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Dimension Reduction Methods

Masahiro Mizuta

Information Initiative Center, Hokkaido University, Sapporo 060-0811, (Japan)
mizuta@cims.hokudai.ac.jp

1 Introduction

One characteristic of computational statistics is the processing of enormous
amounts of data. It is now possible to analyze large amounts of high-
dimensional data through the use of high-performance contemporary com-
puters. In general, however, several problems occur when the number of di-
mensions becomes high. The first problem is an explosion in execution time.
For example, the number of combinations of subsets taken from p variables is
2p; when p exceeds 20, calculation becomes difficult pointing terms of compu-
tation time. When p exceeds 25, calculation becomes an impossible no matter
what type of computer is used. This is a fundamental situation that arises
in the selection of explanatory variables during regression analysis. The sec-
ond problem is the sheer cost of surveys or experiments. When questionnaire
surveys are conducted, burden is placed on the respondent because there are
many questions. And since there are few inspection items to a patient, there
are few the burdens on the body or on cost. The third problem is the essential
restriction of methods. When the number of explanatory variables is greater
than the data size, most methods are incapable of directly dealing with the
data; microarray data are typical examples of this type of data.

For these reasons, methods for dimension reduction without loss of statis-
tical information are important techniques for data analysis. In this chapter,
we will explain linear and nonlinear methods for dimension reduction; linear
methods reduce dimension through the use of linear combinations of vari-
ables, and nonlinear methods do so with nonlinear functions of variables. We
will also discuss the reduction of explanatory variables in regression analy-
sis. Explanatory variables can be reduced with several linear combinations of
explanatory variables.
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2 Linear Reduction of High-Dimensional Data

The p-dimensional data can be reduced into q-dimensional data using q linear
combinations of p variables. The linear combinations can be considered as
linear projection. Most methods for reduction involve the discovery of linear
combinations of variables under set criterion. Principal component analysis
(PCA) and projection pursuit are typical methods of this type. These methods
will be described in the following subsections.

2.1 Principal Component Analysis

Suppose that we have observations of p variables size n; {xi; i = 1, 2, · · · , n}
(referred to as X hereafter). PCA is conducted for the purpose of con-
structing linear combinations of variables so that their variances are large
under certain conditions. A linear combination of variables is denoted by
{a�xi; i = 1, 2, · · · , n} (simply, a�X), where a = (a1, a2, · · · , ap)�.

Then, the sample variance of a�X can be represented by

V (a�x) = a�Σ̂a,

where Σ̂ = V (X). a�Σ̂a is regarded as a p variable function of (a1, a2, · · · , ap):
φ(a1, a2, · · · , ap) = a�Σ̂a. To consider the optimization problem for φ, a is
constrained to a�a = 1. This promblem is solved using Lagrange multipliers.
The following Lagrange function is defined as

L(a1, a2, · · · , ap) = φ(a1, a2, · · · , ap) − λ1(
p∑

i=1

a2
i − 1)

= a�Σ̂a − λ1(a�a − 1),

where λ is the Lagrange multiplier. L is partially differentiated with respect
to a = (a1, a2, · · · , ap)� and λ1, and the derivatives are equated to zero. We
therefore obtain the simultaneous equations:{

2Σ̂a − 2λ1a = 0
a�a − 1 = 0.

This is an eigenvector problem; the solution to this problem for a = (a1, a2, · · · , ap)�

is a unit eigenvector of Σ̂ corresponding to the largest eigenvalue. Let a be
an eigenvector and let λ be an eigenvalue. We then have

φ(a1, a2, · · · , ap) = V (a�x) = a�Σ̂a = λa�a = λ.

The eigenvector is denoted as a1. Then a�
1 xi; i = 1, 2, · · · , n are referred to

as the first principal components. The first principal components are one-
dimensional data that are the projection of the original data with the maxi-
mum variance. If all of the information for the data can be represented by the
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first principal components, further calculation is unnecessary. However, the
first principal components usually exhibit the “size factor” only, whereas we
would like to obtain another projection, namely the second principal compo-
nents a�

2 xi.
The second principal components serve to explain the maximum variance

under the constraint and the fact that they are independent of the first princi-
pal components. In other words, the second principal components a�

2 X take
the maximum variance under the constraints a�

1 a2 = 0 and a�
2 a2 = 1. The

second principal components can also be derived with Lagrange multipliers;

L(a1, a2, · · · , ap, λ, λ2) = a�Σ̂a − λa�
1 a − λ2(a�a − 1).

L is partially differentiated with respect to a = (a1, a2, · · · , ap)�, λ and λ2,
and the derivatives are equted to zero. The simultaneous equations below are
obtained: 


2Σ̂a − λa1 − 2λ2a = 0
a�

1 a = 0
a�

2 a2 − 1 = 0.

We can obtain λ = 0 and λ2 is another eigenvalue (not equal to λ1). Since
the variance of a�

2 X is λ2, the a2 must be the second largest eigenvalue of
Σ̂. {a�

2 xi; i = 1, 2, · · · , n} are referred to as the second principal components.
The third principal components, fourth principal components, · · ·, and the
p-th principal components can then be derived in the same manner.

Proportion and Accumulated Proportion

The first principal components through the p-th principal components were
defined in the discussions above. As previously mentioned, the variance of
the k-th principal components is λk. The sum of variances of p variables is∑p

j=1 σ̂j = trace(Σ̂), where Σ̂ = (σ̂ij). It is well known that trace(Σ̂) =∑p
j=1 λj ; the sum of the variances coincides with the sum of the eigenvalues.

The proportion of the k-th principal components is defined as the proportion
of the entire variance to the variance of the k-th principal components:

λk∑p
j=1 λj

.

The first principal components through the k-th principal components are
generally used consecutively. The total variance of these principal components
is represented by the accumulated proportion :∑k

j=1 λj∑p
j=1 λj

.

We have explained PCA as an eigenvalue problem of covariance matrix.
However, the results of this method are affected by units of measurements
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or scale transformations of variables. Thus, another method is to employ a
correlation matrix rather than a covariance matrix. This method is invariant
under units of variables, but does not take the variances of the variables into
account.

2.2 Projection Pursuit

PCA searches a lower dimensional space that captures the majority of the
variation within the data and discovers linear structures in the data. This
method, however, is ineffective in analyzing nonlinear structures, i.e. curves,
surfaces or clusters. In 1974, Friedman and Tukey (1974) proposed projection
pursuit to search for linear projection onto the lower dimensional space that
robustly reveals structures in the data. After that, many researchers developed
new methods for projection pursuit and evaluated them (e.g. Huber, 1985;
Friedman, 1987; Hall, 1989; Iwasaki, 1991; Nason, 1995; Koyama et al., 1998).
The fundamental idea behind projection pursuit is to search linear projection
of the data onto a lower dimensional space their distribution is “interesting”;
“interesting” is defined as being “far from the normal distribution”, i.e. the
normal distribution is assumed to be the most uninteresting. The degree of
“far from the normal distribution” is defined as being a projection index, the
details of which will be described later.

Algorithm

The use of a projection index makes it possible to execute projection pursuit
with the projection index. Here is the fundamental algorithm of k-dimensional
projection pursuit.

1. Sphering x: zi = Σ̂
− 1

2
xx (xi − x̂) (i = 1, 2, · · · , n), where Σ̂ is the sample

covariance matrix and x̂ is the sample mean of x.
2. Initialize the project direction: α = (α1, α2, . . . , αk).
3. Search the direction α that maximizes the projection index.
4. Project the data onto the lower dimensional space and display or analyze

them.
5. Change the initial direction and repeat steps 3 and 4, if necessary.

Projection Indexes

The goal of projection pursuit is to find a projection that reveals interesting
structures in the data. There are various standards for interestingness, and it
is a very difficult task to define. Thus, the normal distribution is regarded as
uninteresting, and uninterestingness is defined as a degree that is “far from
the normal distribution.”

Projection indexes are defined as of this degree. There are many definitions
for projection indexes. Projection pursuit searches projections based on the
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projection index; methods of projection pursuit are defined by the projection
indexes.

Here we will present several projection indexes. It is assumed that Z =
(z1, . . . , zn) is the result of sphering X; the mean vector is a zero vector and
the covariance matrix is an identity matrix.

Friedman’s Index
Friedman (1987) proposed the following projection index:

I =
1
2

J∑
j=1

(2j + 1)

[
1
n

n∑
i=1

Pj(2Φ(α�Zi) − 1)

]2

,

where Pj(·) are Legendre polynomials of order j and Φ(·) is the cumulative dis-
tribution function of the normal distribution and J is a user-defined constant
number, i.e. the degree of approximation.

In the case of two-dimensional projection pursuit, the index is represented
by

I =
J∑

j=1

(2j + 1)E2[Pj(R1)]/4

+
J∑

k=1

(2k + 1)E2[Pk(R2)]/4

+
J∑

j=1

J−j∑
k=1

(2j + 1)(2k + 1)E2[Pj(R1)Pk(R2)]/4,

where
X1 = α�

1 Z, X2 = α�
2 Z

R1 = 2Φ(X1) − 1, R2 = 2Φ(X2) − 1.

Moment Index
The third and higher cumulants of the normal distribution vanish. The

cumulants are sometimes used for the test of normality, i.e. they can be used
for the projection index. Jones and Sibson (1987) proposed a one-dimensional
projection index named the “moment index,” with the third cumulant k3 = µ3

and the fourth cumulant k4 = µ4 − 3:

I = k2
3 +

1
4
k2
4 .

For two-dimensional projection pursuit, the moment index can be defined
as
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I = (k2
30 + 3k2

21 + 3k2
12 + k2

03) +
1
4
(k2

40 + 4k2
31 + 6k2

22 + 4k2
13 + k2

04).

Hall’s Index
Hall (1989) proposed the following projection index:

I = [θ0(α) − 2−1/2π−1/4]2 +
J∑

j=1

θ2
j (α),

where

θj(α) = n−1
n∑

i=1

Pj(α�Zi)φ(α�Zi),

Pj(z) =
√

2√
j!

π1/4Hj(21/2z),

φ(z) is the normal density function and Hj(z) are the Hermite polynomials
of degree j. J is a user-defined constant number. Hall’s index is much more
robust for outliers than Freidman’s index.

Relative Projection Pursuit

The main objective of ordinary projection pursuit is the discovery of non-
normal structures in a dataset. Non-normality is evaluated using the degree
of difference between the distribution of the projected dataset and the normal
distribution.

There are times in which it is desired that special structures be discovered
using criterion other than non-normal criterion. For example, if the purpose
of analysis is to investigate a feature of a subset of the entire dataset, the pro-
jected direction should be searched so that the projected distribution of the
subset is far from the distribution of the entire dataset. In sliced inverse regres-
sion (please refer to the final subsection of this chapter), the dataset is divided
into several subsets based on the values of the response variable, and the effec-
tive dimension-reduction direction is searched for using projection pursuit. In
this application of projection pursuit, projections for which the distributions
of the projected subsets are far from those of the entire dataset are required.
Mizuta (2002) proposed the adoption of relative projection pursuit for these
purposes. Relative projection pursuit finds interesting low-dimensional space
that differs from the reference dataset predefined by the user.

3 Nonlinear Reduction of High-Dimensional Data

In the previous section, we discussed linear methods i.e. methods for dimen-
sion reduction through the use of linear projections. We will now move on
to nonlinear methods for dimension reduction. First, we will describe a gen-
eralized principal component analysis (GPCA) method that is a nonlinear
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extension of PCA. Algebraic curve fitting methods will then be mentioned for
a further extension of GPCA. Finally, we will introduce principal curves i.e.
the parametric curves that pass through the middle of the data.

3.1 Generalized Principal Component Analysis

As long as data have a near-linear structure, the singularities of the data
can be pointed out using PCA. On the contrary, if data have a nonlinear
structure, GPCA will not be adequate for drawing conclusions regarding the
nature of the data. To overcome this difficulty, GPCA has been proposed by
Gnanadesikan and Wilk (1969), whereby fitting functions to the data points
can be discovered.

Suppose that we have observations of p variables x = (x1, x2, · · · , xp) on
each of n individuals. Let fi(x)(i = 1, 2, · · · , k) be k real-valued functions of
the original variables.

The aim of GPCA is to discover a new set of variables (or functions of
x), as denoted by z1, z2, · · · , zk, which are mutually uncorrelated and whose
variances decrease, from first to last. Each zj(j = 1, 2, · · · , k) is considered to
be a linear combination of fi(x)(i = 1, 2, · · · , k), so that

zj =
k∑

i=1

lijfi(x) = l�j f(x),

where lj = (l1j , l2j , · · · , lkj)� are k constant vectors such that l�j lj = 1, and
f(x) = (f1(x), f2(x), · · · , fk(x))�. The vectors l1, l2, · · · , lk are the eigenvec-
tors of the covariance matrix of (f1(x), f2(x), · · · , fk(x)), as in PCA. The
function zk defined by the “smallest” eigenvalue is considered to be one of the
fitting functions to the data.

PCA is a special case of GPCA: real-valued functions fi(x) are reduced
to xi(i = 1, 2, · · · , p).

Quadratic principal component analysis (QPCA) is specified by the fol-
lowing functions:{

fi(x) = xi (i = 1, 2, · · · , p)
fi(x) = xjxm (i = p + 1, · · · , (p2 + 3p)/2),

where j, m is uniquely determined by

i = {(2p − j + 3)j/2} + m − 1,

1 ≤ j ≤ m ≤ p,

for i(i = p + 1, · · · , (p2 + 3p)/2).
QPCA for two dimensional data is defined by
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f1(x, y) = x

f2(x, y) = y

f3(x, y) = x2

f4(x, y) = xy

f5(x, y) = y2.

Most GPCA methods are not invariant under orthogonal transformations
and/or the translations (parallel transformations) of a coordinate system,
though PCA is invariant under them. For example, QPCA is not invariant un-
der them. The expression “the method is invariant” in this subsection means
that the results of the method are never changed in the original coordinate by
coordinate transformation. In the following, the determination of the GPCA
methods that are invariant under the orthogonal transformations of a coordi-
nate system will be described in the case of two variables. Translations of a
coordinate system are disregarded here because the data can be standardized
to have a zero mean vector.

Hereafter, let us assume the following conditions:

A1 f1(x), f2(x), · · · , fk(x) are linearly independent as functions of x.
A2 For any orthogonal matrix T , there is a matrix W such that f(Tx) ≡

Wf(x).
A3 fi(x) are continuous functions.

Conditions A1 and A3 may be proper for GPCA, and condition A2 is nec-
essary for discussing the influence of orthogonal coordinate transformations.
PCA and QPCA clearly satisfy these conditions.

A GPCA method is referred to as “invariant” if its results in the original
coordinate system are not changed by the orthogonal transformation of a
coordinate system. It can be mathematically described as follows. For any
orthogonal coordinate transformation: x∗ = Tx,

z∗j = l∗�j f(x∗)

= l∗�j f(Tx)(j = 1, 2, · · · , k)

denote the results of the method for transformed variables x∗, where l∗j are
eigenvectors of Cov(f (x∗)). The method is “invariant” if it holds that

l�j f (x) ≡ ±l∗�j f(Tx)(j = 1, 2, · · · , k)

as vector-valued functions of x for any orthogonal matrix T . The plus or minus
sign is indicated only for the orientations of the eigenvectors.

The GPCA method specified by f (x) is invariant under an orthogonal
transformation, if and only if the matrix W is an orthogonal matrix for any
orthogonal matrix T . The proof will be described below. If the method is
invariant, W can be taken as
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(l∗1, l
∗
2, · · · , l∗k)(l1, l2, · · · , lk)�,

which is an orthogonal matrix. Conversely, if W is an orthogonal matrix,
W�l∗j are eigenvectors of Cov(f (x)). Therefore the following is obtained:

l�j = ±l∗�j W.

Mizuta (1983) derived a theorem on invariant GPCA.

Theorem 1. GPCA methods for two-dimensional data (x, y) under the con-
ditions A1, A2 and A3 that are invariant under rotations can be restricted
to those specified by the following functions.
(1) s pairs of functions:


f2i−1(x, y) = gi(
√

x2 + y2)
(

xNi −
(

Ni

2

)
y2xNi−2 +

(
Ni

4

)
y4xNi−4 − · · ·

)

−hi(
√

x2 + y2)
(

NiyxNi−1 −
(

Ni

3

)
y3xNi−3 +

(
Ni

5

)
y5xNi−5 − · · ·

)

f2i(x, y) = gi(
√

x2 + y2)
(

NiyxNi−1 −
(

Ni

3

)
y3xNi−3 +

(
Ni

5

)
y5xNi−5 − · · ·

)

+hi(
√

x2 + y2)
(

xNi −
(

Ni

2

)
y2xNi−2 +

(
Ni

4

)
y4xNi−4 − · · ·

)

(i = 1, 2, · · · , s),
where gi, hi are arbitrary continuous functions of

√
x2 + y2 and Ni are arbi-

trary positive integers.
(2) Continuous functions of

√
x2 + y2.

The above theorem can be extended for use with GPCA methods for p-
dimensional data because invariant GPCA for p-dimensional data methods
are invariant under the rotations of any pair of two variables and the reverse
is also true.

We will show some set of functions for invariant GPCA here.
(1) 3 dimensional and degree 1:

x, y, z.

(2) 3 dimensional and degree 2:

x2, y2, z2,
√

2xy,
√

2yz,
√

2zx.

(3) 3 dimensional and degree 3:

x3, y3, z3,
√

3x2y,
√

3y2z,
√

3z2x,
√

3xy2,
√

3yz2,
√

3zx2,
√

6xyz.

(4) 3 dimensional and degree q:√
q!

i!j!k!x
iyjzk

(i + j + k = q; 0 ≤ i, j, k).
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(5) p dimensional and degree q:√
q!∏

p

i=1
kt!

∏p
t=1(xt)k

t∑p
t=1 kt = q; 0 ≤ kt.

3.2 Algebraic Curve and Surface Fitting

Next, we will discuss a method involving algebraic curve and surface fitting
to multidimensional data.

The principal component line minimizes the sum of squared deviations
in each of the variables. The PCA cannot find non-linear structures in the
data. GPCA is used to discover an algebraic curve fitted to data; the function
zk defined by the “smallest” eigenvalue is considered to be one of the fitting
functions to the data. However, it is difficult to interpret algebraic curves
statistically derived form GPCA.

We will now describe methods for estimating the algebraic curve or surface
that minimizes the sum of squares of perpendicular distances from multidi-
mensional data.

Taubin (1991) developed an algorithm for discovering the algebraic curve
for which the sum of approximate squares distances between data points and
the curve is minimized. The approximate squares distance does not always
agree with the exact squares distance. Mizuta (1995) and Mizuta (1996) pre-
sented an algorithm for evaluating the exact distance between the data point
and the curve, and have presented a method for algebraic curve fitting with
exact distances. In this subsection, we describe the method of algebraic sur-
face fitting with exact distances. The method of the algebraic curve fitting is
nearly identical to that of surface fitting, and is therefore omited here.

Algebraic Curve and Surface

A p-dimensional algebraic curve or surface is the set of zeros of k-polynomials
f(x) = (f1(x), · · · , fk(x)) on Rp,

Z(f) = {x : f (x) = 0}.

In the case of p = 2 and k = 1, Z(f) is a curve in the plane. For example,
Z(x2 + 2y2 − 1) is an ellipse and Z(y2 − x2 + 1) is a hyperbola. In the case of
p = 3 and k = 2, Z(f) is a curve in the space.

In the case of p = 3 and k = 1, Z(f) is a surface:

Z(f) = {(x, y, z) : f(x, y, z) = 0}.

Hereafter, we will primarily discuss this case.
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Approximate Distance

The distance from a point a to the surface Z(f) is usually defined by

dist(a, Z(f)) = inf(‖ a − y ‖: y ∈ Z(f)).

It was said that the distance between a point and the algebraic curve or
surface cannot be computed using direct methods. Thus, Taubin proposed
an approximate distance from a to Z(f) (Taubin, 1991). The point ŷ that
approximately minimizes the distance ‖ y − a ‖, is given by

ŷ = a − (∇f(a)�)+f(a),

where (∇f(a)�)+ is the pseudoinverse of ∇f(a)�. The distance from a to
Z(f) is approximated to

dist(a, Z(f))2 ≈ f(a)2

‖ ∇f(a) ‖2
.

Taubin also presented an algorithm to find the algebraic curve for which the
sum of approximate squares distances between data points and the curve is
minimized.

Exact Distance

In the following, we present a method for calculating the distance between a
point a = (α, β, γ) and an algebraic surface Z(f).

If (x, y, z) is the nearest point to the point a = (α, β, γ) on Z(f), (x, y, z)
satisfies the following simultaneous equations:


φ1(x, y, z) = 0
φ2(x, y, z) = 0
f(x, y, z) = 0,

(1)

where φ1(x, y, z) = (x−α)∂f
∂y − (y − β)∂f

∂x , and φ2(x, y, z) = (z − γ)∂f
∂y − (y −

β)∂f
∂z .
The equations (1) can be solved using the Newton-Rapson method:

1. Set x0, y0 and z0 (see below).

2. Solve the equations:


h∂φ1
∂x + k ∂φ1

∂y + l ∂φ1
∂z = −φ1(x, y, z)

h∂φ2
∂x + k ∂φ2

∂y + l ∂φ2
∂z = −φ2(x, y, z)

h∂f
∂x + k ∂f

∂y + l ∂f
∂z = −f(x, y, z).

(2)
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3. Replace x, y: 


xi+1 = xi + h
yi+1 = yi + k
zi+1 = zi + l.

4. Stop if h2 + k2 + l2 is below a certain threshold. Otherwise, go to STEP
2.

One of the important points to consider when applying the Newton-Rapson
method is to compute an initial point. We have a good initial point: (α, β, γ).

When x0 = α, y0 = β, z0 = γ, the equations (2) are


h∂φ1
∂x + k ∂φ1

∂y + l ∂φ1
∂z = 0

h∂φ2
∂x + k ∂φ2

∂y + l ∂φ2
∂z = 0

h∂f
∂x + k ∂f

∂y + l ∂f
∂z = −f(x, y, z).

It is very simple to show that the distance between (x1, y1, z1) and (α, β, γ)
agrees with Taubin’s approximate distance.

Algebraic Surface Fitting

We have already described the method for calculating the distance between a
point and a surface.

The problem of finding a fitting surface that minimizes the sum of the
distances from data points can therefore be solved by using an optimization
method without derivatives. However, for computing efficiency, the partial
derivatives of the sum of squares of distances from data with the coefficients
of an algebraic curve are derived.

In general, a polynomial f in a set is denoted by

f(b1, · · · , bq; x, y, z),

where b1, · · · , bq are the parameters of the set.
Let ai = (αi, βi, γi)(i = 1, 2, · · · , n) be n data points within the space.

The point in Z(f) that minimizes the distance from (αi, βi, γi) is denoted by
(xi, yi, zi)(i = 1, 2, · · · , n).

The sum of squares of distances is

R =
n∑

i=1

(xi − ai)�(xi − ai).

R can be minimized with respect to the parameters of polynomial f with the
Levenberg-Marquardt Method. This method requires partial derivatives of R
with respect to bj :

∂R

∂bj
=

n∑
i=1

∂Ri

∂bj
, (3)
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where
∂Ri

∂bj
= 2
(

(xi − αi)
∂xi

∂bj
+ (yi − βi)

∂yi

∂bj
+ (zi − γi)

∂zi

∂bj

)
. (4)

The only matter left to discuss is a solution for ∂xi

∂bj
, ∂yi

∂bj
and ∂zi

∂bj
. Hereafter,

the subscript i is omitted. By the derivative of both sides of
f(b1, · · · , bq, x, y, z) = 0 with respect to bj (j = 1, · · · , q), we obtain

∂f

∂x

∂x

∂bj
+

∂f

∂y

∂y

∂bj
+

∂f

∂z

∂z

∂bj
+

df

dbj
= 0, (5)

where df
dbj

is the differential of f with bj when x and y are fixed.
Since xi is on the normal line from ai,(

∂f

∂x

∣∣∣∣
xi

,
∂f

∂y

∣∣∣∣
xi

,
∂f

∂z

∣∣∣∣
xi

)�
(xi − ai) = 0.

By the derivative of

(y − β)(z − γ)
∂f

∂x

∣∣∣∣
x

= t

(x − α)(z − γ)
∂f

∂y

∣∣∣∣
x

= t

(x − α)(y − β)
∂f

∂z

∣∣∣∣
x

= t

with respect to bj , we obtain the linear combinations of ∂x
∂bj

, ∂y
∂bj

and ∂z
∂bj

:

c1m
∂x

∂bj
+ c2m

∂y

∂bj
+ c3m

∂z

∂bj
+ c4m =

∂t

∂bj
, (6)

where c1m, . . . , c4m are constants (m = 1, · · · , 3).
Equations (5) and (6) are simultaneous linear equations in four variables

∂x
∂bj

, ∂y
∂bj

, ∂z
∂bj

and ∂t
∂bj

. We then obtain ∂x
∂bj

, ∂y
∂bj

and ∂z
∂bj

at (xi, yi, zi). By equa-
tion (4), we have the partial differentiation of Ri with respect to bj .

Therefore, we can obtain the algebraic curve that minimizes the sum of
squares of distances from data points with the Levenberg-Marquardt method.

Bounded and Stably Bounded Algebraic Curve and Surface

Although algebraic curves can fit the data very well, they usually contain
points far remote from the given data set. In 1994, Keren et al. (1994) and
Taubin et al. (1994) independently developed algorithms for a bounded (closed)
algebraic curve with approximate squares distance. We will now introduce the
definition and properties of a bounded algebraic curve.
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Z(f) is referred to as bounded if there exists a constant r such that Z(f) ⊂
{x :‖ x ‖< r}. For example, it is clear that Z(x2 + y2 − 1) is bounded, but
Z(x2 − y2) is not bounded.

Keren et al. (1994) defined Z(f) to be stably bounded if a small pertur-
bation of the coefficients of the polynomial leaves its zero set bounded. An
algebraic curve Z((x− y)4 + x2 + y2 − 1) is bounded but not stably bounded
because Z((x − y)4 + x2 + y2 − 1 + εx3) is not bounded for any ε 	= 0.

Let fk(x, y) be the form of degree k of a polynomial f(x, y): f(x, y) =∑d
k=0 fk(x, y). The leading form of a polynomial f(x, y) of degree d is defined

by fd(x, y). For example, the leading form of f(x, y) = x2+2xy−y2+5x−y+3
is f2(x, y) = x2 + 2xy − y2.

Lemma 1. For an even positive integer d, any leading form fd(x, y) can be
represented by x�Ax. Where A is a symmetric matrix and
x = (x

d
2 , x

d
2−1y, · · · , xy

d
2−1, y

d
2 )�.

Theorem 2. (Keren et al., 1994): The Z(f) is stably bounded if and only if
d is even and there exists a symmetric positive definite matrix A such that

fd(x, y) = x�Ax,

where x = (x
d
2 , x

d
2−1y, · · · , xy

d
2−1, y

d
2 )�.

These definitions and theorem for algebraic curves are valid for algebraic
surfaces. Hereafter, we will restrict our discussion to algebraic surfaces.

Parameterization

We parameterize the set of all polynomials of degree k and the set of polynomi-
als that induce (stably) bounded algebraic surfaces. In general, a polynomial
f of degree p with q parameters can be denoted by f(b1, · · · , bq; x, y), where
b1, · · · , bq are the parameters of the polynomial.

For example, all of the polynomials of degree 2 can be represented by

f(b1, b2, · · · , b10; x, y, z) = B�X,

where X = (1, x, y, z, x2, y2, z2, xy, yz, zx)�, B = (b1, b2, · · · , b10)�.
For stably bounded algebraic curves of degree 4,

f(b1, · · · , b41; x, y, z)
= (x2, y2, z2, xy, yz, zx)A2(x2, y2, z2, xy, yz, zx)�

+ (b22, · · · , b41)(1, x, y, z, · · · , z3)�,

where

A =




b1 b2 b3 b4 b5 b6

b2 b7 b8 b9 b10 b11

b3 b8 b12 b13 b14 b15

b4 b9 b13 b16 b17 b18

b5 b10 b14 b17 b19 b20

b6 b11 b15 b18 b20 b21




.
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Examples

Here we will show a numerical example of the algebraic surface and bounded
algebraic surface fitting methods.

The data in this example is three-dimensional data of size 210. The 210
points nearly lie on a closed cylinder (Fig. 1). The result of GPCA is set for an
initial surface and the method is used to search for a fitting algebraic surface
of degree 4 (Figs. 2, 3 and 4). The value of R is 0.924.

Fig. 5 presents the result of a bounded algebraic surface fitting the same
data. The value of R is 1.239, and is greater than that of unbounded fitting.
The bounded surface, however, directly reveals the outline of the data.

In this subsection, we have discussed algebraic surface fitting to multidi-
mensional data. Two sets of algebraic surfaces were described: an unbounded
algebraic surface and a bounded algebraic surface. This method can be ex-
tended for use with any other family of algebraic surfaces.

Taubin (1994) proposed the approximate distance of order k and presented
algorithms for rasterizing algebraic curves. The proposed algorithm for exact
distance can also be used for rasterizing algebraic curves and surfaces. Mizuta
(1997) has successfully developed a program for rasterizing them with exact
distances.

Fig. 1. Surface fitting for disturbed cylinder data (Original Data Points)
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Fig. 2. Surface fitting for disturbed cylinder data (Unbounded Fitting Surface)
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Fig. 3. Surface fitting for disturbed cylinder data (Global View of 2)

3.3 Principal Curves

Curve fitting to data is an important method for data analysis. When we ob-
tain a fitting curve for data, the dimension of the data is nonlinearly reduced
to one dimension. Hastie and Stuetzle (1989) proposed the concept of a prin-
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Fig. 4. Surface fitting for disturbed cylinder data (Cutting View of 2)
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Fig. 5. Surface fitting for disturbed cylinder data (Bounded Fitting Surface)

cipal curve and developed a concrete algorithm to find the principal curve,
which is represented by a parametric curve. We can therefore obtain a new
nonlinear coordinate for the data using the principal curve.
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Definition of Principal Curve

First, we will define principal curves for a p-dimensional distribution function
h(x)(x ∈ Rp), rather than a dataset.

The expectation of X with density function h in Rp is denoted by Eh(X).
The parametric curve within the p-dimensional space is represented by f (λ),
where λ is the parameter.

For each point x in Rp, the parameter λ of the nearest point on the curve
f(λ) is denoted by λf (x), which is referred to as the projection index. The
projection index, which is different from projection index in projection pursuit,
is defined as follows:

λf (x) = sup
λ
{λ| ‖ x − f (λ) ‖= inf

µ
‖ x − f(µ) ‖}.

The curve f(λ) is referred to as the principal curve of density function h,
if

Eh(x ‖ λf (x) = λ) = f (λ) (for a.e.λ)

is satisfied. After all, for any point f (λ) on the curve, the average of the
conditional distribution of x given λf (x) = λ is consistent with f(λ) with the
exception of a set of measure 0.

The principal curves of a given distribution are not always unique. For ex-
ample, two principal components of the two-dimensional normal distribution
are principal curves.

The algorithm for finding the principal curves of a distribution is:

1. Initialization Put
f (0)(λ) = x̄ + aλ,

where a is the first principal component of the distribution defined by the
density function h and x̄ is the average of x.

2. Expectation Step (update of f (λ))

f (j)(λ) = E(x|λf (j−1)(x) = λ) ∀λ

3. Projection Step (update of λ)

λ(j)(x) = λf (j)(x) ∀x ∈ Rp

And transform the λ(j) to be arc length.
4. Evaluation Calculate

D2(h, f (j)) = Eλ(j)E{‖ x − f (λ(j)(x)) ‖2 |λ(j)(x)}.
If the value

|D2(h, f (j−1)) − D2(h, f (j))|
D2(h, f (j−1))

is smaller than ε, then stop, otherwise j = j + 1 and go to Step 1.
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In the Expectation Step, calculate the expectation with respect to the
distribution h of the set of x satisfying λf (j−1)(x) = λ and substitute f (j)(λ)
for it. In the Projection Step, project data points in Rp to the curve f (j)(λ)
and assign λ(j)(x).

For actual data analysis, only a set of data points is given and the dis-
tribution is unknown. Hastie and Stuetzle (1989) also proposed an algorithm
with which to derive the principal curve for given p-dimensional data of size
n: xik(i = 1, 2, · · · , N ; k = 1, 2, · · · , p). In this case, the principal curves are
represented by lines determined by N points (λi, f i).

1. Initialization

f (0)(λ) = x̄ + uλ,

where u is the first principal component of the data and x̄ is the average
of x.

2. Expectation Step Smooth xik (i = 1, 2, · · · , N) with respect to λ for
each k independently and calculate f (j)(λ).

3. Projection Step Search for the nearest point on the curve (line curve)
of each data point and assign it to their value of λ.

4. Evaluation If a terminal condition is satisfied, the algorithm is stopped.
If not, j = j + 1 and go to Step 2.

4 Linear Reduction of Explanatory Variables

Thus far, we have described dimension reduction methods for multidimen-
sional data, where there are no distinctions among variables. However, there
are times when we must analyze multidimensional data in which a variable
is a response variable and others are explanatory variables. Regression analy-
sis is usually used for the data. Dimension reduction methods of explanatory
variables are introduced below.

Sliced Inverse Regression

Regression analysis is one of the fundamental methods used for data analysis.
A response variable y is estimated by a function of explanatory variables x, a
p-dimensional vector. An immediate goal of ordinary regression analysis is to
find the function of x. When there are many explanatory variables in the data
set, it is difficult to stably calculate the regression coefficients. An approach to
reducing the number of explanatory variables is explanatory variable selection,
and there are many studies on variable selection. Another approach is to
project the explanatory variables on a lower dimensional space that nearly
estimates the response variable.

Sliced Inverse Regression (SIR), which was proposed by Li (1991), is a
method that can be employed to reduce explanatory variables with linear
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projection. SIR finds linear combinations of explanatory variables that are
a reduction for non-linear regression. The original SIR algorithm, however,
cannot derive suitable results for some artificial data with trivial structures. Li
also developed another algorithm, SIR2, which uses the conditional estimation
E[cov(x|y)]. However, SIR2 is also incapable of finding trivial structures for
another type of data.

We hope that projection pursuit can be used for finding linear combina-
tions of explanatory variables. A new SIR method with projection pursuit
(SIRpp) is described here. We also present a numerical example of the pro-
posed method.

Sliced Inverse Regression Model

SIR is based on the model (SIR model):

y = f(β�
1 x, β�

2 x, · · · , β�
Kx) + ε, (7)

where x is the vector of p explanatory variables, βk are unknown vectors, ε
is independent of x, and f is an arbitrary unknown function on RK .

The purpose of SIR is to estimate the vectors βk for which this model
holds. If we obtain βk, we can reduce the dimension of x to K. Hereafter,
we shall refer to any linear combination of βk as the effective dimensional
reduction (e.d.r.) direction.

Li (1991) proposed an algorithm for finding e.d.r. directions, and it was
named SIR. However, we refer to the algorithm as SIR1 to distinguish it from
the SIR model.

The main idea of SIR1 is to use E[x|y]. E[x|y] is contained in the space
spanned by e.d.r. directions, but there is no guarantee that E[x|y] will span
the space. For example, in Li, if (X1, X2) ∼ N(0, I2), Y = X2

1 then E[X1|y] =
E[X2|y] = 0.

SIR Model and Non-Normality

Hereafter, it is assumed that the distribution of x is standard normal distribu-
tion: x ∼ N(0, Ip). If not, standardize x by affine transformation. In addition,
β�

i βj = δij , (i, j = 1, 2, · · · , K) is presumed without loss of generality. We can
choose βi(i = K + 1, · · · , p) such that {βi} (i = 1, · · · , p) is a basis for Rp.

Since the distribution of x is N(0, Ip), the distribution of (β�
1 x, · · · , β�

p x)
is also N(0, Ip). The density function of (β�

1 x, · · · , β�
p x, y) is

h(β�
1 x, · · · , β�

p x, y) = φ(β�
1 x) · · ·φ(β�

p x)
1√
2πσ

exp (− (y − f(β�
1 x, · · · , β�

Kx))2

2σ2
),

where φ(x) = 1/
√

2π exp (−x2/2) and we assume ε ∼ N(0, σ2).
The conditional density function is

h(β�
1 x, · · · , β�

p x | y) = φ(β�
K+1x) · · ·φ(β�

p x)g(β�
1 x, · · · , β�

Kx),
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where g() is a function of β�
1 x, · · · , β�

Kx, which is not generally the normal
density function.

Thus, h(β�
1 x, · · · , β�

p x | y) is separated into the normal distribution part
φ(β�

K+1x) · · ·φ(β�
p x) and the non-normal distribution part g().

Projection Pursuit is an excellent method for finding non-normal parts, so
we adopt it for SIR.

SIRpp Algorithm

Here we show the algorithm for the SIR model with projection pursuit
(SIRpp). The algorithm for the data (yi, xi) (i = 1, 2, · · · , n) is as follows:

1. Standardize x: x̃i = Σ̂
− 1

2
xx (xi − x̄)(i = 1, 2, · · · , n), where Σ̂xx is the

sample covariance matrix and x̄ is the sample mean of x.
2. Divide the range of y into H slices, I1, · · · , IH .
3. Conduct a projection pursuit in K dimensional space for each slice. The

following H projections are obtained: (α(h)
1 , · · · , α(h)

K ), (h = 1, · · · , H).
4. Let the K largest eigenvectors of V̂ be η̂k(k = 1, · · · , K). Output β̂k =

η̂kΣ
− 1

2
xx (k = 1, 2, · · · , K) for the estimation of e.d.r. directions, where V̂ =∑H

h=1 w(h)
∑K

k=1 α
(h)
k

�
α

(h)
k .

Numerical Examples

Two models of the multicomponent are used:

y = x1(x1 + x2 + 1) + σ · ε, (8)

y = sin(x1) + cos(x2) + σ · ε (9)

to generate n = 400 data, where σ = 0.5. We first generate x1, x2, ε with
N(0,1) and calculate response variable y using (8) or (9). Eight variables
x3, · · · , x10 generated by N(0,1) are added to the explanatory variables. The
ideal e.d.r. directions are contained within the space spanned by two vectors
(1, 0, · · · , 0) and (0, 1, · · · , 0).

The squared multiple correlation coefficient between the projected variable
b�x and the space B spanned by ideal e.d.r. directions:

R2(b) = max
β∈B

(b�
∑

xx β)2

b�
∑

xx b · β�∑
xx β

(10)

is adopted as the criterion for evaluating the effectiveness of estimated e.d.r.
directions.

Table 1 shows the mean and the standard deviation (in parentheses) of
R2(β̂1) and R2(β̂2) of four SIR algorithms for H = 5, 10, and 20, after 100
replicates. SIR2 cannot reduce the explanatory variables from the first ex-
ample. The result of the second example is very interesting. SIR1 finds the
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asymmetric e.d.r. direction, but, does not find the symmetric e.d.r. direction.
Conversely, SIR2 finds only the symmetric e.d.r. direction. SIRpp can detect
both of the e.d.r. directions.

The SIRpp algorithm performs well in finding the e.d.r. directions; how-
ever, the algorithm requires more computing power. This is one part of pro-
jection pursuit for which the algorithm is time consuming.

Table 1. Results for SIR1, SIR2, and SIRpp (Example 1)

SIR1 SIR2 SIRpp

H R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2)

5 .92 .77 .96 .20 .97 .78
(.04) (.11) (.03) (.21) (.02) (.15)

10 .93 .81 .92 .10 .95 .79
(.03) (.09) (.09) (.12) (.04) (.13)

20 .92 .76 .83 .11 .95 .75
(.04) (.18) (.19) (.13) (.07) (.18)
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Fig. 6. Function of the example 1. Asymmetric function y = x1(x1 + x2 + 1) + σ · ε

5 Concluding Remarks

In this chapter, we discussed dimension reduction methods for data analy-
sis. First, PCA methods were explained for the linear method. Then, pro-
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Table 2. Results of SIR1, SIR2, and SIRpp (Example 2)

SIR1 SIR2 SIRpp

H R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2)

5 .97 .12 .92 .01 .92 .88
(.02) (.14) (.04) (.10) (.05) (.11)

10 .97 .12 .90 .05 .88 .84
(.02) (.15) (.06) (.07) (.08) (.13)

20 .97 .12 .85 .05 .84 .73
(.02) (.14) (.09) (.06) (.10) (.22)
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Fig. 7. Function of the example 2. Function of asymmetric with respect to the x1

axis and symmetric with respect to x2 axis. y = sin(x1) + cos(x2) + σ · ε

jection pursuit methods were described. For nonlinear methods, GPCA al-
gebraic curve fitting methods and principal curves were introduced. Finally,
we explained sliced inverse regression for the reduction of the dimension of
explanatory variable space.

These methods are not only useful for data analysis, but also effective for
preprocessing when carrying out another data analysis. In particular, they
are indispensable for the analysis of enormous amounts of and complex data,
e.g. microarray data, log data on the Internet, etc. Research in this field will
continue to evolve in the future.
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