~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Pliska, Stanley R.

Working Paper

A Stochastic Calculus Model of Continuous Trading:
Optimal Portfolios

Discussion Paper, No. 608

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Pliska, Stanley R. (1984) : A Stochastic Calculus Model of Continuous Trading:
Optimal Portfolios, Discussion Paper, No. 608, Northwestern University, Kellogg School of

Management, Center for Mathematical Studies in Economics and Management Science, Evanston,
IL

This Version is available at:
https://hdl.handle.net/10419/220967

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/220967
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

DISCUSSION PAPER NO. 608

A STOCHASTIC CALCULUS MODEL OF .
CONTINUOUS TRADING: OPTIMAL PORTFOLIOS™

by

Stanley R. Pliska
March 1984

Abstract

The problem of choosing a portfolio of securities so as to maximize the
expected utility of wealth at a terminal planning horizon is solved via
stochastic calculus and convex analysis. This problem is decomposed into two
subproblems. With security prices modeled as semimartingales and trading
strategies modeled as predictable processes, the set of terminal wealths is
identified as a subspace in a space of integrable random variables. The first
subproblem is to find the terminal wealth that maximizes expected utility.
Convex analysis is used to derive necessary and sufficient conditions for
optimality and an existence result. The second subproblem of finding the admis-
sible trading strategy that generates the optimal terminal wealth is a martingale
representation problem. The primary advantage of this approach is that explicit
formulas can readily be derived for the optimal terminal wealth and the corres-
ponding expected utility, as is shown for the case of an exponential utility
function and a risky security modeled as geometric Brownian motion.

*
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1. Introduction

The optimal portfolio literature can be viewed as being in two parts
according to the approach that is taken., The first is mean-variance analysis,
as developed notably by Markowitz (1952, 1959) and Tobin (1958, 1965). Each
security is modeled by two parameters: the mean and variance of its rate of
return, With the additional specificatién of the correlations between securi-
ties, each particular portfolio or combination of securities is then naturally
characterized by the mean and variance of its overall rate of return. The
rational investor therefore focuses on the subset of portfolios comprising
the "efficient frontier," that is, the collection of (undominated) portfolios
which achieve the maximum mean for a given variance. The investor's final
choice depends on his preferences toward risk in the trade-off between the
mean and variance along the efficient frontier,

Mean~variance analysis is widely utilized because the approach both
captures some important considerations in the optimal portfolio problem and
is straightforward, if not easy, to implement. Furthermore, mean-variance
analysis leads to a number of important consequences such as the Separation
or Mutual Fund Theorem and the capital asset pricing model (Sharpe, 1964).
However, mean-variance analysis has two significant limitations. While the
simple model of security prices is a good one for many purposes, one would
like to be able to consider alternative, perhaps more complex, models. 1In
addition, the optimal portfolio yielded by mean-variance analysis is not
necessarily optimal for the investor in terms of his underlying utility and
preferences.

The second main part of the optimal portfolio literature deals with these

limitations by directly addressing the problem of choosing the portfolio so as



to maximize the expected utility of the outcome in question. The security
prices are modeled as Markov processes, and so this problem is solved with
dynamic programming and stochastic control theory. Massin (1968) and
Samuelson (1969) analyzed discrete-time models, while Merton (1969, 1971)
analyzed a diffusion process model.

While the expected utility approach satisfactorily addresses the limi-
tations of mean-variance analysis, a price is paid due to the increase of
computational difficulties. The dynamic programming methodology reduces the
maximum expected utility problem to a partial differential equation that
usually remains intractable if not virtually impossible to solve., Explicit
solutions can apparently be obtained only for the simplest cases. For
example, Merton's (1971) simplest case involves a formidable partial differen-
tial equation; Fleming and Rishel (1975, pp. 160-161) present this same case
as one of their few examples.

The purpose of this paper is to present an alternative method for
solving the expected utility problem. This method, which involves stochastic
calculus and convex analysis, seems to be computationally more efficient than
dynamic programming. Partial differential equations can be entirely avoided,
and, as seen by example, explicit solutions can readily be obtained. While
the full range of cases and examples remains to be investigated, it appears
that the method presented here has the potential for making optimal port-
folio problems as easy to solve with the expected utility approach as they
are with mean-variance analysis.

The basic problem studied here is to choose the trading strategy so as to
maximize expected utility of the investor's wealth at a specified time
horizon. WNo funds are added to or withdrawn from the portfolio during

this time interval. The problem thus resembles Merton's (1969, 1971),



except that he allows funds to be withdrawn. Although his problem is more
general by allowing this consumption, the problem studied here is more
general in terms of the allowable stochastic process models of the security
prices. 1Indeed, the prices need not be Markov processes, but they must be
semimartingales. The models of security prices and trading strategies used
here are taken from Harrison and Pliska (1981).

The ,idea of using stochastic calculus and convex analysis to solve these
kinds of problems was introduced by Pliska (1982). Briefly, the essence of
this idea is to decompose the problem into three stages. First, you use
martingale theory to characterize the set of attainable terminal wealths (a
"terminal wealth,” or contingent claim, is a random variable, and the
attainable ones are ''generated" by admissible trading strategies). Second,
you use convex analysis to find the attainable wealth that maximizes
expected utility. Finally, you use martingale theory again to determine the
trading strategy which generates the optimal attainable wealth. This method-
ology was presented by Pliska (1982) in the context of a discrete time
stochastic control problem where the underlying probability space was finite.
While the concepts are the same, the mathematical machinery here is considerably
more involved in order to accommodate the infinite probability spaces asso-
ciated with continuous time models.

After a detailed formulation of the problem, Section 3 presents the main
results: necessary and sufficient conditions for an attainable wealth to be
optimal. Section 4 then focuses on the special case of complete markets.
This means, roughly speaking, that all terminal wealths are attainable. The
sufficient condition for optimality simplifies, and this leads to a result
on the existence of an optimal attainable wealth as well as an algorithm

for computing it. Sections 5 and 6 show how to use these results by studying



an example involving an exponential utility function and geometric Brownian

motion. The paper concludes with some remarks in Section 7.

2. Formulation and Preliminaries

The model of continuous trading to be used is almost the same as that
in Harrison and Pliska (1981). Let (R, F, P) be a probability space, let

T < » be a fixed time horizon, and let F = {F_; 0 < t < T} be a filtration

£?

satisfying les conditions habituelles with FO containing only Q@ and the null

sets of P and with FT F.

Let § = {St; 0 <

components SO,Sl,...,SK are adapted, right continuous with left limits,

t

= T} be a vector valued stochastic process whose

. s e . 0 . . .
and strictly positive. Moreover, it is assumed that S 1is a semimartingale

with Sg = 1. Here Si represents the time t value of the kth security, so S

is called the (undiscounted) price process. Upon defining B = 1/SO, one

1,...,ZK) by setting Zk = BSk

defines the discounted price process Z = (Z

for k=1,...,K.

Let P be the set of probability measures Q on (Q, F) that are equivalent
to P and such that Z is a (vector) martingale under Q. It is assumed that TP
is nonempty, so S and Z are actually semimartingales under P. An arbitrary
element Q ¢ P 1is selected and called the reference measure. Let E. denote

Q

the corresponding expectation operator. As explained in Harrison and Pliska

(1981), the assumption that P* is nonempty is made to rule out arbitrage
opportunities that would permit investors to make unreasonable profits
without any risk.

Let L(Z) denote the set of all vector valued, predictable processes
H= (Hl,...,HK) = {Ht; 0 £ t £ T} that are integrable with respect to the

semimartingale Z (see Jacod (1979, p. 52) for details about L(Z)). An



admissible trading strategy is any vector valued, predictable stochastic

¢K

process ¢ = (¢O,¢1,..., ) = {¢t; 0 <t £ T} such that

@ . Gl s L@
K

(i1) V(9) = Vy(6) + G(4), where G(¢) = f¢dZ = I f¢dz" and
. Koo =1
V($) = B¢S = £ ¢°z°, and

k=0
(iii) G(¢) is a martingale under Q.

Let ¢ denote the set of all such admissible trading strategies. Here ¢5

represents the number of shares or units of security k held by the investor

at time t, V(¢), the discounted value process, represents the discounted

value of the portfolio, and G(¢), the discounted gains process, represents

the discounted net profit or loss due to the transactions by the investor.
Thus (ii) says all changes in the value of the portfolio are due to the
investment rather than due to infusion or withdrawal of funds. Condition
(iii) serves to rule out certain foolish strategies that throw away money.
Note that condition (iii) is the only one that might depend on the choice
of the reference measure.

Harrison and Pliska (1981) specified a fourth condition, namely, that
§(¢) 2 0 for all ¢ € . This was done in order to rule out short sales that
might leave the investor indebted to his broker. This condition is omitted
here in order to facilitate the mathematical development. Little is lost
from the modeling standpoint, since by assigning a sufficiently large
negative utility to bankruptcy one achieves essentially the same effect as
the constraint §(¢) > 0.

Let X denote the set of all random variables X that are iﬁtegrable

under Q. Each X ¢ X will be called a terminal wealth, although in the




financial literature it is customary to call X a contingent claim. Such a
terminal wealth is said to be attainable if there exists an admissible
trading strategy ¢ € & such that VT(¢) = X, in which case ¢ is said to generate

X. Denoting

€={XeX:X=V,+C(4), some ¢ ¢ ¢},

0
one sees that § is the set of all attainable terminal wealths (henceforth,

attainable wealths).

Note that § depends on the initial wealth VO’ the value of which is
implicit in the definition of attainable wealths. In general, a terminal
wealth X ¢ X that is attainable for one initial wealth may not be attainable
for others. Note also that the terminal wealths are discounted. Although
it may seem more natural from the modeling standpoint to focus on undiscounted
attainable wealths, discounting will facilitate the analysis.

The investor's preferences over X are modeled with a state dependent

utility function. Let 3 be a real-valued function on R x Q, and set
n
V) = [ U(X(w),0)dP (),

where P is the original probability measure. With additional assumptions,
detailed below, about 3, 8 is an integral functional that is well-defined
for each X ¢ X.

The investor's decision problem is now easy to state: for a given
initial wealth VO’ choose a trading strategy ¢ € & so as to maximize
E(VO + éT(¢)), the expected utility of terminal wealth. Rather than using
dynamic programming to solve this problem, two subproblems will be solved.
The first is to find an optimal attainable wealth, that is, some Xg € §
0) 2 E(X) for all X ¢ é. The second is to find the optimal

trading strategy, that is, the ¢ € & that generates this optimal attainable

n
such that U(X

wealth.



Before showing how to solve this first subproblem it is convenient to

carry out a transformation. Let

ig

={XeX:X= ET(¢), some ¢ € 0},

e

so C = - V0 is the set of attainable wealths in the case where the initial

wealth V0 =V, Let F = dP/dQ denote the Radon-Nikodym derivative, define

the function
n
u(x,w) = u(x + VO, w)F(w),
and define the new integral functional U by

UK) = [ uX(w),w)dQ(w).

ny
Since U(X) = U(V0 + X) for all X € C, it is apparent that the first subproblem

can be restated as:

(1) Find X0 € C such that U(XO) 2 U(X), all X ¢ C.

Thus without loss of generality the initial wealth V, will be taken to be zero

0
and expected values will be calculated with the reference measure Q.

In order to ensure that U is a well-defined and suitably behaved integral

functional, it is necessary to make the following

(2) Assumption.

(i) x + u(x,w) is concave and strictly increasing for each w.
(ii) -u is a normal, proper integrand
(iii) There exists at least one X € X such that U(X) > -«

The theory of normal integrands with possibly infinite values was introduced
and developed by Rockafellar in a series of papers including (1968), (1971),
and (1976). For an understanding of (2ii) the reader should consult

Rockafellar (1976, p. 173). Here it suffices to say that this assumption



is technical in nature, but it is satisfied in most cases of practical
interest. For example, if u is finite and independent of w and if (21i)
holds, then so does (2ii). 1In any event, (2i) and (2ii) together imply

that U is a well-defined concave integral functional on X.

3. Main Results

The primary results here are necessary and sufficient conditions for

X, € £ to be a solution of subproblem (1). The methodology to be employed

0
is convex analysis, as described in, for example, Rockafellar (1974). This
section will also examine the matter of solving the second subproblem, finding
the trading strategy ¢ € ¢ that generates XO.

It is clear from the nature of stochastic integrals that ¢ is a subspace
of X. Viewing X as an L1 space of functions on the measure space (@, F, Q),
let Y denote its dual space, that is, the space of bounded random variables.,
The linear functionals on X are thus of the form X - EQ[XY'] for some Y € Y.

Let gl denote the orthogonal subspace of C, that is,

ct=1{Yey: E,[XY] =0, all X ¢ C).

For a brief digression, there is an interesting interpretation of gl that
emerges from the theory of stochastic calculus. Let H denote the set of

stochastic integrals generated by the admissible trading strategies, that is,

= {é(¢> : 4 e 0}

las]

C, it is apparent one can also write

Recalling the definition of
H = {all martingales M: M, = EQ[X[Ft], some X € C}.

Moreover, H is what is called a stable subspace, that is, it is closed in the

i
1

space of L~ martingales, it is closed under stopping (if M ¢ Hand T is a

stopping time, then M stopped at time T is in H), and if M ¢ H and A ¢ FO



then 1A M e H (see Jacod (1979, Ch. IV) or Elljiot (1982, Ch. 9) for the
details). Now let gl_be the weakly orthogonal subspace, that is,

8 = {all martingales N: N, = EQ[Y[Ft], some Y ¢ C'}.

By a standard argument (e.g., Meyer (1976, Ch. II)) g} is also stable, and
if M and N belong to H and g} respectively, then M and N are strongly ortho-
gonal in the sense that their product is a martingale that is null at zero.
Conversely, starting with H one can define g} as the set of all bounded

martingales N that are strongly orthogonal to all M ¢ H. Then
g} ={Ye¥:Y=Ng, someNe¢ gf}.

This comnection between g} and gf will not be utilized further here, but it
provides an intriguing interpretation of the dual variables for subproblem
1).

Denote

U*(Y) = inf {E.[XY] - UX)}
XeX Q

for the concave conjugate functional of U and

u*(y,w) = inf xy - u(x,w)}
xeR

for the concave conjugate functional of u. By Rockafellar (1975, Thm. 3C) and

Assumption (2iii), U* is an integral functional given by
(3) U*(Y) = [ u*(¥(w),0)dQ(w).
The first main result is a sufficient condition for optimality.

(4) Theorem. Suppose X, ¢ C and Y, ¢ g} satisfy

0 0

(3) u*(YO(m),w) = Xo(w)YO(w) - u(XO(w),w) a.s.

Then



(6) U(X) < U(X,) = ~U%(¥,) < -U%(¥), all X e €, Y e C'.

Proof. This proof uses standard arguments. Condition (5) and equation (3)

imply

U*(Yo) = EQ[XOYO] - U(Xo).
But Xj € C and Y, € gf so EQ[XOYOJ = 0 and
(7 U*(Yy) = -U(Xg),

which is one part of (6). Meanwhile, by the definition of the concave

conjugate,

(8) U (Yy) < E[XYy] - U(X), all Xe X,

o < Ey

so for any X € C one has E [XYb 1] =0 and U*(Yo) < -U(X). Combining this

Q
with (7) gives

U(X) < UKy, allXeC,

which is the second part of (6). Finally, taking arbitrary Y € gl, the

definition of U* implies U*(Y) < EQ[XOY] - U(Xo), so as before

% - = U*
UR(Y) < <U(Xy) = U*(Y,),
and the third part of (6) is verified.

e ct satisfy (5), then Y. = O.

(9) Corollary. If XO € C and Y0 [o} 0

Proof. Set A = {w e & : Yy(w) < 0} and consider X = X, + 1,. Clearly X ¢ X,

0

and by Assumption (2i) U(X) = UX Now (7) and (8) imply

0

-U(,) < EQEXYOJ - U(X),

s0 EQ[XY()] 2 0. But EQ[XYO:] = EQ[XOYOJ + EQ[]'AYO] = EQ[]'AYO]’ S0

EQ[lAYO] =2 0., However, lAYo < 0 by the definition of A, so one concludes

lAYO =0 a.s. and Q(A) = P(A) = 0.



Remark. If u is such that X1 > X2 and Xl # X2 imply U(Xl) > U(Xz), then

the idea of this proof can be used to show YO >0 a.s.

In order to assert that condition (5) is necessary for optimality, one
apparently needs to make an additional assumption about the integral

functional U. One such assumption is stated as a hypothesis in the following

(10) Theorem. Suppose U is finite and continuous everywhere on X. 1If

X0 € C satisfies U(XO) 2 U(X) for all X € C, then there exists some Y, ¢ g}

such that

0

u*(YO(w),w) = Xo(w)YO(m) - u(XO(m),m) a.s.

Proof. TFollowing Rockafellar (1966), one can set his function g = U and
choose his function f on X to be £(X) = 0 for X ¢ C and £(X) = 0 for
X ¢ C and thereby conclude from his Theorem 1 that there exists some

YO € g} satisfying

U*(YO) = E [XOYOJ - U(XO).

Q

This implies the desired equality (5) by Rockafellar (1976, Cor. 3E).

Remark. By Rockafellar (1976, Thm. 3L), U is finite and continuous on X
under Assumption (2) if there exists some positive scalar a < = such that

< a for all x almost surely.

the partial derivative éE%Eﬁil

The key to using the preceding results to solve‘subproblem (1) is to
successfully characterize the subspace C of attainable wealths. If one has
what is called a complete model, then as will be shown in the next section C
is easy to characterize and one can readily use Theorem (4) to solve for the
optimal attainable wealth. On the other hand, if the model is not complete
then C does not offer such a convenient characterization. The analysis of

this latter case remains as a subject for future research.



Before turning to the case of complete models, some remarks should be
made about the final step in solving the optimal portfolio problem, viz.,
determining the admissible trading strategy that generates the optimal

attainable wealth. Given X, € C one begins by computing the (discounted

0
value process) martingale V via Gt = EQ[XOIFt]. It then remains to solve

the martingale representation problem of finding the predictable process ¢
satisfying d& = ¢dZ. This kind of problem, discussed in Jacod (1979, Ch. XI),
generally requires ad hoc methods and the ingenious use of martingale theory.
For example, Harrison and Pliska (1980, Sec. 5.3) solved a particular case
with Ito's Formula, while in Section 6 below another particular case is

solved by expressing both V and Z as stochastic integrals with respect to

the same processes.

4. The Case of Complete Markets

Notice that EQ[X] = 0 for all attainable wealths X ¢ C. This is

because each discounted value process V(¢) is a martingale under Q and is
null at zero. In general the converse is not true, but if the model is

complete, then

(11) €= {X e X : E[X] = 0.

The model is said to be complete if for each X ¢ X there exist V0 and

¢ ¢ & such that V, + GT(¢) = X. This important concept was discussed at

0
length by Harrison and Pliska (1981, 1983). They showed the model is complete
if and only if the set of martingale measures P is a singleton. This, in
turn, is true if and only if every martingale M can be represented as

+ é(¢) for some ¢ ¢ &. Thus if E

M=M [X] = 0, then taking the martingale

0 Q
M defined by Mt = EQ[XIFt] it is apparent that M = G(¢) for some ¢ ¢ . Since

éT(¢) = X, this verifies (11).



If the model is complete, then several elements in the convex analysis

set-up are simplified, as suggested by the following

(12) Proposition. If X, € C and Y, € g} satisfy (5), then Y

0 is actually

0 0

a positive constant in the case of a complete model.

Proof. Set k = EQ[YOJ and Z = Yy - kl. Thus EQ[Z] =0, so Z € C. But

€ gf and kl € g}, so Z € g}. Hence Z = 0, that is, Y, = kl. Corollary

Y 0

0
(9) says k =2 0. If ﬁ

0, then sufficiency condition (5) is

u*(0,w) —u(Xo(w),w) = inf{-u(x,w)} a.s.

xeR

But this contradicts the assumption that x - u(x,w) is strictly increasing.

Knowing that Y0 is a positive scalar greatly facilitates subproblem (1).
The computational procedure is presented as the constructive proof of the
following theorem, which provides a sufficient condition for the existence

of an optimal attainable wealth.

(13) Theorem. Suppose the model is complete. Then there exists a solution

Xo to subproblem (1) if the following conditions all hold.
(i) the function x + u(x,w) is continuously differentiable a.s.
(i1) 1m 220 Lo,
X
X0
‘e . du(x,w) _
(iii) lim e T @ a.s.
X>=—00
(iv) there exist finite scalars B and ¢ such that
B = Bu(0,w) >¢e >0, a.s.

9x

Proof. In view of Proposition (12) and the fact that Y0 solves the dual
problem in (6), the idea here is to find a finite, positive scalar k, say,

that maximizes U*(kl) over k > 0.



By (i) - (iii) and elementary calculus one sees that for each k > 0
and almost every w there exists a number denoted X(k,w) minimizing the convex

function x + kx - u(x,w). In other words,
(14) u*(k,w) = kX(k,w) - u(X(k,w),w), k > 0, a.s.
By equation (3) one has

(15) U*(kl) = EQ[u*(k,w)],

~

so the immediate objective is to find the value k that maximizes this
concave expression. The issue is to show that k is strictly positive and

finite. To do this, observe by the calculus used to compute X(k,w) that

du* (k,w) _
aurlon) - xaew),
S0
du*(kl) _ du* (k,w)4 _
(16) —5 - - EQ [———————ak ] = EQ[X(k,w)], k > 0,

Thus if k is very small, say k < ¢€/2, then by condition (13 iv) one has

*
X(k,w) > 0 almost surely, in which case éyaékll = EQ[X(k,w)] > 0. On

the other hand, for very large k, say k > 28, condition (13 iv) and the

du* (k1)
dk

Hence there exists a finite, strictly positive scalar k maximizing

definition of X(k,w) imply X(k,w) < 0 a.s., so by (16) one has < 0.
U*(kl) over k > 0. By the remark at the beginning of this proof it follows
that YO = kl. Taking Xo(w) = X(k,w) it is apparent from (14) that XO and

YO satisfy sufficient condition (5). Hence Xo is a solution of subproblem

(1) by Theorem (4&).

Remark. The conditions (13i) - (13iv) are more than sufficient to guarantee
existence, but the matter of making them less restrictive was not pursued
in order to facilitate the exposition. In any event, the computational

procedure can be summarized as follows. First compute u*(k,w) and the



function X(k,w) giving the minimizing values in the definition of u*. Second,

A

compute U#*(kl) by (15). Third, compute the maximizing value k. Fourth,
substitute k in (15) to obtain the maximum expected utility of terminal

wealth. Finally, take X, = X(k,*) for the optimal attainable wealth. This

0

procedure will be illustrated in the following section.

5. Example: Exponential Utility

This section will illustrate how to carry out the procedure suggested in
the proof of Theorem (13) for solving subproblem (1) in the case of a complete
model.

Consider a utility function of the form
ﬁ(x,m) =3 - %-exp(—cerTx),

where of the four scalar parameters a, b, ¢, and r all but a must be strictly
positive. Here r can be interpreted as the discount rate, so if erTx is the
wealth at time T then x is the value of that wealth discounted to time zero.

Taking initial wealth V, = 0, this gives

0

u(x,w) = F(w)la - E—exp(-cerTx)]

for the transformed utility function, where F is the Radon-Nikodym derivative.
It is easy to check that Assumption (2) and Con&itions (13i) - (13iii) all
hold. Condition (13iv) may not hold because it depends on F, but as will be
seen below it is not critical. The utility function u fails to satisfy the
condition in the remark following Theorem (10), so relatiomship (5) may not
be necessary for optimality.

Using elementary calculus and the definition of the concave conjugate

functional one computes



( -rT rT ~-rT
ke lo be "F(w) - af(w) + ke s k > 0,
c k
uk(k,w) = { -aF(w), k =0,
-0 k < @,
\

During this computation one notes the minimizing values of x for k > 0 are
given by the function

e_rT berTF(w)

(17) X(k,w) = < log ” .

Using equation (15) one immediately obtains

ke—rT
c

(18) U*(kl) =

{}og b+ E [logF] ~ log k + rT + q' -a, k > 0,

Q

Differentiating (18) with respect to k, one computes the maximizing value

to be

k =bell exp(EQ[log FI).
Substituting this into (18) gives the expected utility under the optimal
attainable wealth, namely

(19) U, = a - % exp (E,[1og F 1).

Finally, substituting k into (17) gives the optimal attainable wealth

-rT
20) Xy = - {log F - EQ[logF ]}.

It is important to remark that not only have explicit formulas been
obtained for these latter two quantities, but they depend on the underlying
stochastic process model of the security prices only via the Radon-Nikodym
derivative F. This will be the situation with any choice of utility

function. Once the general formula for XO has been obtained for the utility



function of interest, one can readily go forth and analyze a variety of
security models (provided they all are complete). For each such model, the

first step is to determine the reference measure Q and the Radon-Nikodym
derivative F. Then one substitutes these into the formula at hand for XO.

Finally, one determines the trading strategy that generates X, by solving the

0
martingale representation problem. This three step process will be illustrated

in the next section,

6. Example: Geometric Brownian Motion

A single risky security S (the superscript 1 is omitted for ease of
notation) is modeled as geometric Brownian motion in conjunction with a
bond satisfying Sg = exp(rt) and the exponential utility function of the
preceding section. After solving this optimal portfolio problem with the
methods of this paper, a comparison will be made with the dynamic programming
approach offered by Merton (1971).

Following Harrison and Pliska (1980, Sec. 5), the discounted return
process Y for S satisfies Yt = owt + ut, where W is a standard Brownian

motion on a probability space (R, F, P) with W, = 0. The filtration is the

0
one generated by W, and ¢ and p are real constants. It follows that the
discounted price process Z satisfies Z, =12, exp(Yt - %ﬂzt), in which case
S, = exp(rt)Zt. In other words, S has return process R. =Y +rt,a

. . . . 2 . . o
Brownian motion with variance o~ and drift pu + r, and S satisfies the

stochastic differential equation

— = (p + r)dt + odW.

In order to apply the ideas of this paper, the first step is to specify
the martingale measure Q. According to Harrison and Pliska (1980, Sec. 5.1)

this is given by



dq = MdP,
where M is the martingale (under P) given by

Mt = exp{—uwt/c - uzt/(ZOZ)}

The martingale measure Q is unique, so the model is complete (see Harrison and
Pliska (1983) and Harrison and Pliska (1980, Sec. 5.2)). Note the Radon-

Nikodym derivative F = dP/dQ is given by
2 2
F = exp{uWT/U + u°T/ (2691},

Anticipating a computation necessary for (19) and (20), the next step

is to compute E [logF J. Substituting from above and using the fact that

Q

W, is normally distributed with mean 0 and variance T,

_ 2 2
EQ[logF] = EQ[uWT/O + u°T/(26) ]

EL (/0 + 1T/ (207))M, ]

(=]

= f (pw/o + uZT/(ZOZ))exp{—uw/c - uzT/(Zcz)}exp{—wz/(ZT)}dw
V21T =

«©

f (uw/oc + uZT/(Zcz))exp{—(w + uT/c)Z/(ZT)}dw.
V2nT -

Recognizing in this last integral the density function for a normal random

variable with mean -uT/o and variance T, one easily concludes that

E [logF 1 = (u/0)(-uT/o) + u>T/(20%)

Q

21/ (26%).

Upon substituting this expression into (19) and (20) one immediately
obtains

U(XO) =3 - %-exp{—uzT/(ZOZ)}



for the maximum expected utility and

-rT

o = S twig/o + u21/20%) + uPT/(26%))

>
I

-rT
e

. {uWT/o + uZT/oz}

for the optimal attainable wealth.
It remains to determine ¢, the optimal trading strategy specifying the
number of shares in the risky asset. This is done by first deriving the

discounted value process V, which is given by V. = E [XOlFt]. Proceeding

Q

as in the computation above of E.[logF ], one computes

Q

E [wTIFt] =W, +E

q [wT - wtlFt]

Q

= Wt + E[WT—tMT—t]

=W+ — [ w exp{-(w + u(T-t)/O)Z/(Z(T—t))}dw
V27 (T~t) ==

= Wt - u(T-t)/o.

Hence

-rT
e

<>
]

{th/o - uz(T-—t)/o2 + uzT/oz}

-rT
e

{th/o + uzt/cz}.

~

For the final step, using 4V = ¢d4Z and dZ

ZdY = ZodW + Zudt one sees
that the optimal trading strategy ¢ must satisfy

-rT
Be {odW + pdt} = ¢2{cdW + udt}.

2
co

Hence it is apparent that



-rT

(21) ¢ = E—.
co 2
Since Zt = e—rTSt and ¢S is the dollar value invested in the risky asset,

this says it is optimal to invest ue~r(T_t)/(c02) dollars in the risky

asset at time t, holding the balance of one's wealth in the bond. In other
. _ _ Tty ' . .

words, the fraction et = ¢tSt/Vt ¢tSt/(e Vt) of one's wealth invested in

the risky asset should be

3] =__i__..
t th+ut

It is instructive to compare how these results could have been derived
with the dynamic programming approach outlined by Merton (1971). With
J(v,t) denoting the maximum expected terminal utility given current wealth
is v at time t, one first must compute J by solving the partial differential

equation

_ 2.2,,. 2
(22) 0= Jt + rv Jv -y Jv/(ZG va)

subject to the boundary condition J(v,T) = a - (b/c)exp{-cv }. This is a
specialization of Merton's equation (28) (although the sign of one of his
terms seems to be in error); the subscripts on J denote partial derivatives.
With the solution J, one then computes the optimal fraction 6 of one's wealth
to invest in the risky asset by using Merton's equation (27), which is

UJV (Vt ’ t)

(23) g, = - .
t 2
o VtJ (Vt,t)

It is apparent that the key step in this procedure is to successfully
solve the partial differential equation. This is generally a formidable
undertaking and would even be difficult for the special case at hand if it

were not for the fact that knowledge of the solution obtained with convex



optimization allows one to make an educated guess about the solution J.
Since the optimal amount to invest in the risky asset is independent of

the current wealth v, at time t one should invest v in the bond and then act
as if the wealth is zero and the time horizon is T-t. The investment of v
dollars in the bond becomes exp(r(T-t))v at time T, so if the random variable
X denotes the terminal discounted wealth from the remaining investments,

then one has
J(v,t) = E[a - %-exp{—c er(T_t)(v + X)11.

By the same kind of calculations used above to derive E [log¥ ] and so forth,

Q

this means the conjectured solution is given by

r(T-t)

J(v,t) = a - %-exp{—c e v}exp{—uz(T—t)/(Zoz)}.

It is straightforward and left for the reader to verify that this
expression for J indeed satisfies the partial differential equation (22).
Using equation (23) one computes the optimal fraction of one's wealth to
hold in the risky asset to be given by
_ ue—r(T—t)

COZVt
Since ¢tvt = ¢tst = ¢ ertZ is the dollar value invested in the risky asset,

t t

this coincides with the result (21) obtained earlier by convex optimization.

7. Concluding Remarks

It is hoped that the methods and ideas in this paper will be used to
analyze a variety of utility functions and stochastic process models of
security prices, deriving formulas analogous to (19) and (20) as well as
solutions analogous to (21). It would be especially desirable to see future

research that extends the results of Section 3 to security price models that



are not complete. The usefulness of this paper will eventually be measured
by the extent to which its ideas are applied to a variety of interesting
optimal portfolio problems.

In addition to using optimal portfolio theory to speculate on the open
market, one could speculate about whether the basic idea of this paper,
decomposing a control problem into two subproblems that are connected (in
this case) by the set of attainable wealths, can be applied to other kinds of
stochastic control problems. The concepts of reachability and controllability
are well known for classical linear deterministic systems (cf. Kalman, Falb,
and Arbib (1969, p. 32), Kailath (1980, pp. 84-90)). Since reachability is
analogous to what is called attainability here, perhaps the development of
these system theory concepts for stochastic models would lead to the successful

application of this paper's decomposition idea to a variety of situationms.
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