~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Swinkels, Jeroen M.

Working Paper
Asymptotic Efficiency for Discriminatory Private Value
Auctions

Discussion Paper, No. 1173

Provided in Cooperation with:

Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Swinkels, Jeroen M. (1996) : Asymptotic Efficiency for Discriminatory Private Value
Auctions, Discussion Paper, No. 1173, Northwestern University, Kellogg School of Management,
Center for Mathematical Studies in Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/221529

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/221529
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Discussion Paper No. 1173

ASYMPTOTIC EFFICIENCY FOR
DISCRIMINATORY PRIVATE VALUE AUCTIONS

by
Jeroen M. Swinkels”

First Draft: September, 1994
This Draft: October, 1996

*

Department of Managerial Econemics and Decision Sciences, | L Kellogg Graduate School of
Management Northwestern University, 2001 Sheridan Road, Evanston, lThnois 60208, e-mail:
swinkels@merle.acns.nwua.edu.
[ thank Eddie Dekel, Elchanan Ben-Porath, Juseph Harrington, Peter Klibanoff, Roger Myerson, and

Bob Weber for helpful comments and discussions and Tianxiang Ye for helpful comments and assistance in
ﬂreparing the manuscript. | alsa thank seminar audiences at the University of lowa, Johns Hopkins

niversity, the University of Wisconsin, Northwestern University, the University of British Columbia and
the Stony Brook Summer Game Theory workshop. Financial support from the NSF is gratefully
acknowledged.



ABSTRACT

We consider discriminatory auctions for multiple identical units of & good. Flayers
have private values, possibly for multiple units. None of the usual assumptions about
symmetry of plavers' distributions over values or of their equilibrium play are made. Because
of this. equilibria will typically involve inefficiency: objects may not end up in the hands of
those who value them most. We show that, none the less. such auctions become arbitrarily
close to etficient as the number of players. and possibly the number of objects. grows large.

Keywords: Auctions. Discriminatory Auction. First Price Auction. Asymmetry, Efficiency.
Asymptotic Efficiency. Large Auctions.
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1. INTRODUCTION

Consider the allocation of a number of identical units of some good by a generalized first price or
discriminatory auction. This 1s one in which each player submits one or more bids simultaneously. the &
highest bids win an object. and winning bidders pay the amount of their winning bid(s).If values are private,
if cach potential purchaser desires at most one object, 1if valuations are drawn from distributions that are
svmmetric across players. and if equilibrium maps from values to bids are also symmetric across players. then
the auction will be efficient in the sense that whatever the actual realization of values. in equilibrium objects
g0 to the plavers who desire them most (see Milgrom and Weber (1982) and Weber (1983)).

The syminetry assumptions are entirely crucial 1o this result. To begin. consider an auction for a single
unit with two potential buvers. plavers 1 and 2. Valuations are drawn from distributions that are continuous
but asymmetric across plavers. In this sctting. it simply cannet be an equilibrium for players 1 and 2 to use the
same strictly increasing map £() from values to bids, and so equilibrium must involve a positive probability
of one plaver winning when the other has the higher valuation.' Several examples of auctions with these
characteristics are provided by Marshall et al (1994). Existence results for such auctions are provided by
Maskin and Riley (19935). A characterization of equilibrium for single unit first price auctions with asymmetric
valuations is given by Lebrun (1994).

With multiple unit demands, problems become even more severe. Even if the distribution from which
plaver 1's set of values is drawn is the same as that for plaver 2. the presence of multiple unit demands
introduces a form of endogenous asymmetry: consider an auction in which 2 objects are available. and each
of two plavers has value for 2 objects. Then. even if valuations are determined svimmetrically, the optimization
problems faced by player 1 in determining his highest and second highest bids are inherently different, since
plaver I's highest bid wins anytime that it is greater than plaver 2's second highest bid. while player 1's second
highest bid wins only when it is greater than player 2% highest bid. This idea is explored by Katzman {1993)
and Ausubel and Cramtom (1995).

So. ance one drops the standard symmeetry and single unit demand assumptions. inefficiency becomes
essentially unavoidable in discrininatory auctions. In this paper. we examine the extent to which this
inefficiency disappears as the auction becomes “large.” We show that as the number of players grows large.
discriminatory auctions become asymptotically efficient. This holds regardless of whether or not supply also
grows large. And since in the lunit, objects are allocated etficiently, an asymptotic version of the revenue
cquivalence result holds: revenue per unit is in expectation of the value of the object to the highest unfilled

unit of demand.

“This is fairly immediate from consideration of the first order conditions, See Maskin and Riley (1995} for a proof.
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Finally. despite the complexities of equilibria in finite asvmmetnic auctions, limiting behavior in this
setting takes a very simple form: bidders are essentially price takers at a price that converges to the competitive
equihbrium price in a market with supply curve vertical at the number of objects available and demand curve
given by the expecred number of objects bidders would want at any given price in a price taking environment.

For the present paper. we look at settings in which, as the number of players and perhaps objects
grows, there 1s in the limit no uncertainty about aggregate demand and supply. Swinkels (1996a) considers
discriminatory auctions where uncertainty about demand or supply persists 1n the limit. Swinkels (1996b)
considers asymptotic efficiency for uniform price auctions.”

It should be made clear what we do not do. We do not solve for optimal mechanisms, either from a
social surplus or seller revenue point of view {on the later problem. see. for example. Maskin and Riley
{1989)). Rather we consider the efficiency properties of a mechanism that we actually see. Nor do we provide
much msight into the form of equilibria in auctions that are not large or into the conditions under which
equilibria exist for these auctions.

We begin in Section 2 by laying cut the auction framework. Section 3 discusses the precise meaning
of asymptotic efficieney. "Asymptotic efficiency”™ will mean that as the auction becomes large. almost all
feasible surplus will actually be realized. The key question is whether the computation should be made in an
ex-ante or ex-post way. We show by example that neither version implies the other. and so derive results for
both versions. Section 4 states and proves the main result. Section 5 concludes with a discussion of the issue

of rates of convergence.
2. THE AUCTION FRAMEWORK
We begin by laying cut the auction framework. Because we are interested in limiting results. we

consider a sequence {A "}, of auctions. The 7™ auction. A", is detined by:

Suppiyv: There are £ tdentical indivisible objects available for sale.

Plavers: There are n potential buyers, labeled 1.....n. The seller is not a strategic actor.
Demands: Each playver i = 1,....n. can desire up to m objects, where m s 4 positive integer that does

not depend on s, Player /s demand in A" is given by an sr- vector v = (V] m). with the interpretation
that +*(h) is the marginal value of the 7 object to player i. so that player i places dollar value X7_ v*(h1) on

obtaining H objects. The vector v is drawn according to a probability measure 7 on E”. We make four

“Uniform price (highest rejected bid) auctions are efficient in the single unit demand case, but cease to be when
plavers can desire more than one object. On this. see Engelbrecht-Wiggans and Kahn (1996). Katzman (1993} and
Swinkels (1996b).



assumptions on G

(1) Diminishing marginal uiiliny: GHY) = 1, where Y is the set of all x £ " such that x, = x,,, for all
h=1...m 1

(2) Independent values across plavers: G, i = 1.2.....n are independent. Of course, while values are
independent across players. the various values of any given plaver are correlated.

(3) Bounded values: There is v < ~ such that G([0.777y = | for all 7 and ». That is. all values arc at
feast O and at most v

(4 Atomlessness: G puts zero weight on lower dimensional subsets of £ except possibly for subsets
characterized by vith) = 0 for /1 = H for some H > 0. That is, for anv A = (. it can be a positive probability
event that ¢ places no value on more than A objects.

For i = 1....m, define G*(/1)(.) as the cumulative for i's A% value in auction environment . Note that
by (4), G'fJ1) is atomless except possibly at 0. Let g*(f1)(.) be the density for G*(h)(.) at points other than 0"

Fach player is allowed to submit up to s bids. To simplify notation. we assume that players submit
exactly m bids. but are able o freely dispose of excess objects if they should happen to win more objects than
they desire (free disposal also lets us model demand as possibly having atoms at O rather than negative values),
Given a set of m bids for playver i. let 5irh) be i's i highest bid /= 1.2....m. Players submit their bids
simultancously. One object 1s awarded to cach plaver for cach bid she made that s unambiguously among the
& highest.” In the event that for some b, there are less than &” bids above b, but more than & bids of & or more,
the following tie breaking procedure is used. First allocate one object to cach bid above ». Take one of the
remaining objects. Find the set of players for whom the highest unfilled bid is . and allocate the object with
equal probability to cach such playver. Repeat this procedure until the objects are gone.”

If player {15 awarded /1 objects. then she payvs the sum of her /i highest bids.

Strategies: Strategies are measurable mappings from valuation vectors o sets of i bids (or possibly
to mixtures over scts of s bids).

Puvoffs: Players are risk neutral. so that the pavoff in any given realization is just the value of objects

‘Since G s non-decreasing. it s differentiable almost evervwhere. Smee (718 continwous except at 0,

Gy Gy - fl G (vdv. Thus. the density function of G exists.
0

*So i particular. we are ruling out reserve prices.

"We specify the tie breaking procedure in this way o avoid the following problem: assume a single object is for sale, but
for some reason, players can submn more than one bid. If the tie breaking rule paid attention 1o how many bids ot # a
plaver had made. then a player who enly wanted | object might nene the less submit several bids of & to improve her
chances of being the one to win the tic.



received less payments made, and the payoff from any given bid setis just the expectation of this amount. The
seller is risk neutral. and places no value on the objects, so that his (expected) payoft 1s just the {expectation
of the} sum of the pavments received.

Equilibrivm: We consider Nash equilibria. To simplify the exposition. we require that each player
submit only payott maximizing bid sets for cach possible realization of values (ex-ante optimality requires
only that bid sets are almost always optimal for almost all realizations of values). Note that in a discriminatory
price auction, there exist strategy profiles to which there is no best response. For example. if there is one object
available and all plavers except ¢/ bid 4 with probability 1. then /s best bid for any v, > 4 1s the “smallest”
number greater than 4. So part of the definition of equilibrium is the condition that best responses exist,

For pr < [0.7]. define R p) as the random variable giving the number of elements of v that are at least
p. Thatis, RY(py=H < [0.1..an}. where v7 (h) = pfor b < Hand v*(1) < p for i > H. Define Riip) = 1%
KRp). so that for each p. R'(p) gives the number of valuations that are at least p. R'(.) can be interpreted as ¢'s
demand curve. Because each G(/0(0) is atomless except possibly at 0, E(R'()) is non-increasing. continuous
except possibly at 0. and satisfies E(R"(Op = and ErR"(7)= 0.

For b = 0. define B7(#) as the random variable giving the number of bids above & given A" and an
associated equilibrium. Define BY (b). B" (hyand B'(b} as the number of bids above / by playvers in {1. 2,
{20 e WM and {4 respectively. where M 1s some subset of the players in A"

Order statistics are inherently untidy objects: in the svmmetric case. one must deal with the
combinatoric term representing all the different subsets of the player valvations or bids that might be above
a particular vatue, In the asymmetric case. cach different set of player valuations or bids has a different
probability of being above a particular value. In addition, there are dependencies across the valuations or bids
of any given player. The nice feature of R” and B” is that they are the sum of many independent random
variables, and so laws of large numbers apply to them. This will allow us to derive the limiting behavior of the

relevant order statistics straightforwardly.

3. WHAT IS EFFICIENCY ?

We wish to prove results to the effect that equilibria of discriminatory auctions are “efficient”™ in the
limit. Qur first task is to define efficiency. Consider an equilibrium of A", Then. an aureonte of the auction
specifies a realization v, of the players” valuation vectors and an allocation of the k" objects among the
plavers. We evaluate outcomes according to the sum of the utihities across buvers and the seller. Define the

actual surplus in a given outcome as



. , " 4 H, ’
"R = le VD v,

where H, is the number of objects 7 wins in this outcome (if H, = 0. Z,, Cv Uy is taken 1o be zero also).

Define the feasible surplus as

where K, is the number of objects for which /s value is among the & highest in this realization. Note that
pavments from buyers to sellers do not enter either of these calculations, since such payments are purely
transfers.”

For each n. choose an equilibrium of A", One efficiency criterion might then take the form
E(f™)y - E(a™ - 0.

where, for cach i, expectations are taken with respect to the distributions generated by auction A® along with
the selected equilibrium of A™. However, this seems impossibly demanding: even though the number of objects
for sale may get arbitrunly farge. the absolute loss must become arbitranly small. To have any hope of positive
results, we need to somehow compare losses to the “size™ of the auction. One possibility would be to calculate
losses per person. However, one tvpe of auction we would like to understand is auctions in which demand s
targe relative to supply. as. for example. for a unique painting. As the number of potential buyers for the
painting grows large. then (as fong as there is an upper bound on the value of the painting). the expected loss
on a per person basis gets small even if the painting is simply thrown away. So. we will instead compare losses
to feasible surplus.

Once one decides to compare losses to feasible surplus, there is some ambiguity about how to proceed.
Once possibility is to require

E(e ™} .

_ 1

E(f")

"Se. the kev efficieney question is “do the objects end up with the right buvers.” not “are the right number ol objeets
sold.” In Rustichini et al.{ 1994y's work on double auctions the {irst question is ruled out by fiat (in particular. by u
symmetry assumption on buyers” and sellers’ playy. and the focus 1s on the second question. In our world, the second
question simply does not arise because sellers place no value on the objects. and because reserve prices are ruled out.
We are currently working on the extension of our techniques to double auctions with asvmmetric and muliple unin
demands aned supplies. In that woerkd, both issues are relevant. For a further discussion of the connections between this
[ine of rescarch and Rustiching et ab's work, see Swinkels (1996h).



5o that the ratio of expected actual surplus to expected feasible surplus grows to 1 as #2 becomes large.” We

formalize this with

DEFINITION 12 Fix a sequence (A"} of discriminatory auctions. We say that the discriminatory mechanism is
asymproticallv ex-ante efficient along {A"} if for cach £ > 0, there i1s #* such that for n > n* and any

equilibrium of A™,

Eta ™)
E(-f H)

> | £,

where expectations are taken with respect to the distribution over outcomes generated by A” and the given

cquilibrium.

The “ex-ante™ is to emphasize that the expected actual surplus is compared to the ex  ante expected
feasible surplus. In contrast. consider the requirement

u "

El —| ~ 1.
f‘”
so that the expectation of the ratio of actual surplus to feasible surplus in any given outcome grows to | as n

becomes large. We formalize this with

DEFINITION 2: Fix a sequence {A"} of auctions. We say that the discriminatory mechanism is asvmprotically

ex-post efficient along {A"} it for each € > 0. there is n* such that for # > #* and any equilibrium of A™,

L

4]

f

E

where expectations are taken with respect to the distribution over outcomes generated by auction A™ and the

given equilibrium.

The “ex-post™ is to emphasize that losses are compared to the ¢x - post feasible surplus. Note that our

definitions are demanding in that they are required to hold no matter what equilibria are chosen for the auctions

“Under the assumptions we make about valuations. comparing losses 1o feasible surplus and o the number of ohjects
available are equivalent. That 1s. one could equivalently require (E(f-Eta"n/&" - 0.



in the sequence.

It is not clear which of these requirements 1s the “right™ one. The first says that most of the potential
gains are realized by the discriminatory auction mechanism. so that ex- ante there 1s little incentive to build
a better mechanism. The second says that after the fact. it is rare to find that most of the potential gains have
not been exploited. i.e.. most of time. most of the feasible surplus 1s realized.

To see the distinction, consider the scenario in Fig. 1. In each A", there are two events ¢, and ¢., where
as i grows large. ¢, becomes increasingly unlikely. but none the less accounts for a growing fraction of ex ante

tfeasible surplus. Each A" is assumed to have two equitibria. The columns headed «)(e) and «3(¢} indicate the

actual surplus achieved by the two equilibria as a function of e.

AP
Pr(e) £(e) a) (e) aj (e)
€, (n - 1)/n 1 1 0
events
€, 1/n n? 0 n?
Fig. 1
Now. for equilibrium 1,
‘ no- . lO
[*_—(a.“) _ n n no- _ o,
E(f) ol [ n- 1 -mn
n n
while
o e AUNLE R
T n n

$o that with this equilibrium the discriminatory mechanism 15 ex-ante disastrous but ex- post efficient.

Converscely. for equilibrium 2,



i AN ! 0 - ln: .
Eia ™ _ " i _ "n- o
E{f ™) (11 - l]] ’l”; -1 - n-

n I

while

so that ex-ante. most gains are realized. but ex- post there is almost always reason to regret the outcome.

We take both ex ante and ex-post efficiency as important. and will state our results for both notions.
However. most of our arguments will hinge on players’ incentives, and these are innately an ex-ante
phenomenon: players bid before they know the realization of the auction. So. our primary strategy will be 1o
explore conditions on the distribution of realizations of the auction environment {i.¢.. of demand) such that
ex ante efficiency implies ex - post efficiency. This essentially involves ruling out situations like that in Fig.
1, where as n grows, feasible surplus in event ¢, becomes arbitranily small compared to expected feasible
surplus.

Formally. we use:

CoxpITioN 3.1: For all € > 0. there is 8 > 0 and #% such that for all n > n*

Prf" > SE(f'y>1 - ¢.

Condition 3.1 will turn out to be quite weak, and will be implied by conditions already needed for

other parts of the analysis.
Leanta 3.1: Under Condition 3.1, ex-ante efficiency implies ex - post cfficiency.
ProOOF: See Appendix.
When a mechanism is asymptotically both ex- post and ex-ante efficient along a sequence (A"}, then
for large n most of the possible swrplus is realized most of the time (ex-post efficiency) and any tailures o

realize surplus are small compared to the expected surplus before the realization of the auction (ex-ante

cfticiencyy.



3. ASYMPTOTIC EFFICIENCY OF DISCRIMINATORY AUCTIONS

For auctions of the form considered here, laws of large numbers are the driving force. We will show
that for each A", there is a “price™ p* with the property that as n grows large. bids above p* win almost surely.
and bids below p* win almost never. Further. p* will be driven to the market clearing price. and so
discriminatory auctions without aggregate uncertiainty are asymptotically efficient.

N
It is a convenient normalization to consider demand and supply on a per capita basis. Let 7= — be
H
the per capita supply. To avoid trivial cases, we assume #* < m. We have allowed for the possibility that a player
may simply have no use for more than seme number of objects, However, 1t remains possible that if a plaver
has use for an object, there 15 some strictly pesitive lower bound on his valuation. Let v be min_,, , min
supp( g7, where for notational convenience. we assume v is independent of i, That 18, v 1s the lower bound
on values condittonal on values not being 0.

Consider a competitive market with demand at price p given by E(R*(p))/n and with supply vertical

a7~ Let p* be the price at which this market clears. If E(R"(v1/n > ¢ then p" 1s determined by E(RY{pi)n =

. while if E{R" (v )/ < /" then p* =0, See Fig. 2,

Figure 2 about here.

We shall show that the equilibrium price in the auction converges to p” in probability. The key to this
will be that as i grows large. the distribution for the & order statistic on values will essentially collapse to a
point mass at 7. That is, it will be exceedingly unlikely that the £ value is much different than p*. The reason
tor this 1s that R"{(77) 15 the sum of many independent random variables. So. it is unlikely that R*(p) will be very
far away from ErR"(p)). In terms of Fig. 2. this is the statement that the actual demand curve R%(p)/n in any
realization 1s unlikely to be very far to the left or the tight of the expected demand curve E(R'(p)Vi. Of course,
this does not imply that vertical distances between E(R*(p))Vn and R"(pW/n cannot be large. and so, given the
vertical supply curve, this does not imply that the market clearing prices for the expected and actual demand
curves necessarily converge. However. if the expected demand curve E(R(p))/1n 1s bounded away from vertical
in the interval (v, V). then being close in horizontal distance will also imply being close in vertical distance.

An assumption that achieves this 1s

CoxpITioN 4.1 There is a continuous function 22 [y, v7] - = such that Zfv) > 0 7 v < (v, v and such that
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"

g, (hix)

T N

= oz(x) Jac (vl vyand forall o
H

The following lemma makes precise the sense in which this condition “bounds the expected demand
curve away from vertical™
Leanva 41 Under Condition 4.1, there is M(.) continuous, increasing, and with M(x) > 0 for all x > 0. such

that for all w. v < [v. v ], where v » w,

E(R"(wh  E(R™(vh

n

= M -y,

PROOE: See Appendix.

So. the expected number of valuations that fall in any interval of (v, v) grows as n. Given Lemma 4.1,
it is clear that 7 is always uniquely defined. Using Lemma 4.1, we are able to show that the market clearing
price in a competitive market with demand R°(.)/n and supply #* converges in probability to p”. The kev to our
results is to show that in the diseriminatory auction. the equilibrium price on almeost all units sold must also

converge 10 2" Formally. we show:

THEOREM -4.1: Consider any sequence of discriminatory auctions {A") such that Condition -h1 is satisfied. and
any associated sequence of equilibria. The discriminatory mechanism is asymptotically both ex- post and
ex-ante efficient along {A"}. The selling price on almost all units converges to p", where p” 15 the market

clearing price in a competitive market with demand E(R™())n and supply fixed at 7.

REMARK : Since the auction is asvimptotically efficient, a form of revenue equivalence also holds in the limit.
Note in particular that we will show that the distribution for the &” + 1" order statistic on values collapses to
a point at p* as # goes to infinity (as does the distribution for the £ order statistic on values). Since selling
price also converges to pf, expected revenues are asymptotically Ap”. So. on a per unit basis. revenues
converge to the expected value of an object to the highest unfilled unit of demand. which is exactly what
revenue equivalence predicts,

We develop the proof through a sequence of lemmas. Between lemmas. we motivate and provide

intuition for the results.



Step 1 Preliminary lenunas
We begin with two asctul implications of Conditien 4.1, First. under Condition 4.1, asymptotic

cx-ante efficiency implics asymptotic ex- post efficiency.

LEaiata 4.2 Assume that Condition 4.1 1s satistied. Then. Condition 3.1 is satisfied. and so asymptotic ex- ante

cfficiency tmplies asymptotic ex post etficiency.
PrOOI: See Appendix.
Second. under Condition 4.1, total feasible surplus is bounded below on a per unit basis.
LeEaista 4.3: There is ¢ > 0 such that for all n. E(f) = k%
PROOF: Sec Appendix.

These preliminaries out of the way. we now make two distinet chains of argument to establish the
result. The first establishes o bound on the efficiency loss that becomes effective when 7 is small. The second
establishes a bound that becomes arbitrarily tight as sz - ~ for any given #7. but for each n is loose when /7 is

very small. Combining the two bounds will establish the general result.

Step 2: The efficiencey bound for the case when ¥ iy small:

We have suggested that the distribution for the A" order statistic on values will cotlapse to p". So. if
the lowest winning bid 15 anything less thun p”. then there is almost sure to be unfilled demand for units having
value greater than the selling price. At first blush. it would thus seem that a simple Bertrand style argument
would show that it is unlikely that the lowest winning bid will be much less than p®. However, while this
argument cun be established in the case where individuals desire only a single unit. 1t 1s considerably harder
when individuals desire more than one unit (this 1s discussed turther in the Remark following Lemma 4.5).
The key to the case where # 15 small 1 that just plavers” demands for their highest valuation units will be
cnough to drive price close to v

For po|0.07]. Let fé'j(p] be 1 if /s highest value i poor greater and 0. otherwise. Define

n

I\;"(]J) Z [\;(”(p_). So. fé”(p) gives the number of players in A" whose fighest value is p or greater. Then.
[

LEANA d.4: For each £ > 0. there 18 n* < = and r* > 0 such that for any auction environment A” with 11 > n*



and < ¥,

Proo1: By defimtion of z(x),

ER' &) | f Yoy,

n

Now. whenever Ri(x) z 1. R7(x) = 1. Since R*(x) = m. it follows that

E(R"(F - &)

I

= gle).

where g(g) = —]—j\ s(x)dx.
mti o«

Now,

Pr{R (v - e) - E(R (v - g PR E(R (v - S)))

. PI{!R (v &g ER(T -en

as long as < gle),
RBut. the varance of RV - £)/n 1s at most 1/n since R°(v - g) is the sum of n independent random

variables cach having variance at most 1. So, by Chebyshev's inequality. the last expression is at most
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Since this ix increasing in # and for any 7 < ¢(€) converges to 0 in #. the claimed #* and n# exist, and we are

done. [ |

LEMMA L5 (THE FIRST BOUNDY: Let £ > 0. Then. there 1s n* < = and r* > 0 such that any A" with n > n¥ and

r<r

Eta ")
E(f")

tfor anyv equilibrium of the discriminatory mechanism,

PrROOE: Let o = v /(T + 2. Appealing to Lemma 3.4, choose n* and #* such that whenever n > n* and r* < r*

Pr¢ ié"(f' — )y« Ky < e /2mv

Choose n > n* such that < £ and tix an equilibrium of the discriminatory mechanism for A" Let w” be the
random variable giving the lowest winning bid given this equilibrium. Assume that Prin” < v - 2a) > a. We
will show that this leads to a contradiction. Now, because values and bids are independent across players. any
given player can win u single object with probability at least & by submitting a single bid of v - 2 and m-1]
bids of . So. if 7 has highest value v - @ her expected surplus is at least o, Define 4" as the infimum over bids
that are optimal highest bids for some plaver 7 with highest value v - & or greater. Pick some 1 for whom £#71s
the infimum over optimal highest bids when ¢ has value v - o or greater. Assume first that there is a positive
probability of a bid of /" by plavers other than ¢ when their value is v - a or greater. Then. since there are
positive surplus bids avatlable with value v - « or greater. b must win with positive probability and b’ < ¥ -
e Sinee plavers with value v - a or greater always bid at least £ and since there is a positive probabihity that
more than & playvers have value v @ or greater. ' wins with probability less than 1. But, then a bid just aboyve
£ wins strictly more often than does £ at eftectively the same cost. Since £ < v a. this 1s a strictly better bid.,
contradicting that there is a positive probability of a bid of &' by plavers other than { when their value is v -
o or greater. So, by submitting a bid set with highest bid #°, # wins only if at most & 1 players other than
i have bid above v - a. By detinition of £°, a necessary condition for this to happen is that at most " - 1 of the
plavers other than i have highest value v - @ or greater. And. when this happens. at most A" of all the bidders
have highest value ¥ - & or greater, i.e., R'(7 - a) < k. By choice of n* and r*, P RYF - @) < K < @/ 2mr
So. 1 - arf2myv of the time this player wins no objects and carns 0 and. the remaining e’/2mv of the time, her

surplus is at most mv (since the best that can happen i< that m objects are won for free). Thus. 1 has expected
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surplus at most /2 with this bid set, and so does worse with this bid set than by submitting a single bid of ¥
- 2eand all other bids 0. Since £ was chosen as an optimal highest bid. this is a contradiction. and so it must
be that Priw” > v - 2a) > 1 - . But, then expected seller surplus is at least &7 - 2gj{1 - a) > KV -aiv +

2y) = &% - 7 g). Since expected buyer surplus is non-negative.

REMARK: One might be tempted to try to generalize this argument to the case # large. It is easy 1o show that
buvers get surplus at least equal to approximately what they would have earned if they could buy freely at price
p". The ditficulty is in establishing that seller revenue converges to A"p". Assume that Priw” < p"- 2g) > . We
cannot conclude that if /'s 4% bid is above p* e, it will win with probability € . because realizations in which
p' - 2 wins might be those in which plaver s first 4 bids are particularly low.

So. we might instead attempt to show that the probability that the probability of more than m winning
bids being less that p* - 2¢ is small. Then. we could conclude that no matter how many bids / makes above
7= 2e . they all have at least an € chance of winning, However, the problem here is deeper: even if raising
onc's /" bid from b to p" - 2& does raise the probability of that bid winning from eftectively 0 to £ or more.
this may not raise one's surplus. As an example, for some 7 and #. let #2y = b and H71) = b’ for some 17 where
Vi2) = pt- e assume that A wins with probability close to 0, and assume that b < "< p” - 2e . Then, replacing
hby p' - 2eis equivalent to radsing A2 trom b to b and (1) from ' 1o p* - 2& . The first change needs not
significantly increase the probability of winning a second object, since b" < p” - 2e. The second change may
significantly lower surplus, because it may have been the case that £ was atready often winning one object. and
s0 the primary effect of raising #°(1) from £ to p" - 215 to raise the amount paid in cases where one was
already winning. Even if one raises both bids to p* -~ 2e, the gain from the increase in the probability of
winning a second object can be outweighed by the loss in paving more for the {irst in cases where one would
have won the first anyway.

The preceding analysis did not run into this problem because when * becomes small, even players'
largest valuations are encugh to drive the “market clearing price” to v. And. the problem we have just

dexcribed does not arise for ones highest bid.

To deal with the case /' large, we need to wirn to a different line of proot.

Step 3: The efficiency bound for the case when v s not small:
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When ' does not become small. we cannot appeal just to players” highest valuations. However, if #
becomes big and ' does not become smail. then & becomes very large. This allows us to apply large numbers
arguments to the number of bids above key thresholds.

Consider

g' =k Y

The key to this rather odd looking guantity 1s that as &" grows large. ¢" and A" become far apart in absolute
terms. but arbitrarily close in proportionale terms.

Recall that B%(k) 1s the random variable giving the number of bids above b in A", Define ¢ by

W =min{h > O1EB"(h}) = 4" }."

So. in expectation. there are ¢" bids at or above . The kev to cur argument is to show that because B(¢") 18
the sum of # independent random variables, and because &% grows roughly as n, the probability that more than
A" bids are greater than ¢ goes to €. Using this. we will establish (Lemma 4.6 befow) that in the limit. expected
buver surplus is at least as great as their consumer surplus in a market with price ¢ and demand curve E(R* ().

or (on a per capita basis) the shaded region in Fig. 3.

Figure 3 about here.

On the other hand. we will show that it is alse unlikely that the number of bids greater than or equal to ¢ is
much tess than ¢, And ¢/&" - 1 by construction. So we can establish (Lemma 1.7 below) that expected seller
surplus converges to at least X"¢7, or to ¥ on a per capita basis. But E(f) 15 of course simply the area under
the demand curve E(R"(.) for quantities up to & It ¢ is in the himit either above or below p®, then our limiting
bounds add to mere than /°. a contradiction. This is tllustrated in Fig. 4. So. in the limit. " must converge to
p.oand Ew? converges to 1.

E(f"

"Note that EfB*C.) is non-increasing, continuous from the right and satisties Ef87(v)) = 0. and therefore ¢ 1s well
defined. We define @7 in the way we do rather than simply by ErB (@) = ¢” 10 account for the possibility of atoms in
the distribution of bids.
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Figure 4 about here.

Finally, to show the price converges to p” in probability. note that we have already argued that it is in the limit
very unlikely for the seller to receive less than ¢ on any given unit. Since buyer surplus is converging to her
consumer surplus in a market with price ¢, it must thus also be very unlikely that any given unit sells for more
than ¢

Now we tormalize this argument:

LEMMA 4.6 For ecach A" cach player /s expected surplus in A" when he has value vector 1v7(0) 1s at least
play p P :

(b= ™y 25 Edmaxion - g ). (1)
where " = L
(r u)l‘_” 2

PrROOF: Consider any plaver 7, and consider his probability of winning when he makes m bids of ¢ or more
given cquilibrium play by plavers other than 7. For any realization of the auction such that the equilibrium
number of bids above " by all players would have been A" - m or less, then even when player i deviates. at
most &7 bids will be above . and so all m of plaver i’ bids will be winners. That is. all m bids of " win with
probability at least PriB*(y#) < k* - m). Subtracting ¢" {from both sides. and using that ¢" = &" - (k)" — m 2

ELB7 (). we see that

PI‘([} u( l.p”) < (A -‘r) ’”)

> PdB Y - BB < (kM)

var(B (¢ ™)

((A N ) (1.)2

> PdB gy EB| < k) 2 1 -

where the last inequality is Chebyshey's,
But. B ("} is the sum of # independent random variables cach of which has variance at less than n.

and so var(B“(¢'h) < nar’. Thus the right hand side of (2) is at least



5
HIN T m

(('r nn)!)): (r ri)l,ln 2

So. consider the strategy for player / of bidding ¢ for each /i such that virh) = ¢ and O for all other 1. We
have established that bids of ¢ win at least 1 - 1" of the time. Since this strategy never results in an ex- post

loss. it thus makes at least the ameunt i (11, |

LEyyA 47 Atleast | o of the time. at least ¢* - A"} bids are ¢ or greater. The expected revenue of the

seller is thus at least (1 - @ @rg” - (A")°)

ProOOE: If ¢ = 0. the result 1s obvious. Assume ¢ > 0. Then. for anv & < ¢, E(B"th}) > ¢". So
PAB "y < ¢ (A"
< PB(hy < BB - k"))

< PlB Y - EB MY > (k7))

. varl B by
(l}\ n) (1):

As before, B8%b) is the sum of # independent random variables having variance less than #°. So at least | -
u” of the time. at least ¢*  (K")" bids are above b, As this is true for all b < ¢, at least 1 - «" of the time. at
least ¢ - (K™ bids are ¢ or greater. Expected seller surpluy is thuy at least

(1 g (AN u

We are now ready to give an efficiency bound for the cuse in which 7 is not small.

LEnata 4.8 (THE SECOND Bousny: For any n.

1~
el

Ela ) > (1 ”u) 1 - ' _ vin . 13J

E.(f”) ““_ H)_JI: ar ”C
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where 1" = -.and ¢'> O is chosen by Lemma .3 such that for all n, E(f) » &°(

(r'y-n-

PrOOE: We essentially add up the expected surplus of the buyer and the sellers. and show that it converges to
an arbitrarily large fraction of expected feasible surplus,

By Lemma .6, ex-ante expected surplus for player 7 is at least

(1 o X Etmax(thy @ 0n=(1 - u™ Y, /‘\ (x - PMg Uniody.
Sy

So. the sum across players of ¢x-ante surplus is at least

= (0w ”)( [rowe - 30 20 g inidy

g
* /;1 RN AD D A &”(1’1)(.{){1’.\')
= ”)(,/1;:‘ x — " Z:rl ’;1 g Un(dx
B jil v Z:il Z}ZH g inde - k“w”)_
using that

f‘ SN et untody ERAp = k.
.

Adding seller surplus and using Lemma 4.7,

Eta"y > (1 - u ”}(f’"' v - ¢ Z: 1 Z:ZII g uUn(dy (4}
v

+ f‘ DI Fg Undy - lll”(Z(k")h - m)).
p

Now

ff" oo Y N gltody = 0
"
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alwavs, since for all v in the range of integration. v ¢ has the same sign as p” - . So
Era®™y 2 (1 - u ")(ff)“ X Z" | wg Untody - 111”(2(!\'”)"‘ - m))
Using that ¢ < v,
Eta™y = (1w ”)(j;‘: ¥ Z” . Vg Unidy - T{E(k e m))

Now. E{/"} is given by

{" X [Z” . Z\ Priv is one of &7 highest values when it is /s h * highest) gf"lh)l.wlch

I3 %7 Provis one of &7 highest values when it is /s &% highesty ¢ "t

:

=N S
i

The bracketed term integrates to 1. But.

" {Z’f‘ RGP
Sl T

by the definition of p*. And. for any x.
Y3 Provis one of &7 highest values when it is % &7 highest) g i
= Z” , le g thin
and so the density function bracketed in (6) 15 stochastically dominated by that in (7). So.
E{(f = f\, X Z:J | Z;Zi g Unod.
.

Combining (5) and (8).

Eia") ( B \“{2(1\'”)“ ~ m)

Eif" E(f7)

jt

Iy

=)

(6)



But. by choice of {, E(f") » &*¢. and therctore.

Eta ™ TR \'(E(k”)'h - m)
E(f“) L HC
il - w1 \_{(Zm‘ mye m)
nr'l
- a1 2v v
tnr "y nr '

Step 4: Combining the Bounds:

We can now combine our two bounds 1o derive the efficicney result and complete the proof of

Theorem 4.1,

PROOY OF THEOREM 4.1: Choose £ > 0. By Lemma 4.5, there are n* and #* such that for all n > n*and r < ¥,

Eta ’_i) =l - e,
E(j'h)
So. consider
| n-1.' I or Ui (9)
7 ’ ”: (l”'.)"lc it} :

Clearly. there is 1% such that for 7 > n*%_ (9} is at least 1 - & Also. note that the right hand side of (3) 1s
increasing in 7*. So, for all n > n=* and r > r*_ the right hand side of (3y1is atleast 1 - &
Let ' = max(a ® #%%), and consider anv n > n" 1f /7 < r*, then by the first bound. Eqe"/E(f) = ]
e while it # > % then by Lemma 4.8 . E(a@"VE(f') 2 1 - & and we have established ex-ante efficiency.
Finally, let us establish that selling price converges in probability to p” If / is small. this is clear from
the argument underiving the first bound. Consider the case " large. Assume there is £ > 0 such that Iy - p”l
> ¢ for all i along some subsequence. Consider the first term inside the brackets in (b it iy" - p'l > & then
this term is at least enM(&/2)/2 (this term corresponds to the area X in Fig. 4). where M(.) is as defined in

Lemma 4.1, This is so as v g7l is at least &2 over half of the range of integration. When we ignored this



term. E(a®V/E7) converged to 1. So. now it converges to at least 1 + enM(e/2y2E(f'y = 1 +eM{/2) 2mi > 1.

which 1s a contradiction. So. @' - p.

g "o ()( n)(\ -
N

. this establishes that almost always. almost all units sell for at least . But, by Lemma 4.6, it cannot be the

By Lemma 4.7, at least 1 - " of the time, at least ¢* - (&%) bids are above b. Since

case that the average selling price per unit remains bounded above ¢, since in particular. the buyer surplus
converges o their consumer surplus when they can buy freely at a price ¢, But then, since expected price per
unit is driven to ', and since in the limit. almost all units sell for at least ¢ almost all the time. the fraction
of objects selting for strictly more than ¢ also goes to 0 almost all the time. So the selling price on almost all
units converges in probability to . Since ¢ - p". this establishes the result.
|
5. CoxcrusioN

An issue not addressed by this paper is the rate at which the equilibrium converges to efficiency. It
is readily seen that the bounds established in this paper take hold very slowly. This is o for two reasons. First,
at various points in the exposition. we choose bounds for simplicity rather than tightness. For example. most
applications of Chebyshev's inequality in this paper can. with some etfort. be replaced by the central limit
theorem. and multiphcative constants arc vigorously ignored.

However. the bounds derived converge slowly for a more fundamental reason. A cost of the rather
general nature of our setting is that it is difficult to establish much of a characterization of equilibrium in the
finite numbers case. So. our results work ofl a very coarse description of equilibrium play. Note in particular
that for the case where supply per capita remains large, the argument essentiably begins by throwing away a
fraction of the supply. so that one can be sure that with high probability, the realized number of bids above §
is ut least as large as the remaining fraction. However. even if one uses a normal approximation to the number
of bids above Y. one still needs to throw away 2 standard deviations (in the distribution of the number of bids
above Uy worth of supply ta be sure that there is a4 97% chance of this. And. for the cuse of for example 1.000
bidders each submitting 2 bids on a set of 1.000 objects, this still involves throwing away approximately 6%
of the objects. So. even with a more carcful approach to tightness. the bound in Lemma 4.7 still involves an
efficiency loss bounded below by around 9% tor this case!

On the other hand however. it is important to note that the cause identitied for the slowness in the
approuach to efticiency is due entirely to the coarseness of the equilibrium characterization. and does not seem
to retlect any real feature of the auction mechanism. So. it seems quite possible. and even probable. that with
a fuller characterization. we would discover much faster convergence. Very fast convergence to efficiency has
been shown in other auction settings, most notably by Rustichini. Satterthwaite and Williams (1994) in the

context of farge double auctions. However. their set up is sufficiently simple (single unit demands. symmetric



valuations. symmetric equilibria) as to allow them to utilize a first order approach in their calculations. and this

is critical to their method of analysis.”

Katzman (19931, working in a symmetric setting. 1s indeed able to show asvmptotic efficiency of the discriminatory
auction in which plavers may desire multiple objects. and does so using a first order approach.
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APPENDIN: Miscellancons Proofs
PROOF OF LEMMA 3.1
Fix a sequence {A"} of auctions. Assume that for all @ > 0. Pria" > (1 - ayy > 1  aforalln

sutticiently large and for all equilibria of A”. Then. since «” = 0 alwayvs,

for n large. Since this holds for all ¢, the discriminatory mechanism is asvmptotically ex- post efficient along
[A"].
So. if the discriminatory mechanism is not asymptotically ex- post efficicnt along a sequence {A”} .
then there is @ > 0, a subsequence of {A%} and an equilibrium for each A" in the subsequence such that
Pric" <11  e)f') >«
tor all n along the subsequence. By Condition 3.1. there is 6 > 0 such that
Prif' = SEif)i> 1 - af2
for all sufficiently large n. Then, at least ¢/2 of the time. ¢ < (1 @)f* and f* > SE(f*) so with probability a/2
Foat = ol = af > adEf)
But. then since f* - @ ~ 0 always.

Eif - a) - te2)adEif)

and so

and thus the mechanism is not asymptotically ex-ante efficient along {A”} either. That is. under Condition 3.1.

asymptotic ex-ante efficiency implies asvmptotic ex  post efficiency. |



ProoE OF LEAMMA 4. 12 For cach a > 0. define
- - N ‘[t . . -
Mict) min e f sy
1

Since the minimand is continuous in v, and positive for cach v. and since y 1s chosen from a compact

sel. Miey > 0. So. let w. v = [v, v ] where v 2 w. Then.

n it

> f‘ ¢ Uy
T

E(R "(w)-ER"(v) _ 71

M L

Bl [“ Soddy o My ) ]

S

PROOF OF LEMAMA 4.2 Let £> 0. We must find 6 > 0 such that

Prifi>0E(fn>1 €.

- ‘ ro=vy - -
tor n suthiciently large. Let v* = — Using Condition 4.1, E(R"(+*) )> n@. where

C) I‘ \; sivdy.

For cach ar. let £ be the largest integer less than or equal to both A" and #@. By Lemma 4.1, for all e > 0.
E(R'(v¥ - a)) - IR 2 nM{a)

and so since E(RG#) » n@ » L")

E(R" (v - o)) 2 A"+ nMia),

But.



[
]

=R@Wr>a)HR%W-an<f"mHRWw—aM
PR @ ER'G-an < K7 ER"G - ay )

cP{R"v - @ - ER"Mv - a) < aM()

var(R (v o))
(M)

by Chebyshev's inequality. And since R'(v* - @) is the sum of n independent random variables each having

variance al most 2° (since in particular. 0 < R* - @) < m for all i), varrR(vF - @) < nm’. and so as n — >

So. for n large encugh. the top £ valuations are at least v @ at least (1 - @) of the time . Therefore.

with probability 1 a. f = K" - @), But. as E(f) < A7

~ - - " to- (44 . " i
at least 1 - @ of the ime. IE 4" = &7, then ! > —— Otherwise. k" < nm.and & = 20 - 1. and so
E¢ ) v

E¢f" nm v

om0 Iy o«

For i lurge and ¢ < v*, both expressions are bounded away from 0. and so. since this can be done for any a.

we are done. [ ]

PROOF OF LEADMA 4.3: Consider w world with min agents each desiring one object. and such that for each 7 and
A, there is one agent with cumulative G'(/) on values. Consider randomly allocating the £ objects among these

mn agents. Then, total expected sarplus is

D M T AR

ni

But. by Condition 4.1, this is at least
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LM

- f‘ xnz{n)dy

N

L
A n Z,

where

g oy xolvydx,
m Je

But. under efficient allocation, the & objects go to the £ “agents”™ who value them most. and so E(/)

is at least &
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FIG. 2. The normalized supply and expected demand curves.
Iniay ErRvm > 0" while in (by, E(R* v jifn < " and so p* = 0.
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FiG. 3. In the limat, expected buver surpius is at least the shaded area.
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FIG 4. if ¢ dees not converge to p* in the limit. then the buver's and seller’s expected surplus add te more than
feasible surplus. In case (ar ¢ < p” In case (b, " > p”. In either case. expected actual surplus converges to
the shaded area. which exceeds expected feasible surplus by the area of the triangle indicated by X,



