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THE NATURE OF EQUILIBRIA IN THE

BUYER'S BID DOUBLE AUCTION *

Steven R. Williams
Dept. of Economics
Northwestern University
Evanston, IL 60208

August, 1988

If a trader privately knows his own preferences, then he may choose to
misrepresent the value that he places upon the good being traded in order to
influence the market price in his favor. This misrepresentation may make the
outcome of trade inefficient. As a market grows larger, a trader’'s ability to
influence the market price diminishes; he loses his incentive to misrepresent
and the market becomes more efficient. This intuitive argument is analyzed
here by investigating a Bayesian game model of the buyer’s bid double auction,
which is a particular procedure for selecting a market-clearing price from a
list of offers/bids. The existence of equilibria is proven in a generic
instance of the model, and the nature of these equilibria is analyzed in
markets of different sizes.

*This research was supported by National Science Foundation Grant No. SES-
8705649, and by Northwestern University’s Research Grants Committee.



1. Introduction.

This paper concerns a market in which each trader privately knows his own
preferences., A trader in such a market may have an incentive to publicly
misrepresent his preferences in order to influence the market price in his
favor. A prospective buyer, for instance, may bid less than his true
evaluation of the good for sale in an attempt to drive the price down;
similarly, a seller may have an incentive to set his offer above what he is
willing to accept. With behavior of this kind, a seller’'s offer could exceed
a buyer’s bid even though a mutually profitable trade between them exists. In
the market as a whole, a market price may be determined at which all potential
gains from trade are not realized. Misrepresentation of preferences may
therefore cause inefficiency.

Our faith in markets rests upon the belief that this inefficiency is
insignificant when there are a large number of traders, each of whom is
small. A small trader in a large market is unlikely to have much influence on
the market price; as a consequence, he has little incentive to misrepresent
his preferences. The market would therefore be almost fully efficient. This
argument, however, is vague about a very important issue: when is a trader
small relative to the rest of the market, and how many traders constitute a
large market? The meaning of "small" and “large" in this context is critical
to understanding when this intuitive argument applies. Clarifying these words
is part of making this argument meaningful.

This argument is investigated here by thoroughly analyzing a particular
model of trade. A market is considered in which money may be exchanged for
discrete, indivisible units of a good. For n, m =2 1, there are n sellers,

each of whom has one unit of the good to sell, and m buyers, each of whom



wishes to buy at most unit. Each trader is therefore small in that he trades
at most one unit; we shall consider arbitrary values of n and m, however.

Trade is organized according to the following rules. Each seller submits an
offer, while each buyer submits a bid. The ntm offers/bids are ordered in a

list s, <s, < ... <s . Any number in [sm, s ] is a market-clearing

1~ "2 n+m m+1l

price; the procedure considered here selects s as the price, for this

m+1

choice simplifies the subsequent analysis. Trade then occurs between those

buyers whose bids are at least as large as Sl and those sellers whose

offers are strictly less than s This procedure is called the buyer's bid

m+l’

double auction (the BBDA) because in the bilateral case (n = m = 1) the

buyer’s bid is the price whenever trade occurs; in the multilateral case,
however, the price may be set by either a buyer or a seller. It is
illustrated in the n = m = 4 case in Figure 1.1.

Our objective is to investigate how traders strategically use their
private information in the marketplace. For this purpose, we model the BBDA
as a Bayesian game, as formulated by Harsanyi (1967-68). Each seller’s
reservation value for his unit of the good is independently drawn from a
distribution F, on [0,1] and each buyer’s reservation value is independently

1

drawn from a distribution F2 on [0,1]. Though the distributions F1 and F2

are common knowledge, a trader privately observes his own reservation value.

A seller’s utility when he trades equals the price p minus his reservation
value, and it is zero when fails to trade; similarly, a buyer’s utility is his
reservation value minus p when he trades, and zero when he doesn’t. Each
trader is therefore risk neutral. Our objective is to examine the Bayesian-

Nash equilibria of the BBDA, and to understand how they depend upon n and m.

A trader determines the market price when his offer/bid is the (m+l)st



largest in the list. A seller only trades when his offer is strictly less
than the (mt+l)st largest, so he cannot influence the price that he receives.

A seller therefore has no incentive to act strategically; it is his unique
dominant strategy to set his offer equal to his reservation value.l We choose
to study the BBDA because its rules permit us to completely characterize the
behavior of one side of the market in this way. Let S denote the truthful
strategy. We restrict our attention to equilibria in which each seller uses §
as his strategy and each buyer uses the same function B as his strategy. Let
<S,B> denote an equilibrium of this kind. The objective is now to study in
markets of different sizes the functions B that define such equilibria. We
now discuss the results.

A large market might be defined as one in which the difference between
each trader's reservation value and his offer/bid is small, for this insures
that nearly‘all gains from trade are realized. To make this definition of the
size of a market meaningful, the relationship between the number of traders
and the amount by which they misrepresent their reservation values must be
clarified. Satterthwaite and Williams (1988) proved the first result of this
kind, which we now state. GConsider the BBDA when n = m, and let v € [0,1] be
any reservation value. There exists a continuous function x(v) such that, for
any equilibrium <S,B> in this market,

k(v)
m

(1.01) v - B(v) =

In words, the amount of misrepresentation v - B(v) at any reservation value v
is 0(1/m), no matter which equilibrium is considered. The function x depends

upon the distributions Fl and F2. This result is extended here to markets in

1 This was observed by Wilson (1983), and proven in the n = m case by
Satterthwaite and Williams (1988).
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which the number of buyers and the number of sellers may be unequal. We show
that for any equilibrium <S,B> in the market with n sellers and m buyers,

k(v)
min{(n,m)

(1.02) v - B(v) <
at every reservation value v, where k& is the same function as in (1.01). To
illustrate this result, fix n, m and the distributions Fl, F2 and consider the
market with tn sellers and tm buyers, where t is any natural number; using
(1.02), it is easy to show that for any equilibrium <S,B> in the market
indexed by t and any reservation value v, v - B(v) is 0(l/t). In any sequence
of markets in which the number of sellers and the number of buyers both
increase at some constant rate, the amount of misrepresentation at any
reservation value quickly converges to zero, no matter which sequence of
equilibria is considered.

This convergence result does not describe how the equilibria in the BBDA
change as only one side of the market grows larger. This issue is not yet
completely understood; an example in the Appendix, however, suggests that it
is primarily competition between buyers that drives this market toward
efficiency. The example concerns the case in which both F., and F, are

1 2

uniform. It is shown for this choice of Fl and F2 that B(v) = mv/(m+l) is the
unique smooth equilibrium in the market with n sellers and m buyers. The
amount of misrepresentation at any reservation value is therefore 0(1l/m),
regardless of the number n of sellers. For other distributions the

equilibria of the BBDA depend upon both the number of sellers and the number
of buyers; the example is therefore not perfectly representative of the
general case. It does suggest, however, that in the BBDA the size of a buyer

is relative to the total number of buyers, not the total number of traders.

This is also suggested by the analysis of the monopsonist (m = 1) and the



monopolist (n = 1) cases in Section 7, which is carried out in terms of
arbitrary distributions F1 and F2. It is shown that a monopsonist’s strategy
in the BBDA is independent of the number of sellers present, while the amount
of misrepresentation by a buyer facing a monopolist converges to zero as the
number of his fellow buyers increases to infinity. The intuitive argument
about convergence at the beginning of this paper thus depends both upon how a
market increases in size and upon which procedure is used to organize trade.
The convergence result in this paper is an extension of the result of
Satterthwaite and Williams (1988) to cases in which n » m; the proof in fact
involves relating the n » m case to the n = m case and then applying the
result from this earlier paper. What is truly new here is a proof of
existence of equilibria in the BBDA. It is shown that for each m, n and for a
generic pair of distributions Fl’ F2 there exists a piecewise smooth function
B that defines an equilibrium <S,B> in the BBDA. While a proof of existence
of equilibria may not need to be justified, there are aspects of this result
that are noteworthy. These are now discussed.

In Bayesian games in which the space of types is finite, it is typically
easy to prove existence of equilibria with standard fixed point theorems. It
is often advantageous to consider continuum type spaces, for this permits the
use of calculus in the analysis of the game; a major disadvantage of this
approach, however, is that there are at present few existence theorems for
equilibria in such games. While there is currently some research being
conducted on this topic, there are few examples to guide this research. One
aim of this paper is to provide some insight into when equilibria exist in

Bayesian games with continuum type spaces and what kinds of functions must be

considered as strategies in order to prove existence.



As a special case of this problem, the difficulty in computing
equilibria in double auctions has been a major obstacle to their analysis.
For the general discussion that follows, a double auction is any procedure for
organizing trade when each trader’s preferences are imperfectly known by the
other traders. Double auctions are interesting because they can be used to
model many real-world trading situations and because they may serve as the
foundation of a general noncooperative theory of markets. The theory of
double auctions is a natural extension of auction theory, which has been
widely applied. Some progress in their analysis has been made by Wilson
(1982-85), and in the bilateral case by Leininger et al. (1986) and
Satterthwaite and Williams (1987); in general, however, progress has been
slowed by the failure to thoroughly understand their equilibria. To
- 1llustrate this point, consider a notable result of Wilson (1986). He proved
that interim incentive efficiency is achievable in a very simple double
auction when the number of traders is sufficiently large; the result depends,
however, on the assumption that there exists an equilibrium with certain
properties in each of the markets of different size. This assumption
considerably weakens the conclusion about double auctions.

The existence proof in this paper is essentially constructive, which
provides a great deal of insight into the nature of the equilibria. The
approach is to rewrite the first order conditions for a buyer’s utility
maximization as a differential equation in the strategy B; a solution of this
differential equation that satisfies certain additional properties defines an
equilibrium in the BBDA. The study of equilibria is in this way grounded in a
rich field of mathematics.

The approach has been used before. The BBDA is one example of a general



family of double auctions. While it selects the (mt+l)st-largest offer/bid

s as the market price, any number in the interval [sm, Sm+l] could be

m+l

selected instead. For k € [0,1], call the procedure that selects as the

market price ksm + (l-k)sm the k-double auction. Wilson (1986) rewrote the

-1

first order conditions for utility maximization in a k-double auction as a
differential equation; while some properties of equilibria are inferred from
this equation, the nature of its solutions (and hence the question of
existence of equilibria) was not considered. Satterthwaite and Williams
(1987) used this equation to characterize all smooth equilibria in the
bilateral k-double auction with k € (0,1) as a two parameter family; the
bilateral case, however, is much simpler than the multilateral case. Using
only elementary techniques, the analysis of this differential equation is
pushed further in this paper than in these earlier papers. While this paper
considers only one particular double auction that is simpler to analyze, the
usefulness of this approach in these earlier papers suggests that the methods
developed here should be applicable to the study of any k-double auction.

In addition to the papers cited above, several other sources of this work
should be mentioned. Myerson and Satterthwaite (1983) revealed the
limitations on the gains that can be achieved through trade when each trader
privately knows his own preferences. For each pair of distributions and for a
given number of traders on each side of the market Gresik and Satterthwaite
(1986) designed the trading mechanism that maximized the total gain from
trade subject to incentive and individual rationality constraints. They then
computed the rate at which inefficiency vanishes along the sequence of
mechanisms indexed by the total number of traders. The primary difference

between our convergence result and this earlier result is that the BBDA is a



single procedure that is adaptable to a wide variety of trading environments,
while optimal mechanisms are designed specifically in terms of the underlying
distributions. The BBDA is thus a more realistic procedure. Wilson’s survey
(1987) helped to inspire and guide this work; it lays out a program for
research on double auctions. Finally, McAfee and McMillan’s (1987) broad
survey of auction theory is a good source of background material; it also

explains the significance of a theory of double auctions.

2. Assumptions and Elementary Facts.

Each of the distfibutions Fl’ F2 is a 02 function on [0,1]. Let fi
denote the density function determined by Fi' Each fi is strictly positive on
[0,1].

As noted in the Introduction, it is assumed throughout this paper that
each seller adopts the truthful strategy S. For v € [0,1] and for any
function B, let n(v,b;B) denote a buyer’s expected payoff when (i) v is his
reservation value, (ii) b is his bid, and (iii) each of the other buyers
adopts B as his strategy. Let Sy denote the kth largest number in any
specified sample of offers/bids.

The BBDA is now defined more precisely. In the market with n sellers and
m buyers, recall that the (m+l)st largest offer/bid S 41 is chosen as the
market price p. Table 2.1 is used to explain exactly who trades at this
price. As listed, s is the number of offers and t is the number of bids that
exceed p, while k is the number of offers and j is the number of bids that

equal p. Because p = s the sum t+j+s+k is at least n, which implies that

m+l

(2.01) t+j = n-s-k.



The demand t+j at price p is therefore at least as large as the supply
n-s-k. If a unique offer/bid determines the price p, then j+k = 1 and

t+s = n-1; in this case, (2.01) is an equality, and p is a market-clearing
price. Ties at price p are conceivable and they must be handled to complete

the definition of the BBDA. If at least two offers/bids equal s then j+k

m+1l’
> 2 and t+s < n-1; (2.01) therefore is a strict inequality, so the demand t+j
at price p strictly exceeds the supply n-s-k. The supply in this case is
allocated among the buyers who bid at least p by starting with the buyer who
bid the most, and then working down the list of bids. 1If in this process a
bid is reached that was made by several buyers and there are not enough units
of the good left to supply each of them, then the remaining units are

distributed among these buyers using a lottery that assigns each of them an

equal probability of winning. This completes the definition of the BBDA.

Table 2.1. Determination of the Market Price.

Sellers Buyers
# of offers/bids > S 1 s t
# of offers/bids = Soel Kk 3
# of offers/bids < Sl n-s -k m-t - j

We now begin to describe a strategy B that defines an equilibrium <S,B>.
A standard argument that originated in Chatterjee and Samuelson (1983) shows
that B must be nondecreasing on [0,1]. Theorem 2.1 states that B must in fact
be strictly increasing. Ties between offers/bids are therefore a probability
zero event; the way that ties are resolved in the BBDA insures that they never

occur. For this reason, the possibility of ties is ignored in the remainder
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of this paper.

Theorem 2.1. If <S,B> is an equilibrium, then (i) B satisfies the bounds
0 < B(v) £ v at every v € (0,1}, and (ii) B is an increasing function that is

differentiable almost everywhere.

Differentiability, of course, follows from the monotonicity of B. A
proof of the other parts of the theorem in the m = n case can be found in
Satterthwaite and Williams (1983); a formal proof is omitted here because the
proof in this special case is easily generalized. The bounds on B are derived
from elementary incentive conditions. The monotonicity of B in the
monopsonist case (m = 1) is established in Section 7; the result in this
special case is not used elsewhere in the paper. An intuitive explanation of
why B must be increasing when there are at least two buyers now follows.
Consider a nondecreasing strategy B that assumes the constant value of b’ over
some interval. 1If all buyers use the strategy B, then ties between buyers at
b' that are resolved using random allocation are a positive probability
event. A buyer has an incentive to raise his bid above b’ in these
situations, for he thereby avoids a lottery and insures that he receives a
unit of the good. A function of this kind therefore could not define an
equilibrium.

In the remainder of this paper a strategy B is presumed to satisfy the
conclusions of Theorem 2.1. For such a function, define the function B_l on
[0,1] with the formula
(2.02) B l(b) = sup{v € [0,1]|B(v) < b}).

The function B-l is continuous and nondecreasing. It is the inverse to B at

all points in B’s range.
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The continuity of « in v and b is useful later in the paper. To prove

this, represent «n(v,b;B) as

(2.03) n(v,b;B) = P(b;B)v - C(b;B),

where C(b;B) is the expected payment by the selected buyer when he bids b and
all other buyers use the strategy B, and P(b;B) is the probability that the

selected buyer trades in this situation.

Theorem 2.2. Given any strategy B, a buyers’ expected payoff n(v,b;B) is

continuous in both v and b.

Proof. The continuity of n(v,b;B) in v is obvious from (2.03). P(b;B) is
the probability that at least m offers/bids are less than b in a sample of

offers/bids from n sellers using S and m-1 buyers using B; formally,

(2.04)  P(b;B) = ) [’“;1][‘.‘]Fl(bﬂFz(vb)1(1-F1<b>)“'3(1-F2(Vb))m'1'1,

. j

i+j>m

O<i<m-1

0<j=n

-1 1. . o .

where vy, = B “(b). Because B is continuous, (2.04) implies that P(b;B) is
continuous.

The proof is now completed by showing that C(b;B) is continuous. For
b"> b’ consider C(b";B) - C(b’';B) as b"-b’ approaches zero. A buyer who
raises his bid from b’ to b" increases his payment only if either: (i) he
trades with the bid b", but would fail to trade with the bid b’; or (ii) the
bid b’ would be the market price, and the buyer just drives up the price by
raising his bid. 1In event (i), his payment is no more than b", and in event
(ii) the change in his payment is no more than b"-b’. We therefore have the

following bound:
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(2.05) C(b";B) - C(b';B) =< !P(b";B) - P(b';B)]b" + (b" - b’).
The continuity of C(b;B) now follows from the continuity of P(b;B). Q.E.D.

It is convenient at this point to note a property of the function
x(v,b;B) that is needed for the construction of equilibria in Section 6. It
is clear from (2.04) that P(b;B) depends upon b and B-l(b), and B_l(b) is
defined using the definition of B over [O,B-l(b)]; P(b;B) does not depend,
however, upon how B is defined over (Bbl(b),l]. Similarly, because the
selected buyer’s payment when he bids b and trades is less than or equal to b,
his expected payment C(b;B) depends only upon how B is defined over
[O,B_l(b)], for this determines the distribution of prices between zero and b.
The value of n(v,b;B) therefore does not depend upon the definition of B over
the interval (B-l(b) ,17.

The subsequent analysis rests upon the first order conditions for a
Bayesian-Nash equilibrium, which involve dax/db(v,b:B). Several definitions
are a prerequisite to writing out formulas for this marginal expected payoff.
We define the following functions of v and b:

1 [ er e tan eyt ar, et
i+j=m-1 j i 1 2 1 2

O<i=<m-1
0<j=n-1

(2.06) Kn,m(v’b)

n| (m-2 j i n-j m-2-i
i+j§m-1[j][ i ]Fl(b) F,(v) (1-F, (b)) (1-F2(V)) ;
0<i=<m-2
0<j=n

n| (m-1 j i n-j m-1-1
i+j§m [j][ : ]F1<b> F, (V)7 (1-F (b))~ (1-Fp(v)) :
O<i<m-1
0<j=n

(2.07) L (v,b)

n,m

(2.08) Mn,m(v’b)
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There are two formulas for dn/db(v,b;B). Which is appropriate depends upon
whether or not b is in the range of B. As above, let v denote B-l(b). If b

is in the interior of B([{0,1])) and B'(vb) exists, then
(2.09) dn/db(v,b;B) =

nfl(b)Kn,m(vb’b) + (m-1)f ) Ln,m(vb’b) (v-b) - M

n,m(vb’b)'

2y
B'(vb)

If b is in the interior of the complement of B({0,1]), then

(2.10) dx/db(v,b;B) = nfl(b)Kn,m(v ,b)Y(v-b) - Mn,m(vb’b)'

These formulas can be carefully derived using the arguments in Satterthwaite
and Williams (1988). An intuitive explanation using differentials follows.
Consider a buyer with reservation value v and let b < v. The buyer
weighs two factors as he incrementally raises his bid from b to b+Ab: (i) if
his bid b is the market price, then he loses by driving up the price that he
pays; (ii) if the market price is in (b,b+Ab), then he gains a profitable
trade that he fails to make with the bid b. The loss corresponds to the term
that is subtracted in (2.09-10), while the gain is the positive terms in these
expressions. The first event occurs when b lies between S and S 41 in the
sample of offers/bids from the n+m-1 other traders; the probability of this
event is Mn,m(vb’b)’ and the buyer’s expected loss is approximately
_Mn,m(vb’b)Ab' The second event is a bit more complex. For it to occur,
there must be an offer/bid between b and b+Ab, and exactly m-1 offers/bids

below b. (Recall that all offers/bids are assumed to be distinct, and Ab can

be arbitrarily small.) If b is in the interior of the compliment of B([0,1]),
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then only an offer could lie in (b,b+Ab). Select a seller; the probability
that his offer lies in (b,b+Ab) is approximately fl(b)Ab, and the probability
that exactly m-1 of the remaining ntm-2 offers/bids are below b is
Kn,m(vb’b)' There are n sellers, so the expected gain in this case is
approximately nfl(b)Kn’m(vb,b)(v-b-Ab)Ab, which completes the explanation of
(2.10). If b is in the interior of B([0,1]), then the expected gain to the
selected buyer is larger, for he may outbid both sellers and buyers as he
raises his bid. The probability that an offer of one of the m-1 other sellers
lies in (b,b+Ab) is approximately (m-l)fz(vb)Ab/B’(vb), and the probability
that exactly m-1 of the remaining n+m-2 offers/bids are below b is Ln,m(vb’b)'
This explains the term in brackets in (2.09) that is missing from (2.10), and
it completes the explanation of these formulas.

Now consider an equilibrium <S,B>. If B'(v) exists, then the following

first order condition holds at v and b = B(v):

(2.11) 0

dr/db(v,b;B)

nfl(b)Kn,m(v’b) + (m-l)fz(v) Ln,m(v’b) (v-b) - Mn,m(v’b)'

B’ (v)

When there are at least two buyers (m = 2), (2.11) is a differential equation
in B that must be satisfied at almost every reservation value v. Most of this
paper concerns a geometric representation of (2.11) that is derived in the
next section. Suppose instead that B is discontinuous at v, with left-hand
limit of 21 and right-hand limit of 22 at this reservation value. For

b e (21,22), B_l(b) = v; formula (2.10) for dn/db applies and reduces to

(2.12) dr/db(v,b;B) = nfl(b)Kn’m(v,b)(v-b) - Mn,m(v’b)'
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This formula is used extensively in the analysis of discontinuities.

3. A Geometric Representation of the First Order Condition.

Solving for the inverse of a trader’s strategy is a standard technique in
the auction literature. It is used here to investigate equilibria when there
are at least two buyers. The monopsonist case is different, so it is treated
separately in Section 7. It is assumed in the rest of the paper that there
are at least two buyers.

If v = B 1(b), then v - dv/db = 1/B’'(v) whenever B’ (v) exists.

Substitute this into (2.11); solving for v and adding the tautology

b = db/db = 1 then defines the vector field

M, (Vb)) - nf ()R (v,b)(v-b)

(3.01) v(v,b) =

(m-1)£, (V)Ln,m(v,b) (v-b)

(3.02) b =1.

By Theorem 2.1, an equilibrium strategy B satisfies the bounds 0 < B(v) < v at
every v € (0,1], and (3.01-02) are satisfied at almost every point on the
graph of B. We therefore investigate the solutions of (3.01-02) in the
triangle 0 < b < v < 1.

Figure 3.1 shows the direction of (3.01-02) on the edges of the
triangle. At the vertices (0,0) and (1,1), v is an indeterminate form. On
the edge v = 1, v is infinite, so the normalized vector is (1,0). On the edge
b=0, v equals negative infinity, so the normalized vector is (-1,0). On the

edge v = 1, the vector field points into the triangle when v >
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b + Fl(b)/fl(b)’ and out of the triangle when v < b + Fl(b)/fl(b); in
particular, it points outward on this edge near (1,1), and inward near (1,0).
Solution curves to (3.01-02) therefore enter the triangle through the edge v =
b and subintervals of v = 1 in which v > b + Fl(b)/fl(b); solution curves exit
through subintervals of the edge v = 1 in which v < b + Fl(b)/fl(b)' Higher
order terms determine whether a curve enters or exits through a point on the
edge v = 1 at which v="> + Fl(b)/fl(b)' Solution curves neither enter nor
exit through the edge b = 0.

If an equilibrium <S,B> exists such that B is smooth, then the graph of B
is a solution curve to (3.01-02) that enters the triangle through (0,0).
Theorem 3.1 states that there exists a unique solution curve that enters
through this vertex; consequently, no more than one smooth function B can
define an equilibrium of the form <S,B>. As explained later, the solution
curve through (0,0) may fail to define an equilibrium; it will still be

useful, however, in the construction of equilibria in Section 6.

Theorem 3.1. There exists a unique solution curve to (3.01-02) that enters

the triangle through the vertex (0,0). 1Its tangent at (0,0) is b = mv/(m+1).

Proof. Topological considerations imply that some solution curves enter
through (0,0). To determine the tangent at this vertex of a solution curve,

consider the family of curves

: -1
(3.03) v = Ta(b) F2 (SFl(b))

parameterized by § > 0. The derivative ré(b) = 6f1(b)/f2(15(b)) exists at
each point on the curve defined by §, and ré(O) = 6f1(0)/f2(0). We examine v

along the curve v = TS(b) as b approaches zero. A solution curve to (3.01-02)
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has the same tangent at (0,0) as the curve v = Ts(b) if and only if
(3.04) 1lim v (Ts(b),b)-Té(b) = 0.
bi0
In the Appendix, it is shown that § = (m+1)f2(0)/mf1(0) is the unique solution
to (3.04); consequently, any solution curve through (0,0) has b = mv/(m+l) as
its tangent at this vertex.

In order to rule out multiple solution curves that share this tangent
(e.g., a bifurcation at (0,0)), we consider aé/ab along the curve v = Ts(b)
for the value of 6§ that solves (3.04). In the Appendix, it is also shown that
(3.05) 1lim 9v/3b = «

bi0
along.this curve. Consider Figure 3.2, and let v = p(b) denote a solution
curve to (3.01-02) through (0,0). Near (0,0) in some neighborhood of this
solution curve, v is increasing in b. As v decreases, a solution curve that
is above p could not move down to share p'’s tangent at (0,0), and a solution

curve below p could not move up to share its tangent. In this way the proof

of uniqueness is completed. Q.E.D.

4, Convergence of All Equilibrium Strategies to Truthful Revelation.

Inspection of v on the edges of the triangle reveals that it is negative

in some nonempty open subset. Call this subset Fn o’

(4.01) o ™ {(v,b) | v(v,b) < 0},

and let Thm denote its boundary. This region contains an open set that

borders on both the edge b = 0 and on a subinterval of the edge v = 1.
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Depending upon the distributions Fl and F2, it may also contain open regions
in the interior of the triangle, or additional regions that border on the edge
v =1.

By Theorem 2.1, an equilibrium strategy B has a nonnegative derivative at
almost every value in its domain. Recall that B'(v) = 1/G(V,B(V)). The
region Fn,m is significant because the graph of an equilibrium strategy must
lie outside Fn m at almost all reservation values; in fact, it is proven below

that such a graph must lie completely outside Fn,m' This observation will be
used first to bound the buyers’ strategies and then to prove convergence.

The reader should note that v and formula (2.12) for dr/db are opposite
in sign. This follows easily from comparing formula (2.12) with equation
(2.11), which was solved to define v. It is a very useful fact that is

needed both in the following proof and throughout the analysis of

discontinuous strategies.

Theorem 4.1. If <S,B> is an equilibrium, then the graph of B lies completely

outside T
n

?

Proof. The proof is by contradiction. Suppose (v,B(v)) € Fn o’ and let 21

and 22 be the left- and right-hand limits (respectively) of B at v. At least

one of the following statements is true: (i) B(v) = 21; (ii) B(v) = 22;

(iii) £, < B(v) < 4 If either (i) or (ii) is true, then the continuity of v

9
and the differentiability of B almost everywhere imply that B’ exists and is
negative at some reservation value near v. This contradicts the fact that B
is increasing. If (iii) is true, then formula (2.12) specifies a positive

value for dn(v,B(v);B), which contradicts the hypothesis that <§,B> is an

equilibrium. Q.E.D.
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The sign of v is determined by the numerator of (3.01); it implies that

a pair (v,b) is outside Fn o if and only if
1 Mn,m(v’b)

fl(b) nKn,m(V’b)

(4.02) v - b <

By Theorem 4.1, the inequality (4.02) bounds the amount of misrepresentation
v-B(v) in any equilibrium strategy B. The convergence result now follows

from examining the right-hand side of this inequality.

Lemma 4.2. For 0<b=<v<l, M (v,b)/nK (v,b) is:
R n,m n,m
(4.03) decreasing in n when m = 2;

(4.04) decreasing in m when n = 2;

(4.05) constant in m when n 1.

The proof of Lemma 4.2 is a purely formal analysis of the polynomials

K and Mn . it can be found in the Appendix. The lemma can be interpreted

geometrically by referring back to (4.02). Using this inequality as a

definition of Fn o’ the lemma states that T m is monotonically increasing in

* H

both m and n whenever n, m = 2. As the number of traders on both sides of the
market increases, the graphs of equilibrium strategies of buyers are therefore
confined to a smaller and smaller region of the triangle. Theorem 4.3 makes
this precise by specifying the rate at which all equilibria are pushed towards
the v = b edge as the size of both sides of the market increases. Statement

(4.05) in the lemma implies that T is constant in m; the bound on buyers’

1,m

strategies that is obtained from T thus provides little insight.

1,m

Convergence can be proven in the monopolist case by analyzing the vector field

(3.01-02) a bit more carefully. This is done in Section 7.
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Theorem 4.3. Consider the BBDA when sellers’ reservation values are drawn

from Fl and buyers’ reservation values are drawn from F2. There exists a

continuous function k(v;F F2) such that for any n, m = 2 and for any

l’

equilibrium <S,B> in the market with n sellers and m buyers

n(v;Fl,Fz)

(4.06) v - B(v) = min(n.m)

at every v € (0,1).

Proof. Let t = min(n,m). The graph of B lies outside Fm a By

(4.02-04),

1 Mn m(V,B(v)) 1 Mt t(V,B(v))
E,(B(v) K (v,B(W) = E (B(v)) tK_ (v.B(V))

(4.07) v - B(v) <

at every v € (0,1). Satterthwaite and Williams (1988, Thm. 5.3) constructed

continuous functions u(v;Fl,Fz) and n(v;Fl,Fz) of v that have the following

properties at each v € (0,1): (i) 0 < p(v;F F2) <wv; (ii) (v,b) €T for

1’ 2,2

every b € [0’“(V;F1’F2)]; (iii) for b > u(v;Fl,Fz),

4.08) 1 Mt,t(v’b) - n(v;Fl,Fz)
fl(b) th,t(V’b) t
Because P2,2 C Pn,m’ B(v) is greater than u(v;Fl,Fz), so (4.08) holds at

b = B(v). Combining (4.07-08) then produces the desired bound on v - B(v). Q.E.D.

5. Discontinuities in the Buvers' Strategy.

Besides its role in the convergence result, the shape of Pn o also plays

an important role in determining the nature of equilibrium strategies.
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Consider, for instance, Figure 5.1 in which the solution curve p through (0,0)
enters Fn,m at point q in the interior of the triangle. At point q this curve
turns back on itself and fails to define b as a function of v. A smooth
equilibrium strategy for buyers therefore does not exist in this case.

It is shown in the next section that a piecewise smooth equilibrium
exists both in this example and in a generic problem. A thorough
understanding of discontinuities of equilibrium strategies is needed for this
result. This is provided by Theorem 5.1, which states necessary and

sufficient conditions for a piecewise smooth strategy of buyers to define an

equilibrium.

Theorem 5.1.
I. Let 21 < 22 be the left- and right-hand limits (respectively) of a

strategy B at a point of discontinuity v. If <S,B> is an equilibrium, then:
(5.01) «(v,£;B) = «(v,B(v);B) = W(\_f,llz;B);

(5.02) «(v,b;B) is maximized over b € [21,22] at b = 21, B(v), and 22;

(5.03) {7(5,12) = 0;
(5.04) =x(l,b;B) is maximized over b € [B(1l),1] at b = B(1l).

II. Conversely, suppose B is an increasing function whose graph is a finite
union of segments of solution curves to (3.01-02), each segment of which has
nonempty interior. If B satisfies (5.01-03) at each of its discontinuities

and (5.04) at v = 1, then <S,B> is an equilibrium.

In part I, (5.02) follows from the definition of an equilibrium once

(5.01) has been proven; (5.04) also follows directly from this definition.
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Because an equilibrium strategy is increasing, it can have only jump
discontinuities. Consider the graph of such a strategy. By (5.03), the upper
endpoint of a jump discontinuity must be in 7n,m where v = 0. This limits
where discontinuities may occur. Equation (5.01) has the same purpose. It is
interesting to note that an equation similar to (5.01) holds in the bilateral

k-double auction; it underlies the construction of step function equilibria in

this game by Leininger et. al. (1986).

Proof of part I of Theorem 5.1. For the reasons stated above, only (5.01)

and (5.03) are proven here. We begin with (5.01). The definition of an

equilibrium implies that
(5.05) «(v,B(v):B) > w(G,zl;B), ﬁ(;,ﬂz;B).

Suppose the inequality for n(;,ﬂl;B) is strict. By the continuity of an(v,b;B)

in v and b, there exists an ¢ > 0 such that
(5.06) =x(v,B(V);B) > n(v,B(v);B)

for all v € [; - ¢£,v). This contradicts the hypothesis that <§,B> is an
equilibrium. We therefore conclude that equality holds in (5.05) for
w(;,ﬂl;B). A similar argument proves equality in the case of n(;,ﬂz;B).
We now turn to (5.03). The points (v,B(v)) lie outside Fn,m; by
continuity, it follows that 6(;,22) > 0. Formula (2.12) specifies
dn/db(;,b;B) for b € (21,22). If 6(;,22) were strictly positive, then

dn/db(;,b;B) would be negative for b in (21,22) near £ For such b, it would

9
therefore be true that

(5.06) =(v,b;B) > w(G,zz;B) = n(v,B(V);B),
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where the equality in (5.06) is from (5.01). This contradicts the hypothesis

that <S,B> is an equilibrium. We conclude that G(;,ﬂz) must be zero. Q.E.D.

Proof of part II of Theorem 5.1. Consider a buyer with reservation value

v*¥ > 0. We must show that b = B(v*) maximizes n(v*,b;B). It is elementary to
show that the buyer need only consider bids in (O,v*]}. Each bid b in this
interval lies in one of three sets: (i) b may be in the range of B over some
subinterval of [0,1] in which B is Cl; (ii) b may be in an interval that the
graph of B jumps across; (iii) b may be in [B(1l),v*]. Each of these cases
shall be discussed in turn.

Let (a,b) denote an interval in which B is Cl. For any v € [0,1],
formula (2.09) specifies dn/db(v,b;B) for b in the range of B over (a,b); in

particular, if v € (a,b), then
(5.07) dn/db(v,B(v);B) = 0.

Formula (2.09) for dn/db is linear in v. For the specified value v* and for
v € (a,b), it follows that dn/db(v*,B(v);B) is positive if v < v*, zero if
v = v¥*, and negative if v > v¥, We shall use this fact after discussing
case (ii).
Now suppose £1 < 22 are the left- and right-hand limits (respectively) of

B at a point of discontinuity v, and consider b € [21,22]. Assume first that

vk < V. Represent n(v,b;B) as in (2.03). By (5.02),
(5.08) W(G,le;s) = P(fl;B)G - C(£1;B) > P(b;B)v - C(b;B) = n(v,b;B).

P(£1;B) is less than or equal to P(b;B) because P(b;B) is increasing in b, and

we have assumed that v* < v; (5.08) therefore implies that
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(5.09) P(£1;B)v* - C(£1;B) = P(b;B)v* - C(b;B),

or equivalently,

(5.10) w(v*,ﬁl;B) > n(v*,b;B).

A similar argument shows that if v* > v and b € [21,22], then

(5.11) w(v*,ﬂz;B) = w(v*,b;B).

If v* < v, then n(v¥*,b;B) is maximized over [21,22] at its lower endpoint 21;
if v¥ > ;, then n(v*,b;B) is maximized over this interval at its upper

endpoint £ Combining this with the conclusion of case (i), it is clear that

9
w(v*,b;B) is maximized over the interval (O,min(v*,B(1l))] at b = B(v¥).
Finally, assume that v* > B(l) and consider b € [B(1l),v*]. It has been
shown thus far that n(v*,B(v*);B) > n(v*,B(1);B); to complete the proof, it is
sufficient to prove that n(v¥,b;B) is maximized over [B(1l),v*] at b = B(1l).
Statement (5.04) implies that #(1,B(1);B) = n(1,b;B) for b € [B(1l),v*]. 1In

(5.08-10), replacing v with 1, £, with B(1l) and [21,22] with [B(1l),v*]

1
produces the desired proof that n(v*,b;B) is maximized over [B(l),v*] at

b = B(1). Q.E.D.

6. Existence of Equilibria.

Theorem 3.1 states that there exists a unique solution curve to (3.01-02)
that emanates from the vertex (0,0). This curve passes through the triangle
and exits along the edge v = 1. Suppose that it is the graph of a function
b = B(v). This function is necessarily increasing, for b =1 and v is finite

along its graph. If (5.04) holds (i.e., if a(1,b;B) is maximized over
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b € [B(1),1] at b = B(1)), then by Theorem 5.1 <S,B> is an equilibrium.

This discussion highlights two difficulties that arise in constructing an
equilibrium strategy B from solution curves to (3.01-02), starting with the
curve that emanates from (0,0). First, as noted earlier this curve may enter
Fn,m as it passes through the triangle. It would therefore not define b as a
function of v. Second, B must be defined so that (5.04) holds. Both of these
difficulties will be overcome by introducing jump discontinuities into the
definition of B that satisfy the conditions in Theorem 5.1.

The following examples illustrate how the shape of T, g ey cause these

difficulties to occur, and how jump discontinuities may overcome them.

Example 6.1. We first consider a case in which these difficulties do not
arise because of the simple nature of 7n,m' As illustrated in Figure 6.1,
suppose that 7n,m consists of the graph of a continuous function of v plus
(perhaps) several isolated points on the v = 1 edge. The solution curve
through (0,0) enters the interior of the triangle above Tn.m into the region
in which v is positive. Because the vector field (3.01-02) points straight
upward at points in 7n,m’ this solution curve cannot enter T m as it
continues through the triangle. It therefore defines an increasing function
b = B(v). Formula (2.12) specifies dn/db(1l,b;B) for b € [B(l);1l]; because
G(I,b) is nonnegative for b in this interval, dx/db(l,b;B) is nonpositive, so

n(l,b;B) is maximized over this interval at b = B(1l). By Theorem 5.1, <S,B>

is an equilibrium.

Example 6.2. Suppose T m has the shape depicted in Figure 5.1, which is

duplicated in Figure 6.2. The solution curve p that emanates from (0,0) may
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pass above P,; in this case, the discussion in Example 6.1 shows that it
defines an equilibrium <S,B>. The curve p could pass below Py, in which case
it enters Fn,m at some point q. As explained earlier, the solution curve in
this case fails to define b as a function of v.

A piecewise smooth equilibrium strategy can be constructed in this case.
Let x and y be the v-coordinates of P, and q, respectively, and let b = ¢(v)
and b = A(v) be the functions on [x,y] whose graphs are the indicated segments
of 7n,m' For any v in [x,y], define By, as the strategy whose graph consists
of the segment of p from (0,0) to v together with the solution curve through
(v,A(v)) from v to the right-hand edge of the triangle. Define B,(v) so that

(v,By(v)) is in p. For By to define an equilibrium, (5.01-02) must hold at

the discontinuity v, i.e.,
(6.01) =n(v,By(v);By) = n(v,A(Vv);By), and
(6.02) =n(v,b;By) is maximized over b € [By(Vv),A(Vv)] at b = By(v).

Because G(x,b) is positive for b € [x,A(x)], formula (2.12) for dn/db(x,b;By)

is negative over this interval; consequently,
(6.03) m(x,Bx(x);Byg) > n(x,A(x);By).
A similar argument shows that

(6.04) m(y,By(y);By) < m(y,A(y);By).

By continuity, there exists a value v € [x,y] at which (6.01) holds. Note
that dn/db(v,b;By) is negative for b € (By(v),¢(v)) and positive for
b € (¢(v),A(v)). Condition (6.03) therefore also holds at v. An argument

from Example 6.1 then shows that (5.04) holds with this choice of By, and the
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construction of an equilibrium is complete.

Example 6.3. Now assume that 7n,m has the shape depicted in Figure 6.3. It
has two components, one of which is the graph of a continuous function of v,
while the other is a curve that lies above this graph and has endpoints on the
v = 1 edge. The solution curve through (0,0) may pass completely above 7n,m
as in Example 6.1 and thus define an equilibrium <S,B>, or it may pass below
P,y and intersect 7n,m at some point in the interior of the triangle, as in
Example 6.2. In this last case, a piecewise smooth equilibrium strategy can
be constructed by the procedure outlined above.

A third possibility is that the curve may pass between the components of
A m and define an increasing function b = B(v). This function may or may not
define an equilibrium, however. Let b1 and b2 be the b-coordinates of the
indicated points in Figure 6.3 at which 7n,m intersects the v = 1 edge.
Formula (2.12) specifies dn/db(l,b;B) for b € [B(1),1]; this derivative is
positive for b € (bl’b2)’ and negative for b € (B(l),bl) U (b2,l]. The
function n(1l,b;B) therefore has a local maximum at b = b2. The strategy B
defines an equilibrium if and only if =(1,B(1);B) = n(l,bz;B).

If n(l,bz;B) > n(1,B(1);B), then an equilibrium can be constructed using
the procedure developed in Example 6.2. Let x denote the v-coordinate of the
point P> let b = A(v) denote the function whose graph is the indicated
segment of 7n,m and set y = 1. Consider again strategies of the form B, for
v € [x,y]. It is easy to show that (6.03) holds, and (6.04) holds by

hypothesis. The argument in the preceding example then shows that there

exists a value of v such that <§,BV> is an equilibrium.
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Several regularity assumptions on T, o 2re needed to prove a general
y

existence result using the construction in Examples 6.2-3. Let G(v,b) denote

the numerator of (3.01),

(6.05) G(v,b) = Mn,m(v’b) - nfl(b) Kn,m(v,b)(v-b),

so that o m is the solution set of the equation G(v,b) = 0. We shall assume

that the following conditions hold at all points (v,b) in Thom
(6.06) VG(v,b) = 0;
(6.07) if 3G/38b(v,b) = 0, then 32G/3b2(v,b) = O.

These conditions are satisfied in Figures 6.1-3. Condition (6.06) implies
that 7n,m is a finite union of smooth curves, one of which emanates from
(0,0), and perhaps several isolated points on the v = 1 edge. Condition
(6.07) states that if one of these curves has a vertical tangent at some
point, then 7n,m does not cross the tangent at that point (i.e., it turns back

on itself). A point of this kind is a turning point of T, Points pl'- )

3

’

in Figures 6.2-3 are turning points. The preceding examples show that smooth
equilibria may not exist when such points are present. If (6.06-07) hold at
all points on Tn . m’ then this boundary has at most a finite number of turning
points.

These regularity conditions are satisfied in a generic problem.
Specifically, equip the set D of pairs of distribution functions (Fl’FZ) that
satisfy the assumptions stated in Section 2 with the Whitney c2 topology. The

pairs for which the associated function G satisfies (6.06-07) on G-l(O) form

an open and dense subset of D.
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Theorem 6.1. If the regularity conditions (6.06-07) hold at all points in
Tom = G_l(O), then there exists a piecewise smooth function B that defines

an equilibrium <S,B>.

Before proving this theorem, we first recall from Section 2 that if B is
an increasing function, then w(v,b;B) does not depend upon the definition of
B(v) for v > B_l(b). This is now important for the following reason. The
proof of the existence of an equilibrium strategy B is essentially
constructive, and the construction proceeds from left to right through the
triangle. To insure that (5.01-02) hold at a discontinuity of B, we consider
n(v,b;B) for b € [B(v),v] even though B may at that point only be defined over
[0,v]. The value of wn(v,b:B) is well-defined if it is assumed that B will be
defined later in the construction over (v,1] to be strictly larger than the
bid b under consideration. Similarly, if b € (B(v),v), then dn/db(v,b;B)
exists under this same assumption about how the definition of B shall be
completed, and its value is given by (2.12). This is how these functions

should be interpreted in the proof.

Proof of Theorem 6.1. The proof is by induction on the number k of turning

points. We have the following

Induction Statement: For any y € (0,1], consider the restriction

of the vector field (3.01-02) to the triangle 0 s b <v =<y. If
7n,m has no more than k turning points in the interior of this

triangle, then there exists a function B on [0,y] that satisfies
all of the hypotheses of Theorem 5.1, except perhaps (5.04). The

function B also has the following property:
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(6.08) =w(y,b;B) is maximized over b € [B(y),y] at b = b(y).

Because (5.04) is a condition on B(l), it is not meaningful for a function
that is only defined over a proper subinterval of [0,1]. Condition (6.08)
reduces to (5.04) when y = 1. Once the induction statement has been proven
to be true for all values of k regardless of the value of y, the theorem
follows by applying this result in the y = 1 case.

When k = O, 7n,m in the triangle 0 < b < v < y consists of the graph of a
smooth function of v and perhaps several isolated points on the v = y edge.
The argument in Example 6.1 can be adapted to prove that the graph of the
solution curve through (0,0) in this triangle defines a function B that has
the properties listed in the induction statement.

Assuming that the induction statement holds for k, we now prove that it
holds for k+l. Suppose that 7n,m has k+l1 turning points in the interior of
the triangle 0 < b < v <y, and let x be the largest v-coordinate in this set
of k+l points. As illustrated in Figure 6.4, 7n,m has at most k turning
points in the interior of the triangle 0 < b < v < x, and no turning points in
the interior of the strip x < v<y, 0 <b < v. The induction hypothesis
defines a function B over [0,x]. The proof will now be completed by extending
B over the interval [x,y].

The induction hypothesis states that n(x,b;B) is maximized over
b € [B(x),x] at b = B(x). By redefining B at x to be the largest value of b
in this interval at which this maximum occurs, we can assume that w(x,B(xX);B)
is strictly larger than =n(x,b;B) for b € (B(x),x]. This implies that G(X,b) >
0 for b > B(x) near B(x). The graph of B can therefore be continued by

following the solution curve through (x,B(x)).

Over the interval (x,y), Th m is a finite union of graphs of smooth

’
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functions. Some of these functions have values at x larger than B(x); as in

Figure 6.4, label these function Al(v) < Az(v) <...= AS(V). The solution

curve through (x,B(x)) may intersect b Al(v) at some point (y',Al(y')), at

which point it would enter Fn,m' Example 6.2 shows how a discontinuity should
be introduced into the definition of B between x and y’ to avoid this
difficulty. For v € (x,y'), define B, as the function on [0,v] that equals B
on [0,x] and whose values on {x,v] are given by the solution curve through

(x,B(x)). Because n(x,B(x);B) > n(x,X;(x);B) for 1 < i < s and w(y',Al(y');B)

< w(y’,Az(y');B), there exists a v € (x,y’) such that for some i:
(6.09) =#(v,2i(V);By) = n(v,By(V);By);

(6.10) =x(v,b;By) is maximized over b € [By(v),Xj(Vv)] at b = By(v),

and n(v,By(v);By) > n(v,b;By) for b € (Aj(v),v].

For this value of v, extend the definition of B over [0,v] by setting

B = B,,. Now relabel v as x, and repeat the above procedure. 1In a finite
number of steps, the definition of B can be extended over [0,y] so that it
has the properties in the interior of this interval by the induction
statement. One may need to redefine B near the v = y edge so that (6.08)
holds. This can also be accomplished in a finite number of steps using the

procedure outlined in Example 6.3. Q.E.D.

7. The Monopsonist and Monopolist Cases.

The monopsonist and monopolist cases are part of a complete analysis of
the BBDA. They are also of interest because the provide a simple setting in
which the ideas and methods of this paper can be illustrated. Finally, these

cases are where auction theory and the theory of double auctions overlap, and
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each of these theories can provide insight into each other. This last point
is illustrated here by showing that a familiar "monotonicity condition" from
auction theory is really a hypothesis about the shape of 7n,m in these special
cases.

Consider first the monopsonist case (m = 1). In this market, the BBDA
selects the second highest offer/bid as the price, and trade occurs whenever
the buyer’s bid is as large as at least one offer. The first order condition

(2.11) on the buyer’'s strategy b = B(v) is

(7.01) nfl(b)(l-Fl(b))n'l(v-b) - nFl(b)(l-Fl(b))n-l =0,
or equivalently,

(7.02) v =D+ F (b)/f (b).

As noted in Section 2, the buyer’s strategy B in the monopsonist must be
nondecreasing. It is clear from (7.02) that it must in fact be increasing,
for any nondecreasing function b = B(v) that satisfies (7.02) clearly has this
property.

Equation (7.02) is familiar from the auction literature, and it is also

the equation that determines T, 1 Suppose the following monotonicity

condition is added:
(7.03) b + Fl(b)/fl(b) is a nondecreasing function on {0,1].

With this additional hypothesis, equation (7.02) defines b as an increasing
smooth function B of v, and <§,B> is an equilibrium. The monotonicity
condition (7.03) is often used in the auction literature to insure the
existence of a smooth equilibrium (e.g., see Myerson (1981)). When (7.03)

does not hold, one must properly choose between the critical values given by
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(7.02) in order to construct the buyer’s strategy, which may introduce
discontinuities. As in multiple buyer cases, the shape of 7n,m (here 7n,l)
may prevent the existence of a smooth equilibrium strategy. It is also
interesting to note that the monopsonist’s equilibrium strategy does not
depend upon the number of sellers.

Now consider the case of monopoly (n = 1 seller, and m = 2 buyers). In
this market, the BBDA specifies the highest offer/bid as the price. 1t is
therefore a first price auction in which the seller submits an offer that must
be outbid by at least one buyer for trade to occur. This is a commonly used
procedure for auctioning an item.2 The outcome of the BBDA in this market is
also a subgame perfect outcome of a two-stage auction in which after first
receiving bids from the buyers the seller may choose to either sell the item
at the highest bid or keep the item for himself.

The first order condition (2.11) on a buyer’'s strategy B is

(7.04) [ fl(b)Fz(v)m-l + £, (m-l)Fl(b)Fz(v)m-z ](v-b)
B’ (v)

m-1
- Fl(b)Fz(V) = 0.

The term fl(b)Fz(v)m'l in brackets is the marginal probability that the
selected buyer will pass the seller’s offer at b, when all other buyers bid
less than b. 1In the standard model of the first price auction, the seller’s
reservation value is commonly known to be less than every buyer’s reservation
value, and the seller does not submit an offer. The first order condition for
that model is therefore obtained by omitting the fl(b)Fz(v)m-l term from

(7.04). This produces a first order linear differential equation in B that is

2 For instance, in May of 1988 a repeated version of this procedure was
used by the International Olympic Committee to auction off the American
television rights to the 1992 Winter Olympics (New York Times, May 24, 1988).
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easily solvable by standard methods (e.g., see Ross (1974), p. 46).3
Returning to the model of this paper, one cannot obtain an exact
solution B to (7.04) for generic distributions Fl and F2. One can, however,
make several statements about an equilibrium strategy of buyers by

investigating the vector field representation (3.10-02) of (7.04). This

representation reduces to

Fy(v) [Fy (D) - £ (b)(v-D)]

(7.05) v = £,(v) (m-1)F, (b) (v-b)
and
(7.06) b= 1.

From (7.05) it is clear that 7l,m is the solution set of equation (7.02). 1If
the monotonicity condition (7.03) holds, then M m is the graph of a smooth
function of v and therefore does not have any turning points; the argument in
Example 6.1 then shows that there exists a unique smooth equilibrium strategy.
An equilibrium strategy in the general case can be constructed by the
procedure described in Examples 6.2-3.

Intuitively, competition should force the equilibrium common strategy of
buyers towards truthful revelation as the number of buyers increases. The
method of Theorem 4.3 cannot be used to prove this, for the boundary M m is
independent of the number m of buyers. Convergence can be established with a
slightly more general procedure that involves selecting a different family of
curves to bound equilibrium strategies. Consider the line b = tv where

t € (0,1) is sufficiently large that this line lies above the solution set of

3 An even simpler derivation of the optimal common strategy of buyers in
a first price auction can be found in Maskin and Riley (1986), Milgrom and
Weber (1985), and McAfee and McMillan (1987).
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(7.02). For fixed t, we shall show that for m sufficiently large the optimal
common strategy of buyers is unique, smooth and lies above the line b = tv.
Because t can be chosen arbitrartily close to one, this is sufficient to
establish convergence to truthful revelation. Theorem 3.1 states that there
exists a solution to (7.05-06) that enters the triangle through the vertex
(0,0) with slope m/(m+l). We restrict our attention to m such that m/(m+l) >
t. It is easy to show that for each m, v can be defined at (0,0) so that v is
continuous on the line b = tv. It is then clear from formula (7.05) that for
m sufficiently large the vector (G,l) lies above this line at each of its
points., For sufficiently large m, the solution curve to (7.05-06) through
(0,0) therefore enters above the line b = tv and stays above this line as it
proceeds through the triangle. Theorem 5.1 then implies that this solution
curve defines an equilibrium strategy of buyers.

When the distributions are appropriately restricted, this procedure can
be used to obtain tighter bounds on the amount of misrepresentation. Assume,
for instance, that [Fy/fj]’ is nonnegative on [0,1], and consider (G,l) along

the curve

(7.07) v -b-= F2(v)/(m-1)f2(v).

It is easy to show that if (Fy/(m-1)f9)’ < 1 on [0,1], then (G,l) lies above
this curve at each of its points. For m sufficiently large, an equilibrium
strategy therefore lies above the curve given by (7.07), which means that the

amount of misrepresentation in this market is 0(1l/m).
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8. Appendix.

This section contains a proof of Lemma 4.2, the completion of the proof
of Theorem 3.1, and an example in which a smooth equilibrium strategy is
computed. These results appear together at the end of the paper because the
analysis is purely computational and because they all require the same special
notation. We begin by developing this notation.

Define the function z(v,b) and the polynomials K: m(z), L: m(z) and

L ?

*
M (z) with the formulas
n,m

Fop(v)(1 - F1(b))

(8.01) z(v,b) ,
F1(b)(1 - Fo(v))

* _wm-1{ n ) (m-1) iy i
(8.02) K (z) = zl=o_m-14_ i ) m-D)zt,

* _wm-1{ n )(m-1), 1
(8.03) Ln’m(z) = zi=0_m-1JL i le ,

* _ -1 n )(m-1) 1
(8.04) M (z) = zi=0_m-1JL ;)7

Formula (3.01) reduces to

* *
. FZ(V) M (z) - K (z) (V'b)f]_(b)/F]_(b)
(8.05) wv(v,b) = n,m n,m

£2(v) (v-DIL, (z)

and a pair (v,b) is outside Fn o if and only if

k

*
Fi(b) M (2z)
(8.06) v - b < Q'm i
£1(b) K _(2)

»
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The inequality (8.06) is equivalent to (4.02). Formulas (8.05-06) are
obtained by the following steps: (i) the index i in (2.07) is replaced with
i-1; (ii) (2.06-08) are rewritten using only the index i; (iii) the

identities

n-1 m-1i n
(8.07) Lm-l-i] - Lm-i]’ and

m-2 i m-1
(8.08) [1-1] T m-1 [ i ]

are substituted into (2.06) and (2.07), respectively; (iv) the reduced forms
of (2.07-08) are substituted into (3.0l1) and the right-hand side of the
inequality in (4.02), which are then reduced using arithmetic. While tedious,
this reduction is elementary, and it is therefore omitted. All of the results
in this section are obtained using formula (8.05) for v and the inequality

(8.06) that defines the complement of Fn o

Example 8.1. To verify that b = mv/(m+l) is a solution curve to (3.01-02)
when F] and F9 are uniform on [0,1], it is sufficient to show that (8.05)

holds along this line. Leaving z alone, substitution of

(8.10) Fo(v)/fo(v)

#

v = (m+l)b/m,

(8.11) £1(b)/F1(b) = 1/b, and
(8.12) v - b = b/m

into the right-hand side of (8.05) produces
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w28 ()Y - e ma

-i

m-1 [ n |fm-1]). {
2i 0 [m-i][ i ]12

(8.13)

After multiplying both its top and bottom by m and then simplifying, (8.13)
reduces to (m+l)/m, which is v. This completes the argument. Theorems 3.1
and 5.1 then imply that b = B(v) = mv/(m+l) is the unique smooth equilibrium
strategy of buyers when there are n sellers, m buyers, and both F{ and Fy are

uniform.

Proof of Theorem 3.1. Recall that for 6§ > 0, rs(b) = Fél(SFl(b)), and

ré(b) = Sfl(b)/fz(rs(b)). To complete the proof of Theorem 3.1, we show that

(8.14) 1lim \.7(16(b),b) - 14(b) = 0
bi0

has § = (m+l)f2(0)/mfl(0) as its unique solution, and that

(8.15) 1lim g%(rs(b),b) = o
bi0
for this value of §.
We begin by solving (8.14). The following limits along v, = TS(b) are
elementary:

(8.16) lim z(v,b) = §;
bi0

d
(8.17) lim —(F,(b)/£. (b)) = 1;
bi0 db*"1 1



(8.18) lim (V-b)fl(b)/Fl(b)

[6£,(0) - £,(0)]1/£,(0);
bi0 1 2 2

(8.19) lim Fo(v)/E£9(v) (v-b)
bi0

6£1(0)/[6£1(0) - £2(0)].

From formula (8.05) for v and (8.16-19) we obtain

*x *
5£,(0) Mo L(8) - K (6)[6£(0) - £,(0)]/£,(0)

(8.20) lim v - -
b0 §£,(0) - £,(0) Lo n(®

Substitute 13(0) = Sfl(O)/fz(O) and (8.20) into (8.14); after multiplying

through by f2(0)/6fl(0), we obtain

* *
£,(00M  (6) - K (8)[6£,(0) - £,(0)]
(8.21) 2 n,m n,m *l 2 ~1-0,
[6£,(0) - £,(O)]L_ (&)

or equivalently,

* * *
(8.22) f2(O)Mn m(6) - [Sfl(O) - f2(0)][Kn m(6) + Ln’m(ﬁ)] = 0.

’ 2

* * *
After substituting (8.02-04) for K , L , and M , (8.22) reduces to
n,m’ n,m n,m

’ ’ ’

m-1 n

-1 i
(8.23) io [m_i][mi ][(m+l)f2(0) - m6fl(0)]61 = 0.

It is clear that the unique positive solution to (8.23) is
5§ = (m+l)f2(0)/mfl(0).
Fixing 6 at this value, we now prove (8.15). For this value of §, we

have the following limits along v = 16(b):

(8.24) lim (v - b)fl(b)/Fl(b) = 1/m;
bi0
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(8.25) 1im F2(v)/f2(v)(v - b) = m;

bi0
dz
(8.26) lim -— (v - b) = -§/m.
bi0 &b

It can also be shown that d/db[(v-b)fl(b)/Fl(b)] approaches a finite limit.
Treating F2(v)/f2(v) as a constant, we compute 85/8b by applyihg the quotient
rule to the remaining term in (8.05). The denominator of the resulting
fraction is [(v-b)Lz,m(z)]z. Applying (8.16) and (8.25), we obtain as a
limit along v = TS(b)

F2(v) m 1

(8.27) lim * 5 = * 5 lim = o,
bi0 f2(v)[(v - b)Ln,m(z)] [Ln,m(s)] bi0O v - b

To prove (8.15), it is therefore sufficient to show that the numerator of
the fraction obtained by the quotient rule has a positive finite limit. The

limit of this numerator along v = TS(b) is

8 28 x! *x! *
(8.28) (M (5) - K (8)/m](-8/mL_ (6)

* * *! *
- D (6) - K (8 /mI[L] (8)(-6/m) - L (8)].

*
Reindex formula (8.03) for Ln m by replacing i with j, and then write (8.28)
as a single polynomial in §. For O < t < 2(m-1), the coefficient of 6§t in
this polynomial is

(8.29) ¥ [ 0 ][mil][ n ][mil](-i2j + 132 + mij)/m?2.

i+i-t m-i)J | 1 Jlm-j)U j

0<i,j<m-1
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The proof is now completed by showing that all of these coefficients are
nonnegative, and some are strictly positive. An i1 = j term in (8.29) is

2(m-1)

nonnegative, if it is present; the coefficient of § is clearly

positive. We pair the remaining terms in (8.29); for u = v, the i =u, j=v

and the j = u, i = v term sum to

oo () ) ) 2

which implies that the sum (8.29) is nonnegative. Q.E.D.

Proof of Lemma 4.2. Define Nn m(v,b) as

(8.31) N (v,b) M:’m(v,b)/K: _(v,b).

?

It is sufficient to prove that (4.03-05) are satisfied by Nn o Substitution

of n =1 into (8.02) and (8.04) shows that N1 m(v,b) = 1, which establishes
(4.05). Statements (4.03-04) are proven by showing that Nn - N and

,m n+l,m

N - N are positive. The sign of each of these expressions is

n,m n,m+1

determined by its numerator, which is a polynomial in z. The proofs of (4.03-
04) are completed by showing that all of the coefficients of each of these
polynomials are nonnegative, and some are strictly positive.

*
We begin with (4.03). Reindex the denominator Kn m of Nn o by replacing

i with j. The numerator of N - N is
n,m ntl,m

(8.32) [ z‘;‘;(l) [mf_li] [m;l]zi] [ Z?;(l) [mle] [E+Jl] (m‘j)zi]

155 (5)ln) e [ )]
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For 0 < t < 2(m-1), the coefficient of zt is

o 1 EIEIEE - IED e

0<i,j<m-1

The terms in (8.33) are now paired, and each pair is then shown to be
nonnegative. The i = u, j = v term is added to the 1 = v, j = u term to

obtain

oo (IEIREY - (IED e

Four cases are now considered that depend upon which of the two terms in
brackets in (8.34) are nonzero. If both are zero, then (8.34) is zero. If
both are nonzero, then the following formula shows that the expression in

brackets has the same sign as u-v:

(8.35) [ n ][n+l] _ [ n ][n+l] n-m+1+u
) m- m-v m- m-u) n-m+ 1+ v’

If the first term is zero but the second term is not, then m-u = n+l and
m-v < n, which implies that v > u+l; the expression in brackets therefore has
the same sign as u-v. A similar argument applies when the first term is
nonzero and the second term is zero.
Each coefficient of the numerator of N - N is therefore
n,m n+l,m
nonnegative. When m > 2, a positive coefficient is produced by substituting

u=m-1, v =m-2 into (8.34). This completes the proof of (4.03).

Now consider (4.04). The numerator of N - N is
n,m n,m+1l
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(8.36) [ Z?;é [mil][m?iJZi] [ Z?=0[ ? ][m+T-j](m+l-j)zj]

3556 () e omt ] [ 350 5 ) et} |

where the terms from Nn have been reindexed using j instead of i. For

m+1

’

0 <t < 2m-1, the coefficient of zt is

o1 e

i+j=t
0<i<m-1
0<j<m

0 term are clearly nonnegative, if either is

An 1 = j-1 term and a j
present. A well-defined pairing of the remaining terms in (8.37) is obtained

by adding the i = u, j = v term to the i = v-1, j = utl term. This sum is

(8.38) (ut+l-v) [mr.1 ][m+;_1-v] [[mflll[ 3] ) [31] [uTl]]

The equality
m-1]( m m-1)[ m | utl
ORI st | e e
shows that the expression in brackets in (8.38) has the same sign as (utl-v).
Each coefficient (8.37) is therefore nonnegative. Finally, in the n = 2 case

substitution of u = v = m-1 into (8.38) shows that at least one of these

coefficients is positive. Q.E.D.
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Figure 1.1. On the left is a list of offers/bids in a market with n = 4 sellers and m =4
buyers with the corresponding supply and demand curves on the right. Any number
between the mth largest offer/bid of .5 and the (m+1)st largest offer/bid of .6 is a
market-clearing price. The BBDA selects the (m+1)st largest offer/bid as the price.
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Figure 3.1. The vectors depict the direction of the vector field defined by
(3.01-02) on the sides of the triangle 0 <b<v <1,
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Figure 3.2. The solution curve p to (3.01-02) passes through (0,0), and its tangent at (0,0)
is b = mv/(m+1). Solution curves above p enter the triangle through the v = b edge, while
those below p enter through the v = 1 edge.
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Figure 6.1. If ¥, , consists of the graph of a CY function plus several isolated

points on the v = 1 edge, then the solution curve to (3.01-02) through (0,0)
defines a smooth equilibrium strategy of buyers.
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Figure 6.2. Suppose the solution curve p through (0,0) passes below p;. An equilibrium

strategy of buyers can be defined by jumping from p to an appropriate point on ¥, ;; and
continuing along the solution curve through that point.
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Figure 6.3. The solution curve p through (0,0) may or may not define an
equilibrium strategy when it passes below a component of I’y m that borders on

the v =1 edge. When it does not, a discontinuity can be introduced to define an
equilibrium strategy.
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Figure 6.4. For some x € (0,y), Yn,m has no turning points in the strip defined by
x<v<yandO<b<v<y.
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