~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Bester, Helmut

Working Paper
The Missing Equilibria in Hotelling's Location Game

Discussion Paper, No. 975

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Bester, Helmut (1991) : The Missing Equilibria in Hotelling's Location Game,
Discussion Paper, No. 975, Northwestern University, Kellogg School of Management, Center for
Mathematical Studies in Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/221334

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/221334
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 975

THE MISSING EQUILIBRIA IN
HOTELLING’S LOCATION GAME

by

Helmut Bester, André de Palma, Wolfgang Leininger,
Ernst-Ludwig von Thadden, and Jonathan Thomas

November 1991



The Missing Equilibria in

Hotelling’s Location Game

Helmut Bester, André de Palma, Wolfgang Leininger,

Ernst-Ludwig von Thadden, and Jonathan Thomas*

November 1991

Abstract
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1 Introduction

The location problem of firms sclling homogeneous goods is attributed to Hotelling
(1029). In his seminal paper, Hotelling presents a model of two firms competing over loca-
tions and then prices in a two-stage subgame perfect equilibrium. Since then, Hotelling’s
spatial model has triggered an increasing flow of research in industrial organization (im-
perfect competition) and marketing (choice of new product). Indeed, either firms com-
pete over physical locations in the geographical space, or over product design in the
characteristicspace. In the latter case transportation cost measures the disutility of not
purciasing the ideal product.

Assuming that transportation costs are lincar in distance, Hotelling (1929) argues
that each firm gets higher profits by moving closer to its competitor so that in equi-
iibrium both locate at the center of the market. Yet, d’Aspremont, Gabszewicz and
Thisse (1079) point out that this argument contains a {law because the price subgame
in Hotelling’s model fails to have a pure strategy equilibrium if firms are located too
close to each other (but not at the same location). Indeed, in general one should not
expect ‘minimum differentiation’ as advocated by Ilotelling. When the firms are not
spatially differentiated, Bertrand competition in the pricing subgame will reduce their
profits to zero. By sclecting different locations, however, they can ensure themselves
positive profits.

This intuition is confirmed in a number of articles that study various formulations
of ITotelling’s location problem. Osborne and Pitchick (1987) study Hotelling’s original
model using a result of Dasgupta and Maskin (1986) that guarantees the existence of
a mixed strategy price equilibrinm. They show that the overall game has a subgame
perfect equilibrium with pure strategies in the location stage. I)’Aspremont et al. (1979)
introduce a quadratic transportation cost function to sidestep nonexistence of a pure
price equiilbrium. Lederer and Hurter (1986) study the location game when firms use
discriminatory pricing to differentiate between consnmers at different locations. In Bester
(1s1) buyers and sellers bargain over prices after the sellers have chosen their locations.

In el these versions of Hotelling's spatial competition model the firms wish to avoid



identical locations. An exception is the model by de Palma et al. (1985) who confirm the
principle of ‘minimum differentiation’ when consumer chojices are probabilistic enough,
or equivalently, preferences are sufficiently dispersed.

When the firms do not want to locate at the same point, the literature generally
imposes a coordination device concerning the ranking of the firms’ locations along the
market segment. Typically, firm 1 is assumed to be to the left of firm 2. This device
can be interpreted as a collusive rule which restricts the firms’ strategy spaces. In the
abscnce of this restriction the duopolists find themselves in a coordination game. This
results in a number of possible equilibrium configurations that have been overlooked in
the literature.

To make our point, we focus on Hotelling’s model in the version of d’Aspremont et
al. (1979) with quadratic consumer transportation cost. This has the advantage that
the pricing subgame has a unique pure strategy equilibrium for all locations and that
the firms’ payoffs in the location game can easily be explicitly computed. Also, this
version is of special interest since the firms will seck to move away from each other as
far as possible. Under the above mentioned coordination device this leads to ‘maximum
dilferentiation’ as the firms will locate at the endpoints of the market. We study the
non-cooperative outcome without coordination and find that there is an infinity of mixed
strategy cquilibria. In these equilibria ‘maximum differentiation’ does not occur because
of coordination failure. Indced when the firms adopt identical location strategics, they
may end up being located at the same point with positive probability. Our subgame
perfect equilibria involve mixed strategies over location and pure strategies over prices.
Here location can be interpreted as product design, about which the opponent has no
information in the design phase. Onece products have been developed and presented to
the public, their characteristics are revealed and then firms compete in prices.

We describe the model in Section 2. Section 3 characterizes various types of asym-
metric equilibria, in which the two players adopt different location strategies, Section
4 demonstrates that there is a unique player-symmetric equilibrium in mixed strategies
and provides a characterization of the equilibrium distribution function. Concluding

remarks are gathered in Section 5.



2 The Game

Hotelling’s (1929) model can be viewed as a three-stage game: In the first stage there
are two firms that simultancously select a location at which to operate. Then, having
observed location decisions, the duopolists simultaneously post prices. In the final stage,
the consumers take their purchasing decisions conditioned on the firm’s locations and
prices.

The market region A = [0,1] is represented by a line segment of length normalized
to one. The two firms offer products that are identical in all respects except for the
location of availability. Both firms employ the same constant returns to scale technology
and production costs are normalized to zero. Initially, each of the duopolists chooses a
location in A; let z denote the location of firm 1, and let y denote the location of firm 2.
Consumers are uniformly distributed on A; we identily consumer @ € A with his initial
location. Each consumer seeks to buy a single unit of the good. To make a purchase he
has to visit the store of one of the sellers’. He faces a transportation cost ¢(-) that is a
function of Euclidean distance d. Accordingly, he buys the good from the firm for which
price plus travel cost is the lowest. Let p; be the price charged by firm 7. Then the set

of all consumers who buy from firm 1 is given by
Di(piypzse,y) = {a € A | py + t(d(2,a)) < p2 + t(d(y, a)) }- (1)

Each consumer @ € Dy(py,p2,z,y) = A — Di(p1, p2, =, y) purchases the good from firm

2. Thus the payolf of firm 7 is

—
S}
~—

Ri(piypa,x,y) = / p; da.

Di(p1,p2.7.y)

Following d’Aspremont et al.  (1979) we assume that transportation costs are
quadratic, i.e. {(d) = d*. This guarantees that the price setting subgame between
the duopolists has a unique cquilibrium for any given location pair (z,y). Indeed,
d’Aspremont et al. (1979) computed the price equilibrium (p, p;) and obtained the

solution

pilzy)=(y—2)2+z+u}/3, pi(zy)=(y—z)t—z—y)/3 fz<y. (3)



By symmetry we get the equilibrium prices

rzy)=(-y)d -2 —y)/3,piz,y) = (z - y)2+z+y)/3 ifz>y. (4)

With quadratic transportation costs one obtains Dy(p3,p5,z,y) = {a € Ala(y —z) <
0.5(p; — pi + y* — 2%)}. This allows us to compute each firms i’s payofl in the location
stage, Il;(z,y) = Ri(p}, p3, z,v), as a function of location decisions. These payolfls are

Mz, y)=(y—z)2+y+2)*/18ifz <y ,

iz, y)=(z-y)d—z—-y)/18ifz >y (5)
for irm 1, and

Wz, y)=(y—z)4 —z—y)*/18ifz <y,

Moz, y) = (z —y)2+z+y)*/18ifc > y (6)
for firm 2. Notice that payoffs are symmetric in the sense that
Mi(z,y) =2(1 —y,1 = z), M(z,1 - z) = Ty(z,1 - z). (7)

The remainder of our analysis is devoted to studvine the Nash equilibria of the same
) ying q g

where firm 1 and 2 choose ¢ € A and y € A, respectively, with payoffs given by (5) and

(6).

3 Asymmetric Equilibrium

This section studies asymmetric equilibria where the two firms adopt different location
strategies that may involve randomization. I)’Aspremont et al. (1979) observed that each
firm can increase its profit by moving further away from the location of its competitor.

This immediately implies the following result.

Proposition 1: There are cractly two pure strateqy equilibria. These are (z=,y*) =

(0,1) and (z*,y") = (1,0).



Proof: Consider all (z,y) such that z < y. Then one has

Ol(z,y)/0z = -2+ y+2)(24+ 3z - y)/18 <0
Ol {z,y)/0y=(4—y—z)(d+z—3y)/18 > 0. (8)

Therefore there is exactly one equilibrium such that z* < y*, namely (z*,y*) = (0,1).

By symmetry of payoffs there is exactly one equilibrium such that z* > y*, namely

(1'33/-) = (170)' Q.E.D.

The literature typically imposes the restriction that firm 1 locates in the first half and
firm 2 in the second half of A. With this restriction the equilibrium is obviously unique,
Removing this restriction generates a second pure strategy equilibrium by symmetry of
the game. Yet, this is not the only consequence. The duopolists’ game can be viewed as
a coordination game; both gain an advantage from moving as far away as possible. In
this situation, the restriction z < 0.5 < y works as a coordination device. Without such
coordination the firms may end up at locations in the same half of the market. In what
follows we adopt a purely non-cooperative view to analyze equilibrium configurations

when there is a possibility of coordination failure.

Proposition 2: There is a mized strateqy equilibrium tn which firm 2 chooses y* = 0
with probability 1/2 and y* = 1 with probability 1/2 and firm I chooses z* = 1/2.
Symmetrically, there is an equilibrium in which firm [ chooses z* = 0 with probability

1/2 and z* = 1 with probability 1/2 and firm 2 chooses y* = 1/2.

Proof: To prove the first part, we first show that, given the behavior of firm 2, firm 1
cannot gain by deviating from z* = 1/2. Indeed, firm 1’s payoff from choosing = € [0, 1/2}

is

w(z) = 0.511(x, 1) + 0.5, (2,0) = (1 - z)(3 + 2)*/36 + z(4 — z)*/36. (9)



Accordingly for z € (0,1/2) one has
P(z) =4 —z)(4—-32)/36— 3+ z)(1 +32)/36 = (13 — 262)/36 > 0. (10)

This proves that z* = 1/2 maximizes ¢(z) subject to z € [0,1/2]. A symmetric argument
establishes that £* = 1/2 also maximizes {IT;(z,1) 4+ IT;(z,0)]/2 subject to z € [1/2,1].
As a result z* = 1/2 is an optimal response of firm 1 to firm 2s strategy.

Using the computations in the proof of Proposition 1, one has
Olly(z*,y)/ 0y > 0 for y > 27, Olla(z",y)/dy < 0 fory < z~. (11)

As TT,(27,0) = Ilo(z7, 1), this implies that both y* = 0 and y* = 1 maximize firm 2’s
payofl. This proves that randomizing over y* = 1 and y* = 0 is a best reply of firm 2 to
firm 1’s strategy.

The second part of the Proposition follows by symmetry. Q.E.D.

The distance between the firms’ locations in the equilibrium of Proposition 2 is only
one half of that in the equilibrium with ‘Maximum Diflerentiation’ in Proposition 1. As
a result, their payoffs are decreased from 1/2 to 49/148. This welfare loss is due to coor-
dination failure. Proposition 2 shows that when one firm chooses both endpoints of some
interval with positive probability, its opponent may wish to locate strictly in the interior
of this interval. This suggests equilibrium configurations in which firm 1 will have an
incentive to locate at a point strictly between any adjacent set of firm 2's locations. As
a consequence, locations of firm 1 and 2 alternate. This intuition is rigorously proved
in Proposition 3 and 4, in which the nature of these equilibria is also described. The
following result shows that for any arbitrary number n there is an equilibrium such that

onc of the firms randomizes over n locations and the other over n — 1 locations.

Proposition 3: For any numbern > 2 there is a pair of location vectors £ = (zq,...,T,)
and v = (Y1, -y Yn1) such that firm I chooses x; with probability ¢; > 0 and firm 2

chooses y; with probability ri > 0. Moreover, x; <y; < xiyy foralli=1,..,n—1.



Proof: Define Z C RZn—l by 4= {E,UIO g x; S Y S Tiy1 < 1 for alli = 1,...,71 — 1}

Clearly, Z is convex and compact. Let

ei(z,v,r) = E I (z, y;5)r;,

Note that §°I1;(z,y)/dz* < 0 for > y and = < y. Therefore ¢;(.,v,7) is a strictly
concave function of z for all z € (y:1, i), where yo = 0 and ¥y, = 1. This together with

the Maximum Theorem implies that

fuilv,r) = argmax relyioya] 1T, 0, T) (13)

is a continuous function of (v, 7). Similarly

f?i(ga Q) = argmax yElririg1] Lr’)?(yaév q) (14)

is a continuous function of (& ¢q). Define fi(.) = [fil(.),-, fin(.)] and f{.) =

[fgl(')""afln—l(')]'
Define S5y = {g € R*E;q; =1} and Sy = {r € R*™'|E;r; = 1}. Then

9 (53 v, 7') = argminqesl Ei({iEjHI(‘Th yj)rjv
g?(fava q) = argrninr&Sz EiriEjHQ(‘Tjr yl)QJ’ (15)

are convex valued, upperhemicontinuous correspondences. As a result, the correspon-
dence A(&, v, 7, q) = filv,r) x f2(&,¢) x 91 (&, v,7) X g2(&, v, ¢) maps Z x Sy x S, into itself.
Also, it is convex-valued and upperhemicontinuous so that by Kakutani’s Theorem it has
a fixed point (£7,v%,¢7,77). We will show that (£*,v",¢*, r*) satisfies the conditions of

Proposition 3.

Iirst we show that @i (a7, v7,77) = ¢y(21,,v",77) for all i = 1,...,n. Suppose the

contrary. Notethat by definition of ¢,(.) one has ¢F = 0 for all 7 such that o, (27, 0", r*) >
} J 11 Q 1 bl

ming (27,07, 77). Suppose there is a k> 1 such that (27, v, 77) > min; v, (27, v, )

forall s < kand ey(zf,v",77) = minj o1 (23, v, 7). Then ¢(y, €7, ¢7) is strictly decreas-

ing over [27, 27 because g7 = 0 for i < k. Accordingly, by definition of fy(.) one has



y; = z; for all i < k. Therefore, by definition of fix(.), i must maximize ¢(z,v*,r*)
subject to z;_; < z < yi. As ¢1(z,v™, ") is strictly concave over [z}_,, y7] this yields a
contradiction to ¢y (zi_;,v™,77) > ¢i(z},v",r"). The same argument shows that there

cannot be a k < n such that (27, v*,7") > min; ¢ (23,07, r*) for all i > k.

Suppose thereis a k and an ! such that k < I—1and ¢, (z7,v",7*) > min; 1(z], 07, ")
for all & < 7 < [, and ¢i(a,07,7%) = @i(z],v7,r") = minjei(z],v7,r"). Then
waly, €7, ¢7) is strictly concave over [z}, z7] and so one has y; = z3,, and/or y;_, = z}_,.
In the first case, f must maximize ¢, (z,v",r*) subject to yi_; <z <z}, ;. But then
e1(Tre v 77) > er(xf, vt r7) leads to a contradiction because ¢y(.,v*,r") is strictly
concave over [yi_y,Z5y,]. In the second case, a similar argument yields a contradiction.
This proves ¢ (z7,v", ") = ¢y (27, v7,r") for all ¢ = 1,...,n. The same arguments as

above can be used to show that o,(y7,£%,¢%) = @2yl 1, €7, ¢7) foralli=1,..,n - 1.

Next we show that z7 < yf <z, forall ¢ = 1,...,n — 1. Clearly, one cannot
have 27 = z; because otherwise lowering z; or increasing z, would increase firm 1’s
profit ¢1(z,v", 7). Suppose there is a k such that zj = yi < z3,,. Then 2}, must
maximize @i(z,v",r7) subject to 2y < z £ ¥, As o(z,v,r") is strictly con-
cave over [rf,yi,,] this leads to a contradiction to ¢i(zf,v",7) = @iz, v5 7).
By the same argument one can rule out that r; < y; = zi,, for some k. Finally,
Vie1 = Tf < yp or yi < Tiy, = Yreq Would contradict that yi maximizes go(y, £, ¢%)
subject to zp < yi <z}, because po(y, €7, ¢") is strictly concave over [z}, x},,] and

w2y, €% 07) = walylyy, £, q7) forall i

[t remains to show that ¢7 > 0 and r7 > 0 for all 2. Suppose ¢; = 0. Then ¢2(y, £*,¢")
is strictly decrcasing over [z}, 73] and so y; = 27, a contradiction to our above result
that 27 < yr for all ¢ = 1,...,n — 1. Similarly, we can rule out ¢¢ = 0. Suppose there
s akand an {such that £ <! —Tand ¢f > 0,y >0, and ¢c =0 forall k <1 < I.
Then pa(y, €7, ¢7) is strictly concave over (23, 2z]] and so yi = 2., and/or yj_, = z}_;.

This again contradicts our above result. The same argument proves that rf > 0 for all



i=1,..,n—1, Q.E.D.

Again, by symmetry of payofls we can simply reassign the firms’ indices to show that
there also is an equilibrium in which firm 1 randomizes over n — 1 and firm 2 over n
locations. Moreover, the same arguments as in the proof of Proposition 3 can be used to

prove existence of an equilibrium in which both firms randomly select one of n locations.

Proposition 4: [For any numbern > 2 there is a pair of location vectors { = (z1,...,Tn)
and v = (y1,..., yn) such that firm I chooses z; with probabdility ¢; > 0 and firm 2 chooses

y; with probability r; > 0. Morcover, z; < iy < Tipy < Yigq foralli=1,..,n—1.

For the case n = 2, the equilibrium described by Proposition 3 is the one identified in
Proposition 2. One can also easily compute the equilibrium of Proposition 4 for n = 2.
Here, firm 1 chooses z7 = 0 with probability ¢f and some 0.5 < z3 < 1 with probability
¢; = 1 —q;. The equilibrium strategy of firm 2 is symmetric; it chooses y; = 1 — zj with
probability r} = g5 and y3 = 1 with probability v = ¢, Accordingly, z3 must maximize

(1 —¢)y(z,1 —z3) + ¢q;I1 (2, 1). This yields the first-order condition
ai(3 + =1+ 3z3) = (1 — ¢q7)3(5 — 4x3). (16)

The sccond equilibriuin condition requires that firm 1 is indifferent between locating at
27 and z3, i.e. one must have ¢711,(0,1) + (1 — ¢})I1(0,1 — a3) = ¢ (z3,1) + (1 -

qi )T (z3, 1 — 23) which is equivalent to
907 + (1 — g1 — 2B — 23 = qi(1 — 23)(3 + 23)? + (1 = )92z3 — 1), (17)
Solving equations (16) and (17) for ¢7 and z3 gives the solution
gr =~ 0.344, 5~ 0.730. (18)

Equation (18) together with 27 = 0 and ¢ = 1 — ¢} delines firm 1’s equilibrium strategy.
Clearly, firm 2’s behavior (y1,v3) = (1 — 23,1),(r],r3) = (1 — ¢}, ¢7) is optimal simply

by svmmetry. As an interesting property of the equilibriumn cach firm is more likely
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to sclect a location in the interior of the market than at the endpoint. Indeed, their
expected distance in location in this equilibrium is approximately 0.437, whereas it is
1 in the equilibria of Proposition 1 and 0.5 in the equilibria of Proposition 2. This
points to a reduction in the expected distance of location as the number of points in the
support of the equilibrium strategies increases. It is a likely conjecture that letting n go
to infinity in both Proposition 3 and 4 leads to convergence of the respective equilibria to
an equilibrium with full support on [0, 1]. Unfortunately, we were not able to confirm this
conjecture. However, the following Section shows that an equilibrium with this property

exists and is symmetric in the sense that both firms adopt identical (mixed) strategies.

4 Symmetric Equilibrium

Proposition 1 reveals that there 1s no pure strategy equilibrium in which both firms adopt
identical location strategies. Howeversince the players’ payofls are symmetric, one should
expect that there is such an equilibrium in mixed strategies. This is confirmed by the
following result which also establishes uniqueness of the player-symmetric equilibrium.
The proof employs four lemmas that are proven in the Appendix. To state the result,

we define the coeflicients (a1, a24),7n = 0,1,2, ..., recursively by

alg:O, ap = 1, ag():l, a9 ':G, (19)
2(n+ 1) 2n* 4+ 2n—1 ,
in — i(n— - - i{n—=2) > 2, - 1,.2.
in 5n e Sn(n —1) Gitn=2), Tt = SE

F'urthermore, define ¢; and ¢; by

B 100+ 3957 yaa/(n+ 1) 39— 40¢
T 200 4+ 722, (40a0, — 28a1,)/(n + 1) '

Proposition 5: There cxists a unique (player-) symmetric equilibrium of the location

game. [t has each player playing a mired strategy with e.d.f. F over [0,1]. On (0,1}, F
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is strictly increasing, continuously differentiable, and has a density f = F' given by
o0
f(l) = Z(Claln + Cgagn)xn.
n=0
I has mass points at T =0 and z =1 given by

F(0)= F(1) = F(I") = Zea = 3.

Approzimately, we have ¢; = 0.61, ¢, = 0.52, and F(0) = 0.18.

Proof: The location game is symmetric, and the payoffs II; and I3 of firm 1 and 2 from
choosing (z,y) € [0,1] are continuous and defined on the product of non-empty, compact
subsets of R. Hence, the location game has a symmetric mixed strategy equilibrium
(Dasgupta and Maskin (1986), Lemma 7). Let F: [0,1] — [0, 1] denote the cumulative
distribution function of the (common) equilibrium strategy. By definition, F' is non-

decreasing and continuous from the right. Recall that

p) 1 ~2+z+y)(2+3z—-y) <0ifzxr<y;
5—H1(5’3=U):1_ﬁ (21)
u S | 4—z—-y)d-3z+y) >0ifz>y;

o? 1 | 4+43z+y <0ifzr<y

M) =~ @)

e §—3z—y <0ifz>y.

Let
P() = [ Thiz,)dF () (23)

denote firm 1’s payoff from choosing z, given that firm 2 plays its equilibrium strategy.
Note that P is continuous on [0,1]. In the sequel, in order to characterise F', we shall

first prove some regularity properties of 2 and [

Lemma 1: Forall z € (0,1), P(¢)/dz_ and P (x)/dx, cxist, and

1
dr(x)/ oz, =f Ol (z,y) ) 0zd F(y), o=+, —.
u
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Lemma 2: F'is continuous on (0,1) and P is differentiable on (0,1).

As P is differentiable on (0,1), P'(z) = [} Olli(z,y)/0z,dF(y), for ¢ = 4,—. By

Lemma 2, P’ is continuous on (0,1). Furthermore, we have for 0 < z + A < 1

18P”+”2"Pw)=/?&+ay_m+3qum (24)
2 4]
1 ) 1 z+h
—~/ h(Gx + 2y + 8+ 3h)dF(y) + /—] (2+y—4+h)Bz—y—4+3h)dF(y)
r+ lLJr
1 r+h
+E/ (¢ +y+2)(3z —y + 2)dF(y).

Hence, for any = € (0, 1) the existence of limg_, ~(P'(z+h)—P'(x)) implics the existence

of limp_o +{F (2 + ) — F(2)} and vice versa, and the two are related by

. Plla+h)~Plz) 1 o2 .
Jim : = [ o h(e,1)dr() (25)
2 n . } - F
+= (227 =22 4 5) lim Pz 4 h) (=)
9 h—0 h

Lemma 3: F is strictly increasing on [0, 1].

Lemma 3 implies that 7 is constant on [0, 1]. In particular, P = 0 on (0,1), whence,
by (25), [ is differentiable (everywhere) on (0, 1). Since [ is non-decrcasing, its deriva-

tive is integrable, and Theorem 8.21 in Rudin (1974, p. 179) implies
b
P(b) = F(a) = / Fltydt Y0 <a<be<l. (26)

llence, F' has an integrable density f = I’ on (0,1). Denote F’s possible mass in
r=0andz=1byp=r(0)and g=1"(1)- F(17), respectively. (The proof of Lemma

3 shows that p and ¢ must, in fact, be strictly positive.]) Then Lemma 3 implies
I 1
pr(t —z)? + /0 (x =y +y -1 f(y)dy +] (y =)z +y+2%f(y)dy  (27)

+¢(1 = 2)(3 + 2)* = const
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n [0, 1]. Differentiating (27) twice yields, for z € [0, 1]
F4 1
/O Bz —y—4)(z+y —4)f(y)dy - f Bz —y+2)(z+y+2)f(y)dy (28)

+p(z —4)(3z —4) — gz + 3)(3z + 1) = 0,

[E=3 -0+ [+ 34000 dy - (457 — 4o+ 10)f(2)
+(8—-3z)p+ (32 4+ 5)g =0. (29)

(29) shows that f is even differentiable. Differentiating (29) twice yields

3/ @-3] Vdy + (2% — 42 + 10)f'(z) + 8(22 — 1)f(2) + 3p — 3¢ = 0, (30)

(222 — 22 +5)f"(2) + (122 — 6)f'(z) + 11 f(z) = 0. (31)

In addition to the information contained in the differential equation (31), the fact that
(28) - (30) hold in the endpoints of [0,1] gives additional information. Letting z = 0

and z = 1 in (30) and using

f[]lf(y)(ly+p+q=l (32)

yields
S£(0) — 10/'(0) = 6p + 3 = 0, (33)
8F(1)+ 10f'(1) — 6g + 3 = 0. (34)

Letting = 0 and 2 = 1 in (29) gives

/01 yf(y)dy = 10£(0) —4p — g — 4, (35)

10f(0) +10f(1) —d4p —4q — 9 = 0. (36)
From (28) we then obtain

1
/ v fly)dy = =20p — q + 4, (37)
0
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20f(0) +12p —20q — 9 = 0. (38)

Fach symmetric mixed strategy equilibrium hence has to satisfy (31) - (38). From
the theory of second order ordinary differential equations we know that each solution of

(31) has the form

f=alitef, (39)

where ¢, ¢ € R are constants, and f; and f, independent solutions of (31), i.e. solutions

satisfying

Sifs = fif2 #00n [0, 1]. (40)

Considering equation (31) in the complex plane shows that its solutions are analytic on
the open disk around 0 with radius 1+/10. (The radius is determined by the zeros of the
leading coefficient, 2z% — 22 + 5). Hence their restrictions to the real interval [0, 1] can

be expressed as convergent power series:
fl2)=> aa™, z€[0,1]. (41)
n=>0

By substituting (41) in (31) and rearranging terms, we find that for any solution f

the coefficients {a,}°, have to obey the following recursion formula:

2(n + 1) 2+ 2n—1
an - —'(1”-‘1 Y .~

— ne2y, M2 2. 42
5n S5(n—1)n -2, T = (42)

For the remainder of the prool fix two independent solutions {a;,}%%, and {a2.}%,

by setting aj10 =0, an =1, ax =1, ay =0. Let

A= i Ain, B = Z Ndin, C; = Z - ’ 1= 1’2’ (43)
= = —n +1

(These sums exist because the solutions to (31) are analytic on [0,1].) Any f obtained

from (39) then satisfies
f(O) = (1, f(l) :.'11C1+.‘12C_1, fI(O):Cl, f,(l):B1C1+BgCQ. (44)

By means of (41) we can restate (32) - (38) as a system of seven cquations in the

unknowns ¢, ¢z, p, and ¢. The cquilibrium described by /7 will be unique if this system
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has a unique solution. In order to prove uniqueness, let us single out the four equations
(32), (33), (36), and (38) and show that they already determine a unique solution. (Note
that it is not possible that the seven equations contradict each other, since we know a

forteriori that there is a symmetric equilibrium and hence a solution to (31) - (38).)

Cian+Cica+p+q—-1=0 (32")

8z —10c; —6p+3=10 (33"

104, +10(Ay + 1)ep —dp—4¢ -9 =0 (36°)
20c; +12p — 20— 9 =0 (38")

By climinating p and ¢ this system reduces to
(1541 + 16)er + (7545 — 19)c; = 78, 5(3C, — 8)ey + (15C, + 4T)cy = 39/4.  (45)
The determinant of system (43) is
s 19
D= ({)(10(/1102 — 14201) -+ 47A1 + 40/‘12 -+ ?Cl + 1602 + ‘10) (46)

The following lemma, whicl is an exercise in numerical mathematics, implies the desired

uniqueness result.
Lemma 4: D > 0.

Having established the uniqueness of F' we immediately conclude that the distribution
given by /' must be symmetric around z = 0.5. For, if this were not so, the distribution
function

1 —F(17) if 2 =0,
Gla)=9{ 1-F(l-1) if0<z<]l, (47)
1 ifz=1

would, Ly the symmetry of the location game, define a different (player-)symmetric

equilibrium, which would contradict the uniqueness of I.
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It follows that p = ¢, that the equations (36) and (38") are identical, and, from solving
(32)-(36"), that £ is given by

39C; + 104 1 ) 9

_ = —(39—490 = —¢y — —. 48
500 — 250 1400, 2= a8l ah P=3a-g (18)

51

A numerical calculation using (AS8) in the Appendix yields C ~ .5091,C; ~ .6293 so
that ¢; >~ .61, ¢; >~ .52, p~ .18. Q.E.D.

At the symmetric equilibrium the two firms end up at the same location with a prob-
ability of approximately 0.065. Thus, with some chance the outcome yields ‘minimum
differentiation’ instead of ‘maximum differentiation’, which occurs in the pure strategy

equilibrium described by Proposition 1.

5 Conclusion

We have demonstrated that Iotelling’s (1929) model with quadratic consumer trans-
portation costs possesses an infinity of equilibria in which the duopolists randomize over
locations. These equilibria have been overlooked in the literature because the coordi-
nation problem underlying the location game has not been recognized. Interestingly,
most of our results in Section 3 do not rely on the specific form of the firms’ payoff func-
tions. The proofs in this Section essentially require that payoffs satisfy certain symmetry
properties, that cach player’s payoff is increasing in the distance from the other player,
and that payolls are strictly concave over each interval in which the other player is not
located. Unfortunately, we have not been able either to rule out or to verify equilibria
where the players’ strategics are represented by a distribution {unction with an infinite
number of masspoints. With this exception, our results provide a full characterization

of all possible equilibrium configurations.
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6 Appendix
Lemma 1: Forall z € (0,1), 8P(z)/0z_ and dP(z)/dz, exist, and
1
9P (z)/ 0z, :/ oMl (z,y)/0z,dF(y), &=+, —.
0

Proof: Let z € (0,1). Consider any sequence {h,}$ such that 0 < h, <1~z Vn and
hn, — 0. Let
1
fn(z"vy) = _(Hl(:r + hnvy) - Hl(:rv y))

by,

By (21) and since I, is continuous, we have
falz,y) = Ol(z,y) )0z, Yy € [0,1], | falz,y) | < const Vn,Vye|[0,1].

By Lebesgue’s Dominated Convergence Theorem, lim, o f01 falz,y)dF(y) exists, and
Or(z)/0z+ = [y 0lLi(x,y)/0z+dF(y). The argument for OP(z)/dz_ is analogous.
Q.E.D.

Lemma 2: F is continuous on (0,1) and P is diffcrentiable on (0, 1).

Proof: By Lemuma I, for z € (0,1),
2 1 (,2) - LMz, )(F(e) - Fe ). (AL)

By (21), the first factor on the right hand side of (A1) is strictly positive. Since P
is continuous, in order for firm 1 to put a strictly positive mass F'(z) — F(z7) > 0 on
z, it would be necessary that dP(z)/dzy < OP(z)/0z_. Hence F(z) = F(z~). This
together with (A1) implies that P is differentiable on (0,1.) Q.E.D.

Lemma 3: [7 s strictly increasing on [0, 1].
Proof: Suppose there is an e > 0 such that /7(2) = F(0) for 2 € {0,a]. By continuity,

there exists a maximal interval [0, a] = F~1(F({0,a])) on which F'is constant. Again by

continuity, there exists an € > 0 such that F is strictly increasing on [a,a + €]. Since F
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defines an optimal mixed strategy, firm 1 must be indifferent between all z € [a,a + €,
hence P(z) = K Vz € [a,a+¢]. Also, P(z) < K Vz € (0,a). By (21) and Lemma 1,
for z € (0,1)

P'(z) = F(U)(%HMI,O) + /01 %Hl(x,y)dF(y) (A2)
= %(F(O)M —z)(4 = 3z) ~ /al(r +y+2)3z—y+ Q)dF(y))_

If £(0) =0, (A2) implies that P’(z) < 0, hence P(z) > K on (0, a), a contradiction.
If F'(0) > 0, the distribution given by F puts positive weight on z = 0, hence P(0) = K.
Since F'(z) = 0 everywhere on (0,a), (25) implies that P” exists everywhere on (0, )

and
2

Py = [ e pr () (43)
By (22) and (A3), P”(z) < 0 on (0,a). This, together with P(0) = P(a) = K implies
P(z) > K on (0,4a), again a contradiction.
An analogous argument proves that there is no 8 < 1 such that F is constant on

[3,1], and finally (only using (A3)) that F is strictly increasing on every interval [a, 4],

O<a<g<l. Q.E.D.
Lemma 4: D > 0.

Proof: For N > 9, N € N, choose é such that

N24 N =05 (i \/1 10(N = 1)N

G By LA R T Ad
5N 1)V t v o5 ) <0< (44)

(Note that the left hand side of (A4) is smaller than 1 for N > 9). Suppose that for
n >N

| @na | < 6" Fand |an_ | < 6™ (A3)

Then, by {12), the choice of § implics

2 n+1 n4+n—1
o e 511——1 2 ¢cn—-2
fanl < 5 ( n (n—1)n )
2 /,V? + N — % n—2 n
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Using the identity

Zam_ Zann+ Z Ain
n=0

n=N-2

we get from (AG) for all V and ¢ satisflying (A4) and (A5)

N-— 5;\'—2 0 N-3 §N~2
Z Tin — < Z ain < Z din + (A7)
- 6 n=0 n=0 1 - 6
and
N-=-3 a 6'\ -2 [>%) N=3 a 6N—2
in in A8
HX::UTI‘*‘I Zn«f—l nz::On+1+l—6 (48)

for 2 = 1,2. A numerical calculation shows that (A4) and (A3) are satisfied for N = 30
and 6 = .9015, and that the estimates for A; and C; given in (A7) and (A8) yield D > 0.
Q.E.D.
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