 9)) = v(N).
W W

The additivity of ¢, follows from the additivity of EPm and C;. The
positivity and the dummy player axioms follow also immediately. To check the
partnership axiom assume that S is a p-type coalition in a game v. Observe
first that since S is of p~type a player i in S makes a nonzero contribution
in an order R only if i is last for S in R. Now let k = nnx{jISj nS # @} and
let g =850 8. Forice S\g the orders in which i is last for 5 have

probability zero and therefore (¢w)i(v)‘= 0. For i € S we have:
(0,)5(v) = Bp (€;(v,2)) =

= 7 Ep, (€,(v,*)|T is a tail of i)P (T is a tail of 1)
1 W
T<N\S w

But

EP <Ci(vj)|T is a tail of i)
w
is the same for every i € S since S is of p-type. Moreover o (T is a tail of
i) is of the form \;h(T) where h(T) is the same for each i € S.
Thus, there exists a constant K such that for every i € 8, (¢ );(v) = MK

which shows that by satisfies the partnership property.
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Now let ¢ be a solution which satisfies axioms 1-5 and we will show that
for some weight system w, ¢ = b, We define first a weight system p =
(K,(gl,...,gm)) as follows. The coalition 51 contains all players i for which
64 C(uy) # 0, (51 # @ because of the efficiency axiom).* We define A; = ¢;(uy)
for each 1 ¢ §1- Assuming that the coalitioms gl”"’gk are already defined
then denote T = N\(gl U sae U gk) and let gk+1 contain all the players i for
which ¢i(uT) # 0 and define \; = ¢i(uT) for all i € §£+1. (§£+1 is not empty
because of the efficiency and dummy player axioms.) By the positivity axiom,
A > 0. Now for i=l,...,m we define §; = gm—i+1 and w = (K,(Sl,Sz,...,Sm))-

Next we show that ¢ is homogeneous, i.e., ¢(tv) = t$(v) for each game v
and scalar t. Since every game is the difference of two monotonic games it is
enough, by the additivity axiom, to consider only monotonic games. Again by
additivity, homogeneity follows for rational scalars. Let v be a monotonic
game. Choose sequences of rationals {rk} and {Sk} which converge to t from
above and below, correspondingly. By the additivity and positivity axioms,

¢(rkv) - ¢(tv) = ¢((rk - t)v) > 0 and similarly ¢(tv) - ¢(s,v) > O. But
¢(rkv) - ¢(skv) = (rk - sk)¢(v) > 0 as k + » and therefore ¢(ryv) » ¢(tv) and
o(rpv) = rpo(v) » to(v) which proves the homogeneity of ¢. Since both ¢ and
¢, are linear maps on I'y it suffices to show as we do next that ¢ and O
coincide on each unanimity game.

For a unanimity game ug define k = max{jls n Sj # ¢} and let
s = Sn S LetTs= .E Sy+ The coalition S is of p-type in uy (as each

i=1
subset of T is) and by the partnership axiom for each i € S

*This is the only place where we use the efficiency axiom. Therefore we
could use a much weaker axiom, namely that for each S5, ¢(us) # 0. It is easy
to see that such an axiom plus axiom 5 imply efficiency.
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05 (ug) = ¢, (0(up) (Sug) = ¢Cup) (8)¢, (uy).

By the definition of T the only members of T who have nonzero payoffs in uyp

are those of S, thus ¢(up)(S) = Yy kj > 0 and therefore
j€s

¢; (up)
EL
.
jes

It follows that for i € S,

*0g) = A,
ies J

and for i ¢ g, 03(ug) = 0, i.e., ¢(ug) = (¢, (ug). Q.E.D,

The family of all weighted Shapley values ¢ for simple weight systems w,
can also be characterized by slightly changing the positivity axiom. We

replace now axiom 3 by the following one.

t
(3 ) Positivity. v is monotonic and there are no dummy players in v then

o(v) > 0.

Theorem 3. A solution ¢ satisfies axioms 1, 2, 3', 4, and 5 if and only if

there exists a simple weight system w = (A,(N)) such that ¢ = by®

Proof. TIf w is a simple weight system then for each order R in RrR(N),
Pw(R) > 0. If v satisfies the condition of axiom 3 then for each player i,
Ci(v,*) > 0 and for some R, C;(v,R) > O which shows that ¢w(v) > 0.

The proof of the other direction is along the same line of the proof of
Theorem 2. The only difference is that because of axiom 3', ¢(uN) > 0 and

therefore the partition built in the proof of Theorem 2 contains only N.
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Q.E.D.

In the next theorem we show that weighted Shapley values can be

approximated by simple weighted Shapley values.,

Theorem 4. For each weight system ¢ = (X,(Sy,+..,S,)) there exists a sequence
of simple weight systems wt = (AF,(N)) such that for each game v,

h t ©,
¢wt(v) > ¢w(v) when t »>

Proof. ILet 0 < e <1 and define for each t, 1 < 2 < mand 1 € 5,

Kg = at(mrl+l)ki, and define w' = (AF,(N)). It is easy to see that for each
S, ¢ (ug) > ¢(ug) and since ¢, and ¢ , are limear, ¢ (v) > ¢, (V)
) w )

for each v. Q.E.D.

5. Duality.

The dual game of a game v is denoted by v* and is defined by
v¥(8) = v(N) -~ v(M\S) for each S c N.

The transformation v + v* is a one—to-one linear map from T onto itself. Im
*

particular the set {uS}S c y 1s a basis for I'. Observe that u;(T) = 0 for

each Twith T n S = @ and ug(T) =14f Tn S # @. We call the game ug the

. %
representation game for the coalition S. The game ug has a natural

interpretation as a cost—game where u;(T) is the cost incurred by T. The
presence of any number of members of S in T incurs a unit cost (compare
Shapley [1981]). For a weight system w = (A,(Sy,+..,S,)) we define a linear
map ¢:: T > RN by defining ¢: on the basis {u:}s c N 38 follows. For a given

S denote k = nnx{jISj ns# ¢} and let S = S n S. Then for i €8,



jes
*yo(ug) =0 if 1 ¢ 3§
and (¢w i uS) =0 if i .
An equivalent random order approach is defined for ¢:. For an order R we

denote by R* the reverse order. For a given probability distribution P over

R(N) we define p* by P*(R) = P(R*). We now have the following equivalence.

Theorem 1*. For each player i1, weight system w and game v,

*
(0 (0 = B (€ (,0)).

W

The proof is analogous to the proof of Theorem 1, where the notion "i is last
for S in R" is rveplaced by "i is first for S in R" which means S n pRol - 9.

The solutions Oy and ¢; can be related in a simple way.

Theorem 5. For each game v and weight system o,
% *
¢w(V) = ¢w(v ).

Proof. Consider the game v = ug. Then v* = (u;)* = ug, and by the definition
*
of ¢, and ¢:, ¢;(v) = ¢w(v*). Now let v = zSéN agige Then

X F3 * &
o (v) = a.d (uy) = a.d (u.) = ¢ () aqu.) = 6 (v ). Q.E.D.
w SEN Sw 'S SCZZN S"w: S ) SEN S°S w

*
An axiomatic characterization of the family {¢m} is obtained by changing
axiom 5. We say that a coalition S is of p*—type in the game v if for each
R>Sand T ; S, v(R\T) = v(R). Here again, as in the case of p-type

s et * ey s . . s
coalitions, a p —~type coalition can be considered as one individual
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. *
represented by several agents. But in the p —-type case any nonempty
subcoalition of agents has the same effect on the cost as the coalition of all
agents, while in the p-type case all the proper subcoalitions of agents are

* as .
powerless., We call a coalition of a p —type a coalition of representatives.

Common to both p-type and p*—type coalitions is the fact that the inner
coalitional structure of such coalitions is trivial. Axiom 5° is analogous to
Axiom 5; it requires that if S is a p*—type coalition in the game v, then the
cost shared by each one of its members can be computed by letting the players
in S bargain over the splitting of the total cost shared by S in ¢;(v).
Clearly by the nature of the p*-type coalition this bargaining is represented

by the game ug.

Axiom 5. If S is of p*—type in v, then ¢;(v) = ¢i(¢(v)(S)u§), for each

i E S'

Theorem 2*. A solution ¢ satisfies axioms 1, 2, 3, 4, and 5* if and only if
there exists a weight system w such that ¢ = ¢:-
The proof is analogous to that of Theorem 2.
One might expect that ¢: can be obtained from Oy by an appropriate

transformation of the weight system. To see that this is not the case we

examine first simple weight systems.

Theorem 6. let 'Nl > 3. If w= (u,(N)) and w' = (\,(N)) are two simple
weight systems and ¢;(v) = ¢w'(v) for each game v then both )\ and p are
multiples of the vector (1,1,...,1) and thus both ¢Z and 6,v are the Shapley

value.

Proof. Assume byt = ¢;. Then for any coalitiomn {i,j} c N,

*
(¢w')i(u{i,j}) = (¢u))i(u{i,j}). But
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A
_ i
and
(5. ( ) = (6 ), (. ) = (b ) Cap.y * up.y - y =
Pt ,3) T M1 () T 1) T ey T M) TR

Therefore, for each i and j in N

from which we conclude that h\jp; = xjp for each i,j ¢ N. It follows that

3
there exists a positive number C for which Ki = E—-for each i € N. Consider
i
now a coalition {i,j,k}. We find that
Ay C/us by M

_ 1 - =
) (¢w')i(u{i,j,k}) IEVES Ay Clu; + C/.uj +C/u by F g ¥ by b

. 1 *
Using the probabilistic definition of ¢, We can compute

M My + My %
ui+uj+uk ui+uj By toug T by Foy

%
(2) (¢w)i(u{i,j,k}) =

Equating the two expressions (1) and (2), dividing by B4b s and multiplying by

by + by +opy we find that:

1 by oy oy

(3) i o ¥ T
i p'j By p’k kj'j e U'i !)'j ll'i e

We can obtain an equation similar to (3) for (¢w')j and (¢Z)j applied to the
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game u{i i k}' By symmetry the right hand side of this equation will be the
b b

same as in (3) and therefore equating the left hand sides we get:

From that we conclude py = B and therefore )\ = Age Since this is true for

any i,j € N, the proof is completed. Q.E.D,

Corollary 1. For |Nl > 3, the only distribution which is common to the family
of distributions {P_} and the family {P:} where  ranges over all simple
weight systems is Pw0 where wy = ((1,...,1),(N)).

We can also obtain a characterization of the (symmetric) Shapley value,

one which does not use the symmetry axiom.

Theorem 7. A solution ¢ satisfies axioms 1, 2, 3', 4, 5, and 5% if and only
if it is the Shapley value.

For N = 2 there exists a traunsformation p > w* of simple weight systems
such that ¢; = ¢4+ Indeed, it is easy to see that if for v = (A, (W)) we set
0® = %, () where \* = (Ag,Aq) then ¢: = ¢, %+ We state now the extension of

Theorem 6 to general weight systems and omit the proof,

Theorem 8. If w = (u,(S;,...,S;)) and 0 = (,(Ty.,,,.Ty)) are weight systems

for which ¢: = ¢, then:

(1) m=k

(2) Si = Tm+l_i for i = 1,...,1'[1

3 If |S;] > 3 then nd ti 1t 1,1,.0.,1).
(3) | 1| psi a KTm+l-i are proportional to (1,1, ,1)

*
(4) If |Ss;| = 2 then is proportional to Ap .
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6. Other Formulas for ¢mrand ¢Z.

Owen [1972] has shown that ¢,(v) for w = (A, (N)) can be computed as an
integral of the gradient of the multilinear extension over some path. We now
generalize this result for general weight systems and develop an integration
formula for ¢£(v). The multilinear extension for a game v is the function FV

defined on the unit cube [0,1]" as follows:

F (X;,000,X_) = E T x, 0O (A - x ) v(S).
vl " soN ies T jgs
The coordinate x; can be interpreted as the probability that player i will

join the game to form a coalition and Fv(xl,...,xn) is the expected payoff

made. For a given w = (A,(Sy,...,5;)) define for i € §

0 if t < &=L
k-1 i .. k-1 k
g.(6) = [m(t - =9)] * if =<t <o and
1 if &<t
m

Intuitively gi(t) is the probability that player i will join the game until

time t. One can prove that

dg, (t)
(), (v) = fO — |g(t) ——dt

just by checking the equality for v = ug, since the right hand side is linear

in v (observe that Fu (x) = T x,). 1t is easy to see that if the players'
S ies

arrival time is distributed according to the gi's, then the probability that

they arrive in a certain order R is Pw(R).

Now define Ft by
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*
Fv(xl,...,xn) = v(N) Fv(1~x1,...,1—xn)

It is easy to check that F_z(x) = F:(x). Therefore

dg, (t)
IO %, Ig(t) dt

(0.0, () = (60, (v) at

d
$) v = v
Dggote niéﬁ) =1 - gi(t) and observe that axil(g(t)) bxil(n(t)) and
i.__1
T i It follows that

o OF dny ()

v
axl(n(t)) —3¢ - dt

), 0 = 3

ni(t) can be interpreted as the probability that player i arrives after

time t.

7. Reduction of p—~type and p*-type Coalitions

Part of the reasoning of the partnership axiom is that a coalition of
partners can be treated in a certain sense as one individual. In this section
we show how a p—type coalition can be practically defined as one player,
thereby reducing the size of the game. ILet us fix a coalition S with more
than one player. Consider the set ﬁ which consists of all the players of N
except that all the players in Sy are replaced by a single player denoted by
s, i.e., N = (N\\Sg) u {s}. For any game v on N we define a game v on N by
V(8) = v(8) if s £ S and ¥(S) = v((S\{s}) u Sg) if s € S. Let
w= (\, (81,.4+,5;)) be a weight system for N, and let k be the highest index
for which S, n Sg # @. The weight system g = (i,(§1,...,§m)) for N is defined
as follows. For each i # s, Xi =N\ and X = z h » For each j # k,

- - s ies

S5 = 8;\8g and ) = (§,\Sq) v [s}. We can state now
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Theorem 9. 1If S; is a p-type coalition in v then for each i # s,

(6.0, = (0 ), () and (o) (M) = T (4); (¥
w W, i€s
Similarly, if Sy is a p —type coalition then for each i # s,

%
Y (6 ).(v). To prove this theorem we
jeg, 9%

6D, () = (o), (v and (1) (@) =
W iy 0

use the following lemmas.

Lemma 1., If i is a dummy player in v and v = 2 agig then ag = O for each 8
ScN

which contains i.
Proof. By induction on the size of S. For S = {i}, 0 = v({i}) = a{i}.
Suppose we proved for all coalitions of size k which contain i and let S be a

coalition of size k + 1 and such that i € S. Then

0= v(S) - v(8\{i}) = ¥ ap = y ap = y ape But for i €T < S, ap = 0
TS T<S\i i€Tcs i
and therefore ag = O. Q.E.D.

lemma 2. Let S; be a p-type coalition in v and let v = z agig then ag = 0
ScN
for each S which satisfies S n S5g5 # § and S n Sg # Sp- -

Proof. For a coalition T and a game v denote by v% the restriction of the

game u to the coalition T. Since v ~» vT

is a linear map from the space of
games on N to the space of games on T and since ug =0 1if S f_T it follows

that

(*) v 2= 2 x.u = z a
ScN ST

Now if T satisfies T n Sg # @ and T n Sy # Sy then all the players of T n S
are dummies in the game vI. In particular, we conclude by Lemma 1 and (%)

that ap = O. Q.E.D.

Proof of Theorem 9. It cam be easily shown that if v = Zagug then
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v= 7 agug + ] agug. Therefore for i # s
ScN\S S-S
- 70 -0
- A A N N
(6_);(v) = ) — ag + y —= ¥ ag + = (¢w)i(V)'
® s¢s ¥ A s€5 ) A, SEMS, ] A, 538y 1 A
) jes J j€s jes
For 1 = s
_ LA
_ A 1€5, *
(60 (v = ] —= ) ——= ] (9,05 (V).
w s€s ] N, 835 7§ A, ies,
jes J jes 4

Now if Sy is of p*—type in v, then S5 is of p-type in v. To prove the second

— % 3
half of the theorem one has to observe only that (v) = v amnd use the

equality of theorem 5. Q.E.D.

The following corollary follows from Theorem 9. It is important for
applications in which the players themselves are, or are representing, groups
of individuals. Such is the case for the example when the players are
parties, cities, or management boards. The use of the symmetric Shapley value
seems to be unjustified in certain cases of this type because the players
represent constituencies of different sizes. A natural candidate for a
solution is the weighted Shapley value where the players are weighted by the
size of the constituencies they stand for. The following corollary shows when

such a procedure is justified.

Corollary 2. Let v be a game on N (INI = n) in which each player i is a set
of individuals M; with my members. Consider the set of individuals
N= v Mi and the games vy and vy defined on N as follows. For each S c N,

ieN

v, (8) = v({i|M, < sP
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v, (8) = v({i|u; n's # o).

Let w be the simple weight system ((my,...,m;), (N)). Then for each i

]

(0,5 (¥) = (v QL)

and

(8.); (") = 0(v,)04,)

where ¢ is the symmetric Shapley value.
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