
Deo, Rohit S.; Chen, Willa W.

Working Paper

Estimation of Mis-Specified Long Memory Models

Papers, No. 2004,03

Provided in Cooperation with:
CASE - Center for Applied Statistics and Economics, Humboldt University Berlin

Suggested Citation: Deo, Rohit S.; Chen, Willa W. (2003) : Estimation of Mis-Specified Long Memory
Models, Papers, No. 2004,03, Humboldt-Universität zu Berlin, Center for Applied Statistics and
Economics (CASE), Berlin

This Version is available at:
https://hdl.handle.net/10419/22177

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/22177
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Estimation of Mis-Specified Long Memory Models

Willa W. Chen ∗ Rohit S. Deo †

November 7, 2003

Abstract: We study the asymptotic behaviour of frequency domain maximum likelihood estimators of
mis-specified models of long memory Gaussian series. We show that even if the long memory structure
of the time series is correctly specified, mis-specification of the short memory dynamics may result in
parameter estimators which are slower than

√
n consistent. The conditions under which this happens

are provided and the asymptotic distribution of the estimators is shown to be non-Gaussian. Conditions
under which estimators of the parameters of the mis-specified model have the standard

√
n consistent

and asymptotically normal behaviour are also provided.

1 Introduction

The asymptotic behaviour of maximum likelihood parameter estimators when the model being estimated
is mis-specified is often of interest for various reasons. Some interesting questions which arise, including
those raised by White (1982), are: Do the estimators still converge to some limit and does this limit have
meaning? If the estimators are consistent for some value, are they still asymptotically normal? Is the
standard

√
n rate of convergence still retained? These questions are not just of theoretical interest but

also of practical importance. For example, the Efficient Method of Moments (EMM) estimation procedure
(Gallant and Tauchen, 1996 ) estimates the parameters of a correctly specified model whose likelihood
can not be written analytically by deliberately estimating a mis-specified model whose likelihood has a
simple analytically form. Naturally, properties of the estimators of the true model parameters, such as
their rate of convergence, will depend on the properties of the estimators of the mis-specified model.

Though White (1982) considers the consequences of model mis-specification when the data are iden-
tically independently distributed, there has also been considerable work in the literature where the data
are assumed to follow a time series. Most of the research in this area (see, for example, Taniguchi,
1979) has assumed that the true data generating process of the series is such that the covariances are
summable, implying that the series has short memory. A notable exception to this framework is the work
by Yajima (1993), in which he considers model mis-specification of long memory time series which have
non-summable covariances. Yajima (1993) studies the consequence of fitting short memory Autoregres-
sive Moving Average (ARMA) models to long memory time series. He shows that when the value of the
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long memory parameter, d, is greater than 0.25, the estimators of the parameters of the fitted ARMA
models will converge to some pseudo-true value at a rate which is slower than

√
n and depends on d.

Furthermore, Yajima (1993) shows that in such cases, the limiting distribution will be non-Gaussian.
In our paper, we study the asymptotic distribution of estimators of mis-specified long memory models
for a long memory time series. More specifically, we assume that the long memory dynamics of the
fitted model are specified correctly but that the short memory dynamics are not. If the short memory
dynamics are sufficiently mis-specified, we show that the estimators of the fitted model converge to some
pseudo-true value at a rate which is slower than

√
n and the asymptotic distribution is non-Gaussian.

This result shows that even correct specification of merely the long memory dynamic need not be enough
to guarantee

√
n rates of convergence of the estimators and an asymptotic Gaussian distribution. We

also establish the condition under which the estimators of the mis-specified model will have the usual
√
n

consistent and asymptotically normal behaviour. In the next section, we state our assumptions and the
theoretical results that we have obtained.

2 Asymptotic Results

We will assume that we have n observations X1, ..., Xn from a stationary Gaussian time series with a
spectral density given by

f0 (λ) =
σ2

0

2π
g0 (λ) |2 sin (λ/2)|−2d0 , (1)

where σ2
0 > 0, 0 < d0 < 0.5 and g0 (λ) is a spectral density continuous on [−π, π], bounded above and

bounded away from zero with continuous second derivatives. An example of a spectral density that is
of the form (1) is that of an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process.
We are interested in the asymptotic properties of estimators of parameters of mis-specified models which
are fit to the data from the process given by (1). We will assume that the mis-specified model that is
estimated has a spectral density given by

f∗1
(
θ, σ2, λ

)
=

σ2

2π
g1 (β, λ) |2 sin (λ/2)|−2d

,

where σ2 > 0, θ =
(
d,β′

)
∈ Θ, Θ = [δ, 0.5 − δ]×Φ for some 0 < δ < 0.25 such that d0 ∈ Θ, Φ is

a p dimensional compact convex set and g1 (β, λ) is a spectral density is a spectral density such that
g1 (β, λ) 6= g0 (λ) for all β. Thus, the short memory component g0 (λ) of the true spectral density is
mis-specified as g1 (β, λ) in the family of models that is to be estimated. In this paper, we will study the

estimator θ̂=
(
d̂, β̂

′
)′
of the parameter vector θ =

(
d,β′

)′
obtained by minimising the objective function

Qn (θ) =
2π

n

n/2∑

j=1

I (λj)

f1 (θ, λj)
, (2)

where I (λ) = (2πn)
−1 |∑n

t=1 Xt exp (−iλt)|2 is the periodogram, λj = 2πj/n are the Fourier frequencies
and f1 (θ, λ) = g1 (β, λ) |2 sin (λ/2)|−2d

. The objective function Qn (θ) is an approximation to the neg-
ative of the exact Gaussian log-likelihood (Whittle 1953, Brockwell and Davis 1996) for estimating the
parameters θ. Furthermore, when the model being estimated is a correctly specified ARMA model, the
estimator θ̂ has the same asymptotic distribution as the exact Gaussian maximum likelihood estimator
and is thus asymptotically efficient. See Chapter 10, Brockwell and Davis (1996). This equivalence of
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the asymptotic distribution of θ̂ and the exact Gaussian maximum likelihood estimator continues to
hold when estimating the parameters of a correctly specified long memory Gaussian time series (Fox and
Taqqu, 1986, Dahlhaus, 1989). We need some technical assumptions on g1 (β, λ) which we state next.

A. 1 g1 (β, λ) is thrice differentiable with continuous third derivatives.

A. 2
inf
β
inf
λ
g1 (β, λ) > 0

and
sup
β

sup
λ
g1 (β, λ) <∞

A. 3

sup
λ
sup
β

∣∣∣∣
∂g1 (β, λ)

∂βi

∣∣∣∣ <∞, 1 ≤ i ≤ p.

A. 4

sup
λ
sup
β

∣∣∣∣
∂2g1 (β, λ)

∂βi∂βj

∣∣∣∣ <∞, sup
λ
sup
β

∣∣∣∣
∂2g1 (β, λ)

∂βi∂λ

∣∣∣∣ <∞ 1 ≤ i, j ≤ p.

A. 5

sup
λ
sup
β

∣∣∣∣
∂3g1 (β, λ)

∂βi∂βj∂βk

∣∣∣∣ <∞, 1 ≤ i, j, k ≤ p.

A. 6
∫ π
−π
log g1 (β, λ) dλ = 0 for all β ∈ Θ.

A. 7 There exists a unique vector θ1 =
(
d1,β

′
1

)
∈ Θ which satisfies

θ1 = argmin
θ

Q (θ) ,

where

Q (θ) =

∫ π

0

f0 (λ)

f1 (θ, λ)
dλ

and f1 (θ, λ) = g1 (β, λ) (2 sin (λ/2))
−2d

.

It is easy to check that assumptions A.1 - A.6 are satisfied by the class of spectral densities of
stationary invertible Autoregressive Moving Average (ARMA) processes with roots bounded away from
the unit circle. Assumption A.7 assumes that there exists a pseudo-true parameter value θ1 such that
among all the spectral densities f1 (θ, λ) of the mis-specified family, the member f1 (θ1, λ) is closest to
the true spectral density f0 (λ) with respect to the distance Q (θ) . Such an assumption is standard in
the literature on mis-specified models fit to time series (See, for example, Taniguchi, 1979, white, 1982
and Yajima, 1993). In the literature, the estimator θ̂ is generally shown to converge to this pseudo-true
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parameter value θ1 at a
√
n rate and is proved to be asymptotically normal. However, in the framework

studied in this paper, we will show that though θ̂ still converges to θ1, both its rate of convergence as
well as its asymptotic distribution depend on the value d0 − d1, i.e. on the difference between the true
value and the pseudo-true value of the long memory parameter. More specifically, depending on whether
d0 − d1 is greater than 0.25, less than 0.25 or equal to 0.25, we get three different rates of convergence
and limiting distributions of θ̂. The difference d0−d1 between the true value and the pseudo-true value of
the long memory parameter depends on the extent to which the mis-specified short memory component
g1 (β,λ) differs from the true short memory component g0 (λ) . This point is illustrated in the following
example.

Assume that the true spectral density is an ARFIMA(0, d0, 1) given by

f0 (λ) =
1

2π
|1 + α0 exp (iλ)|2

(
2 sin

λ

2

)−2d0

where the Moving Average (MA) parameter is α0, the long memory parameter is d0 and the innovation
variance σ2

0 is 1. Suppose that the mis-specified model is an ARFIMA(0, d, 0) model given by

f∗1 (λ, d) =
σ2

2π

(
2 sin

λ

2

)−2d

,

where d ∈ (0, 0.5) . In this example, the short memory component in the true model is the MA part
given by g0 (λ) = |1 + α0 exp (iλ)|2 , whereas in the mis-specified model the short memory component is
g1 (β, λ) ≡ 1. Thus, the mis-specified model fails to capture the short memory MA component of the true
spectral density. Now

Q (d) =

∫ π

0

f0 (λ)

f1 (d, λ)
dλ =

∫ π

0

|1 + α0 exp (iλ)|2
(
2 sin

λ

2

)−2(d0−d)

dλ

and hence
∂2Q (d)

∂d2
=

∫ π

0

|1 + α0 exp (iλ)|2
(
2 sin

λ

2

)−2(d0−d)(
log

(
2 sin

λ

2

))2

dλ.

Since the second derivative ∂2Q(d)
∂d2 , being the integral of a positive function, is trivially positive for all d it

follows that Q (d) is a convex function and hence the value of d that minimises Q (d) is found by setting
∂ logQ(d)

∂d = 0. Using expressions for the covariance function of an ARFIMA(0, d, 0) process given on page
522 of Brockwell and Davis (1996), we get

Q (d) =

∫ π

0

|1 + α0 exp (iλ)|2
(
2 sin

λ

2

)−2(d0−d)

dλ

=
Γ (1− 2 (d0 − d))

Γ2 (1− (d0 − d))

{
1 + α2

0 ++2α0

(
d0 − d

1− (d0 − d)

)}

and hence, taking the logarithm of Q (d) and letting Ψ denote the di-gamma function, simple calculus
shows that

∂ logQ (d)

∂d
= 2Ψ [1− 2 (d0 − d)]−2Ψ [1− (d0 − d)]− 2α0

[1− (d0 − d)]
2

(
1 + α2

0 ++2α0

(
d0 − d

1− (d0 − d)

))−1

.
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Figure 1: The ∂ log Q(d)
∂d

curves of fitting ARFIMA(0,d,0) to an ARFIMA(0,d,1). The dash lines are ∂ log Q(d)
∂d

at

α0 = −0.9, − 0.7, . . . ,−0.1, 0.1, . . . , 0.7, 0.9 and the solid line is ∂ log Q(d)
∂d

at α0 = −0.444978.

Noting that ∂Q(d)
∂d is a function of d̃ ≡ d0 − d, we plot in Figure 1 the function ∂ logQ(d)

∂d as a function

of d̃ ∈ (−0.5, 0.5) for α0 taking values {−0.9, − 0.7, . . . ,−0.1, 0.1, . . . , 0.7, 0.9} ∪ {−0.444978} . The
vertical line in the plot is drawn at d̃ = 0.25 whereas the horizontal line marks the origin. The curve
which intersects the horizontal zero at exactly d̃ = 0.25 corresponds to α0 = −0.444978. We now make
some key observations which will help us to understand the nature of the zeroes of ∂Q(d)

∂d for all values

of α0 from this plot. First, observe that for every fixed α0,
∂ logQ(d)

∂d is a decreasing function in d̃ due to

its convexity in d. Also, from elementary calculus, it is seen that for any fixed d̃, ∂ logQ(d)
∂d is a decreasing

function of α0 for all |α0| < 1. Thus, the curve which is furthest to the left corresponds to α0 = −0.9
while the curve furthest to the right corresponds to α0 = 0.9. From these remarks it follows that for any

α0 < −0.444978, the zeroes of ∂ logQ(d)
∂d will occur at d̃ > 0.25, whereas for any −0.444978 < α0 < 1

the zeroes of ∂ logQ(d)
∂d will occur at d̃ < 0.25. Thus, this example illustrates that if the true spectral

density is an ARFIMA(0, d0, 1) and if the misspecified model is chosen to be an ARFIMA(0, d, 0), then
the resultant pseudo-true long memory parameter d1 which satisfies A.7 will be such that d0 − d1 > 0.25
if the true MA parameter has value less then −0.444978, d0 − d1 = 0.25 if the true MA parameter has
value equal to −0.444978 and d0−d1 < 0.25 if the true MA parameter has value greater than −0.444978.

A slightly more complicated example can also be given, where the true spectral density is an ARFIMA(0, d0, 1)
and the mis-specified model is an ARFIMA(1, d, 0). In this example, the short memory component of the
true model is an MA of order 1, whereas the short memory component of the mis-specified model is an
AutoRegressive (AR) model of order 1. It can be shown that d0 − d1 > 0.25 if the true MA parameter
has value less then −0.637014, d0 − d1 = 0.25 if the true MA parameter has value equal to −0.637014
and d0 − d1 < 0.25 if the true MA parameter has value greater than −0.637014. Thus, for this value of
the MA parameter, the AR mis-specification is not too serious and we get d0−d1 < 0.25. As we shall see,
the limiting distribution of θ̂ depends on the value of d1 which in turn depends on the degree to which
the fitted model is mis-specified.

We now present our main results on the asymptotic distribution of θ̂.
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Theorem 1 Assume that f0 (λ) and the family f1 (θ,λ) satisfy the assumptions A.1 -A.7 stated in this
section and d0 − d1 > 0.25, where d1 is defined in A.7. Define the matrix B =(bi,j) by

bi,j = −2
∫ π

−π

f0 (λ)

f3
1 (θ1, λ)

∂f1 (θ1, λ)

∂θi

∂f1 (θ1, λ)

∂θj
+

∫ π

−π

f0 (λ)

f2
1 (θ1, λ)

∂2f1 (θ1, λ)

∂θi∂θj
.

d∗ = d0 − d1. Then

n1−2d∗

log n

(
θ̂ − θ1 − µn

)
D−→ B−1



∞∑

j=1

Wj , 0, . . . , 0



′

,

where µn = B−1E [Qn (θ)], µn
P→ 0 and

Wj =
(2π)

1−2d∗ g0 (α0, 0)

j2d∗g1 (β1, 0)

[(
A2
j +B2

j

)
− E

(
A2
j +B2

j

)]
,

where {Aj , Bk}∞j,k=1 are a sequence of normal random variables with mean zero and

cov(Aj , Ak) = I (φA,j , φA,k) , cov(Bj , Bk) = I (φB,j , φB,k) , cov(Aj , Bk) = I (φA,j , φB,k) ,

where
φA,j(u) = sin (2πju) , φB,k(u) = sin (2πku)

and

I (φ1, φ2) =

∫∫

[0,1]2

{φ1 (x)φ2 (y) + φ1 (y)φ2 (x)} |x− y|2d0−1
dxdy.

There are several elements in the result that we obtain in Theorem 1 that are quite non-standard compared
to results that one generally obtains for the asymptotic distribution of parameter estimators. Firstly,
the rate of convergence of the estimators is slower than

√
n and can actually be arbitrarily close to zero

depending on the value of d∗. Secondly, the asymptotic distribution of the estimators is degenerate in the
sense that all the different parameters’ estimators converge to multiples of the same limit random variable.
This happens due to the fact that the vector of derivatives of the objective function Qn (θ) is dominated
by one random variable. Thirdly, the asymptotic distribution of the estimators is not Gaussian. These
results are similar in spirit to those obtained by Yajima (1993), who showed that if a short memory ARMA
process were fit to a long memory series with memory parameter d > 0.25, the resultant estimators would
be n1−2d consistent with non-Gaussian limiting distributions. Our result shows that this continues to be
the case even when the mis-specified model has a long memory component, as long as the short memory
component is sufficiently ill specified. Fourthly, Theorem 1 implies that the asymptotic bias µn of θ̂,
though asymptotically negligible, converges to zero at the same rate as the standard deviation of θ̂. This
happens due to the fact that we are using an objective function that is a discretised sum over Fourier
frequencies and the rate at which the discrete sum approaches the limit integral is slow. We conjecture
that if we were to use a slightly modified version of the objective function Qn (θ) , which used integrals
instead of discrete sums, we might be able to eliminate the bias term µn. However, a distinct advantage
of the discrete sum is that it is mean invariant whereas the integral version is not.

Our next Theorem states the asymptotic distribution of θ̂ when the short memory component is not
sufficiently mis-specified, resulting in a value of d∗ that is less than 0.25.

6



Theorem 2 Assume that f0 (λ) and the family f1 (θ,λ) satisfy the assumptions A.1 -A.7 and that d∗ =
d0 − d1 < 0.25, where d1 is defined in A.7. Then

n1/2
(
θ̂ − θ1

)
D→ N (0,Σ) ,

where Σ = B−1ΛB−1, and B is as in Theorem 1.

Λ=2π

∫ π

0

(
f0 (λ)

f1 (θ1, λ)

)2(
∂ log f1 (θ1, λ)

∂θ

)(
∂ log f1 (θ1, λ)

∂θ

)′
dλ.

Theorem 2 shows that when d0−d1 < 0.25, the estimators of the parameters of the mis-specified model are√
n consistent and asymptotically normal. Our final theoretical result, stated in the following Theorem,

states the asymptotic distribution of θ̂ for the “borderline” case when d∗ =0.25.

Theorem 3 Assume that f0 (λ) and the family f1 (θ,λ) satisfy the assumptions A.1 -A.7 and that d∗ =
d0 − d1 = 0.25, where d1 is defined in A.7. Then

n




n/2∑

j=1

(
f0 (λj)

f1 (θ1, λj)

∂ log f1 (θ1, λ)

∂d

)2


−1/2 (

θ̂ − θ1

)
D→ B−1 (Z, 0, . . . 0)

′
,

where Z is a standard normal random variable and B is as in Theorem 1. Furthermore,

n




n/2∑

j=1

(
f0 (λj)

f1 (θ1, λj)

∂ log f1 (θ1, λ)

∂d

)2


−1/2

∝
(

n

log3 n

)1/2

.

The above result shows that when d∗ = 0.25, the estimator θ̂ falls short of
√
n consistency by a logarithmic

rate, though asymptotic normality is still retained.

3 Appendix

Throughout the Appendix, when we are deriving the asymptotic distribution of θ̂, we will use the fact
that θ̂ is the minimiser of (2) and appeal to the Taylor series expansion about θ1,

0 =
∂Qn (θ1)

∂θ
+
∂2Qn(θ̀)

∂θ∂θ′

(
θ̂ − θ1

)
, (3)

where θ̀ lies between θ̂ and θ1.

Proof of Theorem 1: Note that, by (3)

(
θ̂ − θ1

)
= −

(
∂2Qn(θ̀)

∂θ∂θ′

)−1
∂Qn (θ1)

∂θ

= −
(
∂2Qn(θ̀)

∂θ∂θ′

)−1(
∂Qn (θ1)

∂θ
− E

∂Qn (θ1)

∂θ

)
−
(
∂2Qn(θ̀)

∂θ∂θ′

)−1

E
∂Qn (θ1)

∂θ
.
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Hence

(
θ̂ − θ1

)
+

(
∂2Qn(θ1)

∂θ∂θ′

)−1

E
∂Qn (θ1)

∂θ
= −

(
∂2Qn(θ̀)

∂θ∂θ′

)−1(
∂Qn (θ1)

∂θ
− E

∂Qn (θ1)

∂θ

)

−





(
∂2Qn(θ̀)

∂θ∂θ′

)−1

−
(
∂2Qn(θ1)

∂θ∂θ′

)−1


E

∂Qn (θ1)

∂θ
.

The second term on the right hand side is op
(
log n/n1−2d∗

)
by Corollary 2. The Theorem follows from

Lemmas 3, 6 and 7. ¤

Proof of Theorem 2: Note that
n1/2E (Qn (θ1)) = o (1)

by Lemma 4. The Theorem follows from Lemmas 3, 9 and equation (3). ¤

Proof of Theorem 3: Note that

n




n/2∑

j=1

(
f0 (λj)

f1 (θ1, λj)

∂ log f1 (θ1, λ)

∂d

)2


−1/2

E (Qn (θ1)) = o (1)

by Lemma 4 and 10. The Theorem follows from Lemmas 3, 10, 11, 12 and equation (3). ¤

It is convenient to write the normalised periodogram as,

I (λj)

f0 (λj)
= A2

n,j +B2
n,j , (4)

where

An,j =
1√
2πn

∑n
t=1 Xt cos(λj)

f
1/2
0 (λj)

and Bn,j =
1√
2πn

∑n
t=1 Xt sin(λj)

f
1/2
0 (λj)

.

Let ξn,j = An,j or Bn,j . It was shown in Lemma 4 of Moulines and Soulier (1999) that

cov (ξn,j , ξn,k) = O
(
j−d0kd0−1 log k

)
(5)

for 1 ≤ j < k ≤ n/2. This bound yields the following Lemma.

Lemma 1 cov
(
I(λj)
f0(λj)

, I(λk)
f0(λk)

)
= O

(
j−2d0k2d0−2 log2 k

)
for 1 ≤ j < k ≤ n/2.

Proof. Since (ξn,j , ξn,j , ξn,k, ξn,k)
′
is a normal random vector, we have

cov
(
ξ2n,j , ξ

2
n,k

)
= 2 cov (ξn,j , ξn,k) cov (ξn,j , ξn,k) = O

(
j−2d0k2d0−2 log2 k

)
,

by Isserlis’ formula (1918) and the lemma follows.¤

Lemma 2 Under assumptions A.1 - 3,

Qn (θ)
P−→ Q (θ) ,

uniformly in θ ∈ Θ.
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Proof. We will prove this lemma by verifying the two conditions of Lemma 5.5.5 in Fuller (1996), (i)
Qn (θ)−Q (θ) , for each θ ∈ Θ and (ii) There exists a sequence of positive random variables {Ln} and L
such that for θa,θb ∈ Θ, |Qn (θa)−Qn (θb)| ≤ ‖θa − θb‖Ln and |Q (θa)−Q (θb)| ≤ ‖θa − θb‖L, where
Ln and L are Op (1). We now verify the first condition. Note that

E (Qn (θ)) =
2π

n

[n/2]∑

j=1

E

(
I (λj)

f1 (θ, λj)

)
=
2π

n

[n/2]∑

j=1

E

(
I (λj)

f0 (λj)

)
f0 (λj)

f1 (θ, λj)

=
2π

n

[n/2]∑

j=1

f0 (λj)

f1 (θ, λj)
+
2π

n

[n/2]∑

j=1

{
E

(
I (λj)

f0 (λj)

)
− 1
}

f0 (λj)

f1 (θ, λj)
−→ Q (θ) ,

since by Lemma 6 of Moulines and Soulier (1999),

2π

n

[n/2]∑

j=1

{
E

(
I (λj)

f0 (λj)

)
− 1
}

f0 (λj)

f1 (θ, λj)

= O


2π

n

[n/2]∑

j=1

{
log j

j

}
f0 (λj)

f1 (θ, λj)


 = O


2π

n

[n/2]∑

j=1

log j

j
λ
−2(d0−d)
j


 = o (1) . (6)

Condition (i) will follow if
var (Qn (θ)) −→ 0.

We write

Qn (θ) =
2π

n

n∑

j=1

I (λj)

f0 (λj)

f0 (λj)

f1 (θ, λj)
.

Using Lemma 1, we have

var (Qn (θ)) =

(
2π

n

)2 [n/2]∑

j,k=1

(
f0 (λj) f0 (λk)

f1 (θ, λj) f1 (θ, λk)

)
cov

(
I (λj)

f0 (λj)
,
I (λk)

f0 (λk)

)

= O


 1

n2

n/2∑

j≤k=1

λ
−2(d0−d)
j λ

−2(d0−d)
k j−2d0k2d0−2 log2 k




= O


n4(d0−d)−2

n/2∑

j=1

j−2(d0−d)−2d0

∑

k>j

k−2(d0−d)+2d0−2 log2 k




= O
(
n4(d0−d)−2−2(d0−d)−2d0+11{d<− 1

2
+2d0} + n4(d0−d)−21{d>− 1

2
+2d0}

)

= O
(
n−2d−11{d<− 1

2
+2d0} + n4(d0−d)−2 log n1{d≥− 1

2
+2d0}

)
→ 0. (7)

Next we verify condition (ii). Now

∂Qn (θ) = −
2π

n

[n/2]∑

j=1

I (λj)

f2
1 (θ, λj)

∂f1 (θ, λj) = −
2π

n

[n/2]∑

j=1

I (λj)

f0 (λj)

f0 (λj)

f1 (θ, λj)

∂f1 (θ, λj)

f1 (θ, λj)
,

9



where supθ |∂f1 (θ, λj) /f1 (θ, λj)| is of O(log λj) by assumption A. 3. Thus there exist a d̃, 0 < d̃ < 0.5
such that

E sup
θ∈Θ

|∂Qn (θ)| = O


2π

n

[n/2]∑

j=1

λ−2d0

j λ2d̃
j log λj


 = O (1) . (8)

For any θa,θb ∈ Θ, we have

Qn (θa)−Qn (θb) = (θa − θb)′ ∂Qn

(
θ†
)
,

where θ† lies between θa and θb. Hence

|Qn (θa)−Qn (θb)| ≤ ‖θa − θb‖Ln,

where Ln ≤ supθ∈Θ |∂Qn (θ)| = Op (1) by (8). Similarly,

|Q (θa)−Q (θb)| ≤ ‖θa − θb‖L,

where L ≤ supθ∈Θ |∂Q (θ)| = O (1) by assumption A.3. The proof is completed by Lemma 5.5.5 of Fuller
(1996). ¤

Corollary 1 Under the assumptions of Lemma 2, θ̂
p−→ θ1.

Proof. See (ii) of Lemma 5.5.1 in Fuller (1996).¤

Lemma 3 Under assumptions A.1 -A. 5,

∂2Qn (θ)
P−→ ∂2Q (θ) ,

uniformly in θ ∈ Θ, where Θ is a convex compact subset.

Proof. The proof of this lemma follows along the same lines as the proof of Lemma 2. We show that

∂2Qn (θ)
P−→ ∂2Q (θ) , for each θ ∈ Θ. (9)

and

sup
θ∈Θ

∂

∂θ

[
∂2Qn,ij (θ)

]
= Op (1) (10)

where ∂2Qn,ij (θ) denote the (i, j)th entry of ∂
2Qn (θ) . It can be shown, by assumption A.4, that

∂2Qn (θ) =
2π

n

[n/2]∑

j=1

I (λj)

f0 (λj)

f0 (λj)

f1 (θ, λj)
H (θ, λj) , (11)

where H (θ, λj) is a matrix function such that ‖H (θ, λj)‖ = O
(
log2 λj

)
. Together with the fact that

E (I (λj)) /f0 (λj)− 1 = O (log j/j) by lemma 6 of Moulines and Soulier (1999), we have

E
[
∂2Qn (θ)

]
−→ ∂2Q (θ) .

10



Furthermore it can be shown, by Lemma 1, that

E
∥∥∂2Qn (θ)− E∂2Qn (θ)

∥∥2
= trace

[
cov

(
vec ∂2Qn (θ)

)]
→ 0.

We skip the proof of the above equation since it is similar to the proof of (7). Thus (9) is established.
Now

∂

∂θ

[
∂2Qn,ij (θ)

]
=
2π

n

[n/2]∑

j=1

I (λj)

f0 (λj)

f0 (λj)

f1 (θ, λj)
h (θ, λj) ,

where h (θ, λj) is a vector function such that ‖h (θ, λj)‖ = O
(
log3 λj

)
by assumption A.5. Thus,

E sup
∂

∂θ

[
∂2Qn,ij (θ)

]
= O


2π

n

[n/2]∑

h=1

λ−2d
h λ2d̃

h log
3 λh


 = Op(1),

where 0 < d̃ < 0.5. By assumption A.1 and A.5, for any θa,θb ∈ Θ,

∂2Qn,ij (θa)− ∂2Qn,ij (θb) = (θa − θb)′
∂

∂θ

[
∂2Qn,ij (θ)

]
,

where θ† lies between θa and θb. We have
∣∣∂2Qn (θa)− ∂2Qn (θb)

∣∣ ≤ ‖θa − θb‖Kn,

where

Kn ≤ sup
θ∈Θ

∑

i,j

∥∥∥∥
∂

∂θ

[
∂2Qn,ij (θ)

]∥∥∥∥ = Op (1) .

Similarly, ∣∣∂2Q (θa)− ∂2Q (θb)
∣∣ ≤ ‖θa − θb‖K,

where

K ≤ sup
θ∈Θ

∑

i,j

∥∥∥∥
∂

∂θ

[
∂2Qij (θ)

]∥∥∥∥ .

Thus, the two conditions in Lemma 5.5.5 of Fuller are shown and the result is proved. ¤

Lemma 4 Under assumptions of Lemma 2,

E∂Qn (θ1) =

{
O
(
n2d∗−1 log n

)
, 0 < d∗ < 0.5

O
(
n−1 log4 n

)
, −0.5 < d∗ ≤ 0 .

Proof. Since

∂Qn (θ) = −
2π

n

[n/2]∑

j=1

I (λj)

f2
1 (θ, λj)

∂f1 (θ, λj) = −
2π

n

[n/2]∑

j=1

I (λj)

f0 (λj)
f0 (λj) ∂f

−1
1 (θ1, λj) ,

we have

E∂Qn (θ1) = −
2π

n

[n/2]∑

j=1

f0 (λj) ∂f
−1
1 (θ1, λj)−

2π

n

[n/2]∑

j=1

E

(
I (λj)

f0 (λj)
− 1
)
f0 (λj) ∂f

−1
1 (θ1, λj) . (12)

11



By Lemma 6 of Moulines and Soulier (1999), the second term of (12) is

O


2π

n

[n/2]∑

j=1

log j

j
f0 (λj) ∂f

−1
1 (θ1, λj)


 = O


2π

n

[n/2]∑

j=1

log j

j
λ−2d∗

j log λj




=

{
O
(
n2d∗−1 log n

)
, 0 < d∗ < 0.5

O
(
n−1 log4 n

)
, −0.5 < d∗ ≤ 0 .

Since ∂Q (θ1) = 0, the first term of (12) is

E∂Qn (θ1) = −
2π

n

[n/2]∑

j=1

f0 (λj) ∂f
−1
1 (θ1, λj) +

π∫

0

f0 (λ) ∂f
−1
1 (θ1, λ) dλ

= O




[n/2]∑

j=1

λj∫

λj−1

[
f0 (λj) ∂f

−1
1 (θ1, λj)− f0 (λ) ∂f

−1
1 (θ1, λ)

]
dλ




= O




[n/2]∑

j=1

∣∣∣∣f0

(
λj̃

) ∂2

∂θ∂λ
f−1
1

(
θ1, λj̃

)
+

∂

∂λ
f0

(
λj̃

) ∂

∂θ
f−1
1

(
θ1, λj̃

)∣∣∣∣

λj∫

λj−1

(λj − λ) dλ




= O




[n/2]∑

j=1

λ−2d∗−1

j̃
λ2

1 log λj


 =

{
O
(
n2d∗−1 log n

)
, 0 < d∗ < 0.5

O
(
n−1 log4 n

)
, −0.5 < d∗ ≤ 0 ,

where λj−1 < λj̃ < λj .¤

Corollary 2 Under assumptions of Lemma 3 and d∗ > 0.25,

{(
∂2Qn (θ

∗)
)−1 −

(
∂2Q (θ1)

)−1
}
E∂Qn (θ1) = op

(
log n

n1−2d∗

)
,

where θ∗ lies between θ̂ and θ1.

Proof. The corollary follows by Lemma 3 and 4.¤

Lemma 5 The normalised periodogram,

(
I (λ1)

f0 (λ1)
, · · · , I (λs)

f0 (λs)

)
D−→ (Z1, . . . , Zs)

for any fixed integer s, where Zj = A2
j +B

2
j , Aj and Bj are normal random variables with mean zero and

cov (Aj , Bk) =

∫∫

[0,1]2
{φA,j (x)φB,k (y) + φB,k (x)φA,j (y)} |x− y|2d0−1

dxdy

where
φA,j (u) = cos (2πuj) and φB,k (u) = sin (2πuk) .

12



Furthermore

cov (Zj , Zk) = O
(
j−2d0k2d0−2 log2 k

)
and var (Zj) = O

(
1 + j−1 log j

)
,

for 1 ≤ j < k ≤ s.

Proof. See Deo (1997) for the expression cov (Aj , Bk) and the first part of the lemma. Since An,j and
Bn,j are normal random variables whose variances are bounded above for all n by (5), E

(
Ap
n,j

)
and

E
(
Bp
n,j

)
are also bounded above for any p > 0. Hence, Ap

n,j and B
p
n,j are uniformly integrable for any

p > 0. This fact in conjunction with the result that

An,j
D−→ Aj and Bn,j

D−→ Bj

implies (See the Corollary of Theorem 25.12 in Billingsley (1995) that

E
(
Ap
n,j

)
→ E

(
Ap
j

)
and E

(
Bp
n,j

)
→ E

(
Bp
j

)
.

Thus, cov (Zj , Zk) = limn→∞ cov
(
I(λj)
f0(λj)

, I(λk)
f0(λk)

)
and the covariance bound follows by applying Lemma

1.¤

The rest of this appendix is dedicated to the limiting distribution of ∂
∂θQn (θ1) − E ∂

∂θQn (θ1) for
three cases, d∗ > 0.25, d∗ < 0.25 and d∗ = 0.25. We will use the following notations,

w (θ1, λ) =
f0 (λ) ∂f1 (θ1, λ)

f2
1 (θ1, λ)

= (w (d1, λ) , w
′ (β1, λ))

′
, (13)

where

w (d1, λ) =
f0 (λ)

f2
1 (θ1, λ)

∂f1 (θ1, λ)

∂d
= (−2) · f0 (λ)

f1 (θ1, λ)
log (2 sin (λ/2)) (14)

and

w (β1, λ) =
f0 (λ)

f2
1 (θ1, λ)

∂f1 (θ1, λ)

∂β
=

f0 (λ)

f1 (θ1, λ)

∂g1 (β1, λj)

g1 (β1, λj)
. (15)

Lemma 6 Under assumptions of Theorem 1 (d∗ > 0.25),,

n1−2d∗

log n

{
∂Qn (θ1)

∂d
− E

∂Qn (θ1)

∂d

}
D−→

∞∑

j=1

Wj ,

where

Wj =
2πg0 (0)

(2πj)
2d∗

g1 (β1, 0)
(Zj − EZj)

and Zj is the same as defined in Lemma 5.

Proof. Using the notation in (14), we have

n1−2d∗

log n

{
∂Qn (θ1)

∂d
− E

∂Qn (θ1)

∂d

}
=
n1−2d∗

log n

2π

n

[n/2]∑

j=1

(
I (λj)

f0 (λj)
− E

I (λj)

f0 (λj)

)
w(d1, λj)

= αs,n + βs,n

13



where

αs,n =
2πn−2d∗

log n

s∑

j=1

(
I (λj)

f0 (λj)
− E

I (λj)

f0 (λj)

)
w(d1, λj)

and

βs,n =
2πn−2d∗

log n

[n/2]∑

j=s

(
I (λj)

f0 (λj)
− E

I (λj)

f0 (λj)

)
w(d1, λj).

Since
n−2d∗

log n
w(d1, λj) −→ (2πj)

−2d∗ g0 (0)

g1 (β1, 0)
,

we have for each s,

αs,n
D−→

s∑

j=1

Wj as n→∞, (16)

by Lemma 5.

The proof can be completed by verifying that

s∑

j=1

Wj
D−→

∞∑

j=1

Wj as s→∞ (17)

and
lim

s−→∞
lim sup

n→∞
P {|βs,n| ≥ ε} = 0. (18)

See Theorem 4.2 of Billingsley (1968). We first show the Cauchy Convergence Criterion for (17),

lim
s→∞,m→∞

E




m∑

j=s

Wj




2

= o (1) .

By Lemma 5,

cov (Wj ,Wk) = O
(
j−2d∗−2d0k−2d∗+2d0−2 log2 k

)
, for 1 ≤ j < k ≤ n/2

and
var (Wj) = O

(
j−4d∗

)
, for 1 ≤ j ≤ n/2.

Hence

E




m∑

j=s

Wj




2

= O




m∑

j=s

j−4d∗ +

m∑

j<k=s

j−2d∗−2d0k−2d∗+2d0−2 log2 k




= O
(
s−4d∗+1

)
→ 0 as s→∞,

since d∗ > 0.25. Using (5) and Chebyshev inequality, (18) follows by a similar computation as above. ¤
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Lemma 7 Under assumptions of Theorem 1 (d∗ > 0.25),

n1−2d∗

log n

{
∂Qn (θ1)

∂β
− E

∂Qn (θ1)

∂β

}
= op (1) .

Proof. The LHS of the above equation is

n1−2d∗

log n

2π

n

[n/2]∑

j=1

(
I (λj)

f0 (λj)
− E

I (λj)

f0 (λj)

)
w (β1, λj) ,

where w (β1, λj) is defined as (15). Now

w (β1, λj) = O
(
|sinλj/2|−2d∗

)
= O

(
λ−2d∗

j

)
,

since
∂g1 (β1, λj)

g1 (β1, λj)
= O (1) ,

by Assumption A.2 and A.3. Hence

E

∥∥∥∥∥∥
n1−2d∗

log n

2π

n

[n/2]∑

j=1

(
I (λj)

f0 (λj)
− E

I (λj)

f0 (λj)

)
w (β1, λj)

∥∥∥∥∥∥

2

=
n−4d∗

log2 n

[n/2]∑

j,k=1

(
cov

I (λj)

f0 (λj)

I (λk)

f0 (λk)

)
w (β1, λj)w

′ (β1, λk)

=O


 1

log2 n

[n/2]∑

j,k=1

j−2d∗−2d0k−2d∗+2d0−2 log2 k


 = O

(
1

log2 n

)
.

¤

Since Xt is Gaussian, it has MA(∞) expression, Xt =
∑∞

u=−∞ ϕuεt−u where εt are i.i.d. N(0,σ
2).

We need the next lemma for the proof of Lemmas 9 and 11.

Lemma 8 Let Iε (λ) be the periodogram of {εt}nt=1 and

R (λ) =
I (λ)

f0 (λ)
− 2π
σ2

Iε (λ) .

Then
E [R (λj)R (λk)] = O

(
j−1k−1 log k log j + j−2d0k2d0−2 log2 k

)

and
E
[
R2 (λj)

]
= O

(
j−1 log j

)

for δn ≤ j < k ≤ n/2, where

δn →∞ ,
log δn
δn

→ 0 and
δn
n
→ 0 as n→∞.
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Proof. This lemma is identical to Lemma 5 of Chen and Deo (2003) except δn was chosen to be log
2 n

in that paper for convenience. ¤

Lemma 9 Under assumptions of Theorem 2 (d∗ < 0.25),

n1/2

{
∂Qn (θ1)

∂θ
−E

∂Qn (θ1)

∂θ

}
D−→ Y

where Y is a normal random vector with zero mean and the variance,

var(Y ) = 2π

∫ π

0

(
f0 (λ)

f1 (θ1, λ)

)2

∂ log f1 (θ1, λ) ∂ log f1 (θ1, λ)
′
dλ

Proof. Using the notation in (13), we denote

Yn =




2π

n

[n/2]∑

j=1

2π

σ2
Iε (λj)w(θ1, λj)





and

Ỹn =




2π

n

[n/2]∑

j=1

(
2π

σ2
Iε (λj)− E

2π

σ2
Iε (λj)

)
w(θ1, λj)



 .

We will show that

n1/2

(
∂Qn (θ1)

∂θ
− Yn

)
p−→ 0, (19)

and
n1/2Ỹn

D−→ Y. (20)

Let R (λ) be as in Lemma 8, we have

∥∥∥∥n
1/2

(
∂Qn (θ1)

∂θ
− Yn

)∥∥∥∥
2

= n

(
2π

n

)2 [n/2]∑

j,k=1

R (λj)w
′(θ1, λj)R (λk)w (θ1, λk)

= n (H1 +H2 +H3) .

where

H1 =

(
2π

n

)2 log logn−1∑

j,k=1

R (λj)w
′(θ1, λj)R (λk)w (θ1, λk) ,

H2 =

(
2π

n

)2 [n/2]∑

j,k=log logn

R (λj)w
′(θ1, λj)R (λk)w (θ1, λk)

and

H3 = 2 ·
(
2π

n

)2 log logn−1∑

j=1

R (λj)w
′(θ1, λj)

[n/2]∑

k=log logn

R (λk)w (θ1, λk) .
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Note that
w(θ1, λj) = O

(
λ−2d∗

j log λj

)
.

By Lemma 1 and the fact that maxj E
[
I2
ε (λj)

]
<∞, we have

nH1 = Op


n−1

log logn−1∑

j,k=1

w′(θ1, λj)w (θ1, λk)


 = Op


n−1+4d∗ log2 n

log logn−1∑

j,k=1

j−2d∗k−2d∗ log j log k




= Op

(
n−1+4d∗

(
log2 n

)
(log log n)

2−4d∗
)
= op (1) ,

since d∗ < 0.25. By Lemma 8,

nH2 = Op


n4d∗−1 log2 n





[n/2]∑

j=log logn

j−1−4d∗ log j

+

[n/2]∑

j=log logn

[n/2]∑

k=j+1

(
j−1−2d∗k−1−2d∗ log k log j + j−2d0−2d∗k2d0−2−2d∗ log2 k

)







= Op

(
n−1+4d∗

(
log2 n

)
(log log n)

−4d∗
)
= op (1) .

Hence nH3 = op (1) by Cauchy-Schwartz inequality. We have proved (19).

We next show (20), or equivalently by the Cramer-Wold device, that

n1/2c′Ỹn
D→ c′Y,

for all c ∈ Rp. Observe that

c′Ỹn =
2π

n

[n/2]∑

j=1

(
2π

σ2
Iε (λj)− E

2π

σ2
Iε (λj)

)
c′w(θ1, λj).

By Assumption A.2, C1λ
−2d∗

j log λj ≤ ‖w(θ1, λj)‖ ≤ C2λ
−2d∗

j log λj for some constants C1, C2 > 0.
Hence,

lim
n→∞

sup
1≤j≤n/2




n/2∑

j=1

‖c′w(θ1, λj)‖2


−1

[c′w(θ1, λj)]
2
= 0. (21)

Since εt is a Gaussian process, Iε (λj) are i.i.d exponential random variables, each with mean
σ2

2π and

variance
(
σ2

2π

)2

, see Brockwell and Davis (1996). We have

n

2π




n/2∑

j=1

[c′w(θ1, λj)]
2



−1/2

c′Ỹn → N (0, 1)

by Corollary 5.3.4 of Fuller (1996). We have shown that

n

2π




n/2∑

j=1

w(θ1, λj)w
′(θ1, λj)



−1/2

Ỹn → N (0, I) .

17



Equation (20) follows from the fact that

2π

n

[n/2]∑

j=1

w(θ1, λj)w
′(θ1, λj)→

π∫

0

f2
0 (λ)

f2
1 (θ1, λ)

∂ log f1 (θ, λ) ∂ log f1 (θ, λ)
′
dλ.

¤

We need the following lemma for the proof of Lemmas 11 and 12.

Lemma 10 Under the assumptions of Theorem 3 (d∗ = 0.25), , there exist two constants M∗,M
∗ > 0

such that

M∗ <
1

n log3 n

n/2∑

j=1

w2 (d, λj) < M∗,

where w (d, λ) is defined as in (14).

Proof. Since d∗ = 0.25,we’ll show that

M∗ <
1

n log3 n

n/2∑

j=1

(∣∣∣∣2 sin
λj
2

∣∣∣∣
−1/2

log

∣∣∣∣2 sin
λj
2

∣∣∣∣
g0 (λj)

g1 (β1, λj)

)2

< M∗.

By assumption A. 2 and (1),

0 < m∗ <
g0 (λj)

g1 (β1, λj)
< m∗,

for some positive constants m∗ and m
∗. Hence, it is sufficient to show that

n/2∑

j=1

(∣∣∣∣2 sin
λj
2

∣∣∣∣
−1/2

log

∣∣∣∣2 sin
λj
2

∣∣∣∣

)2

∼ Cn log3 n. (22)

We will use the following formulae (see, for example, Gradshteyn and Ryzhik),

log sinx = log x− x2

6
− x4

180
− x4

2835
− · · · = log x−

∞∑

k=1

ς (2k)x2

kπ2
= log x− Cx2,

where the zeta function ς (z) =
∑∞

`=1
1
`z and

sin−1 πx =
1

πx
+
2x

π

∞∑

k=1

(−1)k
x2 − k2

.

Note that sin
λj

2 > 0 for j = 1, . . . , n/2. Applying the above formula by letting x = j/n, we have

sin−1 λj
2
=
2

λj
+
2

π

j

n

∞∑

k=1

(−1)k

(j/n)
2 − k2

=
2

λj
+O

(
j

n

)
,

18



since

0 <

∣∣∣∣∣

∞∑

k=1

(−1)k
0− k2

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑

k=1

(−1)k

(j/n)
2 − k2

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑

k=1

(−1)k
1/4− k2

∣∣∣∣∣ <
∞∑

k=1

1

k2
=
π2

6
.

Hence the RHS of (22) multiplied by 1/4 is

n/2∑

j=1

sin−1 λj
2
log2

(
2 sin

λj
2

)

=

n/2∑

j=1

1

λj

(
log2 n− 2 log n log 2πj + log2 2πj

)
+O

(
j log2 n

n

)

=n log2 n

n/2∑

j=1

1

2πj
− 2n log n

n/2∑

j=1

log 2πj

2πj
+ n

n/2∑

j=1

log2 2πj

2πj
+O

(
n log2 n

)

=n log2 n

(
log (n/2)

2π

)
− 2n log n

(
1

2

log2 (2πn/2)

2π

)
+ n

(
1

3

log3 (2πn/2)

2π

)
+O

(
n log2 n

)
(23)

=
1

3

n log3 n

2π
+O

(
n log2 n

)

Equality (23) follows from

n∑

j=1

1

j
= log n+O(1),

n∑

j=1

log j

j
=
1

2
log2 n+O(1) and

n∑

j=1

log2 j

j
=
1

3
log3 n+O(1).

We have

1

n log3 n

n/2∑

j=1

sin−2 λj
2
log2

(
2 sin

λj
2

)
→ C.

¤

Lemma 11 Under assumptions of Theorem 3 (d∗ = 0.25),

n

2π




n∑

j=1

w2 (d1, λj)



−1/2{

∂Qn (θ1)

∂d
− E

∂Qn (θ1)

∂d

}
D−→ N(0, 1)

where

w (d1, λ) =
f0 (λj)

f2
1 (θ1, λj)

∂f1 (θ1, λj)

∂d
.

Proof. The proof is similar to that of Lemma 9. Except now that
∫ π
0
w2 (d1, λ) dλ is not integrable since

d∗ = .25 and w (d1, λ) = O
(
λ−1/2 log λ

)
.

We will use similar notations in the proof of Lemma 9,

Yn (d1) =




2π

n

[n/2]∑

j=1

2π

σ2
Iε (λj)w(d1, λj)





19



and

Ỹn (d1) =




2π

n

[n/2]∑

j=1

(
2π

σ2
Iε (λj)− E

2π

σ2
Iε (λj)

)
w
(
d1, λj

)


 .

Following from lemma (10), we have

(
n

log3 n

)1/2

M∗ < n




n∑

j=1

w2
(
d1, λj

)


−1/2

<

(
n

log3 n

)1/2

M∗.

we will show that (
n

log3 n

)1/2(
∂Qn (θ1)

∂d
− Yn (d1)

)
p−→ 0, (24)

and

n

2π




n∑

j=1

w2 (d, λj)



−1/2

Ỹn (d1)
D−→ N(0, 1). (25)

Let

∣∣∣∣∣

(
n

log3 n

)1/2(
∂Qn (θ1)

∂d
− Yn (d)

)∣∣∣∣∣

2

=

(
n

log3 n

)(
2π

n

)2 [n/2]∑

j,k=1

R (λj)w(d1, λj)R (λk)w (d1, λk)

=
n

log3 n
(H1 (d1) +H2 (d1) +H3 (d1)) .

where H1, H2 and H3 are the same as those in the proof of Lemma 9 with w (λ) replacing by w (d, λ).
Note that

w(d1, λj) = O
(
λ
−1/2
j log λj

)

By Lemma 1 and the fact that maxj E
[
I2
ε (λj)

]
<∞, we have,

n

log3 n
H1 (d1) = Op


 n

log3 n
· 1
n2

log log n−1∑

j,k=1

w(d1, λj)w (d1, λk)




= Op


 n

log3 n
· 1
n2

log log n−1∑

j,k=1

λ
−1/2
j λ

−1/2
k log λj log λk




= Op

(
n

log3 n
· n log

2 n

n2
· log log n

)
= op (1)

and

n

log3 n
H2 (d1)

=Op


 n

log3 n
· n log

2 n

n2





[n/2]∑

j=log logn

j−2 log j +

[n/2]∑

j=log logn

[n/2]∑

k=j+1

(
j−3/2k−3/2 log k log j + j−2d0−1/2k2d0−5/2 log2 k

)







=Op

(
n

log3 n
· n log

2 n

n2
· 1

log log n

)
= op (1)
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by Lemma 8. Hence n
log3 n

H3 (d1) = op (1) by Cauchy-Schwartz inequality. We have shown (24).

By Assumption A.2 and Lemma 20, hence,

lim
n→∞

sup
1≤j≤n/2


∑

j=1

‖w(d1, λj)‖2


−1

w2
(
d, λ

j

)
= lim

n→∞
O
(
log−1 n

)
= 0.

We have (25) by Corollary 5.3.4 of Fuller (1996).¤

Lemma 12 Under assumptions of Theorem (3),

(
n

log3 n

)1/2{
∂Qn (θ1)

∂β
− E

∂Qn (θ1)

∂β

}
= op (1) .

Proof. The proof is similar to that of Lemma 7. Since d∗ = 0.25,

w (β1, λj) = O
(
|sinλj/2|−2d∗

)
= O

(
λ
−1/2
j

)

We have

E

∥∥∥∥∥

(
n

log3 n

)1/2{
∂Qn (θ1)

∂β
− E

∂Qn (θ1)

∂β

}∥∥∥∥∥

2

=
n

log3 n

(
2π

n

)2 [n/2]∑

j,k=1

(
cov

I (λj)

f0 (λj)

I (λk)

f0 (λk)

)
w (β1, λj)w

′ (β1, λk)

= O


 1

log3 n

[n/2]∑

j,k=1

j−1/2−2d0k−1/2+2d0−2 log2 k


 = O

(
1

log2 n

)
,

since 0.25 ≤ d0 < 0.5. ¤
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