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Abstract

We study merging, in a few senses, of two measures when increasing
sequence of information is observed. Motivating this extension of Blackwell
and Dubins' (1962) work, are studies of convergence to equilibrium in

infinite games and in dynamic economies.
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1. Introduction and Conventions

If 4 is a true probability distribution over a set of possible states,
and Z is a false distribution over the same space, then posterior
probabilities computed according to u and ﬁ merge in the norm topology as
enough information becomes available. Blackwell and Dubins (1962) proved
the above result under the assumption that g is absolutely continuous with
respect to ﬁ. Diaconis and Freedman (1986) investigated the weak star
convergence of conditional probabilities; Schervish and Seidenfeld (1990)
treated compact sets of mutually absolutely continuous measures.

Recent papers by Kalai and Lehrer (1993a and 1990) applied a version of
the Blackwell-Dubins' result to illustrate convergence to Nash equilibrium
by subjectively rational players engaged in a repeated game, and convergence
to rational expectation equilibrium by subjectively rational agents
interacting in a dynamic economy.

Section 2 of this paper reviews and expands a version of the Blackwell-
Dubins model and results, and gives an alternative characterization of their
notion of merging. This alternative characterization, reported earlier in
Kalai and Lehrer (1993a), shows more explicitly the power to predict long
horizons of games and economies resulting from Blackwell-Dubins' notion of
merging. In addition. this section contains a converse result showing that
merging and absolute continuity are equivalent notions.

In the repeated game example, a player wishing to maximize his expected
utility, starts with a subjective assessment regarding his opponents'
strategies. This assessment induces a subjective probability distribution,
ﬁ. on the future play of the game, while the true probability distribution,

M, induced by the strategies actually chosen, is likely to be different.



However, as stated above, under an absolute continuity condition and after
sufficiently long play, Z and x4 merge. This merging was shown to imply that
after a long time the actual play is €-close to a play induced by some
€-Nash equilibrium of the repeated game.

The above mentioned game theoretic result motivates important
mathematical questions. First, the absolute continuity assumption of u with
respect to ﬁ is strong for some game theoretic and economic applications.

At the same time the notion of merging obtained is stronger than needed for
such applications. More specifically, this notion of merging implies
closeness of u and ﬁ even for events in the infinite future. For instance,
the event that in the infinite future the long run rate of cooperation is
exactly 50 percent.

In economic applications involving discounting of future payoffs, it
suffices to approximate events in finite horizons. Thus, one hopes to be
able to weaken the absolute continuity assumption even if it yields a
weaker, yet sufficient, notion of merging. Such a condition is offered in
Section 3 where the appropriate notion of weak merging is studied.

A question of an opposite nature is also motivated by the earlier
conclusion that players learn to play €-close to an €-Nash equilibrium.
Since the Nash equilibrium concept in the above statement is already
perturbed, can we obtain a result where the actual play coincides exactly
with an £-Nash equilibrium? For this to occur, it turns out that a stronger
notion of merging is needed. We refer to it as strong merging and study it
in Section 4.

A third issue motivated by economic applications is the relation of

merging to the exact specification of how and what information is obtained.
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While, as shown in Section 2, usual merging does not depend on this
specification, weak merging is sensitive to it. Given two information
sequences for the same og-field, it is possible that weak merging is obtained
in one but not in the other.

Dependencies, of merging, on information sequences are important for
the study of more sophisticated economic applications. The game theoretic
example discussed before assumes perfect monitoring of players' actions.
This means a very detailed information sequence which is often not available
due to differential imperfect information that agents obtain. Thus, when
studying weak merging in more general repeated games models, for example,
the precise information structure has to be considered in order to decide
whether merging will occur. All three sections (2, 3, and 4) study the
relation of the corresponding merging concepts to specific information
sequences.

For the remainder of this paper, we let (Q2,B) be a measurable space of
outcomes, interpreted as the set of states of nature. It is assumed
throughout that B is generated by countably many sets. We fix two
probability distributions on (Q2,B), u and Z, describing respectively the
true distribution over states, and the (possibly false} subjective beliefs
of some agent. All unspecified probability statements in the paper are made
relative to the true distribution, u.

A sequence of finite or countable partitions of Q will describe a
dynamic information structure that the agent may possess. So, if the
information sequence is {?t} and the state of nature is w € 2, then at time
t the agent is told Pt(w), the element of the partition Pt that contain w.

Given this information, the Bayesian agent adopts ﬁ(-lPt(w)) as his new
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distribution over states, while the true distribution now is y(-IPt(w)).

Closeness of these two random measures will be our major interest.

2. Blackwell and Dubins Expanded

We restrict ourselves, throughout the paper, to partition sequences of

the following type.

Definition 1: An information sequence (for (Q,B) u and u) is a sequence of

partitions {@t} satisfying:
(1) @t+1 refines Wt.
(2) With Tt denoting the field generated by @t and F = V ?t denoting
the o-field generated by all Tt. we require that ¥ = 8.
(3) If an element of the partition @t is assigned a positive
probability by u, then it is assigned a positive probability by ﬁ.

Condition (1) asserts that information is cumulative. Condition (2)
requires that the events that can be discussed are exactly the ones that can
be formulated in the language of the information sequence. And Condition
(3) states that there is zero probability that the agent ever be surprised
by being told something he considered impossible. Technically, this
condition guarantees that the agent can perform Bayesian updating with
probability one.

An interesting economic example is the evolution of price paths in a
dynamic economy. Here an outcome w € 1 describes an infinite sequence of
price vectors with Pt(w) describing the history of price vectors up to
time t (see Kalai-Lehrer, 1990). Z(-!Pt(w)) being close to y(-{Pt(w)) means

that the agent's forecast of future prices, given past prices up to time t,



is almost accurate.

In a game theoretic example (see Kalai-Lehrer, 1993a), ® = (al,az,...)
describes an infinite sequence of action-vectors in an infinitely repeated
game. In this example, Pt(w) describes the history of past action vectors
up to time t, ﬂ(olPt(w)) describe the probability distribution over future
actions induced by the actual strategies of the players, and ﬁ(o!Pt(w))
describe what an observer believes the distribution of future actions to be.

But different information sequences may be of interest. In a two
player version of the example above, an agent may be fully informed at time
t of all the past actions of player one, but may be informed, with a delay

of d periods, of the actions of player two. An information sequence

P = {@t) describing such a process has

j=1,...,t -d).

It is easy to see that ®? and ® are both information sequences for the same
c-algebra of infinite action paths.

The next theorem is a version of the seminal Blacwell and Dubins
(1962) result about merging of measures. In order to make the reading of
the currerit paper self contained, we present here a variation of their

definitions and proof presented in Kalai and Lehrer (1993a).

Definition 2: For € > 0 we say that ﬁ is g€-close to u if there exists a

set Q satisfying

(i) am(Q),m(Q) 21 - €, and

(ii) for every event A c Q.
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(1) (1 - e)u(A) < u(A) < (1 + e)u(A).

We say that ﬂ merges to 4 in the information sequence {@t} if for every

€ > 0 and almost every w there is a time r(e,w) such that for every

r 2r(e,w) ﬁ(-lPr(w)) is €-close to u(-!Pr(w)). We say that ; merges to u
if it does so for every information sequence. (Merging, and merging in
some information sequence, will turn out to be equivalent; see

Corollary 1.)

The notion of closeness described in (1) is strong. It implies that
even for small probability events in Q, u can differ from ﬁ only by a small
percentage. Also, for A and B in Q, conditional probabilities of A given B
computed according to g can differ from those computed according to ﬁ only
by a small percentage. This shows that once closeness in the sense of (1)
was obtained, the agent's probabilities and conditional probabilities (for

events in Q) will always be approximately correct without building

cumulative mistakes.

Proposition 1: Let {@t} be an information sequence. Suppose that u is

absolutely continuous with respect to ﬁ, M << ﬁ (formally, u{(A) > O implies

Z(A) > 0 for every A € B). With u-probability 1 for every € > 0 there is a

random variable t(e,w) s.t. for every s 2 t 2 t(e,w).

H(P (@) [Py (w))

<1 + €.

Do
—
I
(Y}
IA

AP (©) P (w))

Proof: Since u << ﬁ, by the Radon-Nikodym theorem, there is an

F-measurable function f satisfying
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(3) I, fdu = u(A) for every A € 7.

A

By Levy's theorem (see Shiryayev, 1984), E~(f17t) - E~(f;7) = f ﬁ almost

M N M
surely (and therefore, u-a.s.). However, for u almost all w

(4) Ez(fizrt)(w) = 1/u(P (w)) Jp

() TR = HP (@) /AP ().
Moreover, by (3), f > 0 u-a.s. Thus, the right side of (4) tends u-a.s. to
a positive number. In other words, there is a t(¢) such that for u almost

all w the following holds:

#(Pt(w)) #(Ps(w))
/ <1+ ¢ for all s >t 2> t(e).

#(Pt(w)) ,u(Ps(w))

A

(5) 1 - ¢

The middle term of (5) is equal to the middle one in (2). Since (2) holds

for every € > 0 with probability 1, the proposition follows. //

Remark 1: Proposition 1 can be proved directly by using the martingale
convergence theorem and without the Radon-Nikodym theorem (which is a by-
product) as follows. Define Xt(w) = ﬂ(Pt(w))/ﬁ(Pt(w)). Obviously, this is
;—martingale and thus converges ﬁ—a.s. to X_. Furthermore, u << ; on ¥ if
and only if {Xt) is uniformly integrable—-i.e.,

lim

e supt I{Xt>c} Xtdu = 0. Thus, IA deu = IA Xtd# = u(A) for every

A€ Tt. Therefore, IA de; = u(A) for every A € F. Since u << m X is

positive 4 - a.s.

Theorem 1 (see Blackwell and Dubins, 1962, for an earlier version): If



M << ﬁ then ﬁ merges to u.

The proof follows from Proposition 1 and the following lemma:

Lemma 1: Let g, be a sequence of measurable functions which converges u

t

a.s. to k # 0. For every € > 0 and d > 0 there is a time, t(e,d), s.t.
#{w;#(Ct!Pt(w)) > ¢ for at least one t 2 t(e,d)} < €, where

Ci = {w;sgs(w)/k(w) -1/ >d,s 2 t}.

Proof: Since gt - k # 0, the sequence u(Ct) converges to 0. Suppose to

the contrary that the lemma does not hold. Then there is a g-positive set

A, d > 0 and € > 0 such that for all w € A, u(CtiP (w)) > € for infinitely

t

many t's.

Fix s € IN and define

Br = {w € A;r = min{t;t > s and y(Ctipt(w)) > €}}.

Observe that {Br} are pairwise disjoint and, moreover, {U

weBr Pr(w)}F are

also pairwise disjoint. By the definition, A = Ur>s Br'

Since Cs ) Ct when t 2 s, for all w € A, y(Cstpt(w)) > € for every

w € B,. Thus, p(Cslu

t weBt Pt(w)) > €. Therefore,

H(CG) > eeplUy UweBt Pelw)) 2 eeplUy o By) = eonla).

Hence, the sequence {u(Cs)} is bounded away from zero, which is a

contradiction. //

In order to complete the proof of Theorem 1, apply Lemma 1 to gt = the
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indicator function of the set {w;[E(f!?s)(w)/E(f{Tt)(w) - 1{ < € for all
s 2 t}. Obviously, gt - 1.
Remark 2: Blackwell and Dubins use a notion of closeness of measures

stated as a bound on the absolute differences of probabilities, i.e.,

(6) ]#(AlPt) - Z(A[Pt)l < ¢ for every event A € Pt'

Our notion of closeness, inequality (1) in Definition 2, can be rewritten
as l#(AlPt) - Z(AIPt)I < ep(AlPt) for all events A in a large set. So it
is easy to see that €-closeness according to our definition implies
3e-closeness in the snese of Blackwell and Dubins. The following
proposition, however, illustrates that a converse is also true and thus the
two notions are asymptotically equivalent. Thus Theorem 1 is equivalent to

a version of the original Blackwell and Dubins' statement.

Proposition 2:

(i) for every € > 0 there exists § > 0 s.t. if |ju(A) - ﬁ(A)| < & for
every event A, then ﬁ is e-close to u;

(i1) if & is e-close to u then |u(A) - m(A)| < 3¢ for every event A.

Proof :
(i) Let 1/4 > & > 0, to be specified later, and assume that #.Z
satisfy |u(A) - Z(A)l < & for every event A.
By using the Lebesgue decomposition theorem (see Halmos, 1850, p.

143), we will define three events, S, Sl' and 82 which satisfy:
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(a) for every ¢ # D

N
I
o

S,. k(D) > 0, w(D)

(b) for every ¢ # D

N
I
o

S, “(D) > 0, u(D)

(c) S U S1 U 52 = Q.
Thus, on S, u and ﬁ are mutually absolutely continuous.
The measures u and ﬁ can be decomposed (by the Lebesgue decomposition
12 ~ o~ 2 1 1~ 2 ~
theorem) as follows: u = u + u and u = u =+~ u, where™ g << u, u ! u
and ﬁl << M, ;2 . m. By the definition of singularity there are two sets
1 ~ ~1

S1 and 82 satisfying ﬂl(D N Sl) = (D), (DN Sf) = Z(D), M (DN 82) =

ﬁl(D), and u(D N Sg) = u(D) for every D. Hence, S, and 52 satisfy (a) and

1
(b). Define S = Q\(S1 U 52). /4(81 U 52) = u(Sl) and y(Sl) = 0. Thus,
)u(S1 U 52) < 8. For a similar reason, Z(S1 U 52) < &§. Therefore, )u((S1 U
Sz)c) and ,Z((S1 U Sz)c) are at least 1 - &.

By the Radon-Nikodym theorem there exists a measurable function f

satisfying
M(D) = ID fd; for all events D € S.

Define B = {wf(w - 1> J8}), and

o]
]

(W f(w) - 1 < -Jé&}.

Observe that u(B) - u(B) > véu(B). Therefore, mu(B) < v&. For a similar
reason, ﬁ(g) < J&§. Defining Q =S - (B U B), we get ;(Q) >1 -8 - 2V8.
Moreover, for every event D € Q one gets }y(D)/ﬁ(D) - 1! < 2J8. Therefore,

if & + 298 < g, then u is e-close to u.

1Two measures, A%.xﬁ are singular (X A.) if there is a set A s.t.
D

for every event D, xl A) = xl(D) and ZTD ﬁ AC) = xz(D).
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(ii) If u is e-close to u, then there is a set Q s.t. u(Q), and Z(Q)
are greater than 1 - €, and moreover for every A € Q (1 - e)ﬁ(A) < u(A) <
(1 + €)u(A). Thus, for an event B, w(B) = u(B N Q) + m(B N QC) <
(1/(1 - €))u(BNQ) + € £ (1/(1 - €))u(B) + € and u(B) = (B N Q) +
M(B N QC) < (1 + e)ﬁ(B NQ) +e < (1 + e)ﬁ(B) + €. Combining these two

inequalities one gets the desired proof of (ii). //

Next we prove a strong converse to Theorem 1.

Theorem 2: If ﬁ merges to x4 in some information sequence then g << ﬁ.

Proof: Assuming that ﬁ merges to u in the information sequence {Qt},
suppose, contrary to the statement of the theorem, that for some event A,

M(A) > 0 and Z(A) = 0. Since A € V@t for every € > 0 there is t
k

arbitrarily large and B:,...,Bi € @t s.t. #(Uizl B; A A) < eu(A). Thus,
t
k
p(alu S BE) > (1 - e)u(A)/(1 + e)u(A) = (1 - €)/(1 +¢€) 21 - 2¢ and
k k
t t t t
/.L(Ul.=1 Bi) > (1 - €)u(A). Note that ,u(AIUi=1 Bi) =

k k

t t t t . t t, .
Zi=1 (AiBi)[y(Bi)/#(UBi)]. In particular, /.L(AIUi=1 Bi) is a convex

combination of A(A!BE), t=1,...,k Thus, the g-measure of all those B;

¢
s.t. A(A!BE) >1 - Je > 1/2 is at least (1 - 2Ve)u(U BE). Therefore, the

p-measure of these BE'S is at least (1 - 2Vve)(1 - e)u(A) 2 (1 - 3VE)ul(A).

By taking a fast converging sequence of €'s (e.g., 1/n4) one can find
an event C satisfying (i) u(C) > (1/2)u(A) and (ii) for every w € C there

are infinitely many t's s.t. y(A[Pt(w)) > 1/2. By our assumption,
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ﬁ(AlPt(w)) = 0. These contradict (ii) of Definition 2. //

Combining Theorem 2 with Theorem 1 we obtain

Corollary 1: For any two information sequences ? and P, ﬁ merges to g in P

iff ﬁ merges to x in P.

Remark 3: Corollary 1 shows that we can equivalently define merging by
requiring only that it occurs in some information sequence. Thus, ﬁ merges
to u vacuously, if there are no information sequences, or if it merges in

at least one information sequence.

The above observation shows, together with Lemma 2 below, that we have
the following alternative characterization of absolute continuity: the
probability measure g is absolutely continuous w.r.t. ﬁ iff ﬁ merges to u

in some information sequence.

Necessary and sufficient conditions for the existence of an
information sequence are given in the following lemma. The measure u is

said to be finitely atomic if there are finitely many atoms, A .,An, of

R

nos.t., zrl‘ m(A) = 1.

Lemma 2: There is an information sequence iff either (i) u << ﬁ, or (ii) ﬁ

is not finitely atomic.

Proof: Suppose first that there exists an information sequence. If (i)
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does not hold, then there is an event A s.t. u(A) > 0 and Z(A) = 0. If
{Qt} is an information sequence and {Tt} is the corresponding sequence of
fields then there is a sequence Bt € Tt (e + ;)(A Ja\ Bt) - 0. Thus, #(Bt) >
0 and, therefore, Z(Bt) > 0. Moreover, Z(Bt) = 0. Therefore, ; is not
finitely atomic.

To prove the converse direction assume first that (i) is satisfied.
It is clear that since B is countably generated, there is an information
sequence.

Suppose now that (i) is not satisfied but (ii) is. Thus, we may
assume that there exists a sequence of pairwise disjoint sequences of
events {Dn} s.t. Z(Dn) - 0.

A ,... of events

Since B is countably generated there is a sequence A1 5

which generates B. We will construct inductively an information sequence

Q).

Let {Ei} be a sequence of events in which each one of the Ai's appears
infinitely many times.

During the construction we will ensure that each one of the atoms of
{Qt} will contain infinitely many Di‘s. Therefore, the Z—probability of
each one of these atoms is positive. This will take care of (3) of
Definition 1.

Let Q0 be the trivial partition. Suppose that {Qi} for i £ t have
already been constructed with the following properties:

(P1) Qi+1 refines Qi' i=1,...,t -1,

(P2) For every 1 £ i € t, each atom of Qi contains infinitely many

D.'s.

J
(P3) There is a set, Ei. which is a union of atoms of Qi which
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satisfies u(Ei A Ei) <1/i, 1 < i <t.

The partition Qt+1 is constructed in two steps.

Step 1: Define Rt+1 to be the partition generated by the partition Qt

and the event Et+1‘
In Step 1, each atom of Qt is divided into at most two atoms of Rt+1'

Qt+1 is defined by changing the atoms of Rt+1' by altering the location of

some Dj's or parts of them, so that (P2) will hold for Qt+1'

Step 2: The construction is described for arbitrary atoms of Rt+1'

Suppose that Y and Z are atoms of R where Y U Z is an atom of Q

t+1° t’
Since in Y U Z there are infinitely many Dj's, one can (i) shift some of
Dj's or parts of them from Y to Z or from Z to Y and (ii) rename these
atoms as Y' and Z' so that both Y' and Z' will contain infinitely many
Dj's. Moreover, these changes can be arbitrarily small in terms of
ﬁ-probability (because Z(Dn) - 0). After doing the required changes for
all the atoms of Rt+1 we get the partition Qt+1'

By this construction (P1) and (P2) are satisfied also for i = t + 1.
(P3) is satisfied for i = t + 1 if the total probability of all the changes
in Step 2 of stage t + 1 do not exceed 1/(t + 1). Since each one of the
A's appears infinitely many times in the sequence {Ei} and due to (P3) it
follows that Aj € VQt for every j. Thus, F = VQt' Moreover, by the
construction, each one of the atoms of each Qt contains a lot of Dj's and

therefore its ﬁ—probability is positive. Hence, {Qt} is an information

sequence. //
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3. Weak Merging of Opinions

In this section we introduce and study weak merging of opinions. For

every partition Qt of @ we denote by o(?,) the field generated by @t'

Definition 3: Let ® = {@t} be an information sequence. We say that ﬁ

P-weakly merges to (P-w.m.t.) u if with u-probability 1, for every € > O

and & € IN there exist r{€,2,w) s.t. for every r > r(e,,w)

(7) #(AIP (@) ~ Z(AJPFWM < € for every A € o(P_ ).

r+9Q
Notice that (7). as opposed to (6), requires the inequality to hold

only if A belongs to a finite horizon future.

Remark 4: Since u(AIC)u{CiB) = u(A'B} whenever C € B. the previous
definition can be rewritten with 2 = 1. Also, given our interest in
discounting future values, the following equivalent characterization of
P-weak merging may be of interest: for every 0 < é < 1 with u-probability

1 for every € > 0 there exists r(g,d.w) s.t. for every r > r(e.8.w),

t-r. ~
thr $ .,u(At Pr(w)) ,u(At Pr(w)). < ¢ for every sequence of events
A A _,... with A_ |, € o{®_ _.}.
r r+1 r+j rrj

The following example shows that, unlike merging, weak merging is

indeed partition dependent.

Example: Suppose that the measure space Q is {0.1}°° and that u is the

probability measure induced on it by the repeated toss of a fair coin. Let
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ﬂ be the probability measure generated by the repeated toss of a biased
coin with parameter )\ chosen according to the uniform distribution on
[0,1].
If @t is the partition corresponding to the first t outcomes, then ;
{?t)—weakly merges to u. However, if @é is the partition corresponding to
the 22t first observations, then ﬂ does not {?é)—weakly merge to u. The

difficulty with {?{} is that looking one step ahead in 7{ requires looking

L steps into the "real" future with an exponentially increasing L.

We start with the following simple observation. Recall that Xt(w) =
~ . o _ c _ .
y(Pt(w))/y(Pt(w)). Define Yt 'Xt+1/xt 1] and denote Yt m1n{Yt.c} for

every positive number c.

Proposition 3:

a. If Xt+1/xt - 1 g-a.s., then ﬁ {@t}~weakly merges to u, and the
converse is true if the series of the conditional probabilities,

{z(Pt*l(w)?Pt(w)))t. is bounded away from zero u-a.s.

b. If ﬂ {?t)—w.m.t. M then Xt+1/xt converges in probability (w.r.t.
M) to 1.
c. ﬂ {@t)—weakly merges to u iff for every ¢ > O, Eﬂ(YE!@t) -0

M-a.s. as t goes to infinity.

Proof:

a. Since Xt+1/xt - 1 p-a.s. it follows that
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(#(pt+1(w))/y(Pt+1(w))/(#(Pt(w))/#(Pt(U)) =

= (P, (®) 1P (0))/R(P (W)IP (W) »1 ua.s.

We use now Lemma 1 to derive that there is a random variable t(e,w) s.t. if
t > t(e,w) then for x almost all

#(P L, (@) 1P ()

t+1

u{w'; Pt(w‘) = Pt(w) and | -1 > eIPt(w)} < €,

BP0 P (W)

which shows that u {@t}—w.m.t. M. As for the converse claim, if

;(Pt+1(w)!Pt(w)) are all bounded away from zero g a.s. then there exists a

constant ¢ s.t. whenever

(P, (W) IPL(0) = (P (W) [P (w)] < e,

t+1

the following holds:

P (@) [P (0)) /(P (@) [P (0)) - 1] < ce.

t+1
Thus, !xt+1(w)/xt(w) - 1 < ce. Therefore, if ﬁ {@t}—w.m.t. u then
X +1/Xt -1 u-a.s.

t
b. Fix an e > 0. If |u(AlIP (®)) - Z(AiPt(w))l < e

for every A in c(9t+1) then

;.L(Xt+1/xt -1> JelPt(w)) < 2Je

and
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M1 - Xt+1/xt > Je!Pt(w)) < 2Ve.
Therefore,

- i ol P
,U(IXt+1/Xt 11 > Je Pt(w)) < 4Je.

Define AT = {(w; if t 2 T then lp(AEPt(w)) - Z(AlPt(w)}l < € for every A in

c(@t+1)}.
As ; {Qt}—w.m.t. M, y(AT) - 1 as T » ©». Therefore, there is a T s.t.
t 2 T implies u(A,) > 1 - €. Thus, if t 2 T then u(IX, /X - 1! < ve) >
(1 - €)(1 - 4ve). Since € is arbitrary, it shows that Xt+1/xt converges in
probability (w.r.t. u) to 1.
c. Weak merging of Z to uw.r.t. {@t} is equivalent to saying that
for every € > O

,u(;Xt+1/Xt - 1! > e!Pt) - 0 u-a.s.

Since Yi is bounded it is equivalent to E(Yif@t) - 0 u-a.s. //
Theorem 3: ﬁ {@t}—w.m.t. M for every information sequence {@t} iff Z

merges to u.

Proof: If there is no information sequence the equivalence is obvious. So
we assume that there is an information sequence. According to Theorem 1,
if ﬂ does not merge to u then g is not absolutely continuous w.r.t. u.
Thus, there exists an A € B s.t. u(A) > 0 and Z(A) = 0. Now let {@t} be an
information sequence. Define Xt(w) as in Remark 1. {Xt} is Z martingale

and therefore converges ﬁ—a.s. to Xm. Since {@t} satisfies condition (3)
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of Definition 1 (see Shiryayev, p. 493, Th. 1):

M(B) = fp X du + u(B N (X = )

for every B € ¥.

Therefore, X, - ® on A. One can form a subsequence of Qt s.t. X

t t

m m
will converge fast to o in the sense that X /X - o on A. According to
_ m+1 m
Proposition 3b, u does not {Wt }-w.m.t. u. //
m

4. Strong Merging of Opinions

In this section we introduce and study a notion of strong merging.

Definition 4: Let {Qt} be an information sequence. Z {Wt}—strongly merges

to (s.m.t.) ﬁ if with probability one for every € > 0 there exists t(e,w)

s.t. if t > t(e,w) then
!y(AlPt(w))/Z(AIPt(w)) - 1} < € for every measurable A C Pt(w).

It is clear that if Z {?t}—s.m.t. M then u << Z. Let f = qM/dZ, the

Radon-Nikodym derivative, and denote2 for any {Qt}
Y (w) = sup{f(x)/f(y):x.y € P (w)}.

Theorem 4: x {Pt}—s.m.t. M Iff Yt(w) - 1 y-a.s.

2The supremum and the infimum in the sequel are modulo sets of measure O.
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Proof: Suppose first that Yt(w) - 1. Now, for every A C Pt(w)

inf{f(x); x € pt(w)}ﬁ(A) < u(A) < sup{f(x);x € pt(u)};(A).
Therefore,
(8) 1/Y, (W) € u(AIP (@))/A(AIP (w)) S Y (@).

However, Y (w) converges u-a.s. to 1. Hence, the middle term of (8)

t(
converges to 1 for every A C Pt(w).
If Yt(w) does not converge p-a.s. to 1, then there exist a set A and

€ > 0 satisfying: (i) u(A) > 0 and (ii) for every w € A and for infinitely

many t's

sup{f(x):x € P (@) }u(P (w))/u(P (@) > 1 + ¢
or

inf{f(x)ix € P (@) }E(P (w))/M(P (0) <1 - €.
Hence, for every w € A there are infinitely many t's and Bt c Pt(w) s.t.
(1) y(Bt) > 0 and (ii) either f(x)/y(Pt(w)) >t + €/2 or f(x)/y(Pt(w))

<1 - ¢/2 for every x € Bt' Therefore, either

M(BLIP (w)E(P (W) = [u(By)/u(P (w))Iu(P (@) < a(B)(1 - e/2)

or

[4(By)/u(P (W) (P (W) > u(B)(1 + €/2).
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Thus, either

(B P (w))/U(B [P (w)) > 1 + /2
or

(B 1P (@) /K(B P (©)) < 1 - €/2

for every w € A and for infinitely many t's. We conclude that ﬁ does not

{Tt}—s.m.t. M. //
Corollary 2: If Z {Pt}—s.m.t. M for every information sequence, then the

Radon Nikodym derivative d#/dﬁ is constant over atoms of Z. Moreover, for

every information sequence {?t} there is time t(w), s.t. t > t(w) implies
L ] = M .'
Ho1P (W) = (e1P ().

Corollary 3: If ﬁ {Pt}—s.m.t. M for every information sequence, and Z is

non-atomic. Then ﬁ = M.
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