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Abstract

Over the past few vears many proofs of calibration have been pre-
sented (Foster and Vohra (1991, 1997). Hart (1995}, Fudenberg and
Levine (1995). Hart and Mas-Colell (1996)). Does the literature really
need one more? Probably not. but this algorithm for being calibrated
is particularly simple and doesn’t require a matrix inversion. Further
the proof follows directly from Blackwell's approachability theorem.

For these reasons it might be useful in the class rooni.

“This work was done while I was visiting the Center for for Mathemarical Studies
in Feonomics and Management Science. Northwestern University. Permanent affiliation:
Dept. of Statistics. The Wharton School. University of Pennsylvania. Philadelphia. PA
19104, Email:foster &hellspark.wharton.upenn.edu.

Thanks to Sergiu Hart who provided the proof of the only result in the paper. The

algorithim is a modification of the original algorithm in Foster and Vohra (1991).



Suppose at time ! a forecast. f,. is made which takes on the value of the

midpoint of each of the intervals [0.1/m]. [1/m.2/m]. ... [% 1]. namely.

=L for ¢ equals 1 to . Let Af the vector of indicators as to which forecast

15 actually made:

1l f, = 2t

T 2m

111 _
ST .
0  otherwise
Let X, be the outcome at time f. We can now define the empirical frequency

Py as:
-

> XA,
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Hopefully. pi lies in the interval [=2, <], 1f so. the forecast is approximately
b s I ~
calibrated. I not. I will measure how far outside the interval it is by two

distances: d, and @ (for deficit and excess) which are defined as:

— l T i _ i
dr = TZ( - XA = =y
o= TN = 2

where _1 =5 AT [ will show that the following forecasting rule will drive

hoth of these distances to zero:

If there exist an = such that @ < 0 and d < 0. then forecast 2’;;1.

Otherwise. find an /~ such that dp > 0 and @ ' < 0 then randomly

. . v D - Ay .
forecast cither 2= or £ with probahilities:
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It is clear that an /™ can be found i step 2. since ¢ = | always under forecasts
and / = m alwavs over-forecasts,
The L-1 calibration score:
_ g 1 - -
— Z lp, — %\:17- = —+ Z max(d,. ;)
=0

)
i =1

<o showine that all the @ and ¢ converge to zero, implies that (') 3 converges
o I { o s}
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Theorem 1 (Foster and Vohra) for all ¢ > 0. there crists a forecasting
method which is calibrated in the sense that Oy < o 1 s sufliceently large.

In particular the above algoridhm will achicve this goal of i > %

C'onsider this as a game hetween a statistician and nature. The statistician
picks the forecast f; and nature picks the data sequence X, The statisticians
ooal is to force all of the T and d 10 be negative {or at least approach this
in the limit). Nature’s goal is to keep the statistician from doing this. This
set up is a game of “approachability™ which was studied by Blackwell. He

found a necessary and sulficient condition for a set to be approachable.

Theorem 2 (Blackwell 1956) Lc/ L;; b « vector valued payoff taking val-
wes in B where the statistician picks an i from T at round ¢ and nature picks
a strategy | from J ab time 1. Led G obe a conver subsct of B7. Lt a € R®
and let ¢ € G be the closest point in (7 to the point a. Then G is approachable
by the statistician if for all such «. there crist a weight vector w; such that
forall j € 7.
(> wily, —e)(a—c) <0, (13
i€l
To prove Theorem 1. we need 1o translate the calibration game into a

Blackwell approachability game. The set of strategies for the statistician. 7.



is the set of the m different forecasts. The set of strategies for nature. 7. 1s
the set {0.1}. Define
yo= (X =0

T

dve = (EL-Xu

T

The vector loss is the vector of all the (d.¢')’s. in otherwords. it is a point

in %" The goal set (7 € R* is ¢ = {& € R"|[(Vh)rr < 0} Let
o = %Z;’:l ¢'y, and dy = %Z;‘":ln’f\-r. The (dy.y), will be owr L in
the Blackwell game, and (d'.7); will be the point ¢. The closest point in (7

—

to the current average a = (d .

)EGI 1"\

o= (@) .7))

€T
where we have delined the positive and negative parts as @t = max(0. )
aud »7 = min{0..r). The weight vector w is the vector of probability of

forecasting ¢/ k.

Proof: (Hart 1896) Now to check equation (1). Writing it in terms of
dUs and ¢''s equation (1) is:
S (e — (@)HT = (@)7) + (et — (@) — 7)) <0
i=1
[rom o — a7 = r* equation (1) is equivalent to
S (' — @ T+ e @) < 0
i=1
Sinee. (7)) = 001 is sullicient to show:

ST wl () did ) <0,

=1



If step 1. of the algorithm is used the weight vector is just w' = 1if /7

. ' 1 . i
is the forecast chosen and zero otherwise. So w® £ 0 only when both (d)7F

and ()7 are zero. so the entire sum is zero.

.

, . : . e
If step 2. is used. the non-zero terms are w' and ' =1 But., (&7)7 is

—*—1 . s .. ..
zero and (d )T s zero. So. it is sufficient to show:
- a . . . v
W dU(d )T et T T E Y <)
But. " = —¢" 71 so it is sufficient to show:

N .

w! (' — u“jfl((_i‘*l)+ <0

But. this follows (with equality) from the definition of our probabilities. O
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