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Abstract

Both rematching proof and strong equilibrium outcomes are stable with respect to the true
preferences in the marriage problem. We show that not all rematching proof or strong equilib-
riunn outcomes are stable in the college admissions problent. But we show that both rematching
proof and strong equilibrium outcomes with truncations at the mateh point are all stable
the college admissions problem.  Further. all true stable marchings can be achieved in both
rematching proof and strong cquilibrium with truncations at the match point,

We show that anv Nash equilibrinm in truncations admits one and only one matching,. stable
or not. Therefore. the core at a Nash equilibriun in truncations must be small. But examples
exist such that the set of stable matchings with respect to a Nash equilibrium may contain
more than one matching.  Nevertheless. cach Nash equilibrivmn can only admit at most one
true stable matching. If. indeed. there is a frue stable matching at a Nash equilibrium. then
the only possible equilibrium outcome will e the true stable matching. no matter how plavers
manipulate their equilibrium strategies and how many other unstable matchings are there at
the Nash equilibrium. Thus. we show thar a necessary and sufficient condition for the stable
matching rule to be nuplemented in a subset of Nash equilibria by a direct revelation game
induced by a stable matching mechanism is that every Nash equilibrium profile in that subset
admits one and onlyv one true stable matching. Jowrnal of Economic Literature Classification
Numbers: C78. D71,

*This paper is a revision of the paper “\Manipulation and Stability in a College Admissions Problem™ circulated
since 1994, I thank Rich McLean. Abraham Neyman. Sang-Chul Suh. Mark Satterthwaite. and Tetsuji Yamada for
helpful discussions. T am grateful to the Kellogg G.S.\. at the Northwestern University for the hospitality for my

visit. Any errors are mine.



1 Introduction

A great number of impossibility theorems have shown the fundamental difficulty to design an
officient mechanism under which plavers have the best interests to reveal their true preferences.
These theorems imply that when plavers are confronted with a game induced by such a mechanisn.
plavers have incentive to manipulate their reported preferences. Since misreported information is
different from the underlving rruth. the objective of a designed mechanisn may well be distorted by
the misreported information. This calls up a question how the objective of a designed mechanism
can be fulfilled with the misreported information. This paper studies this issue for a class of stable
(core) matching meclianisis in the context of the college admissions problem.

i the college admissions problem Roth's impossibility theorems show that no stable matching
mechianisim exists that makes it a dominaut strategy for all plavers to state their true preferences.
Moreover. Roth showed that any individially rational matching can be supported by some Nash
equilibrinm of the game induced by a stable matching mechanism. Clearly. not all individnally
rational matchings are stable with respect to the true preferences. Thus. there are chances for a
stable matching mechanisin that generates a stable matching for cach reported preference profile
to generare nnstable matchings with respect to the true preferences in Nash equilibrium.

The potential problem for a stable matching mechanis to generare unstable matchings with
respect 10 the tre preferences is i the contrast with the empirical findings in Roth (198440 1990b.
1991 ). which showed that the centralized marching mechanisms i the labor markets for new plivsi-
cias that generate stable matchings with respect to each reported preference profile have suceeeded
to resolve the market failures. while matching mechanisms that generate unstable matchings with
respect to the reported preferences have typically failed. The empirical evidences strongly sup-
port the hvpothesis that a centralized stable matching mechanism may produce a stable matching
with respect to not only the reported preferences but also the tyne preferences. Then. under what
conditions does a stable matching mechanism always generate a trne stable matching?

Our first focus is on the rematching proof and strong equilibriunm. In the marriage problem. Ma
(1995) showed that all rematching strong equilibrivun outcomes are stable: Ma (1994) and Shin and
Suh (1996) showed that all strong equilibrinun outcomes are stable: Sonmez (1997) generalized these
results to the G-proof Nash equilibrinm for the G-core. But we find that both rematching proof and
strong equilibrinin onteones are not alwayvs stable in the college admissions probiem. unlike the
marriage problem. Therefore. we consider a class of simple strategies called truncations by Roth

and Vande Vare (1991) and Roth and Rothbhun {1996). A truncation strategy for a student or



a college 15 a preference ordering which is order-consistent with his or her true preference but has
fower acceptable colleges or students. This class of strategles exclude some complicated strategies
like the changes in orders that may be profitable in manipulation. But Roth and Rothblum (1996)
Showed why it s plausible for plavers to consider thix class of profitable strategies in truncations iu
manipulation. when players have very little information about the preferences of other players. But
exatples exist such that both rematching proof and strong equilibrium outcomes with truncations
are not stable. Therefore. we use the truncations at the match point (e.g.. deleting the (k—1)th
and higher choices if a student is matched to his kth choice) in Roth and Peranson (1997h). We
<how that examples exist such that a Nash equilibrinm outcome with truncations at the match
point are not stabie. But we show that both remarching proof aud strong equilibrinm ourcomes
with truncations ar the match point ave all stable.

Owr result provides a support for the hypothesis illustrated above to some degree. Our result
shiows that some meanineful refinement of the Nash equilibrinm exists such that all outcomes in
the refined equilibrium notion are stable. On the other side. truncations at the match point are
reguired in order to obtain a stable matehing in both remarching proof and strong equilibriuni.
This nayv be objected on the gronud that rruneations at the mateh polnt are too strong,. sinee
plavers may need information about the onrcome at the watch polnt before reporting, runCations
at the mateh point. This objection may not be that sever. Roth and Peranson (1997b) conduct od
A number of experitnents ou trucations at the mateh point to see how they may affect outconies in
the National Resident Matching Programm (NRMP). Their experiments were conducted for both the
hospital and applicant proposing algorithms for the 1993, 1994 and 1995 matches: see Appendix
B in Roth and Peranson (199701 for derail. Thev found that 1 n the majority of cases no change
wis prodiced when all ROLs preferences. were trneated at the mateh point: and in no case were
more than 3 applicants aftected by such truncations”™ (Roth and Peranson (1997b). pp. 26) for
both algorithms. among approximately 20,000 jobs filled cach vear. Their experiments suggest
that plavers in the NRMP market may in fact report preferences (i.c.. ROLs. Rank Order Lists)
that are equivalent to the truncations at the mateh point. Onr result shows that if. in addition.
the reported preferences form «w remarching proof or strong equilibrinm. then we may confidently
conchude thar the onrcome from the NRMP mav indeed be a trie stable marching,

Owr second focus is why the core is so small in the Nash equilibrinn, Tt is known that the set
of stable matchings (the core) in the college admissions problem forms a lattice under the commoun
interests of students due to the common interests of colleges. This implies that the stable matching

preferred most by all students is the worst stable matching for all colleges and the stable matching



preferred most by all colleges is the worst stable matching for all students. Further. the size of the
lattice can grow exponentially as the sizes of the market grow. Since the set of stable matchings
is potentially large. which stable matching shonld be selected? This issue is so inportant that the
pre-existing hospital proposing algorithm implemented since 1951 in the NRMP market is recent Iv
replaced by the applicant proposing algorithm: see Roth {1996 and Roth and Peranson (1997a.bi.

The crupivical studies in Roth and Peranson 1997y found that the set of stable matehings
i the NRMDP is in fact quite small. For the same set of reported preferences. the switch from
the original hospital proposing algorithm to the new applicant proposing algorithm only affected
fow applicants (approximately 0.1%). This is surprising and it is in the sharp contrast with the
theorv, since the size of jobs filled in the NRMP market is quite large. Roth and Peranson (1997h)
provided 1wo insights why the core may be small. They argned that the smadl core may be due 1o
the high correlation in preferences (e.g.. two new phivsicians in the same field may have quite similar
preferences over positions) and the fact that applicants and hospitals can only couduct a limired
munber of interviews. Here we provide one more evidence why the core may be ~small” when
students and colleges report their preferences strategicallv, We show that any Nash equilibrium
i truneations contains one and only one matching (stable or not). Therefore. the core must be
small in Nash oquilibrivun in truncations. Interestinglv, thiere may exist more than one matching
at » Nash equilibrinn. Nonetheless, any Nash equilibritun can onlv admit at most one tre stable
matching. Farther, if. indeed. 2 Nash equilibrinan adimits @ true stable marching. then no unstable
matching can be the equilibrium ontcome. That is. the true stable matching will always be the
outcome. 1o matter how the equilibrinm profile is manipulated (not necessarily in truncations). as
long as the equilibrivm profile adinits a true stable matching. Therefore, a necessary and sufficient
condition for the stable matching rule to be implemented in a subset of Nash equilibrium by a
direct revelation game indneed by a stable matching mechanism is that every equilibrinm profile
i thar subset admits one and only one true stable matching: see Theorem 11,

Our study is largely motivated by the significant empirical works in the Tabor markets made
by Professor Alvin Roth and his co-authors. The first issue is related to the implementation of
the stable matching rule with manipulation. a question articulated in Roth (1984b. 1990a) for
the marriage problem: also see Roth and Sotomavor (1990) (henceforth. RS). This question has
motivated the studies in Alcalde (1996, Wara and Sémmez (19967, Ma (1994.1995). Roth (1934h).
Shin and Suh (19967, and Somnez (19975, These papers study the marriage problem. Kara and
Sonmez (1997) studied the college admissions problem and showed that the stable matching rule is

essentially monotone. Therefore the stable matching rule is implementable in Nash equilibrium via



4 result in Danilov (19925, Their game form is quite different from the one studied in this paper.
With onr game forn. the stable marching rule is not Nash iniplementable,

The remaining of the paper is organized as follows. Section 2 introduces the college admissions
problen. Section 3 shows the main result about stable matchings. Section 4 shows the results

about the small core. Section 5 concludes the paper.

2 The College Admissions Problem

Wo use some definitions from RS. The college admissions problein consists of two finite and disjoint
sots. § = 18575, } of students and ¢ = {Cy.---.C,} of colleges. with each college C'; € C
a quota ¢c, > 1 of enrollments. Each student S; € S is enrolled in at most one college. Each
student S, € S has strict preferences Pg, over colleges ("U{S;} and cach college €' € €7 has strict
proferences - over individual students S U{C; . Both g and ) leave the possibility that a
student mav prefer not 1o bhe enrolled in some colleges and o college may prefer not to enroll some
students. Let Ry, and Re, denote the weak preferences associated with Py, and e, respectively.
Let Qg denote the set of all strict preferences for a student S5, €5 and Q(,j denote the set of all
strict preferences over individual students for a college €. Let Q =T 24 €2, ¥ H(ng(v Q¢ denote
the set of all preference profiles. The marriage problem is the college admissions problem with
g =1 for everv college ¢, € €

Dofine an unordered family of elenents of any set X to be a colleetion of elements in which the

order is iimmaterial. The set of wnordered families of eletuents of X is denoted by X

Definition. A matching p is such a function j 1 SUC — SUC such that (a) [;(S;)] =1
for every S, € S and (S;) € C whenever p(S;) # Sit (b) [(Ch)| = qo; for every € € €. and
S0y 1< g, then ()i fullilled to ger by copies of ¢ (¢) p(S;) = € if and only if

S, =i Ler Mo denote the set of all matehings.
Definition. Let j. A € M be two matchings. We say that a preference I for a college
(', over sets of students is responsive to its preference e, over individual students if. whenever

tCo = MCHUSEA A7} for 7 € M) and S ¢ M) then /1((})]3(1//\((”]) if and only if Sy P 7.

Giade and Shapley (19627 originared the study of the college admissions problem. Roth (1985) re-



formulated the problem and introduced the responsive preferences. Responsive preferences uniquely
determine preferences over individuals but not vice versa. Henceforth, we assume that colleges’
preferences over groups of students are responsive, complete, and transitive. We always use I_DCJ
with a bar for college C;'s preferences over groups of students that are responsive and Pg, without
a bar for college C;'s preferences over individual students. No confusion will be made.

A pair of student S; and college C; blocks a matching p if they are not matched under p but
student S; prefers college C; to his mate p(S;) and college C; prefers student S; to some member

o € u(C;) in her class p(C;), i.e., CjPs,u(S:) and S;Pc;o for sonie o € u(Cj).

Definition. Given a profile P € 2, a matching p is (a) individually rational if ;u(S;)Rs,S; for
all S; € S and o R, Cj for every o € p(Cj) for all C; € C; (b) pairwise stable if it is not blocked
by any pairs of student and college; (c) stable if it is both individually rational and pairwise stable.
Let S(P) and IR(P) denote the set of all stable matchings and the set of all individually rational

matchings respectively with respect to a profile P € €.

Definition. A matching mechanism v : € — M is a map from profiles to matchings. A
matching mechanism ¢ : Q@ — M is stable if p(Q) € S(Q) for all @ € Q. Let @ denote the set of

all stable matching mechanisms.

It follows from Lemma 5.6 in RS that S(/) is nonempty for any profile P € 2. Therefore, the set
of stable matching mechanisms & is nonempty. A stable matching mechanism ¢ € ® and an under-
lying true profile P € Q induce a normal form game I'(p, P). The set Q = [[g,es s, x [, ec e,
is the set of strategies of the game I'(p, P). We consider three equilibrium notions in pure strategies

of this game.
Definition. A profile Q € Q is a Nash equilibrium (in pure strategies) of a game I'(p, P) if
¢s5.(Q-s,,Qs.)Rs, s, (Q-5,,Q%,)
for all S; € S, Qf, € s, and
ec,(Q-c;,Qc,) Re, v, (Q-c;, Qc,)

for all Cj € C, Qg € Qc,.



Definition. A rematching proof equilibrium Q of a game I'(p, P) is a Nash equilibrium such
that
05, (Q)Rs,vs,(Q_¢s.,c,}, s, Qc,) and vc,(@)Re,vc,(Q-is.c,), @50 Qc, )

for all (5,,C;) € S x C, all (@, Qt,) € Qs, x Qe

Definition. A profile Q is a strong equilibrium of a game I'(yp, P) if it has the property that

there exists no coalition T C C U S and Q7 € [ker§ such that
er(Q-1,QT) Peor(Q) and wi(Q-1,Q7) Pvi(Q)

forallkeTnSandalllie TNC.

Let N(p, P) (N™(@, P), N°(¢, P)) denote the set of all Nash (rematching proof, strong) equi-
libria of the game I'(p, P).

3 Stable Matchings

Since the true preferences are private information, a stable matching mechanism has to work
with the reported preferences. Roth’s impossibility theorems show that there does not exist any
stable matching mechanism that makes it a dominant strategy for all students and colleges to
report their true preferences. This implies that when students and colleges are confronted with a
game I'(, P) induced by a stable matching mechanism ¢, the reported preferences may well be
different from the true preferences. Therefore, the stable matching produced by a stable matching
mechanism with respect to a misreported preference profile may well be unstable with respect to the
underlying true preference profile. Indeed, Roth showed that all individually rational matchings can
be supported as Nash equilibrium outcomes for any stable matching mechanism: Given any ¢ € @,
IR(P) C ¢(N(p, P)) for all P € ; see Theorem 5.18 in RS. In particular, S(P) C ¢(N(yp, P)) for
every P € . But many Nash equilibrium outcomes are not stable with respect to the true profile
P.

In the marriage problem, Ma (1995) showed that all rematching proof equilibrium outcomes are
stable: Given any ¢ € &, @(N"P(p, P)) C S(P) for all P € 2. Ma (1994) and Shin and—Suh (1996)
studied the strong equilibrium (due to Aumann) and showed that all strong equilibrium outcomes
are stable: Given any ¢ € ®, o(N*(p, P)) C S(P) for all P € Q. Sonmez (1997) introduced the G-

core and the G-proof Nash equilibrium and generalized these results for the marriage problem. The



G-core and G-proof Nash equilibrium in Sonmez (1997) are defined for coalitions. Unfortunately,

these results do not apply to the college admissions problem; as shown in the following example.

Example 1. Let C = {C,Cs}, S = {S1,52}, 9¢, = 2,9¢, = 1. Let

Pcl :(SI’SQ’CI) PC2=(825517C2)
PSl =(C23C1v51) PSQ:'(ChC?vS'Z)

and let  be any stable matching mechanism. Let
Qc, = (51,C1, 52)

Then
G(P_c,,Qc,) = [(C1:51.C1),(Ca; S2)].

We now show that (P_¢,,Qc,) is a strong equilibrium. To prove this, it is sufficient to consider
the coalition {C}, Sy, S2} since Cy cannot be better. To make C) better off, C1 should be matched
with S and S,. But this does uot make student S; better off. To make S; better off, 51 must be
matched with Cy. But then it is impossible to make C) better off. Similarly, one can check the
coalitions such as {C}, Sz} and {S1, S2}. This shows that (P_¢,,Qc,) is a Nash, rematching proof,

and strong equilibrium for the true profile P but ¢(P_c,,Qc,) is not stable for P. O

This example shows that the college admissions problem is different from the marriage problem.
Some additiOI;al conditions are needed for both rematching proof and strong equilibrium to generate
stable matchings.

We follow Roth and Vande Vate (1991) and Roth and Rothblum (1996) to introduce a class
of simple strategies called truncations. This class of strategies are introduced for the marriage
problem in these papers. A college C; is acceptable to a student S; if C;Rs.Si. A student S,
is acceptable for a college C; if S;Rc,Cj. A truncation strategy Qs, (with respect to Ps,) for a
student S; contains k (0 < k) acceptable colleges such that the first k elements of Qs, are the first
k elements, with the same order, in her true preference Ps,, and the (k 4+ 1)th element in Qs is
S;. The ordering after the (k + 1)th element S; in Qg, does not matter for our studies. Similarly,
a truncation strategy Qc;, for a college C; (with respect to Pc,) contains k (0 < k) acceptable
students such that the first & elements of (¢, are the first k elements, with the same order, in her

true preference Pc,, and the (k+ 1)th element in Qc, is ;. Again the ranking order after C; does



not matter. For example, the equilibrium strategy Qc, in Example 1 is a truncation strategy for
college C1.

Truncation strategics exclude some other more complicated strategics such as the changes in
orders that may be profitable for manipulation. Roth and Rotliblum (1996) showed that more
complicated and profitable strategies other than truncations do exist. But they also show that
players need to know all preferences of the other players in order to exploit the benefits of such
complicated strategies in manipulation. They convincingly showed why this class of simple strate-
gies of truncations are plausible for the marriage problem in an environment with low information
about the preferences of all other players. In the Sorority rush market Mongell and Roth (1989)
found that truncation strategies are in fact used by players in practice: Players often truncate after
their first choice.

A Nash equilibrium Q of a game I'(y, P) is a Nash equilibrium in truncations if all equilibrium
strategies are truncations. The equilibriumn profile (P_¢,,Qc,) in Example 1 is a Nash, rematching
proof. and strong equilibrium in truncations. Example 1 shows that a Nash. rematching proof, and
strong equilibrium outcome in truncations may be unstable. Therefore, some additional conditions
are required to refine this class of equilibrium strategies. We introduce a class of strategies in trun-
cations at the match point; see Roth and Peranson (1997b). We say that @ is a Nash equilibrium
in truncations at the match point if the kth element in Qg, for student S; is the college ¢s, (Q) or
Qs, is any truncation strategy in the case that g, (Q) = Si, and the kth element in Qc, for college
C; is the student that is the least preferred by the college C;, among all students in p¢, (@) or Qc;
is any truncation strategy in the case that ¢c, (¢) does nat contain any student. An equilibrium
is an equilibrium in truncations at the match point if all equilibrium strategies are truncations at
the match point. For example, the quilibrium strategies Q¢,, Ps,, and Ps, are all truncation
strategies at the match point in Example 1; The equilibrium strategy P, is a truncation strategy
but not a truncation strategy at the match point; Thus, the equilibrium profile (P_¢,,Qc,) is not

an equilibrium in truncations at the match point.
One may wonder whether truncations at the match point in Nash equilibrium are strong enough

to generate stable matchings. The following examnple shows that the answer is negative.

Example 2 (Roth and Vande Vate (1991)). Let S = (S1,52), C = (C1, (), 9¢, = qc, = L.

Let, i, j = 1,2, the true profile P is as follows:

Pg, = (Cy, Ca, Si)



Pc, = (51, S, Cj).

Now consider the following Nash equilibrium @:
Qs, = (C1, Si, C2)

QCJ' = (Sl, C]a 52)

Then the matching
p = [(S1;C1), (S2; S2), (Ca; C2))
is the unique stable matching for Q. Thus ¢(Q) = p for any stable matching mechanism ¢. The

profile @ is a Nash equilibrium in truncations at the match point. But x is not stable for P. O

Proposition 3 below shows that all rematching proof equilibrium outcomes in truncations at
the match point are stable. This is in the contrast to Examples 1 and 2 above. Since a strong
equilibrium is also rematching proof, it follows that all strong equilibrinm outcomes in truncations

at the match point are stable as well.

Proposition 3. Let (, P) € ® x Q and Q be a rematching proof equilibrium in truncations

at the match point. Then ¢(Q) is a stable matching in S(P).

Proof. Let (¢, P) € ® x . Let @ be a rematching proof equilibrium in truncations at the
match point. Suppose on the contrary that ¢(Q) € S(P). Then 3(S5;,Cj) € S x C such that
C;Ps,¢s,(Q) and S;Pc,0 for some 0 € ¢c,(Q). (Note that ¢(Q) € IR(P) since Q is a truncation
profile and ¢(Q) € IR(Q)). Let {Si, -, Si,} = ¢c,(Q) NS such that S;, Qc, S5i,Uc, Qe Sig-
Note that ¢ < qc;.

We discuss four cases.

Case a. ¢5,(Q) # Si and C; € ¢, (Q).

Because C; Ps, s, (Q) and Qs, is a truncation of Ps, up to vs,(Q), it follows that CiQs,vs.(Q).
Because S;Pc;o for some student o € ¢c; (@) and Qc; is a truncation of Pc, up to Sy, it follows

that S,Qc,Si,. This shows that (S, C;) blocks (Q) with respect to @ contradicting 0(Q) € S(Q).

10



Case b. ¢s5,(Q) = Si and C; € ¢c,(Q).

Since Qc, is a truncation of Pc,, the assumption that S,Pc;o for some student o € ¢c,(Q)
implies that S;Qc; Si,Qc;C;j. Since C;Ps,¢s5,(Q) and s, is a truncation of Pg,, it follows that
5:Qs.C;. (Otherwise, CjQs,S; implies that (S;,C;) blocks ©(Q) with respect to @ contradicting
9(Q) € S(Q)). Now let Q5 = (--+,Cj, S, ) be a truncation of Ps,, up to C;. Then we show
that

0s.(Q-s:,Qs,) # Si-

Denote @' = (Q-s,,Q%,). Suppose on the contrary that ¢s,(Q") = Si. Then 0Qc,S; for all
0 € ¢c,(Q). Otherwise, S;Qc,0 for some o € ¢c;(Q') implies that (S;,C;) blocks ©(Q") with
respect to @' contradicting ¢(Q') € S(Q’'). Therefore, ¢, (Q) C S. Thus there exists a student
T € ¢c,(Q') such that 7 & ¢c, (Q) and 7Qc, S;,, since ¢, (Q) C S and S, is not in ¢, (Q") but
S:Qc, Si,- This implies that C;Q-¢,(Q) since (), is a truncation up to ¢+(Q). Because 7Qc¢, 5,
C;Qrp-(Q) implies that (7,Cj) blocks ©(Q) with respect to @ contradicting ¢(Q) € S(Q). This
shows that ¢, (Q') # Si.

It follows that either g (Q) = Cj or ¢s,(Q")Qs,C;. Either case implies that

¢s,(Q") Ps,»5.(Q)
contradicting @ is a Nash equilibrium.

Case c. ps5,(Q) = Si and C; € o, (Q).

Let Q"Sl = (CJ,S“) andQ/C] = (SilﬂSIQ»' . 7S’

We show that

Si,Cj,- ). Denote Q = (Q_{SI.C]},QQ‘,Q'(;J)-

i

s, (Q) = Cj and v, (Q) = ¢c; (Q) U {S:}\ {C)}.

Note that ¢ < g¢;. If 0s,(Q) = S;, then cch(Q) C S. (Otherwise, C € t,cc].(Q) implies that
(S:,C;) blocks ©(Q) with respect to @.) But this is impossible since @C](Q) C {Si,-+-,Si,} and

q < qc,. Therefore g, (Q) = C;.
Let B

AS:) = G
MGy = ¢, (QU{SI\{Cj}

11



ASy) = s,(Q),VSy € S\ {5}
ANCy) = e, (@),YCy € C\{Ci}

By the construction of Q and A, A € S(Q) since any blocking (Sk, Ci) of A with respect to Qis
also a blocking pair of ¢(Q) with respect to Q. We need to show that t,acj(Q) = MCj). To show
this, we show that u(Cj;) = AM(C;) for every p € S(Q). We consider two situations.

(a). Cj € A(C;). Theorem 5.13 in RS shows that any college that does not fill its quota at some

stable matching is assigned the same set of students at every stable matching. Therefore it follows
from Theorem 5.13 in RS that u(C;) = A(C;) for every p € S(Q).

(b). C; & A(Cj). This implies that A(Cj) = {Sir, -, Si,» Si} and ¢ = gc, — 1. Suppose that
there exists some p € S(Q) such that u(C;) # MC;). Then Cj € p(Cj). But Theorem 5.13 again
shows that u(C;) = A(Cj), a contradiction. Therefore both cases show that p(C;) = AC;) for

every u € S(Q). Thus

vc, (Q) = MCj)-

Now, since ch is responsive and S; Pc;Cj, it follows that

¢5,(Q)Ps, s, (Q)
¢c,(Q)Pc, e, (Q)

contradicting Q is rematching proof. Complete the proof of case (c).

Case d. ps,(Q) # S; and C; € ¢c,(Q).

Let Q5. = (Cj,S;,- ) and Q’Cj = (5i,S41,Sizs 5 Sig» Cjy ) Denote Q = (Q_(sic,p @0 Qb )-
We show that
0s.(Q) = C; and ¢, (Q) = v, (Q) U {Si}\ {Cj}.
First, suppose that ¢g (Q) = Si. Then there exists C; € cpC](Q), by the construction of QIC]-
But then this implies that ¢(Q) & S(Q) since (S;, C;) blocks (Q) with respect to . Therefore

vs.(Q@) = C;.

Second, suppose that y¢, Q) # wc; (Q)U{S:}\{C;}. Then there exist at least one Cj € v, Q)
and at least one student Sy € w¢,(Q) such that Sg & cpc](Q). Since Sy # S; and Sk € ¢¢,(Q), it
follows that C;Qs,Sk. Since C; € cpcj(Q), (@) € S(Q) and the fact that Qs, is a truncation of
Ps, up to @5, (Q) = Cj, it follows that

05, (Q)Q5,C;Qs, Sk-
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Let C; = (psk(Q) and then C1Qs,C; = ps,(Q). Note that C; # Cj since Sk & vc, (@) Tt
follows that SxQc,Ci by individual rationality. Since Sk € ¢¢,(Q) and ¢(Q) € S(Q), it follows
that o, (Q) C S. (Otherwise, C) € goc,(Q') and SxQc,Ci. This implies that (Sk,Ci) blocks p(Q)
with respect to Q contradicting ¢(Q) € S(Q).). Because ¢(Q) € S(Q), it follows that cQ¢, Sk for
every student o € ¢¢,(Q). Therefore, 0Qc,SkQc,Ci for every student o € v, (Q). But Qc, is a

truncation of Pg, at the match point and there is no such a student Sy between the student ¢ and

C}, a contradiction.

Therefore, this shows that
w5, (Q') = Cj and ¢, (Q') = ¢c,(Q) U{Si} \ {C;}.

Since ch is responsive and S;P¢,Cj, we have that

©s5:(Q)Ps,ps,(Q)

vc, (Q)Pc,oc, (Q)

contradicting @Q is rematching proof. This completes the proof of Case d. a

The next question is whether a rematching proof or strong equilibrium in truncations at the
match point exists. The answer is yes. In fact our next result shows that every stable matching
can be achieved in at least one strong equilibrium in truncations at the match point.

Let N'P(p, P) and N (¢, P) denote the set of all rematching proof and strong equilibria in
truncations at the match point respectively of the game I'(¢, P). As a corollary of Proposition 4,

it follows that S(P) C ¢(N"P(p, P)).
Proposition 4. For all (¢, P) € ® x Q, S(P) C p(N*(y, P)).

Proof. Let u € S(P). Denote
{Sil7”.’5iq1} = ,u(C]')ﬂS

such that S;, Pe, i, Pe; -+ - PCJ.Squ_.
Let @ be a truncation profile at the match point such that
truncation Offs,- up to u(S;)
Qs, = (e 11(S), Sivo-)if u(S;) # S

Ps. otherwise

13



truncation of Pg, up to Siqj

(T S;

qu b

~

Cy) IEC)NS #0
P otherwise

Then (Q) = p for all p € ® since S(Q) = {u}. We claim that the truncation profile Q at the

match point is a strong equilibrium in N* (e, P) for all ¢ € .

Suppose on the contrary that there exists some stable matching mechanism ¢ such that there

exist a coalition T C CU S and strategies Q% € ek such that

0s.(Q) Ps, ¢s,(Q),VSieTNS (1)
0c,(Q) Po, ¢c,(Q),YC;eCNT (2)

where Q = (Q—r,Q}).

Denote

T = {Sk €S: ‘v”Sk(Q) PSk ‘PSk(Q)}

the set of all students who prefer ¢(Q) to ¢(Q) and
Ty = {Ci € C: vc,(Q) Peyoc (Q)}

the set of all colleges that prefer ©(Q) to p(Q). Clearly T C Ty, UT,. We consider two cases below.

(a). Ty # 0. For any college C; in Ty, by the responsiveness of PC] and (2), there exist a
student o € pc, @), 0 ¢ ¢c,(Q), and a member 7T € ¢c, (Q) such that o P, 7. If 0 is in T}, then
CjP,¢,(Q) and then (g,C}) blocks p with respect to P contradicting p € S(P). Thus o & T1.
Note that o # C; since o is a student. It follows that ¢, (Q)FsC;.

We obtain that
0o (Q) P, CjFPy0.
But this is impossible because there does not exist C; between ¢,(Q) and o by the construction
of Q5.
(b). T = 0. Then Ty # 0 since T C Ty. Let S; € Ty and let C; = 05, (Q). Clearly, Si € ¢c,(Q)
since €\ Ps,¢s,(Q). The assumption that Ty = 0 implies that 7' C S. By the construction of Q¢,,

it follows that
$:Qc,Siy, M p(C1)NS #0
SiQc,Ci  otherwise.

14



Since Q¢, is a truncation of FPc,, we also have that

SiPC,Siql if p(CHNS#0
SiPc,C1 otherwise.

Either case implies that (S;,C;) blocks p with respect to P contradicting p € S(P). 0
We may summarize the results in Propositions 3 and 4 as follows.

Theorem 5 (Stable Matchings). The stable matching correspondence S : Q — M can be
implemented by any direct revelation mechanism (Ilg,Qs, x ¢, Qc,,p). where the outcome func-

tion ¢ is a stable matching mechanism in ®, in both rematching proof and strong equilibrium In

truncation strategies at the match point.

Proof. Proposition 3 shows that ¢(N"P(o, P)) C S(P). Proposition 4 shows that S(P) C

2(Nt(¢. P)). The proof is complete since a strong equilibrium is also rematching proof. o

Remark. Theorem 5 does show that there are some meaningful refinements of the Nash equi-
librium that generate stable matchings even though the equilibrium profiles are manipulated. This
provides a support for the hypothesis that a stable matching mechanism that generates a stable
matching with respect to the report preference profiles may in fact generate stable matchings with
respect to the true preferences. This in turn provides some important economic insights to the
empirical evidences discovered by Roth (1984a, 1990b, 1991) in a large number of labor markets to
some degree. But our result also reveals the difficulty in order to cbtain true stable matchings from
the misreported preferences. Both truncations at the match point and the rematching proof or
strong equilibrium are needed to generate true stable matchings. The class of truncation strategies
are simple and plausible. But the truncations at the match point may be objected on the ground
that players need information to know the match point before reporting such strategies. Therefore,
it is quite surprising to know from the experiments conducted in Roth and Peranson (1997b) for
the NRMP markets in the 1993, 1994, and 1995 matches that the actual outcome of the hospital
and applicant proposing algorithms is in fact equivalent to the outcome as if all reported strategies
are truncations at the match point. Thus, even if the actual reportings may not be truncations
at the match point, the reportings are equivalent to truncations at the match point in outcomes.
Therefore, if the reporting strategies also form a rematching proof equilibrium, then it follows from

Theorem 5 that the outcome can be a true stable matching. Hence, our results in Theorem 5



provide important insights to the empirical evidences.

4 The Small Core in Nash Equilibrium

In theory, the number of stable matchings in S(P) may grow exponentially as the sizes of the market
grow; see Theorem 3.18 in RS. In contrast, Roth and Peranson (1997a,b) found that the set of stable
matchings (the core) in the NRMP market is in fact quite small. For the same set of reported
ranking order lists, the pre-existing NRMP algorithm and the new applicant proposing algorithm
generate almost the same outcome. Quite few applicants (approximately 0.1%) are affected after
the switch from the pre-existing NRMP algorithm to the applicant proposing algorithm. This calls
up a question why the core is so small.

Let ¢(Q) be a stable matching with respect to a Nash equilibrium profile @ of the game [, P).

Lemma 6 shows that no other stable matching s in S(Q) exists such that some college C; prefers

1(C;) to oc, (Q) or some student S; prefers p(S;) to s, (Q).

Lemma 6. Suppose @ € N(p, P) is a Nash equilibrium, where ¢ € ®. Then for any matching

peSQ)
s, (Q) Rs; 1(5:)

for every S; € § and

pc, (Q)Re;u(C;)
for every C; € C.
Proof. First, suppose on the contrary that u(S;) Ps, ¢s,(Q) for some S; € S. Then let Q5 =

(1(Si), Si, - - -) and note that p € S(Q_s;, Qs ). Theorem 5.12 in RS shows that the set of students

employed is the same at every stable matching. Therefore, it follows from Theorem 5.12 that
/-L(Si) = )\(S,).V/\ € S(Q—SnQ:S‘,-)'

Thus
SOSi(Q—SuQ(S',-) = u(Si),

ie.,

¢s.(Q-s.,Q5s,) Ps, vs,(Q)
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contradicting @ is a Nash equilibrium.

Now suppose on the contrary that there exists some C; € C such that
1(C;) Pc; wc;(Q).
Then let {Si,, -+, Si,} = SN p(C;) such that S;, Qc; Si,Qc; - - Qg Si,- Note that g < qc;- Let
Q, = (52 Sizs 1 Siqs Cyy)-

We show that € S(Q-¢;, Q’CJ). Suppose this is not true. Then 3(S;, C’J) € SxC, with u(S;) # C;,
such that C’jQS‘u(S’i) and S'iQéjU for some o € (Cj). Since C; # Cj and Si & {Si, -+, Si,} by the
construction of Q’CJ, this implies that (Si,(f’]-) blocks g with respect to @ contradicting € S(Q).

We want to show that WC,(Q—C]yQICJ) = p(C}), which implies that
vc,(@-c,»Qc,) Pe, vc,(Q)

contradicting @ is a Nash equilibrium.

We now show that A(C;) = u(C;) for all A € S(Q-c,,Qc, )-

(a) C; € p(Cj). Now Theorem 5.13 in RS shows that any college that does not fill its quota
at some stable matching is assigned precisely the same set of students at every stable matching.

Therefore, it follows from Theorem 5.13 that for all A € S(Q_c,.Q¢,)

since p € S(Q_cj,Q'C]) and C; € u(Cj). -

(b) C; & u(C;). Now suppose u(Cj) # MCj) for some A € S(Q_CJ,Q’CJ). Then there must
exist some C; € A(C;) by the construction of Q'CJ. But this implies, by Theorem 5.13 in RS
again, that u(C;) = A(Cj), a contradiction to the assumption. Therefore AC)) = pu(C;) for all
AE S(Q_cj,Q'Cj). This completes the proof. O

Is it possible for a Nash equilibrium to admit more than one matching? The following example
provides a negative answer to this.
Example 7. Let § = (S, 5,), C = (C1,C2), 4c, = qc, = 1. Suppose P is as follows:

Ps, = (Cy, 51,C3)  Ps, = (Ca,52,C1)
Pc, = (51, C1, S2)  Pc, = (S2,C2,51)
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The following Q is a Nash equilibrium of the game I'(p, P), where ¢ is the student proposing

algorithm.

Qsl = (Clv CQ,S]) QS2 = (CQ)Ch 52)
Qc, = (52, 51, C1) P, =(51,5,C1)

But | S(Q) |= 2. o

Thus, the core at a Nash equilibrium @ does not always contain a unique matching. Thus. the
core may not be small at a Nash equilibrium. But Theorem 8 shows that every Nash equilibrium
in truncations contains one and only one matching, stable or not. Therefore, the core at a Nash
equilibrium in truncations (not necessarily truncations at the match point) must be small. It con-
tains a unique outcome. It should be noted that a Nash equilibrium in truncations may not be

stable: see Example 2.

Theorem 8 (Small Core). Let (¢, P) € & x 2 and @ € N(p, P) be a Nash equilibrium in
truncations. Then S(Q) = {¢(Q)}.

Proof. Suppose there exists i € S(Q) such that u # p(Q). Then, by Lemma 6, ¢g,(Q)Ps, 1+(S:)
for all 5; € S with ¢5,(Q) # p(S;). Since Q € Q is a truncation of P. we also obtain that
s, (Q)Qs, 1(S;i) for all S; € S with g, (Q) # u(S;) (all such students are matched with colleges).

Theorem 5.33 in RS shows that S(Q) forms a lattiee under the common preferences of colleges,

Qc, and dual to the common preferences of students, Qs. Therefore we have

1(C)Qc, e, (Q), (3)

for all C; such that u(Cj) # ¢, (Q), since students prefer (Q) to p in Qs.
Theorem 5.13 in RS shows that any college that does not fill its quota at some stable matching is
assigned the same set of students at every stable matching. For every Cj such that 1(C;) # ¢, (Q),

it follows from Theorem 5.13 that
1(Cj) C S and ¢, (Q) C S. (4)

It follows from (3), (4), and responsive preferences that college C; prefers at least one student in

p(Cj) to a student in ¢, (Q). Then Lemma 5.25 in RS shows that college C; weakly prefers all
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students in 1(C;) to all students in ¢, (Q) in the related marriage problem. It follows from Lemma
5.25 in RS that
1w(C) P, vc, (@)

for all C; such that u(Cj) # wc,(Q), since Qc; is a truncation of Pc,. This is a contradiction to
Lemma 6. a

Given a stable matching mechanism ¢ € ® and a profile P € §, the matching ¢(Q) is stable
with respect to the profile @ € Q. But the matching ¢(Q) may or may not be stable for P. Of
course. if the matching ¢(Q) is stable with respect to the profile P, then S(Q) contains at least
one stable matching in S(P). But the set S(Q) may contain more than one element in S(P). The
next result shows that if p(Q) is stable for P, then there exists no other matching in S(Q) that is

also stable for P.

Lemma 9. For every Nash equilibrium Q € N(p, P) such that ©(Q) € S(P), S(Q)NS(P) =
{v(Q)}

Proof. Suppose that | S(Q) N S(P) |> 1. Thus there exists p € S(Q) N S(P) such that
©k(Q) # (k) for some k € SUC. Theorem 5.26 in RS shows that a college Cj is indifferent (over
groups of students) between p and ¢(Q) only if 4(C;) = ¢c,(Q). It follows that either

w(Cj) Pe,ec, (Q)

or

e, (Q)Pe, u(Cj)

for all C; € C with ¢¢,(@Q) # 1(C;). Then Lemma 6 shows that
w5 (Q) Ds, (S0

for all S; € S with g, (Q) # u(S:) and

v, (@) Pe; (C)

for all C; € C with ¢¢,(Q) # (Cj). But this contradicts Theorem 5.33 in RS which shows that if
all students prefer ¢(Q) to p, then all colleges prefer i to p(Q). ]
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Example 7 shows that a Nash equilibrium may admit both a stable matching and a unstable
matching. Our next result shows that any Nash equilibrium profile admits at most one true stable
matching. If, indeed, a Nash equilibrium profile contains a true stable matching, then that match-
ing will be achieved. Therefore, our result shows that there is no chance for the stable matching
mechanism to achieve a unstable matching, as long as a Nash equilibrium admits a true stable

matching, no matter how players manipulate their equilibrium strategies.

Lemma 10. Let (p,P) € ® x Q and Q € N(yp, P) be an arbitrary Nash equilibrium. Then
| S(Q) NS(P) |< 1. Further, if S(Q)NS(P) # 0, then ¢(Q) € S(P).

Proof. Let € S(Q) that is stable for P. If o(Q) # p, then Lemma 6 shows that @s (Q) s, 1(S:)
for all S; and QOCj(Q)ch/L(Cj) for all C';. Lemma 6 also shows that students and colleges strictly
prefer ¢(Q) to w if they are not the same. Suppose that ¢(Q) is not stable for P. Then 4 is not in the
core (in weak domination), contradicting Theorem 5.36 in RS. This shows that if S(Q)NS(P) # 0.
then p(Q) is stable for P.

Suppose that ¢(Q) is stable for P and there exists p in S(Q) that is also stable for P. Then
it follows from Lemma 6 that S(P) does not form a lattice under Pc dual to Ps, contradicting

Corollary 5.32 in RS. )

We may conclude this section with the following theorem which provides a useful necessary and

sufficient condition for the implementation of the stable matching correspondence in our context.

Theorem 11 (Necessary and Sufficient). The stable matching correspondence S : {8 — M is
implementable by a direct revelation mechanism (Ils,$2s, x Ilc,Qc,, ), where the outcome function

@ Is a stable matching mechanism in ®, in a subset 1\7(99,P) C N(p, P) of Nash equilibria if and
only if | S(Q)NS(P) |=1 for all Q € N(p, P).

Proof. Suppose that the stable matching correspondence is implementable in a subset N{p, P)
of Nash equilibria by a game I'(p, P) induced by a stable matching mechanism ¢. Then it follows
that p(Q) € S(P) for all Q € N(p, P). Hence, it follows from Lemma 9 that | S(Q) NS(P) |= 1
for all Q € N(p, P).

The sufficiency part follows from Lemma 10. )



5 Conclusions

Let us summarize what we may learn from this study about stable matchings in manipulated Nash
equilibria. We show that every Nash equilibrium profile admits at most one true stable matching.
If, indeed, a Nash equilibrium admits such a matching, then the true stable matching will always be
achieved, even though a Nash equilibrium may admit some other unstable matchings; see Theorem
11. Moreover, any Nash equilibrium in truncations contains one and only one matching, stable or
not; see Theorem 9. Since the set of stable matchings coincides with the core, the core at a Nash
equilibrium in truncations must be “small”.

Examples exist such that the Nash, rematching proof, and strong equilibrium outcomes in
truncations are unstable; see Example 1. But we show that there are a large class of rematching
proof and strong equilibria in truncations at the match point whose outcomes are all stable; see
Proposition 3. Moreover, all stable matchil'lgs are supported in both rematching proof and strong
equilibrium in truncations at the match point; see Proposition 4. Examples also exist such that
Nash equilibrium outcomes in truncations at the match point are unstable; see Example 2., We
hope that these results provide insights to the noted empirical findings in the literature in a great

number of labor markets, e.g., Roth (1984a, 1990b, 1991) and Roth and Peranson (1997a,b).
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