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ABsTrACT. This paper shows how standard arguments supporting the impo-
sition of price caps break down in the presence of demand uncertainty. In
particular, though in the deterministic case the introduction or lowering of a
price cap (above marginal cost) results in increased production, increased total
welfare, decreased prices, and increased consumer welfare, we show that all of
the above comparative statics predictions fail for generic uncertain demand
functions. For example, for price caps sufficiently close to marginal cost, a
decrease in the price cap always leads to a decrease in production and total
welfare under certain mild conditions. Under stronger regularity assumptions,
all of the monotone comparative statics predictions from the deterministic case
also do not hold for a generic uncertain demand if we restrict attention to price
caps in an arbitrary fixed interval (as long as the price caps are binding for

some values in that interval).
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1. INTRODUCTION

There is a common economic perception that, in the context of a monopoly
or oligopoly, price ceilings or caps' can be effective in combatting the exercise of
market power. In words of a Federal Energy Regulatory Commissioner (Walsh
(2001)): “If you cap those prices, you eliminate any incentive to withhold ... you
may as well sell into the market at a capped price as long as you're covering your
running cost and making a reasonable profit.”

The classical rationale for the use of price caps is well known. Consider the case
of a monopolist and a standard downward-sloping demand curve. If competition
was perfect, the resulting price p,. would be equal marginal cost, and the produced
quantity gp. would maximize efficiency and welfare. However, an unconstrained
monopolist will maximize profits by equalizing marginal revenue and marginal cost.
The resulting quantity ¢, is less than the socially optimal quantity g,. and leads
to a price of p,, > ppc. The imposition of a price cap at a level between pp.
and p,, results in an increased quantity produced by the monopolist because its
marginal revenue is constant up to a production level where the price cap is no
longer binding. As a result, the imposition of a price cap at a level between py,. and
Pm increases quantities produced, increases welfare, and decreases prices. Moreover,
the "optimal" price cap is exactly pp., the perfectly competitive price. Thus, price
caps and, in particular, price caps close to marginal costs, seem like an attractive
tool to increase consumer welfare and total efficiency.

A typical criticism of the theory is on practical grounds. For example, it is
difficult in practice to know what pp. is (See Clarkson and Miller (1982), p. 461
ff). Nevertheless, price caps have been imposed in a wide variety of markets as
mentioned above. In the electric power generation industry, for example, price caps
have been used in the context of creating a deregulated market while at the same
time providing a check on the exercise of horizontal market power. Borenstein
(2002) discusses the use of price caps in the California electricity markets. That
policy makers, and not just economists, use and apply price cap theory is shown
by the quote above from a Federal Energy Regulatory Commissioner. Price caps
also show up various forms in the regulation of monopolies. One such area that
relies heavily on the typical theory of price caps is that of performance based rate

making and "price cap regulation." The idea is that rather than using traditional

IThe focus here is not on macroeconomic situations in which price controls might be imposed
to control inflation, but on situations in which price caps are or have been imposed on particular
products such as apartment rents, electricity, gasoline, interest rates on credit card balances, or

college tuition.
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cost-of-service regulation with attendant problems such as lack of productivity im-
provements and disincentives to cost minimize, the regulator sets a price cap which
it adjusts over time to, in theory, marginal costs incurred by a competitive firm.
The Federal Communications Commission, for example, has indicated a preference
for price cap regulation over cost-of-service methodologies (In the Matter of Policy
and Rules Concerning Rates for Dominant Carriers, Order on Reconsideration, CC
Docket No. 87 — 313, FCC 89 — 91, p. 19.). For an overview of considerations under
price cap regulation see Parker (2002). For application to telecommunications, see
Uri (2001), and to healthcare, see Mougeot and Naegelen (2005). The institutional
details of price caps whether as applied to markets or regulated utilities are, how-
ever, beyond the scope of this paper. The purpose of this paper is to focus on the
theoretical properties of price caps that underlie the justification of the use of price
caps in a variety of contexts. We show that the predictions of the deterministic
theory change drastically if demand is uncertain.

In order to make this point, the paper examines the impact of price caps in the
context of a simple Cournot model.? We first consider a one-stage, deterministic,
Cournot game in which n € N firms choose production quantities.® Profit of each
firm depends on the quantity produced by the firm and the price of the good which
is a function of the total quantity produced by the industry. In addition, each
firm has a constant marginal cost c¢. In the context of this model, we examine
the introduction of a price cap p > ¢. Theorem 1 shows that, if we respectively
restrict attention to the equilibrium with the lowest or highest production quantity,
the following monotone comparative static results hold in the deterministic case:
(i) production is nonincreasing in the price cap; (ii) total welfare is nonincreasing
in the price cap; (iii) as the price cap P approaches marginal cost, total welfare
converges to the efficient level; (iv) consumer welfare is nonincreasing in the price
cap; (v) average prices are well defined (in the sense that firms produce a positive
quantity) and nondecreasing in the price cap. These results seem to confirm the
intuition supporting the use of price caps, in particular price caps which are close
to marginal cost.

We show that these results do not extend to environments with stochastic rev-
enues. For this purpose, we consider an extension of the above model where de-

mand is uncertain and risk neutral firms choose the production quantities before

2Cournot models are widely used in applications, for example, in the analysis of electricity mar-
kets. See Daughety (1988) for an anthology of work on Cournot models and general applications.
Also see Carlton and Perloff (1994).

3All our results thus apply to the monopoly case n = 1.
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the demand realization (or, equivalently, revenue realization) is known. In this en-
vironment, none of the above five predictions is true in general. As a matter of
fact, we show that, under weak assumptions, all of the conditions (i)—(v) fail for a
generic uncertain demand schedule. Theorem 2 shows that if demand is stochastic
and some additional regularity assumptions are satisfied, (i)—(ii) actually will be
reversed for price caps close to marginal cost. In general, the quantitative effect of
price caps close to marginal cost will depend on the exact form of the uncertainty.
Theorem 3 provides a characterization and shows that if low realizations of demand
are possible, although perhaps very improbable, the breakdown of production (and
thus welfare) associated with a low price cap (above but close to marginal cost)
will be severe. However, perverse eflects are not limited to price caps close to mar-
ginal cost. Theorems 4 and 5 show that, under stronger regularity conditions, for
a generic demand schedule, the above monotonicity properties (points (i)—(ii) and
(iv)—(v)) fail in any interval in which the price cap is binding. Finally, Theorem 6
considers a modification of the model in which firms do not have to sell the entire
quantity they produced, but rather they choose the optimal amount they want to
sell after the uncertainty has been resolved. The statements of Theorems 1 — 5 are
robust to this modification.

The technical reason why the results of the deterministic case do not immedi-
ately generalize is that with stochastic demand, the single-crossing property that
underpins the deterministic monotone comparative statics results, does not have
to hold. (Of course, the single crossing condition is only sufficient for the mono-
tonicity results, not necessary.) On an intuitive level, the underlying reason for the
difference between the results of the stochastic and the deterministic model is the
interplay of two effects that result from an increase in the price cap. To gain some
basic intuition consider the case of a monopolist producing a quantity ¢ at a current
price cap p. The payoff of the monopolist is then a weighted average of the payoff
if the price cap is binding and the payoff if it is not. If the monopolist knew that
the price cap would be binding he would like to increase his production. Only the
possibility that the price cap is not binding prevents him from doing so. An increase
in the price cap has now two resulting effects. The first effect is an increase in the
incentive of the monopolist to choose a higher quantity as the benefits of producing
a higher quantity increase when the price cap is binding. But the disadvantages of
producing a higher quantity when the price cap is not binding do not change. But
there is a second effect that decreases the monopolist’s incentive to increase the
quantity. The probability that the price cap is binding will decrease as the price

cap increases. Our theorems establish that, under some regularity assumptions, the
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first effect dominates the second and the monopolist produces a higher quantity at
the larger price cap. The effects of a low price cap can be particularly severe when
price caps are just above marginal costs. If there is a slight possibility that pro-
duction will be inefficient, then a price cap sufficiently close to marginal cost will
result in a complete stoppage of production.

Our results exhibit some duality to those of the papers by Deneckere et al. (1996,
1997) on minimum resale price maintenance. Deneckere et al. (1997) examines a
model of a monopoly manufacturer selling a product with little or no scrap value
through a competitive retail sector to consumers. The retailers must order inven-
tories before the demand uncertainty is resolved. In this environment it may be
optimal for the manufacturer to impose a minimum retail price instead of permit-
ting retail markets to clear. Consumers may also benefit from the minimum price
because prices are lower and sales are higher when demand is high. In essence,
with a binding minimum price the competitive retailers order more inventory and
so sales and welfare can be higher. Although our model is very different its equi-
libria have dual properties: A price cap may lead to lower production and reduced
welfare.

The paper is organized as follows. The next section introduces the model. Sec-
tion 3 contains the results. In Section 4 we present examples and discuss in detail
the significance of the underlying assumptions. Section 5 concludes. All proofs can

be found in the Appendix.

2. MODEL

We consider the case of n symmetric firms, where n = 1,2,... is an arbitrary
natural number. Each firm produces the same homogeneous good at a constant
marginal cost ¢ which is the same for all firms.*

Demand is given by a continuous price function P(Q,6) which depends on Q €
R, the total quantity produced in the industry, and some random variable § € R
distributed according to a distribution F' with bounded support.® We assume that
a high realization of 6 leads to higher prices than a low realization, i.e. that P(Q,0)
is increasing in 0 for any fixed value of (). We also assume that for each fixed 6 the

price function P(Q,0) is decreasing in Q.

4We consider constant marginal costs because in this case the comparative statics results are
very clear cut and simple to state. It is straightforward to generalize Theorems 2, 4 and 5 to the

case of a convex cost function.
5While F has bounded support, it will be convenient to assume that P(Q, ) is defined for all
0 eRand Q € Ry.
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Firms decide on the quantity they wish to produce before the realization of 6
is known. Because firms are assumed to be risk neutral, they will maximize their
expected profits. This means that in the case of no price caps, firm 7 chooses its

production ¢ to maximize its expected profits
ﬂ-(q7 Q*i) = E(q : (P(q + Q*ia 9) - C))7

where (Q_; is the quantity produced by all other firms. Similarly, in the more general
case of a price cap P, firm i chooses its production ¢ to maximize its expected profits
given by
7(¢, Q-i,P) = E(mo(q, Q—i, D)),

where

mo(q, Q—i,P) = q - (min(P(q + Q-;,0),p) — ¢)
are the profits for a given realization of 6. To guarantee that there exists a profit-
maximizing quantity, we assume that limg_... P(Q,0) < c for all § € R.

In the following, we say that production is gainful if E(P(0,0)) > c. Clearly
it E(P(0,0)) < ¢, no firm will ever produce a positive quantity no matter what
the price cap is. As the analysis of the case E(P(0,0)) = c is straightforward and
without practical interest, we will in the following assume that production is gainful.
While we do not require P to be differentiable, we assume there exists L1, Ly > 0
such that |P(Q,0) — P(Q',0)| < Ly -|Q— Q'] and |P(Q,0) — P(Q.0)| > Ly-|0— 0]
for all 6,60’ € R and Q, Q' € [0, QM**], where Q™ = inf{x : E(P(z,0)) = c}.5

We are interested in pure strategy symmetric Nash Equilibria, i.e. quantities ¢
that solve ¢ € argmaxy m(¢’, (n —1)-¢,p). For any fixed price cap P, denote the set
of all such equilibria by ¢*(p). Since a price cap below ¢ leads to no production, we

restrict ourselves in the following to price caps p which are strictly larger than c.

3. RESuLTS

3.1. Existence. We start by establishing the existence of the studied equilibria.
Proposition 1. For any price cap P the set ¢*(P) is nonempty.

Existence of symmetric equilibria for similar models in which marginal costs are
equal to zero was proven by Roberts and Sonnenschein (1976).” The argument

of Roberts and Sonnenschein relies on the nonnegativity of the inverse demand

61f P were continuously differentiable, we could replace the above assumption with the re-
quirement that %P < 0 and d%P > 0 on the relevant region. Note that our assumptions are
sufficiently flexible to allow both for nonnegative price functions or the possibility of negative
prices.

7See also Example 1 in Milgrom and Roberts (1994).
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function and therefore does not directly apply in the presence of a positive c if
E(min(P(Q,0),p) — ¢)) < 0 for some p and Q. Instead, we use Lemma 1 below to

establish a regularity property of the best response correspondence b(-,p).

Lemma 1. Let b(x,p) = argmax, w(q,x, D) be the best response of a player if his
opponents together produce x € Ry and the price cap is D.
Fiz a price cap p > ¢ and quantity v, € Ry. Thenlimyy,, b(x,p) and limg |, b(z,D)

exist® and

lim b(x,p) = minb(z,,p) < maxb(z,,p) = lim b(x, D),

zlxo zlz,
where minb(x,p) and maxb(x,p) denote respectively the smallest and largest ele-

ment in b(z,p).°

The existence of equilibria now follows immediately from Lemma 1 along the
same lines as in Roberts and Sonnenschein (1976) or Milgrom and Roberts (1994).
By Proposition 1, the set ¢*(p) is nonempty. Note that it is also compact as the
best response correspondence has a closed graph. We will denote the smallest and

largest element in ¢*(p) by ¢} (p) and ¢}; (D), respectively.

3.2. Deterministic Case. If we refer to total and consumer welfare in the context
of deterministic demand, we mean respectively fOQ(P(a:7 0)—c)-dzx and fOQ (P(z,0)—
min(P(Q,0),p)) - dx respectively.!® If demand is not deterministic by total and
consumer welfare, we mean respectively the expected values of the above two ex-

pressions.

Theorem 1. Assume deterministic demand and restrict attention to the equilib-
rium with the highest production quantity, q5; (D), or the lowest production quantity,

q;(p). Then in the corresponding equilibrium,

(i) production is mnonincreasing in the price cap;
(i) total welfare is nonincreasing in the price cap;
(iii) as price cap approaches marginal cost, total welfare converges to the efficient

level;

8When we say that lim,1,, b(x,P) exists, we mean that there exists a real number denoted
by limg1,, b(z,p) such that for any sequence xm — xo with zm, < xo and for any sequence
q"™ € b(xm,p) it is the case that ¢™ — limg1,, b(x,P). The statement for limg |,  b(z,p) has an
analogous meaning.

9The existence of min b(Q—;,p) and max b(Q_;,P) is guaranteed; the best response correspon-
dence has a closed graph with values that are uniformly bounded. (The existence of a uniform
upper bound follows from limg_.oc P(Q,0) < c for all # € R.)

10Thus, in the case where the price cap is binding, consumer welfare is calculated under efficient

rationing.
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(iv) consumer welfare is nonincreasing in the price cap;
(v) average prices are well-defined'! (i.e. firms engage in production) and non-

decreasing in the price cap.

The proof of the theorem is based on Lemma 1 and the following observation.

Lemma 2. In the case of deterministic demand (the support of 8 consists of a single
point), w(q, Q—;, D) satisfies the single crossing property as a function of (q, —p) for
any fized Q_;.

It is noteworthy that the above result involves all Nash Equilibria. Milgrom
and Roberts (1994, Example 1) illustrate their methods considering the Cournot
model of Roberts and Sonnenschein (1976). They conclude that an increase in costs
leads to a decrease in equilibrium quantities if they restrict themselves to the set
of equilibria in which each firm chooses the highest quantity consistent with profit
maximization. We are able to generate results involving the set of all equilibria

because of the regularity conditions developed in Lemma 1.

3.3. Uncertain Demand. Note that in the case of stochastic demand, the func-
tion 7 will be still a convex combination of functions which (by Lemma 2) have
the single crossing property. However, unlike the increasing differences property,
the single crossing property is not always preserved under convex combinations.
Therefore, in the case of stochastic demand, it is not immediately clear whether 7
will satisfy the single crossing property as in Lemma 2. Of course, even if 7 does not
satisfy the single crossing property, this does not automatically imply that g7 (p)
and ¢};(p) cannot be monotonically decreasing.

We start our investigation by considering price caps close to marginal costs.'2

Theorem 2. Assume F : R — [0,1] is continuously differentiable.'®
Then there exists v > 0 such that g7 and qj; are monotonically non-decreasing in
(¢,e+7).

Assume, in addition, P is continuously differentiable. Then there exists v > 0
such that either both ¢ and ¢§ are monotonically increasing in (c,c+ ) or both

are equal to zero on (c,c+ 7).

L1n the case of deterministic demand there actually will be just a unique price. We use the
term average prices so that it also makes sense to talk about (v) in the context of uncertain

demand.
2price caps close to marginal costs have received special attention. (See, for example, the

comment of the Federal Energy Regulatory Commissioner cited in the Introduction.)
13The continuous differentiability of F' is not just a technical requirement. We discuss this

assumption in detail in Section 4.
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Thus, if price caps are sufficiently close to ¢, then a lowering of the price cap will
actually reduce the production level. Note that for any 6 - as long as 6 is known -
welfare arbitrary close to the maximal level can be achieved by choosing price caps
sufficiently close to c. It might be surprising that while this holds for any fixed 6,
it is not the case when the exact realization of # is ex ante uncertain, in which case
the optimal, welfare maximizing price cap is bounded away from c.

To see the most basic intuition behind this result, consider the case of a mo-
nopolist (n = 1). Imagine the current price cap is p; and the monopolist charges
some quantity q. The payoff of the monopolist is then a weighted average of the
payoff ¢ - p; if the price cap is binding, and ¢ - P(q,#) if it is not. Note that if
the monopolist knew that the price cap would be binding he would like to increase
his production. Only the possibility that the price cap is not binding prevents him
from doing so. Now, consider what happens if the price cap goes slightly up to a
level Dy > P;. In this case, if the price cap is binding profits become ¢ - (py — ¢)
while profits remain ¢ - (P(q,8) — ¢) if the price cap is not binding. There are two
resulting effects. The first effect of an increase in the price cap is an increase in the
incentive of the monopolist to choose a higher quantity as the benefits of producing
a higher quantity increase when the price cap is binding but the disadvantages of
producing a higher quantity when the price cap is not binding do not change. But
there is a second effect that decreases the monopolist’s incentive to increase the
quantity. The probability that the price cap is binding will decrease as the price
cap increases. Theorem 2 establishes that under the given assumptions, the first
effect dominates the second.

As a direct corollary of Theorem 2 we can establish that the comparative statics
results of Theorem 1 do not hold for a generic distribution. In the following, when
we refer to the set of all distributions on the reals and its subsets we consider it
equipped with the topology that corresponds to weak convergence (i.e. convergence

in distribution).

Corollary 1. Assume P is continuously differentiable. Denote the set of all dis-
tributions with bounded support for which production is gainful by [ . Restrict at-
tention to the equilibrium with the highest or lowest production quantity.

Then the set of F' € [, for which at least one of the conditions (i), (i) or (i)
of Theorem 1 holds, is nowhere dense in F . Indeed, there is an open and dense set

for which neither of those conditions is satisfied.

While the above results imply that, unlike in the deterministic case, price caps
close to marginal costs are typically not welfare-improving, they leave open the

question whether the effect of such price caps are "really bad" or whether, perhaps,
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they still lead to welfare that, for example, is above what would be achieved without
a price cap. The answer to this question, of course, depends on the distribution F'.

We denote by # and 0 the minimal and maximal point in the support of F.

Theorem 3. Let ¢** be equal to the unique root'* of the equation
P(n-q¢*™,0) =c.

if there is a nonnegative root or equal to zero if the equation does not have a non-

negative root. Then ¢*(P) converges to {¢**} as P converges to ¢, D\, c.

Theorem 3 states that as the price cap gets closer and closer to marginal cost, the
firms produce the equilibrium quantity from a competitive market with the lowest
demand. Building on the intuitive discussion after Theorem 2, we can provide a
basic intuition for this result. A firm deciding about its production quantity must
consider the implications of its choice on profits for the different demand realiza-
tions, in particular the profits for a binding price cap and also for a price below
the price cap, P(Q,0) < p. Then it chooses a quantity that constitutes a good
compromise between the different quantities which would be produced if demand
were known. As the price cap converges to ¢, the benefits of high production in
anticipation of a high demand state will decrease. Thus, the marginal benefits of
production in high demand states become relatively smaller than the marginal dis-
advantages of high production in low demand states. As a result, lower production
quantities are chosen. In the limit the producer will focus only on the state in which
demand is smallest and produce the corresponding quantity.

The theorem immediately allows us to conclude that in certain situations, the
introduction of a price cap close to marginal cost will result in a decreased pro-
duction quantity. In particular, if there is a slight possibility that production will
be inefficient, the introduction of a price cap sufficiently close to marginal cost will

decrease production to zero.

Corollary 2. Assume that the ex post socially optimal production is equal to zero
with some positive probability. Then a price cap sufficiently close to marginal cost

c will result in a complete stoppage of production.

3.4. Price caps that are not close to marginal cost. Corollary 1 was based
on properties of the equilibrium set for price caps close to marginal costs. This
raises the question whether the monotonicity properties from Theorem 1 remain

true for uncertain demand schedules if we restrict attention to price caps which are

HMrhe equation cannot have multiple roots because P is decreasing in quantities.
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still binding, but not necessarily close to c¢. To generalize Corollary 1, we make an
extra assumption.'® In this section we assume that marginal profits are decreasing
in other firms’ output, in the sense that d%ﬂe(q,Q,i) is decreasing in @Q_1 (the
output of the other firms) for any § € R, ¢ € Ry and Q_; € R,.'"S Note that this
implies that, for any given price cap p, best responses are nonincreasing and thus
there exists a unique equilibrium for each price cap. Slightly abusing notation, we
denote this equilibrium by ¢*(p).

Let (p,p”) be an interval. We will say that the price cap is binding for some
p e (p',p") if for some p € [p,p"], Pr(P(n-q¢*(p),0) > p) > 0. Clearly, if this is not
the case, i.e., if Pr(P(n-¢*(p),0) < p) = 1 for all p € [p/,p"], it has to be that ¢*
is constant on [p’, p"].

In the following, we will say that production is gainful for a price cap p if
E(min(P(0,0),p)) > c. Again, if (min(P(0,0),p)) < c then at a given price cap of
P, no firm would ever produce a positive quantity.

The following result shows that, for stochastic demand distributions, neither
produced quantities nor total welfare will typically be nonincreasing functions of
the price cap almost everywhere. That is, it does not matter what distribution of
0 one chooses, one can always find a perturbation of that distribution in which the

desirable properties of price caps (i) or (ii) of Theorem 1 fail.

Theorem 4. Assume P is twice continuously differentiable and marginal profits
are decreasing in other firms output. Let (p/,p") be an arbitrary nonempty interval.
Let F be the set of all distributions with bounded support such that production is
gainful for price caps in (p',p") and the price cap is binding for some p € (p',p").

Recall points (i)-(v) in Theorem 1. Then the set of distributions F' € F for
which at least one of the conditions (i) or (i1) holds for price caps in (p',p") is
nowhere dense in [ . Indeed, there is an open and dense set for which neither of

those conditions is satisfied.

As a decrease in the price cap has a direct effect on average prices and consumer

welfare, an additional assumption is needed to guarantee that (iii) and (iv) do not

5 The assumption that marginal profits are decreasing in other firms output is convenient in
the proof of Theorem 4 as it stops alternative equilibria from appearing but it does not appear to
be essential for the result.

16Actuaully7 for any fixed n € N, the following results also hold under the slightly weaker
alternative assumption that ¢ - %P(n ~q,0) + (1 + %) . %P(n -q,0) <0 for all ¢ € Ry and
qgeR,.
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hold for a generic demand structure. Let

Q
C5(@ = [ (Pa.0) = P(Q.0) - da

be consumer surplus for a fixed 6 if industry wide output is @ and if there is no
price cap or if the price cap is so high it never binds. We will say that CS is
twice continuously differentiable and CS” < 0 if, for all § € R, CSy(+) is twice
differentiable, C'Sy(Q) is continuous in both parameters, and C'Sy(Q) < 0 for all
Q€ Ry and 0 € R.

Theorem 5. Assume CS is twice continuously differentiable with CS” < 0 and
marginal profits are decreasing in other firms output. Let (p',p"”) be an arbitrary
nonempty interval. Let F be the set of all distributions with bounded support such
that production is gainful for price caps in (p',p") and the price cap is binding for
some p € (p',p").

Recall points (i)-(v) in Theorem 1. Then the set of distributions F € F for which
at least one of the conditions (i), (ii), (iv), and (v) holds for price caps in (p',p")
is nowhere dense in F . Indeed, there is an open and dense set for which neither of

those conditions is satisfied.

Our result that lowering a price cap can result in higher average prices is some-
what surprising and means that a regulator trying to lower prices with a price cap
can have his effort backfire. There appear to be empirical examples where lower
price caps coincided with higher average prices, see, for example, California Power
Exchange (2000). (However, the question whether in this case the price increase was
related to uncertainty about future demands or driven by other factors is beyond

this paper.)

3.5. Disposal. The model we introduced in Section 2 corresponds to a situation
where firms must sell the entire quantity they produced, that is, a situation where
disposal is infinitely costly or where firms do not learn anything about the realiza-
tion of demand before they have to make a decision on the sold quantity. Alter-
natively, one could consider situations where the uncertainty is resolved after the
firms’ production decisions but before the firms decide on the quantity they want
to sell. Then, especially when demand turns out to be very low, firms might benefit
from disposal as this allows them to affect prices. In the following we describe a
variation of our model that allows for disposal.

Firms are now permitted to withhold some amount of their production quantity
from the market and can dispose of the unsold units. We assume that there is

a fixed per unit cost of disposal equal to a constant n > —c. The case n > 0
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corresponds to a situation where disposal is costly, n = 0 corresponds to the case of
free disposal, and a parameter n € (—c,0) corresponds to a situation where firms
can recover some, but not all of the production costs.!” For example, one could
imagine that firms can recover some of the inputs used in the product or that the
product has some scrap value and can be sold elsewhere.

In the presence of disposal our model becomes a two-stage game. In the first
stage each firm decides on a production quantity g. Subsequently the firms learn
the true state of the world, 8. Once they know the state each firm decides on the
quantity ¢’ that it wants to sell. The second-stage optimization problem for firm i
is to maximize

Joax (¢ min(P(¢" + Q. 0).p) =1 (4= q) —cq)
given that the firm knows that @’ is the total quantity sold by all other firms. In
general, depending on the form of P, the quantity ¢, and the value 6 the second
stage game might have many symmetric equilibria. To avoid technicalities related
to this fact we assume that for any fixed ¢ and 6 the above function is strictly
concave and marginal revenue is decreasing in Q"_,. Then define ¢'(q,p) to be the
unique optimal solution to the second-stage maximization problem in the symmetric

second-stage equilibrium where all other firms happen to also sell ¢’. Let
71'9((]7 Q—i7ﬁ) = q/(Qaﬁ) ! mln(P(q/((Lp) + Ql—z79)7ﬁ) -n: (q - q/(q7p)) —C-q.

Define the set of symmetric equilibria ¢*(p) again to be the set of quantities ¢ such

that ¢ maximizes
ﬂ—(q7 Q*'Lﬁﬁ) = E(ﬂ-e(q7 waﬁ))

Theorem 6. Consider the modified model with disposal. The statements of The-
orems 1-5 remain valid for the equilibria with the production quantities q;(p) and

a5 (D)
4. DISCUSSION

In this section we illustrate our results and the driving forces behind them using
two numerical examples. Recall from our model description the assumption that
there exists a constant Lo > 0 such that |P(Q,0) — P(Q,0")| > Lo - |0 — ¢'| for
all 0,0/ € R and Q € [0, Q™27]. This assumption can be seen as a regularity re-

quirement as it is automatically satisfied whenever P is continuously differentiable

7Note that the case n = —c would render this model equivalent to a deterministic model.
Firms could produce sufficiently large quantities, then choose the optimal deterministic quantity

after uncertainty is resolved, and finally dispose without a loss of any leftover production quantity.
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and d—deP > 0 on the relevant region. Together with the assumption that the dis-
tribution of 6 is continuously differentiable it implies that for any quantity in the
relevant range the distribution of market clearing prices is Lipschitz continuous.
This Lipschitz continuity is central to our analysis since this property introduces a
sufficient degree of uncertainty into our model.

We present two numerical examples. The first example satisfies the regularity
assumption and exhibits the properties of Theorems 2 and 3. The second example
does not satisfy the regularity assumption and as a result does not exhibit the
properties. We explain how this failure can be traced back to the kind of uncertainty
we require. We then conclude the discussion with an argument why the regularity

assumption is economically sensible.

Example 1. Let demand be given by P(Q,0) = max{0,6 — Q} where 6 € [10, 20]
has the triangular distribution with support [10,20] and mode 15. There is a single
firm with constant marginal cost of ¢ = 10. For a sufficiently low price cap p the

firm’s objective function is as follows.

P —(0—10)do
0 @ 2D

+/120p- (% - %(9— 15))d9>

5

p+Q
m(Q.p) = Q-</1+ (9—@)-%(9—10)de+/

Figure 1 shows the production quantity of the monopolist for price caps p €
(10,10.4]. Just as Theorems 2 and 3 predict, the production quantity converges
monotonically to 0 as p \, ¢ = 10 since at § = 10 it holds that P(0,0) = c.

1.5

0.5

10.1 10. 2 10. 3 10. 4

FI1GURE 4.1. Production Quantity as Function of Price Cap
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To gain some intuition why the production decreases as the price cap decreases
we compare the firm’s problem for two price caps, p1 = 10.3 and ps = 10.2. At
p1 the optimal production quantity is 1 = 2.0183, at ps the optimal production
quantity is Q2 = 1.8087. Observe that @ is the unique solution to %ﬂ'(',f)l) =0.
If the price cap is now lowered to py then the expected marginal profit becomes
negative, %W(QhﬁQ) = —0.0714. Therefore, the firm must reduce its quantity in
order to produce optimally. In order to see why expected marginal profit becomes
negative we need to analyze the profit function in more detail.

The expected profit function is a weighted average of two components. For
6 > 12.3183 (= p1 + @Q1), the price cap is binding and profits are given by Rg 5, =
Q@ - (p1 — ¢). Note that, for 6 in this region, the marginal profit MRy 5, = p1 — ¢
is always positive. In particular, if the monopolist knew in advance that the price
cap is binding, then he would like to increase (). For 6 < 12.3183, the price cap
is not binding and profit is given by Ry = @ - ((6 — Q) — ¢). For 0 in this region,
because of the monopolist’s market power, marginal profit will be typically negative
(as long as @ is larger then the quantity an unconstraint monopolist would choose
if he knew 0). Here, at p; and @1 the marginal revenues from the two components
are respectively -0.2116 and 0.2116.

What happens if production is kept constant at ()1 but the price cap is reduced
to pa = 10.27 Note that for realizations of 6 for which the price cap was previously
binding (6 > 12.3183) the new lower price cap will still be binding. However, for ¢
in this region marginal profit decreases from MRy p, = D1 — cto M Rg p, = P2 — c.
In other words, the monopolist’s earlier incentive to produce a higher quantity
is weakened. This explains why the monopolist might want to produce a lower
quantity.

However, there is a second effect. As the price cap decreases slightly to po = 10.2
the new price cap will become binding for § € [12.2183,12.3183] where it was not
binding previously. While for 8 < 12.2183 (= ps + Q1) the price cap is still not
binding and marginal profit remains unchanged, for 6 € [12.2183,12.3183] marginal
profit “jumps upwards” from P(Q,0) — ¢ — Q to p2 — ¢ as the term —Q that comes
from the monopolist’s market power disappears. The change in marginal profit
after the decrease in the price cap thus is the sum of two effects: a decrease coming
from the case of 6 > 12.3183 for which the price cap was previously binding and
an increase coming from the case of 6 € [12.2183,12.3183] for which the price cap
is binding at ps but was not at p;.

In this example, the probability of a 6 such that the price cap is binding at p; is
89.2513%. The corresponding probability for ps is 90.1586%. Thus, the probability
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of a 6 such that the price cap is binding at po but not binding at p; is only 0.9073%.
This last probability is very small and so it is not surprising that overall the first
effect dominates and total marginal profit decreases. Indeed, numerically, the two
effects correspond respectively to —0.0892 and 0.0178 giving the total expected
marginal profit of —0.0714.

In summary, there are two driving forces needed for the first effect to dominate

the second:

(1) For sufficiently small price caps there is always a positive probability that
the price cap is binding. (Here, as before we use “binding” in the sense that
the market clearing price without a cap would be strictly larger then the
price cap).

(2) The probability that the price cap is binding changes only “very little” in a

response to a small change in the price cap.

We contrast this example to a second example!® with discrete uncertainty.

Example 2. Let demand be given by P(Q,0) = max{0,0 — Q} where 6 € {1, 2},
with each value having probability % There is a single firm with constant marginal

cost of ¢ = 0. Then the firm’s objective function for a given price cap p is

m(Q,D) =Q (; min {p, max{0,1 — Q}} + %min {p, max{0,2 — Q}}) .

For any price cap p < % the optimal solution to this optimization problem is
@ = 2 — p, that is, the optimal quantity is decreasing in the price cap. This fact
contradicts the results of Theorems 2 and 3.

Observe first that neither of the two important properties (1) and (2) of the first
example are satisfied. Consider again a sufficiently low price cap p1 > ¢ = 0 and
the corresponding optimal quantity Q1. Then at p; there is a zero probability that
the price cap is binding in the sense that P(Q,0) is strictly larger than p;. On the
other hand, if the price cap is slightly decreased to a level pa (and production held
constant) the price cap will become binding (in the above sense) with probability
50%. As a result, in the example the second of the two effects highlighted in the
discussion of Example 1 dominates.

The basic idea of Example 2 is that for sufficiently low price caps the quantities Q
chosen by the monopolist are in a region such that P(Q,0) is constant and equal to
zero for 8 < M where M is some constant which is larger then 6;,,, = 1. Therefore,
the maximization problem of the monopolist for those price caps looks essentially

as if the monopolist would ignore low demand realizations and condition on 6 > M.

18We are grateful to an anonymous referee for suggesting this example.
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But the distribution of  conditional on 6 > M is deterministic. As a result the
same monotone comparative statics results hold as if there was no uncertainty and
the monopolist effectively knew that the state will be Opnign = 2. It is exactly this
“lack of uncertainty” that drives the discrepancy between the above example and
Theorem 2. To challenge the predictions of the deterministic model we therefore
need to impose a regularity condition, which ensures that the distribution of prices
for any given production quantity cannot be deterministic even after conditioning
on any event that has positive probability. Such a condition is the assumption that
the distribution of 6 is continuously differentiable and that there exists a constant
Ly > 0 such that |P(Q,0)—P(Q,0')| > Lo-|0—0'| for all 0,0’ € R and Q € [0, QMa*].
This assumption guarantees that, for production levels in the relevant range, the
distribution of market clearing prices will be well behaved, in particular Lipschitz
continuous.

A natural question to ask now is whether the assumption that the distribution
of market clearing prices is well behaved is economically interesting. Or, whether
models in which prices are uncertain but take only finitely many values might
provide a better descriptive model. We think there is something unappealing and
unnatural in a model with only finitely many possible prices and where all prices
in the neighborhood of any given price have zero probability. It seems that most
natural perturbations introducing some small randomness would invalidate this
structure. In addition, recall that in the studied model, the demand side is captured
by a classic demand function. We see this as a reduced model for a situation
where the number of customers is large enough to induce essentially price taking
behavior. However the regularity of the distribution of market clearing prices seems
a natural requirement, if the number of customers is large and each customer has a
valuation v that does not just take finitely many values but is distributed in some
interval according to a continuous distribution that is allowed to depend on some

fundamental uncertainty 6.

5. CONCLUSION

This paper has shown that the simple monotone comparative statics results
which are usually used to justify price caps in the context of deterministic demand
cease to hold if we consider firms facing an uncertain demand function. In the
presence of such uncertainty, imposing a price cap or lowering its level can result

in a reduced production and total welfare. In addition, it can lead to an increase
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in average prices and a decrease in consumer welfare.!? In the case of price caps
close to marginal costs, we obtained a characterization of equilibrium production
thus making it possible to quantitatively assess the effects of imposing such a cap.
Unlike in the case where the future realization of demand is known, price caps
close to marginal cost are never welfare maximizing. In the case of price caps “far
away” from marginal costs, we showed that all of the standard comparative statics
predictions fail for a generic uncertain demand schedule suggesting that also in this

case, price caps should be used only with great caution.

MATHEMATICAL APPENDIX

In the following, we sometimes want to underline the dependence of functions or
variables on the underlying distribution F. In this case, we write 7p, ¢5(P), etc.
Slightly abusing notation, we continue to write 7y, where 8’ € R to denote profits
if F'is such that 8 = 6’ with probability one, i.e.,

7m0 (¢, Qi) = q- (P(¢ + Q-i,0") —c).
A.1. Proof of Proposition 1 and related results.

Proof of Lemma 1. The statement of the lemma consists of two parts, one involving
limg,, b(z,p), the other involving limgq,, b(x,p). We will prove the former; the
proof of the latter is analogous.

Assume the first part of the lemma is not true, thus there exists a sequence
71, | 2, and a sequence qi, € b(zy, p) such that g, converges to some point ¢”* which
is not equal to the point maxb(g,p) which we will denote by ¢Z.

Ag the best response correspondence has a closed graph, it must be the case that
g is itself a best response. The definition of ¢Z therefore implies that ¢® > ¢*.
As we assumed that ¢# is not equal to ¢Z, it follows that 0 < ¢* < ¢5.

For the sake of notation, it will be convenient to denote x; — x, by hg. Also,
let ¢(z) = E(min(P(z,0),p) — ¢)) for all z € Ry. The remainder of the proof is

organized in several steps.

(1) We already saw that both ¢** and ¢® must be best responses against x,, in

particular it must be that
g* - dlwo+q%) = ¢" - Pz, + 7).

or course, even if average prices increase in response to a decrease in price caps, such price
caps could still be justified if the objective is to decrease price volatility rather than improve

consumer welfare. (See Verleger (1993) for a discussion of this issue.)
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and thus (as 0 < ¢4 < ¢® implies 0 < ¢P)
¢* Ay _ B
qu-cb(xOJrq ) =o(xo +q7).

Note that 0 < ¢” and ¢ - ¢(z, +¢P) > 0 implies that ¢(x,+¢”) > 0. But
then ¢ < ¢” implies that ¢(z, + ¢*) > 0. Hence,

$(zo+q") > a0+ ).
(2) Since ¢* is a best response against x,, it must be that

ar - d(xe +ar) = (g +hi) - oo + qu + hi) — hi - 0(x0 + g + hi)
qA : d)(xo + qA) - hk : d)(l'o + gk + hk)

IA

(3) Since gy, is a best response against zy, it must be that
(¢" — i) - d(xr + (67 — b)) < qr - G(n + qn)-
(4) Combining the inequalities of the two previous steps, we get that
(q" = hi) - bz + (¢ = ) < ¢ - B0 + ¢) = hi - Do + i + D).

Note that z3, + (¢® — hi) =z, + ¢® and apply the first equation of Step 1

to conclude that
hi - $(o + q + i) < b - d(z0 + ¢°).
As hy > 0 and x, + hy = x) this means that

o(r + ar) < d(zo + ¢7).

(5) Our assumptions on P guarantee that ® is continuous. Thus, as zr — xo

and ¢, — ¢, the last step implies that

Do+ q*) < d(x0 + ).

The last inequality in Step 5 contradicts the last inequality of Step 1. The

contradiction shows that the statement of the lemma must be correct. [

Proof of Proposition 1. Lemma 1 implies that the function max b(-,p) is continuous
but for upwards jumps. Thus, by Theorem 1 in Milgrom and Roberts (1994), the

equation
g=maxb((n—1)-¢,D)

has a solution. The conclusion follows. O

A 2. Proof of Theorem 1 and related results.
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Proof of Lemma 2. Consider two quantities ¢’ > ¢” and two price caps o' < 7.
Assume that, for a fixed Q_;, mo(q', Q—;, ") > mo(q",Q_;,7"). We will show that
mo(q',Q—i,7') > m9(q"”,Q—;, D). We will compare the change in profits as the price
cap changes from p” to p’. It will be convenient to distinguish three cases:

(1) the price cap P’ is binding for both quantities ¢’ and ¢”. As p’ > ¢, this
implies that producing the higher quantity is better after the price cap was
decreased to p'.

(2) the price cap P’ is binding if production has the lower level ¢ but is not
binding if production is ¢’. As P’ < p”, this means that after the decrease
of the price cap to p’ production at a level ¢’ became less attractive while
production at a level of ¢’ yields the same profits as before. As producing
the higher quantity was better before, it also must be better now, after the
decrease in the price cap.

(3) the price cap P’ is not binding for both quantities ¢’ and ¢”. In this case
profits are the same both after and before a decrease in the price cap. The

claim follows.

The second part of the proof which involves weak inequalities is analogous. [

Lemma 3. If 7 satisfies the single crossing property then ¢; (D) and g5 (P) are both

nonincreasing functions of p.2°

Proof of Lemma 3. Define ¢(Q) = E(min(P(Q,0),p) — ¢). Using Lemma 1, we
already showed in the proof of Theorem 1 that maxb(-,p) is continuous but for
upward jumps. Similarly, Lemma 1 implies that minb(-,p) is also continuous but
for upward jumps.

As 7 satisfies the single crossing property, the Monotonicity Theorem of Mil-
grom and Shannon (1994, p. 162, Theorem 4) implies that for any fixed Q_; the
functions minb(Q_;, ) and maxb(Q_;,-) are nonincreasing. Note that ¢} (p) and
q5; (D) are respectively equal to the lowest and highest intersection of minb(Q_;,-)
and maxb(Q_;, ) with the diagonal. Theorem 1 in Milgrom and Roberts (1994)

implies that ¢} (p) and ¢}; (p) are nonincreasing. [J

Proof of Theorem 1. The theorem states that (i)-(v) hold if we restrict attention
to the equilibrium with the highest or lowest production quantity. Lemmas 2 and

3 immediately imply that (i) holds. Note that total welfare
Q
/ (P(z,0) —¢)) - dx
Jo

205 always in this paper, we only consider price caps p which lie above marginal cost c.
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is a monotonic function of total production @ as long as P(Q,0) > ¢. However,
independently of the price cap, equilibrium total production will always satisfy
P(Q,0) > c as otherwise firms could decrease production. Point (ii) follows.

If demand is deterministic, then in equilibrium demand is equal to supply, i.e. for
all ¢ € ¢*, P(n-q,0) <p. Indeed, P(n-q,0) > D in connection with the continuity
of P(-,0) and p > ¢ would mean that firms could increase their profits by slightly
increasing production. Therefore (i) together with the observation made above and
the monotonicity assumptions on the inverse demand function P implies (iii) and

(iv). Property (v) now follows directly from (i) and (iv). O
A.3. Proofs for Section 3.3.

Proof of Theorem 2. We will prove the statement of the theorem for ¢7, the ar-
gument for ¢y, is analogous. Consider first the case where P is twice continuously
differentiable in both of its parameters. Note that if ¢} (p") = 0 for some P’ > ¢ then
gy (P") = 0 for all p” € (¢,p’) and the theorem holds. Assume therefore, without
loss of generality, that ¢ (7)) > 0 for all ' > c.

Define ¢™** to be the solution to
P(qmaxﬂg) = c7

where 6 is the maximal point in the closure of the support of F. Let b(z,p) =
arg maxy m(q, z, p) be the best response of a player if her opponents together produce

x and the price cap is p.

Note that
2 B PR
m”(%Q—np) = diq . q-dF(6)
~ 5P+ Q-i,0) _
= -F@)+3 (0
S PN I B
> (1—F(§))—%.qma><.f(§)
2

where 0 is equal to 8 if P(¢+Q_;,8) > P, equal to 0 if P(¢+Q_;,0) < P and given

by P(q+ Q—;,0) =P otherwise. If, in addition, g € b(Q—_;,D) then,

B 0
0 < <1—F<e>>-q-<ﬁ—c>+/ (P(q+Q_i,6) — ) - - dF(0)

J —oo

<1—F<5>>-q-@—c>+/ (—c—(6-6) L) q-dF ()

— 0o

IN

;o
- Q'((ﬁ*C)Jr/ (6—8)- Ly dF(9))

J —00
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and thus either ¢ = 0 or ffoo(g— 0)-dF(9) < @L;C).
Note that f_eoo(g— 0) - dF(0) is monotonically increasing in 6. Choose v > 0
such that if ffoo('al 0) - dF(0) < £ then 0 is small enough so that

(1= @)~ 2 f0) > L.
Putting the above observations together conclude that if ¢, € R4 and p > c¢ satisfy
D—c <7, q<maxb(z,p), and ¢ > 0 then ﬁzﬁw(q,x@) > %

Assume ¢; is not monotonically nondecreasing in (c¢,c¢ + 7). Then there exist
sequences 1", s™ € (¢,c+ ) such that s™ —r™ — 0, r™ < s, and ¢} (r") > ¢}.(s").
Without loss of generality, assume there exists ¢ € (¢,c + ) such that s, 7" — ¢
as n — oo. Note that «v was chosen so that %zdﬁw(q,x,p) > % for all (¢, z,Dp) in
some neighborhood of {(¢’,(n — 1) - ¢,t) : ¢ € ¢*(t),q¢ < maxb((n — 1) - ¢,t)}.
Then, however, Theorem 1 from Edlin and Shannon (1996) implies that b(x,p) is
monotonically increasing (as a function of p) in some neighborhood of {(n — 1) -
q,t) : g € ¢*(t)} which means that ¢} has to be monotonically increasing in some
neighborhood of ¢. Contradiction!

Now consider the case where P does not satisfy the differentiability assumptions
made above. Choose v > 0 such that if ffoo(g— 0) - dF(0) < 27, then 0 is small
enough so that

(1= (@)~ 228 g™ f(0) > 5.

If ¢; is not monotonic on (¢, ¢+ ), then there are points r, s € (¢, ¢+ ) such that
r < sand ¢ (r) > q;(s).
Choose a sequence of demand schedules P* such that
o g PF(gmax ) = ¢ satisfy g™ < 2- g™ where g™ : PF(¢™**,0) = ¢;
|P*(q,0)~P*(¢,0)| < 2-Ly-|g—q'| and |P*(q,0) = P*(q,0")| = 2-L2-0 0|
forall 0,6’ € R, q,¢ € R_+ and k € N;
e P* — P uniformly on Support(F) x [0,2 - ¢™¥]

e P* is twice continuously differentiable in both parameters

the lowest equilibrium for a price cap s is the same for each demand schedule
P* as in P.

As in the limit the equilibrium set for price cap r and demand schedule P* has
to converge to a subset of ¢*(r), the established result for the differentiable demand

schedules P* implies the result for the nondifferentiable case. O

Proof of Corollary 1. Let F' € F be an arbitrary distribution. Note that we can
always find a continuously differentiable distribution Fer arbitrary close to F.

Theorem 2 together with standard continuity arguments implies that (i) does not
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hold for F'.2' If (i) does not hold for F, there is an open neighborhood of F' for
which (i) does not hold. We showed that for any F' € F, there exists an open set
on which (i) does not hold and which is arbitrary close to F. This fact implies that
there is an open and dense set on which (i) does not hold. Analogous arguments
imply that there are open and dense sets on which respectively (2) and (3) do not
hold. Taking the intersection of those three sets we obtain an open and dense set
on which none of the properties (i)-(iii) holds. This fact implies that the sets of

F € F for which at least one of the three statements holds is nowhere dense. [J

Proof of Theorem 8. Let p"* > ¢ be a sequence of numbers such that lim,, ., p™ =
¢ and ¢™ be a sequence of quantities such that ¢™ € ¢*(p™). Our aim is to show
that ¢™ — ¢**. For this purpose we examine the sequence P(n - ¢™,0).

Assume that

liminfP(n-¢™,0) <c

m—00

Then there exists a subsequence ¢"* such that limy_,o, P(n-¢™*,0) < c. As 0 lies

in the support of 6, this means that with positive probability the firms will make

a per unit loss which is bounded away from zero. Note that on the other hand,

the potential per unit gains converge to zero as p approaches c. Thus it must be

that ¢"* is equal to zero for large enough k. In this case, kﬁoolimP(n g™, 0) < c

implies P(0,0) < ¢, i.e. the equation from the proposition does not have a solution.
Assume now that

limsupP(n - ¢™,8) > c.

m—00

Then there exists a subsequence ¢"™* such that limg_,o P(n - ¢"*,0) > c. This
means that limg_, o, P(n-¢™*,0) is uniformly bounded away from c for all 6. Thus,
for large enough & the price cap will be always binding. As P(Q, ) is assumed to
be continuous in ), this means that firms would like to increase their production

in equilibrium — contradiction. Hence limsupP(n - ¢™,0) < c. O

m—00

A.4. Proofs of Theorems 4, 5, and 6.

21Indeed, either g7 and gj; are monotonically increasing on some interval (c,c + ) or equal
to zero in that interval. In the former case (i) clearly does not hold. In the latter case, (i) would
imply that q7 and qj; are equal to zero for all price caps. This, however, can not be, the fact
that production is gainful implies that producing zero cannot be an equilibrium if the price cap is
chosen high enough so that it is not binding if total production is zero. The contradiction shows

that (i) also in this case cannot be true.
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Proof of Theorem 4. Note that it is sufficient to show that for any continuously
differentiable F' € F with convex support, there is a Fer arbitrary close to F'
such that ¢* is nonmonotonic on (p’,p”). Indeed, if this is the case, there will be a
neighborhood of F for which ¢* is nonmonotonic.

Assume the price cap is binding at some point in (p’,p”’). If ¢* is not monoton-
ically nonincreasing in (p/,p”) then we can choose F = F and are done. Assume
therefore ¢* is monotonically nonincreasing in (p’,p”). This fact combined with
the assumption that the price cap is binding at some point in (p’, p’’") implies that
the price cap is binding in some proper subinterval of (p’,p”). Without loss of
P).

Note that since marginal profits decrease in other firms output and prices are

generality assume the price cap is binding on (p,’

decreasing, mg(-, Q—_;) is concave for any 0 € R, Q_; € Ro. As mp(-,Q—_;, D) is equal
to min(mg (-, @—;), (P—c)-q), it is also concave for any § € R, Q_; € Ry, and p > c.

The equilibrium ¢* is thus equal to the unique root of the first order condition??
oo
| Dim(a.(n=1)-q5)-dF =0,
— 00

For a given distribution F| price cap p, and quantity ¢ € R, denote the left hand
of the above expression by I'r(q,p). It is straightforward to check that, as marginal
profits decrease in other firms’ output, I'r(-,D) is a decreasing function for any
distribution F' and price cap p.

Choose a point p € (p/,p”). Define 0 : P(n - q*(ﬁ),g) =p. Fixae > 0 and

consider the distribution F given by

F(x) r<f—c¢
F@)={ Fl@—¢)+a-(Fl@+e)—F(0—¢)) zeld—e,0+¢)
F(z) ifx>60+¢

where « is chosen so that

S Dimol* (), (n— 1) - 4°(5),5) - dF
(F(0+¢)—F(0—¢))

is equal to
a-Dimg_ (¢*(p), (n—1)-¢"(p)) + (1 — ) - p.
Note that this definition implies that

| Dmla’ @) (0= 1)-0"().7) - dF =0
and thus ¢*(p) is also the unique equilibrium if € is distributed according to F.

22D17r(9, the derivative with respect to the first parameter exists a.e. As F' is assumed contin-

uously differentiable and D1 P is bounded it is clear that the integral is well defined.
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Finally observe that in some neighborhood of p, the Implicit Function Theorem

yields
dg* Ji 1-dF
P (1) P q,0) + g L P(nq.0)) - dF

Asq %P(n-q, 0)+ dQP(n q,0) <0 (by the decreasing marginal profit assumption)
and %P(n -q,0) < 0 it follows that 2 > 0. O

Proof of Theorem 5. The argument follows the same line as the proof of Theorem
4. After choosing F, observe that in some sufficiently small neighborhood of p,

average prices are equal to
00 ~ 0 ~
| paf+ [P0
0 —o0

where 6 is fixed and defined as in the proof of Theorem 4. Using the equality for
% at the very end of the proof of Theorem 4 note that

d OO, _ 0 . ~
gp% p-dm/ P(n-4"(p).0) - dF) =

—0o0

:/ 1.dF + 2L / n- -2 P(n-q"(p),0) dF
Jg dp

e dQ
0 d o
00 ~ n---Pn-q,0)-dF
:‘/' 1dF(1— - f—oo dQ ( ) : _

It is therefore enough to show that?3
ff n- dQP(n ¢.,0) - dF .
J! (1) 5P, 0) +n-q- g5 P(n-q,0)) - dF

dCSQP(n -q,0) > 0 for all

Note that C'S” < 0 implies that %P(n cq,0)+n-q-
0. But then clearly

0 d? ~ 7 d ~
/_Oo((n+l) @P(n q,9)+n-q-dT?2P(n~q,9))-dF>/_Oon @P(n q,0)-dF.

But then (as the left hand side is negative)
f_e n- dQP(n .,0) - dF
[P ((n+1) - P q.0) +n-q- 5 P(n-q.0)) - dF
Q Q
follows. O

>1

231¢ average prices are decreasing in the price cap and quantity is increasing in the price cap

the implication about consumer and total welfare follow immediately.
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Sketch of proof of Theorem 6. We sketch how the arguments used in the proofs of
Theorems 1-5 change in the modified model with disposal.

First note that the proof of the analog to Theorem 1 follows immediately from
Theorem 1 since firms will never dispose of production in the deterministic case.

We sketch the argument to prove the analog of Theorem 3 before we discuss the
proof of the analog of Theorem 2. To see that the analog of Theorem 3 is true
assume - as in the proof of Theorem 3 - there exists a subsequence ¢"* such that
limg oo P(n - q"™*,8) < ¢. Consider first the case where limg_. o, ¢™* > 0. In this
case, let ¢, > 0 be a quantity such that limy_., P(n-¢™,0) < P(n - q,,0) < c.
Then if § = @ and each firm sells less than g, a firm’s profit can be at most

1

—5(a"™ = o) - (c—m) +¢" - (™ —c).

On the other hand, if # = @ and each firm sells more than ¢, a firm’s profit can be
at most
(P(n g0, 8) =€) - Go.

Note that as ¥ — oo both expressions are smaller than and bounded away from
zero. This is a contradiction as it would imply that firms make negative profits that
are bounded away from zero for 6 sufficiently close to § and sufficiently large k. As
total revenue is bounded by ¢™%* - (p™* — ¢) which converges to zero this would
mean that for sufficiently large k a firms expected equilibrium profit is negative - a
contradiction!

It therefore must be the case that limg_..on - ¢"™* = 0. But then limg_,, P(n -
q"™*,0) < c together with the continuity of the price function implies P(0,0) < ¢,
which means the equation in the theorem does not have a solution. The remainder
of the argument is analogous to the proof of Theorem 3.

To prove the analog of Theorem 2 follow the argument in the theorem’s proof
and note that it is still the case that

d? d o0
s 71_’, e -dF(0
(¢,Q_1.D) /gq )

dq - dp dq
2P+ Q-,0) ~
— (1-F@)+ ¢ - f(0
( (9)) 5Pt QD) q- f(0)
> (1= F@) - 7™ 50
2

where 6 is equal to 6 if P(q+ Q_;,0) > P, equal to 0 if P(¢+ Q_;,0) < p and
given by P(q + Q_i,g) = P otherwise. Indeed, this fact follows directly from the
observation that the optimal amount a firm will dispose off depends only on 6 and

the produced quantity ¢, but does not depend directly on the price cap p. Now,
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as in the proof of Theorem 2, consider the case where, in addition, ¢ € b(Q_;, D).

Then the bound on profits we used in the proof of the analog of Theorem 3 yields

that 6 can be required to be arbitrary close to 6 if v is sufficiently close to zero or

the produced quantity is zero. The remainder of the argument is along the same

lines as the proof of Theorem 2.

The analog of Theorems 4 and 5 are proven along the same lines as those theo-

rems. The major difference is that the marginal revenue D17 (¢*(P), (n—1)-¢*(D), D)

appearing repeatedly in the proof has to be substituted with max(D;mg(¢*(p), (n —
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