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Abstract

For two-sided information infinitely repeated incomplete information games it
is shown that any vector payoff can be sustained as a sequential equilibrium
vector payoff if and only if there is a markov chain (with a state space of
player type distributions and vector payoffs) starting at that vector payoff

and satisfying a set of incentive compatibility constraints.



1. Introduction

This paper is concerned with providing a characterization of equilibrium
strategies in infinitely repeated incomplete information games with
discounting of payoffs. Attention is restricted to strategies which
constitute sequential equilibria.

In general, in these games, equilibrium strategies may be complicated
functions on the set of histories. A major problem is providing a good
economic interpretation of these strategies. Is there a simple or intuitively
appealing description that can be given to equilibrium strategies——a simple
way of describing how players play? That question is the subject of this
paper.

This question arises in any study of repeated games. A substantial part
of the literature has focused on a class of equilibria sustained by threat of
punishment in response to defection. For reasons to be described below, that
approach is not adopted here. The major result of the paper is to show that
any payoff vector arising from a sequential equilibrium may be sustained by
strategies of a simple form. In the next few pages, some of the literature on
repeated games is reviewed. Two types of information structure (complete and
incomplete information) and two types of payoff criterion (limit of means and
discounting) are considered. This review will illustrate some of the
approaches taken and difficulties involved in characterizing equilibrium
strategies. In section 2 the main result is given. Section 3 provides a
discussion of the conditions under which the result can be strengthened and of
the difficulties in doing so, in the context of zero—-sum games. Section 4
discusses the extent to which the results of section 2 can be extended.

For games of complete information where payoff streams are evaluated



using the limit of means criterion, Rubinstein [9] has characterized the sets
of equilibrium strategies and payoffs. He assumes that players do not
randomize on pure strategies or if they do that mixed strategies are
observable. This is a critical assumption for two reasons.

First, if the game has more than two players and mixed strategies are not
observable (the normal assumption in game theory) then the characterization of
perfect equilibria is incomplete. To see this, let the set of players be N

and denote player i's set of mixed strategies and payoff function in the one

stage game by X; and uy-. Also, let X ., = T X,. In a one stage game, player
j#i
i's payoff can be forced down to the level v; where vy is called the

individually rational level and defined by

i

Call x € HXi a weakly forced outcome if, for all i € N, 3 x~ € TXy such that

ui(xii’;i) < ui(x), ¥ ;i € Xi'
The result of Rubinstein is that the set of perfect equilibrium payoffs are
the payoffs that correspond to weakly forced outcomes. This result was also
given by Aumann and Shapley [6] (see Fudenberg and Maskin [7] for a brief
survey of this literature). The idea behind this result is that if a player
can gain by defecting from a weakly forced outcome, other players have
sufficient punishment power over finite periods of time to remove the gain of
the defector with a credible threat. Similarly, a second layer of punishments
applies to "punishers” who defect from implementing a punishment strategy.

They also are credibly threatened with punishment over a finite period of time



and so on.

When attention is restricted to pure strategies or where mixed strategies
are observable, this procedure works. However, if mixed strategies are not
observable and punishment of player i requires randomization by j, say, then
any defection by j from punishment of i within the support of j's punishing
strategy is undetectable. Since the approach depends on defections being
detectable, it breaks down at the second layer of punishments. Thus, when
player randomizations are not observable the idea of detection and punishment
runs into serious difficulty.

The second reason why the exclusion of mixed strategies is an important
assumption relates to communication. There is a communication aspect to
strategies (e.g., a defection is communicated by an observation of a move that
occurs in equilibrium with probability zero). If only pure strategies are
allowed, the scope for communication is greatly reduced. Since the way
communication occurs is itself of interest, this is an important omission.
Moreover, in incomplete information games where very precise amounts of
information must sometimes be transmitted through strategies, pure strategies
are insufficient to achieve the degree of communication required.1 Even in
complete information games there is an interesting role for communication.2

Turning to infinitely repeated complete information games with
discounting, Abreu [1] has provided a simple characterization of all pure
strategy perfect equilibria. The central idea is that punishments which
sustain equilibria are history independent. Furthermore, defection by some
player at any point in the game is always met by the same punishment. This
punishment corresponds to that players' payoff in the worst possible perfect
equilibrium——that perfect equilibrium yielding the player the lowest payoff.

Let vy be lowest perfect equilibrium payoff to player i. A given equilibrium



is sustained by the following system of punishments. If player i defects, the
defection leads to a subgame with an equilibrium yielding v; to player i. If
some player j defects from this equilibrium the defection leads to a subgame
with the equilibrium on that subgame yielding V4 to player j. Layers of
punishments are applied in this way and in this way all pure strategy perfect
equilibria are sustained in a relatively simple way.

Furthermore, in the context of symmetric games,3 focusing on the set of
symmetric strategy subgame perfect equilibria, he shows that the structure of
punishment strategies is of a simple form. (In the context of symmetric
strategy equilibria, punishment strategies are understood to be symmetric, so
that a defection by any player leads to each player playing the same pure
strategy on the induced subgame.) All symmetric strategy equilibria can be
sustained by a two—phase punishment strategy. The first phase lasts for one
period and in this phase each player receives a low payoff. The second and
successive periods give each player a high payoff. Within the class of
symmetric punishments, a punishment of this form yields the lowest possible
equilibrium payoff on any subgame. The important insights given by Abreu have
been developed in a different context by Abreu, Pearce and Stacchetti [2].
They focus on the characterization of symmetric strategy sequential equilibria
using extreme point payoffs in the context of an oligopoly model. Their paper
will be discussed (briefly) at the end of this section.

In the study of complete information games a central idea has been that
of sustaining equilibrium by threat of off the equilibrium path punishment.
This approach works because: (a) mixed strategies are avoided, (b) the games

studied have subgames so that "punishing” equilibria can sensibly be attached
to subgames, and (c) punishment is well defined. Turning to incomplete

information games each of these points raises substantial difficulty. As has



been pointed out earlier, communication has a central role in incomplete
information games. Without randomization it is impossible, for example, to
have the type of signalling that arises naturally in incomplete information
games. Restricting attention to pure strategy equilibria would clearly be
inappropriate. With regard to point (b), incomplete information repeated
games have no subgames. This raises difficulties in discussing off-the-
equilibrium-path strategies. Finally, in incomplete information games,
"punishmen;" may not be well defined. When a player may be one of many
possible types, the exact identity unknown to other players, a strategy which
would punish one type might not punish some other type. This leads naturally
to the study‘of punishment in terms of vector payoffs, each element of the
vector corresponding to a payoff to some player type. However, even utilizing
the idea of vector payoffs, minmax type punishments may not be well defined in
terms of the player type payoffs. This raises substantial difficulties, which
are discussed at length in section 3. A simple example will illustrate the
problem here. Consider a game of incomplete information with payoff matrices

for player I (player I's player type payoff matrices).

Player I is the informed player and selects the row. To punish player I,
player II should avoid playing the first column. If the prior distribution
over player types is (1/2, 1/2), any distribution over columns 2 and 3 played
by player II minimizes the expected payoff to player I (giving an expected
payoff to player I of 1/2). However, if column 2 is played by player II with
probability y, the vector payoff to player I is (y, 1 - y). Thus, any vector

payoff of the form (y, 1 - y) may arise from a minmax strategy by player II.



It should be clear that a complete description of either equilibrium payoffs
or punishment payoffs requires not only knowledge of the expected payoff to a
player, but also the payoffs to each player type.

The study of infinitely repeated incomplete information games was begun
by Aumann and Maschler [4]. Their results are summarized in section 3 in the
discussion of zero sum games. Two papers dealing with the structure of
equilibrium strategies will be discussed here. Both of these papers (Hart [6]
and Ponssard and Sorin [8]) are quite involved. The discussion here is quite
inadequate and intended simply to indicate the kind of approaches they have
adopted.

In [6], Hart characterizes all the equilibrium points of two player
incomplete information repeated games with lack of information on one side.
The characterization is quite complex with the set of equilibrium points
corresponding to a certain class of stochastic process. Periods in the game
are divided into communication periods and payoff accumulation periods. At
points where communication occurs (typically requiring randomization), payoffs
are such that, the alternative paths from which the players can choose yield
at most the same payoff as that given along an equilibrium path. In payoff
accumulation phases, the strategies are pure. Thus, where undetectable
derivations are possible, they are also worthless to the potential defector.
This aproach depends critically on the use of the limit of means criterion.
For example, some equilibria may require an unbounded number of communications
but with payoffs during periods of communication having no effect on the
overall average payoff. This discussion does not at all describe Hart's
characterization; it is intended merely to indicate aspects of his approach.

In [8], Ponssard and Sorin provide a description of equilibrium

strategies for finitely repeated incomplete information zero sum games where



players move sequentially and where there is a two sided information structure
(player I has K possible types and player II has R possible types). They
provide a state variable characterization—strategies are determined by the
state variables, vector payoffs and posterior distributions. Their procedure
is to partition the simplices to which the player type distributions belong,
into sets of convex polyhedra on which the value function is piecewise
bilinear with respect to the player type distributions, p and q. The state
variables are then defined using this property. The existence of such
partitions and the bilinearity property typically do not hold in infinitely
repeated games. p

Abreu, Pearce and Stacchetti [2], have provided a simple characterization
of all symmetric strategy sequential equilibria of an oligopoly game, in terms
of extreme point payoffs. The game can briefly be described as follows: in
the first period each player chooses a quantity, in successive periods each
players chooses a quantity having observed the history of prices and the
quantities supplied by that player only in previous periods. Thus, no player
ever observes the action histories of other players and sufficient random
disturbance is introduced into prices so that such information cannot be
inferred from prices. Focusing on pure strategies, they show that all
symmetric strategy sequential equilibrium payoffs can be sustained by
strategies whcih take on only two possible values after the first period and
these values are independent of the equilibrium being sustained.

In the discussion here on incomplete information games two of the themes
in the literature discussed above will be developed. These are the state
variable stochastic process approach of Hart and Ponssard and Sorin and the
extreme point approach of Abreu and Abreu, Pearce and Stacchetti. In the

following section it will be shown that the set of sequential equilibria



correspond to a class of stochastic process. To any point in the set of
sequential equilibrium payoffs there exists a Markov chain starting at that
point and satisfying a set of "incentive compatible™ constraints. Conversely,
any Markov chain satisfying these incentive compatibility constraints defines
a sequential equilibrium. This may be compared with Hart's [6]
characterization of equilibrium points as G-processes (see also Aumann and
Hart [3]).

The latter part of the paper discusses extreme point transition functions
for "equilibrium Markov chains.” Unlike complete information games,
restricting attention to symmetric games is unnatural as this imposes
restrictions on the values of the prior distributions. In the general case
(nonsymmetric games) an upper bound is obtained for the number of points in
the range of the transition function that lie in the interior of the set of

sequential equilibria.

IT. A Characterization of Sequential Equilibria

The game to be discussed is the standard two sided incomplete information
game. (The result to follow does not depend upon the assumption that there
are two players. This is purely for notational convenience.)

A pair of matrices (Akr,Bkr) is chosen from the set

{Akr,Bkr)lk €EX, r € R} according to the distribution (p,q) = ((pl,...,pK),

(ql,.ee,q®)). The pair (AKT,BKT) is chosen with probability pXqF. Player I
is informed of the choice of k and player II is informed of the choice of r.
The game chosen is played repeatedly, payoffs are discounted and at each stage
both players are informed of the previous history of moves. A history of
length t - 1, denoted h., is a sequence of moves ht = (il,jl,...,it_l,jt_l).

The set of all histories of length t - 1 is denoted Hy . Strategies in the

game are defined as collections of functions:



For Player I

G = (xl,xz,...,xt,...)

with x.: B, x K > AL, 1) = {g}.

For Player II:

T = (yl,yz,...,yt,...)

with y,: H. X R » AJ. (AI, AJ, I -1 and J - 1 dimensional simplexes.)

More concise notation may also be used by defining a strategy for I as a

function ¢ with

o]
o: HxK>al, H= v H,
t=1
and a strategy for player II:
J
7: H xR > A
@
Next, let H = I (I x J). Histories in H, are denoted h. Given a history

t=1
h € H  and a pair of types (k,r), the payoff to player I is denoted

kr _ _ T t-1 kr kr _ [ kr
a (b)) = (-5 tzl 5 aitjt’ AT = {aij}iGI,jGJ

and the payoff to player II is denoted
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kr _ _ T .t=l _kr kr _ ¢ kr
b7 (h) = (1 -6,) tzl 6, b i3’ = oher jer

A pair of strategies and a pair of prior distributions (p,q) determine a
probability distribution on (H, QFZKXR). Denote this distribution P and the
corresponding expectation operator by E. Thus, given a pair of strategies and

a pair of priors (o,7,p,q), the expected payoff to player I is
E(akr)

and the expected payoff to player II is
E(bkr)

Similarly, the expected payoff to player I, type k is

k

kr|k} -z

E{a

and the expected payoff to player II, type r is

k
E{b rlr} = Cr

Let € = {Ek}kEK» ¢ = {Cr}rER and note that

E(a) = pef and E(b<T) = qeC.

Since an understanding of the extensive form of the game is essential to

the discussion to follow, a brief description of relevant aspects of the
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extensive form is given here. The game has no subgames. Each history hg € H,
leads to a minimal subform of the game. Each history h € H, and pair (k,r)
define a path on the extensive form. The set of paths in the minimal subform

associated with ht is

u (k,r,ht,h) <K xR XH_
kex
re€R

©
hell(IxJ)

Any information set reached by a history in H of length t periods or more
and through which a path in the minimal subform passes is contained entirely
in the minimal subform. For any path not in the minimal subform, no
information set through which such a path passes, intersects the minimal
subform. This is a heuristic description; further details are given in Selten
[10] or Kreps-Wilson [4]. The intuitive idea is that after any history, hy,
the corresponding minimal subform is the smallest detachable set of branches
of the extensive form (detachable in the sense that neither paths nor
information sets are broken from there on). If to any minimal subform, a
distribution is attached to the initial nodes of the subform, a replica of the
original incomplete information game is defined.

The sequential equilibrium concept has been defined only for games with a
finite number of pure strategies. The games considered here have a continuum

of pure strategies but the extension to this situation is natural. Denote a

strategy tuple, w = (0,7). We can write (wt, {w(ht)}h - ), with the
t-1 t t

understanding that w, defines the strategies on Ul Hy and w(ht) is the
S=

"strategy” induced by the history h; on the minimal subform defined by h;.
Adding type distributions to a minimal subform defines an infinitely repeated
incomplete information game (denote from now on the minimal subform associated

with hg, F(ht)). With posterior distributions p(ht),q(ht) (defined for all



- 12 -

hy € H) denote such a subform game G(h.) = (F(h.), p(h.), q(hy)). With this
notation, a sequential equilibrium may be defined. A sequential equilibriumn
is an equilibrium strategy tuple w, such that for every h, € H, w(ht) is an
equilibrium on the subform game G(h.). The posterior distributions p(h;),
q(ht) are required to satisfy Bayesian consistency in the following way. If
prob(hy) > 0, then p(hy), q(h.) is defined by w and the prior distributions.

If prob(hy) = 0, then given p(h;), q(h.), p(hy,i.,j;) is defined as

k k
X4 (ht)p (ht)

Koo . . oN L .
prih,1.3) = Prob(i [B) ek
if
_ kK k
Prob(lt]ht) =3p (ht)xtit(ht) > 0.

)X is chosen with

1f prob(it|ht) = 0, then a sequence xD € int(Al
x> x(ht). The sequence x" defines a sequence of posteriors pn(ht’it’jt)’
the limit of which (taking subsequences if necessary) is defined to be
p(hy,ip,j¢). The posterior q(hg,ip,3¢) is defined similarly. Define the set

A= 1 I (AK X AR)

t21 h €4

t t
Thus a sequential equilibrium is a pair (w,A) € @ X A (Q = £ x T) inducing
equilibria on every subform game and satisying Bayesian consistency in the

posterior sequence. Next, let

kr" 'bkrl}

M= max {laij ij

i,j,k,r

and define the set of states of the game to be the set

S = AK x AR x [—M,M]K+R. A state is thus a vector s = (p,q,&,5) where (p,q)
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are the priors and (§,{) are vector payoffs to players I and II.

The following propositions and theorems define a state space for the game
and convert every sequential equilibrium to a first period payoff equivalent
sequential equilibrium with representation as a Markov chain with stationary
transition probabilities and a stationary transition function.

Define the correspondence d)(p,q)4 as

¢(p,q) = {w = (0,7) € Q'w is a equilibrium strategy pair}

¢ is the equilibrium correspondence from priors to strategies.

Proposition 2.1: ¢ is an upper hemicontinuous (u.h.c.) correspondence from

2K x AR 6 0.

Proof: Denote the probability distribution on H_ ® 2K*R determined by (p,q,w)

A . kr
as quw’ determining the expectation operator quw‘ Observe that quw(a R
quw(bkr), quw(akrlk) and quw(bkr|r) are continuous functions of (p,q,w).
It follows immediately that ¢ is u.h.c. 0

Define ¢S(p,q) the sequential equilibrium correspondence,

0 A* x AR 5 g

0,(p,@) = {w € Q¥ h €H, wh) € op(h), alh )}

Note (p(h.), q(hy)) is defined for every history (see the earlier discussion

on this matter).

Proposition 2.2: ¢s is an u.h.c. correspondence from AK x AR to Q.

Proof: Let (p™,q™) » (p,q) and let w® € ¢S(pn,qn) with corresponding sequence
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(P?,Q™) € A. Let w, * w and (P%,QM) » (P,Q). For any history h, € H,
w"(h) € o(p"(h), q"(h)).

since w(h,) + w(hy), (pP"(h,), q"(hy)) + (p(hy), a(hy)) and ¢ is u.h.c. it

follows that for any h, € H
wth ) € o(p(h ), q(h ). (i
Next, define a correspondence a, Qa: AR x AR 5 g, as
a(p,) = {(8,8) € [M,MI"" |3 w € o_(p,q)
with ik = quw(akrlk), Cr = quw(bkrlr) for all (k,r) € KXR}

Proposition 2.3: a is an u.h.c. correspondence from AK x AR to s,

Proof: This follows immediately from the fact that ¢s is an u.h.c.

correspondence and E (akr,k), E (bkrlr) are continuous functions of

pquw pquw

(p,q,w). []

Next, a set of sequential equilibrium states is defined. Let

K+R

s = {(p,a,8,0) € A x &% x [a,MI""F|(£,0) € a(p,q)}.

The set S is the basic state space for the discussion to follow. Observe that
since a is a u.h.c. correspondence, S is closed.

Proceeding, define random variables on the underlying space H, ® 2K*R 55
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follows. Let

kr _ _ s_kr

a_ = 1 61) Y 61ai 3

s=t s

kr _ _ T s, kr

b, = (1 = §,) ¥ 8,5
s=t s”s

and for fixed w, let

k kr
g, (h) =B lay Ih,,k}, ¥k €3

k
E b [, ¥ 1 er.

r
C.(h) pqu

Note that if w is a sequential equilibrium, then for all h, € H,

ii(ht) sup E {a:rlht,k}, ¥k €K

O€EL pqot

and

o (h) = E {bkrlh }, ¥r er

gh ) T OSUP BoaaelPe 10T VI .
t€eT
Thus, for example, gi(ht) is the most that player I, type k can achieve from
period t on, given the strategy of player II, if w is a sequential
equilibrium. (This is true for some version of the conditional distribution,
if Prob(hy) = 0 under (p,q,w).)
For a fixed sequential equilibrium w, a state at time t following any

history h, € H is a vector of the form:

s, (h ) = (p(h ), a(h ), & (h ), Ct(ht))

with
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h h € h h .
(ét( t), Ct( t)) a(p( t), q( t))
Define St(p,q,w) as follows (w a sequential equilibrium):

St(P,q,U)) = {S € S|3 ht € Ht’ St(ht) = 8,

with the function st(°) determined by (p,q,w)}

and define S(p,q,w)

s(p,q,w) U St(p,q,w)

t2l

= U U s (ht)
t>1 htGHt
For any fixed sequential equilibrium, w, given priors (p,q), S(p,q,w) is the
set of states that can be reached through any history hy € H (with hy possibly
having zero probability of being reached) given the sequential equilibrium
strategies w = (0,T). Observe that for any w € @, S(p,q,w) has at most a
countable number of states.

The content of Theorem 2.4 (see below) is that a sequential equilibrium
may be replaced by another first period payoff equivaleant sequential
equilibrium with a simpler structure. The procedure is as follows: take a
sequential equilibrium of the game with priors (p,q) which yield vector
payoffs (£,{) and iteratively construct a sequence {wn} of sequential
equilibria which yield the vector payoffs (£,f). The limit of {wn}, w” say,
will be characterized with a state space interpretation which may be described

in the following way. From the perspective of player I, type k, at period 1

player Ik computes the state s); and plays xk(sl). History (il’jl) occurs, the
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player now computes T(s;,i;,j;) = sp and plays xk(sz). At time t, the player
plays xk(st), computes spy1 = T(sy,ip,j¢) if (i4,3¢) occurs and he plays
xk(st+1) in the following period.

Throughout the following discussion, the priors (p,q) are held fixed. To
simplify notation, they will be suppressed and the set St(p,q,w) will be

denoted St(w).

Theorem 2.4, Let w be a sequential equilibrium, yielding expected payoffs
(E,C). There is a payoff equivalent sequential equilibrium (i.e., yielding
the same expected payoffs), m*, where w* is characterized by a pair of

functions (x,y) such that
* I.K J.R
(x,y): S(w ) > (A7) x (A)

and with the interpretation that if history h, occurs at time t, player I type
k plays the strategy xk(st(ht)); player 11 type r plays yr(st(ht)).
Furthermore, the process s;, t > 1, determined by w , is a Markov chain

with stationary transition probabilities.

Proof: Let w be a sequential equilibrium. A sequence of payoff equivalent

sequential equilibria {wl}t>1 will be constructed from w with the property

that w* » w*, where o has the desired property.

Set w = ml, the first element of the sequence. Note that as wt changes,

the state function St(ht) will change, as it is determined by wh. To indicate

this dependency, write sy, (h.) € St(wx)-

Given wl, w? is defined as follows.

At t = 2, for each s € Sz(ml) n Sl(ml),
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wl, ¥ hy € SI%(S)-

put w?(h,)

m

For each s Sz(wl)\Sl(wl), pick h

2
W (), ¥ h. € s is).
27 2 12

put wz(hz)

2 1 (2
Define u” = (v}, {w (hz)}hzeHz)

i

t_
At period t, for each s € St(wt-l) nif{wu ST(wt_l)]

T=1

-1

Pick some h € s
T t-1i,t

(s), T < t, and

~1

t-1 -~
w (hr)’ ¥ h € St-1,1

put wt(ht)

(s)

t-1
for each s € § (wt_l) V[ u S (w
t =1 T

t—l)]

Pick some h € s_1
t t-1,t

(s)

-1

t _ t-1,=
and put w'(h ) =w (h), ¥ h_€ st_l,t(S)

. t t-1 t
Define w = (w =1’ {w (ht)}htth)

Two results will now be established, relating w® to wt=1e

Proposition 1. 1If wtl is a sequential equilibrium, then
equilibrium.
Proof. If wt = wtl there is nothing to prove. Otherwise, w® #

-1
€ slz(s) and

u;—l’

is a sequential

SO

wt(ht) # wt_l(ht) for some h, € H.. Therefore, 3, h;, T <t anduF(ht) =W —l(hT).
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For this substitution to have occurred requires that St—l,t(ht) = St—l,T(ET)° This
implies that (pt-l,t(ht)’ qt—l,t(ht)) = (Pt—l,t(ht): qt—l,t(ht))' Thus the subform
games G(ht) and G(ET) are identical. Consequently, if uF-l(gt) is a sequential
equilibrium of G(ﬁt) then it is a sequential equilibrium of G(h;).

Thus, on minimal subforms F(ht), where strategy replacement occurs, the
new strategies define sequential equilibria on those minimal subforms. On
those minimal subforms where no replacement has occurred, the induced
strategies are by definition sequential equilibria.

Thus, given the posterior distributions determined over H; by u%:{,

{wt(ht)}

h el is optimal on each corresponding subform game. It remains to
t

check that wt_i is optimal after replacement has occurred. Since St t(ht) =
- b
St,t(ht)’ ¥ hy € Hi, the expected payoff to each player type is unchanged, so
given the strategies of the others, a player type has no incentive to deviate
at any history hy_; € Hi_;, given that he did not have such incentive before

the replacement took place.

1
Proposition 2. Given wb, if Sepr(hpr) = sgq(hy), t ,T < t, then

wt(hp ) = wt(hy).

Proof. This follows from the construction of wt.

t

Continuing with the proof of the theorem, let w- or some subsequence

* * . .
converge: wt > w. Then w is a sequential equilibrium. Define

S(w*) = U St(w*).
t>l

*
Let s¢, t > 1 be the state function determined by w . Note that

*
S(w) = U U st(ht)
t>1 htEHt
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Suppose now, that at hy, hp, St(ht) = ST(hT)' Then by the second
proposition

* *
W (ht) w (h)

In particular,

k k

x. (h) =x_(h), ¥k
r r

yt(ht) = Y_c(h_c), ¥r

Define the functions (x,y) = ((xl,...,xK), (yl,...,yR)) on S(u?) by picking

for each s € S(w*) some h. with st(ht) = g. Then, put

() xk(st(ht)) - xt:(ht), h €H

and

v (s)

r r
€ H.
y (St(ht)) Yt(ht), for some ht
The functions, (x,y), acting on the states, S¢» sustain the sequential
cq s . *
equilibrium w .
Turning to the characterization of states, suppose that St(ht) =

s.(h.). Then w*(h ) = w*(h ) so that
T 7T t T

and

prob(i,j'ht) = prob(i,jlht)
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Thus, for any s € S(w*), there are I X J possible successors. These are
determined by picking some hy € H, with st(ht) = s. The possible successors
of s are s;(h¢, 1,j), 1 € I, j € J. One can therefore define a transition

function T, where
* *
T: S{w ) xI xJ > S{w)

If the current state is s and the "history” (i,j) then occurs, the new state
is T(s, i1i,j). If the current state at time t is S¢» then the probability of
s sy s k k rr . . . s
(i,j) is (Zpt xi(st))(thyj(st)) which may be written as prob(l,Jlst). The
k

- r
probability that T is reached next, given the current state S¢ is equal to

X prob(i,jlst)
{(1,9)|¢s,1,3)=T}
Finally, since S(w*) is countable, {St}t>l is a Markov chain with stationary

transition probabilities.

This completes the proof. 0

The function T obtained in Theorem 2.4 may be decomposed into two parts,

T = (u,v) with
* R
u: S(w ) xI xJ > AK x A

* %
v: S(w ) xI xJ=» a(u(S(w ) xI xJ))

u is the posterior updating function, ¥ (s,i,j) € S(w*) xI xJ,
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. . k . . T ..
u(s,1,3) = ({p (5,4, 1) b pr 1a (5,1,0) ) )

s = (P,q,E,C)

and xk(s)pk
Pk(s,i,j) = ——31;—————, if Z pkxg(s) >0
i
Zpx,(s) k
K i
nk k
X, P

k .. . i
p (s,i,j) = lim e X

n+® I p Xy

n e int(AI)K, x> x(s)
(taking limits in some subsequence if necessary) for some sequence
{xn} € int(AI)K. A similar procedure applies to q¥(s,i,j).

v assigns a vector payoff to ech path (i,j) for each state s.

v(s,i,j) € ®RER

Define functions fk,gr as follows:

k k k k~ k
£ (s,x,y,v) = {(1 - 6,) ¢ qrx A ryr +6, % x.y.v..}
1 1 .7, "i7j3°1j
T i,]
gr(s,x,y,v) ={(1~-6)¢z kxkAkr T+, y XV, }
2 2, jiij
k i,j
- k k - rr
X, =X2pxX, y,=Xaqy,
k J T J

and for each (i,j), Vij is a vector in IRKFR,

Note that fk,gr are written as functions of s = (p,q,&,C) when only p,q,
enter as arguments of fk,gr. This is done for notational convenience later.
Define f = X pkfk and g = qrgr.

k T
Observe now that the functions (x,y,T) defined in Theorem 2.4 satisfy
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* *

T = (uiv): S(w) xI xJ > S(w)
x: s(w) > A (= (4D

yi sw) > o (= DD

and ¥ s = (p,q,&,8) € S(u¥).

(1) ik fk(s,x(s),y(s),v(s)) > fk(s,x,y(s),v(s)), ¥ x € AI’ ¥ k €K

(i1) ¢" = g"(s,5(x),¥(s),v(s)) > g"(s,x(s),y,v(s)), ¥y € A, ¥ €R

(iii) v(s,i,j) € a(u(s,i,j)), ¥ (i,j) € I xJ

where u(s,i,j) = (p(s,i,j), q(s,i,3))

k k
x;(s)p Kk k, ..
p(s,1i,3) i e v if T p xi(s) >0
Ip xi(s) k
k xnkpk
. i
lim %
n*® L p X;

(in some subsequence if necessary) and
n n
x € intAI, x > x(s).

q(s,i,j) is defined similarly. This leads to a converse of Theorem 2.4.

Theorem 2.5: Given S'_E S (S is the set of sequential equilibrium states).
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Let T satisfy

T=(u:tv): § xI xJ~>S§

K
(u: 8 xXI xJ>A xA)

if there exist functions x,y such that

and for all s € S conditions (1)-(iii) are satisfied, then (T,x,y) defines a

T
sequential equilibrium for each s € § .

Proof: Pick some s € S and set s§] = s. Define x| = x(s1), y; = y(s;). Let
sp(1,j) = T(sy,1,j) and define x,(i,j) = x(s5(1,3)), yo(i,j) = y(sp(i,3)).
Define strategies recursively in this way so period t strategies are defined
St(ht) = T(St—l(ht"l)’ it"l’jt—l)’ xt(ht) = X(St(ht)’ Yt(ht) = Y(St(ht))o

This gives

Q
]

(xl,xz,...,xt,...)

T = (yl,yz,...,yt,...)

I
L Ht > AI (xt. Ht x K=+ A7)

J
Y.t Ht > AII (yt. Htx R+ A)

Let St(ht) = (p(ht), q(ht), i(ht), C(ht)). By construction, for each k € K
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k k k
£(h) = {(1 = 8D 2 q (h)x (h)a 5y (h)
t

k - k ..
+6, L xtij(ht) Yej (BT (hi,50)]

- r r
Yeg () = Ea ()yl, (n)

t r t
Expanding the expression gives gk(h ) =E {akr ,k} with w = (og,7t). Also,
t pqw* t t
k k kr r
£(h,) = max {(1 -6) % qr(ht)x ATy (n,)

xEAI
k - k .
F O T xg vy (e CHESRID)

These properties are satisfied (by construction) ¥ h. € H. Therefore, in

particular,

k kr
£(h,) = sup qum{at |h,k}, ¥ b, €H.

A similar discussion applies to {C(ht)}h e
t

Finally, observe that for each k € K, hy € H

x$) (hp ()

k k
PN(h, i ,5.) = —= , if T pS(h x5, (h) > 0
tolesde 2 Kb % (B %1 e
P AR X Mg
t
k k
XE' p (h)
., ¢ K K
= lim , if Z p (h )x (h.) =20
nk t/%e1 e
n*e I p (ht)xti t

t

n

and with x° € int 4y, 1 > x¢(hy). Again, a similar discussion applies to
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q(hg, it,jt). Thus, (o0,T) and the corresponding posterior distributions

defined by sy(h;), hy € H define a sequential equilibrium. 1

To summarize the discussion of this section: every sequential
equilbrium generates a (not necessarily unique) Markov chain with stationary
transition probabilities; and any triple of functions satisfying conditions

(1i)-(iii) above defines a class of sequential equilibria.

IIT. Zero Sum Games

In the previous section, the state vector of variables contained both
player type distributions and vector payoffs. Is it possible to simplify the
state variable to contain only the player type distributions? A good point to
begin the discussion is with a paper of Aumamn and Maschler [4]. There, they
showed that, for infinitely repeated incomplete information games with lack of
information on one side and payoffs evaluated according to the limit of means
criterion, the game has a value. However, the value of the game, given the
prior distribution, is determined exclusively by a strategy for the uninformed
palyer which is based on Blackwell's approachability theory for games with
vector payoffs. 1In the present context, vector payoffs arise as payoffs to
each player type. The ideas in the theory of approachability are important
for the present discussion. A simple example will illustrate the theory.
First, a brief review of notation is required.

For a zero sum game with two player types (so that there are two matrices
Al and A2) and prior, p, let A(p) = pAl + (1 - p)AZ. The function u(p)

defined:

u(p) = max min xA(p)y,
Xy
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is the value of the game when the informed player (the maximizer, say) is not
allowed to use type dependent information. Aumann and Maschler proved that
the value of the infinitely repeated game is cav u(p), the smallest concave
function above u(p). The proof uses Blackwell's approachability theory. A
payoff in the game may be viewed as a vector, a = (al,az) representing the
payoff to each player type. Approachability relates to how well the
uninformed player can simultaneously "push down™ both elements of the vector

payoff. A set (here a subset of R’) is approachable by the uninformed player

if he can push the vector payoff into that set. With this definition, the
Aumann-Maschler theorem may be stated (see, for example, Hart [6]): A
necesssary and sufficient condition for the set Q = {x € E@'x < a} to be

approachable by player 2 is that
2
q*a > u(q), ¥ q € A
In a game with prior p, any payoff vector, a, satisfying
2
q*a > u(q), ¥ q € A

and

= Cav u(p)

Y]

p.

is an equilibrium payoff vector. The following example illustrates that, in

equilibrium, the vector payoff may not be well defined.
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Example 1.
2 0 0 1
Al -
2 1 0 0
u(p) = 2p, p <1/3
=1 - p, 1/3 < p <1/2
=p! 1/2<po
So
Cav u(p) = 2p, p <1/3

1/2 + 1/2p, p > 1/3.

These functions are plotted in figure 1. ©Next, consider the approachable sets
defined by these functions. Figure 2 depicts these sets. Note that for
p < /3, there is a unique equilibrium with vector payoff a = (2,0). For
p <1/3, a=(2,0) is the tangent line to Cav u(p). For p > 1/3 there is a
unique vector payoff, a = (1, 1/2), again the tangent line to Cav u(p).
However, at p = 1/3 any one of the rectangles in figure 2 is approachable
(just to the corner) and whichever one is chosen to approach by player 2, the
same expected payoff is obtained. Thus, at p = 1/3, any point of the form
A(2,0) + (1 - A)(1, 1/2) is an equilibrium payoff with A € [0,1]. The shaded
area in figure 3 defines the set of lines corresponding to equilibrium
vectors.,

In example 2, the same problem occurs at p = 1/3. The equilibrium vector

payoff here is any vector of the form
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A(2/3, -1/3) + (1 - A)(4/3, -2/3), A € [0,1].

Example 2

For this example, regardless of the payoff criterion used in the
infinitely repeated game, at p = 1/3, any vector of the form given above may
arise as an equilibrium payoff vector for example, the kink in figure 4 at p =
1/3, defines the range of vector payoffs that may arise.

It should be clear from these examples that the "problem” of equilibrium
vector payoffs not being well defined arises precisely at those points in the
simplex where the value function is not differentiable. Since the focus of
this paper is the structure of equilibrium strategies, does it matter that the
vector payoffs are not well defined for some player type distributions? Could
one not just "select"” some vector payoff to be sustained by appropriate
strategies whenever a player type distribution is reached, at which the
equilibriuﬁ vector payoff is not well defined? This line of reasoning is
reinforced by the observation that these zero sum games have a recursive
structure.

In a two stage game (summing the payoffs), the value function satisfies:

. k k k. k - - 3 .
vz(p,q) = Max Min {Zp q x A ryr + inyj vl(p(l),q(J))}

X y

with X, = ZpfxF
1 1

pk(i) = kaE/;i, p(i) = pl(i),-~-,pK(i))
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and with similar definitions for §j’ qliy.
Similarly, with an infinitely repeated game with discounting, the value
function satisfies

v(p,q) = Max Min {(1 - &)Ipq'x &y’ + 8%y, v(p(1), a(3))}

X 5y
In either of these cases, since the payoff from the second period on is fully
determined by the posteriors, one might expect that second period strategies
could be chosen optimally and such that those strategies would be the same on
histories that lead to the same posteriors. This is clearly a necessary
condition for posteriors to serve as state variables. Unfortunately, this is

not the case, as the following example shows.

Example 32

The value function of the one shot game is

vl(p) = 2 Min(p, 1 - p)

Figure 5 depicts the set of equilibrium vector payoffs in the one stage game,
at p = 1/2. The extensive form of the two stage game is given in figure 6.
In this game, player 1 is the informed player and maximizer. Player I plays
rows, player II plays columns. There are four possible histories that can
occur following the first period. These are: h; = (1,1), hy = (2,1),

hy = (1,2) and hy = (2,2). Strategies can be identified at each information
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set just by giving the probability of playing the first row or column. Thus,
for player II at the first period a strategy is given by y and for player I, a
strategy is given by (xl,xz). Corresponding to each of the four histories in
the second period, player II has four strategies given by y;, y3, y3, y4 where
yi = y(hi). Note that in the second and last period, player I has a dominant
strategy (xl(hi), xz(hi)) = (1,0), ¥ i, so that player I may be ignored in the
second period. Figure 6 makes this description of the game clear. Thus any
equilibrium in this game may be described by a vector of the form

(y, (xl,x2), (yl,yz,y3,y4)). If p = 1/2, then the set of equilibrium points
in this game is

1 2 1 2
{(Y, (X X ), (yl’y2,Y3QY4)ly =X =X = 1/2,

+ = = .

Since y; » O, in particular observe that y),y3 < 1/4 and yo,y; 2 3/4.
Observe also that, since xl = x2 = 1/2 the posterior on any history, p(hi) is

equal to the prior p (=1/2). 1In the one stage game with prior p = 1/2, the

set of equilibrium vector payoffs was:
{(2a, 2(1 - @&))|a € [0,1]}.
In the repeated game with histories leading from prior p = 1/2 in the first

period and posteriors all equal to 1/2 in the second period, the vector

payoffs in the second period all lie in the set

{(2a, 2(1 - @) |« € [0, 1/4] v [3/4, 11}
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Figure 7 depicts this set relative to the one stage payoff vector. Any one of
the equilibria may be interpreted as follows. Player II plays y = 1/2 in the
first period, ensuring neither player type of the opponent can get more than
1. Suppose player I type 1 tries to get the most possible in the first period
by playing the lst row. This leads to histories h; = (1,1) or hy = (1,2)
occurring, if player I is type 1. Referring to figure 7, observe that any
vector payoff following these histories is "bad" for player I type l. From
player I1's perspective, the only player type of I that can gain from playing
1 is player type 1. Therefore, whenever a history occurs in which I plays 1,
the payoff is "bad"” for type 1 in the next period. A similar interpretation
applies with player type 2. There are two points to note from this example:
the posteriors are not sufficient as state variables to determine strategies
and vector payoffs are central to the description of the equilibria.
Furthermore, it may be seen that the difficulties arise at precisely
these points in the simplex where the value function is kinked. If the value
function is everywhere differentiable on the simplex, then the vector payoffs
associated with any distribution p (in games of one sided information) are

uniquely defined. This observation leads to the following theorem.

Theorem 3.1. Let v(p) be the value of an infinitely repeated game of
incomplete information with discounted payoffs and prior distribution p.
Then, if v is differentiable everywhere on the simplex the posterior
distribution is a sufficient state variable to determine the strategies of
both players. That is, there exists an equilibrium such that if at hy and hg

k k
pt(ht) = p(hy) then xt(ht) = xT(hT) ¥ k € K and yt(ht) = yT(hT).

Proof. Let a(p) = %% (p)-
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Apply Theorem 2.1, the state variable satisfies

s, = (p» alp ), p "alp )
if at t,t', Py = Pr', then a(py) = a(pyr) and pra(py) = pyrtalper). Thus,
Sy = s¢rv if and only if py = pyve Therefore the state is uniquely determined
by the posterior distribution.

Some additional insight is given to the role ofhposterior distributions

in the following theorem.

Theorem 3.2. Suppose that behavioral strategies are observable, in addition
to the histories. Then for any finitely repeated game, the posterior
distributions are sufficient to determine strategies in each period. That is,

. _ k _ .k T . 4
if pt(ht) = pt(ht') then xt(ht) = xt(ht,) and yt(ht) = yt(ht,).

Proof. The value of the one period game is

. k k k kr r
vl(p,q) = Max Min {Zp qx Ay }

X ¥y

Let Fi(p,q) = {(x,y)l(x,y) are equilibrium strategies in the one stage game

with priors (p,q)}. Select a function £,(p,q) such that
K R
£,(p,q) € F (p,q) for all (p,q) € A" x A

(fl may be taken to be measurable, using the measurable selection theorem, and

the fact that Fl is a closed valued correspondence.) Write

£,(p,q) = [(Xi(p,q),---,XT(p,q)), (yi(p,q),---,yi(P,q))]
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Proceed to the two period game, using f;. Call this game G,

VZ(P,q) = Max Min {(1 - 5)2pquxkAkryr +
X ¥

677,47 [3p5(1)a5(3)x; (p(1),a(3)8 Ty (p(1) a3}
with ;i = Zpkx., y. = quy.
pE(1) = pkxli(/r?i, Q" (3) = 9v3/7;
Denote the set of equilibrium strategies in this game by F)
Fz(p,q) = {x,yl(x,y) are equilibrium strategies in GZ}

Again, select a measurable function, f,, with

K R
fz(P,Q) € F,(p,q) for all (p,q) € A x A

fz(p’Q) = (XZ(P,Q), YZ(P,Q))-

One may proceed in this way to a n-stage game, obtaining functions

(xt,yt)z AK x AR 5 Al x Ad.  This completes the proof. i

Note again that the steps above depend upon the observability of
behavioral strategies. For example, in the two period game, suppose player I
considers changing x{ in the first period, say to ;1. This will generally

change p(i), the posterior, say to S(i). Conditional on (i,j) occurring,
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player I will evaluate the "new” expected payoff in the second period as
v(;(i), q(j)). But this implicitly assumes that player II recomputes the
posterior (due to the change from x; to ;1), and responds in the second period

with a strategy optimal against S(i).

IV. Extreme Transition Functions

Recall that in the earlier discussion (following Theorem 2.4), the
transition function was decomposed into two parts, i.e., T = (u,v), where u
was the posterior updating function and v the vector of "add-on" payoffs. 1In
many zero sum games, it is hecessarily the case that the posterior sequence
remain in the interior of the simplex or converges to an extreme point of the
simplex at a slow rate in any equilibrium. Therefore any extreme point
characaterization should restrict attention to the function v. What
properties will a transition function extreme in v possess? That question is
the subject of the following discussion (see Theorem 4.1 below).

Recall the discussion between Theorems 2.4 and 2.5 and define the sets

A(s), s € § as follows:
A(s) = {v: I xJ=» H%*Rl 3 x(s) € AI’ y(s) € AII

with s = (§,C,p,q) and

D) E5 = £50s,x(8),5(8),9) > £(s,%,y(s),v), ¥ x € A, ¥k €K

r

(ii) ¢

g (s,x(s),y(s),v) > g"(s,x(s),y,v), ¥y € A, ¥r €R

(iii) v(i,3j) € a(u(i,j))}
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Here u(i,j) € AK x AR, is the posterior distribution determine by x(s), y(s)
and the occurrence of (i,j). When prob(i,j) = O under x(s), y(s) it is defined
as in the discussion between Theorems 2.4 and 2.5,

Given a state s, an element of A(s) is a vector payoff attached to each
history of the form (i,j), such that these add-on payoffs are equilibrium
vector payoffs on each subform and optimal strategies given these add-on
payoffs yield vector payoffs (E,{). Note that A(s) is closed (since fk, gt

are continuous and a is an upper hemicontinuous correspondence). Let

A= I A(s)
s€S

A is nonempty and since it is a compact set in a locally convex linear

topological space, A has extreme points. A point v € A is a function

vi S x I xJ» MR

(or v: S » H&IXJ)(K+R))

Note that if v € A is an extreme point of A, then v(s) is an extreme point of
A(s), for all s € S, Corresponding to any extreme point of A, there are

functions x,y, with
: S > A : S ~» .
X 7 A

Theorem 4.1: Let v € ext A. Then for all s € S, v(s,1,j) £ bd a(y(s,i,j))

for at most min (I,J) of the points (i,j) € I x J.

Proof: For any s € S and k € K with s = (§,C,p,q)



- 37 -

2 XN T Cy()aT 46 5y, (s)v(s,i,])]
N R

k k - k .. k I
> 2 x,[2Z qry?(s)a.? + & 2 y.(s)v (5,i,j)], ¥ x € A .
1 J 1] J
1]
Suppose that for some pair j,j , that

V(S’i’j) € int a(u(s,i,j))
v(s,i,j ) € int a(u(s,i,j ))

Fix some k € K.
- e .. e . e . .
If yj(S) = 0, put Vl(s,l,J) = VZ(S,l,J) =v (s,i,j), ¥ e € (K\{k}) U R.

Put

+
m

k k
vl(s,i,j) =v (s,i,j)

k k
vz(s,i,j) v (s,i,j) - ¢
and put

v (s,1,§) = v,(s,1,3) = v(s,1,3) on s\{s} x1 xJ.

Then v, # v, vy # v, vy,vy) € A for € sufficiently small and

(l/2)(vl + v2) = v, contradicting the fact that v is extreme.

If gj(s)) §j'(s) >0, let ¢ = §j(s)vk(5)i)j) + §j|(s)vk(5’i)j)' Let

k ' k !
vl(s,i,j ) =v (s,i,j ) + ¢

and choose v%(s,i,j) to satisfy
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- k, . . - k., .t
¢ = yj(s)vl(sala.]) + yj,(S)Vl(S,l,J )
Similarlv. let v i 1 ) = vR(a 1 4 d ch ke s s .
imilarly, let vz(s,l,J ) = v (s,i,j ) - € and choose vj(s,i,j) to satisfy
- k, . . = k, L
c = Yj(S)Vz(S,l,J) + Yj|(S)V2(S,1,J )
for
Yoo os ko k, . k, .
J#3,3, Vl(salaJ) = Vz(salsJ) =v (s,1i,j)
and let
e e e . . .

v (s,1,5) = v,(s,1,3) = v (s,1,j), ¥ e € (R\{k}) UR, ¥ s €5, ¥ (i,j) €I x J.
for € sufficiently small v;,vy € A, v # v # vy and (1/2)(v} + vy) = v. This
again contradicts the assumption that v is extreme.

Thus, for any s € S and any 1 € I,

v(s,i,j) £ bd a(u(s,i,j)) for at most one element of J.
Therefore, for any s € S
v(s,i,j) #bd a(u(s,i,j)) for at most I elements of I x J.
The same reasoning implies that for that for any s € S
v(s,i,j) £ bd a(u(s,i,j) for at most J elements of I x J.

Therefore, for any s € §

v(s,i,j) £ bd a(u(s,i,j)) for at most min(I,J) elements of I x J. 0
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Notes

lconsider a one sided incomplete information game where the informed
player has two possible types and two pure strategies in the one stage game.
For any prior p,p € (0,1), if players are restricted to pure strategies then
the two player types can play the same at each stage in the repeated game, in
which case all posteriors equal the prior; or differently at some stage
leading to posteriors {0,1}. The set of possible values for the posterior in

any stage and in any equilibrium is {O,p,l}.

2Suppose that (61,11) and (0y,79) are two equilibrium strategy pairs in a
complete information game with two players, each having two pure strategies in
the one stage game. These pure strategies are i € {1,2} and j € {1,2}.
Suppose in the first period each player randomizes (1/2, 1/2) on pure
strategies. If in the second period i + j is odd they play (op,7;) and if
i + j is even they play (oy,7y). Note that neither player can unilaterally
affect the probability that the sum i + j is odd or even. This gives an
equilibrium point giving players the average of the payoffs from (01,11) and
(02,12). This is called a jointly controlled lottery, first introduced by

Aumann, Maschler and Stearns [5].

3A two player game is symmetric if each player has the same strategy

space, X; = X, = X, and ul(xl’XZ) = uz(xz,xl), ¥ xy,%x9 €X.
4It is understood here that

kr}k)

kr
Eypq (2 [k) = sup LI
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and

kr kr
E (b |r) = sup E (b " |r
wpq ) TP g1pq )

5This example was suggested to me by J. F. Mertens.
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