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1  Introduction 

 

Most data collected in statistics and science is still stored in simple flat files, 
usually data matrices with rows identified by a case identifier (case_id), columns 
corresponding to attributes (variables), and numerical data types for the elements 
of each matrix due to coding of all attributes involved. Each row (tuple) carries the 
(coded) values of the attributes, besides the case_id. Due to a suitable encoding 
that maps a natural domain to numerical ones, all matrix entries have a numeric 
data type. The scales of the attributes may of course be quite different.  

A simple example is given by census data stored at statistical offices in files 
according to a schema like  

census_questionnaire (case_id, age-group, gender, 
profession,...).  

While science gains their data from experiments, statistical agencies collect their 
data still mostly off-line from surveys, reports or census. Industry and services get 
their data on-line from their business process management, i.e., from their 
logistical, production and administrative transactions. A typical example is sales 
data, which may be represented by a schema like 

sales (transaction_id, customer_id, date, 
product_name, quantity, price, amount).  

Such data is called microdata, since it is kept in its original form and is not 
divisible but atomic. In the business area such data is labeled as on-line 
transaction data because it is subject to frequent updates and is the basis for 
continuous business transactions. The use of a simple file system to store 



microdata is rarely a good choice because of a lack of safety and integrity, and 
retrieval problems. Such data should rather be stored as tables of a relational 
database. A database management system (DBMS) asserts safety, integrity and 
retrieval flexibility. For instance, a query like "Find prices and amount of all sales 
since year 2001 where customer 007 with product 4711 is involved" can be simply 
stated in structured query language (SQL) as  

SELECT price, amount FROM sales  
WHERE year >= 2001  
AND customer_id = 007  
AND product_name = 4711;.  

It is interesting to note that SQL provides for a set of query operators that is 
relationally complete. One may thus process any reasonable query as long as it 
does not involve “transitive closure”, i.e. a potentially infinite loop based on some 
logical inference (such as a part-of hierarchy).  

Macrodata is derived from microdata by applying statistical functions, 
aggregation and grouping, and consequently has a larger granularity. For example, 
a business analyst might be interested in a three-way table (data cube) of total 
sales classified by month and year, customer_id and product_name. 
Such a retrieval can be achieved on sales by the command:  

SELECT SUM(sales), date.month, date.year, 
customer_id, product_name  

FROM sales Group BY date.month, date.year, 
customer_id, product_name;. 

This type of activities is coined on-line analytical operations (OLAP), which 
expresses clearly its objective, i.e. a statistical analysis of data for planning, 
decision support, and controlling.  

As we shall see later there does not exist a clear boundary between retrieval and 
statistical modeling. However, a statistical function like sum (or average) must be 
selected for a specific query, which does imply modeling. Consequently, there will 
not exist a closed set of operators on such multi-way tables. Moreover, there are 
two further problems involved. First of all, which data structure of such kind of 
data is efficient, and secondly, what kind of background information is needed, to 
assist the management and the interpretation of real data? This leads to discuss 
metadata as data about real data and functions. Modern database management 
systems encapsulate metadata in a repository (integrated metadata database). 

In the following we are first concerned with some fundamentals of data 
management. Then we turn to the architecture of a statistical database or a data 
warehouse (DW) and some concepts related to it. We pay special attention to 
conceptual data structures and related operators involved, the summarizability 
problem, and hierarchical attributes. We discuss metadata, access methods and 



"extraction, transformation and loading" (ETL). We close with metadata and 
extensible markup language (XML), and privacy. 

2 Fundamentals of Data Management 

We start our discussion with file systems, have a look at database systems (DBSs) 
useful to store transaction or microdata, and finally turn to DWs which host 
macrodata either in a real (materialized) or virtual form.  

2.1 File systems 

Data is classically stored in files. Files can be viewed as a conceptually related set 
R of records, which are represented by a given record type, see Wirth (1986), and 
an access mode (direct or sequential). If the records have a numeric type for each 
of its fields and the mode is sequential, then a data matrix can be stored in a 
sequential file. A collection of such files is called a file system (FS), if there exist 
logical relations between the files f ∈ FS, a set of constraints on FS and 
application software. Typical applications in statistics are simple surveys like 
price surveys, where in most cases only one file is needed. A more complex file 
system is compulsory if, for instance, stratified or panel sampling designs are 
considered, where various sampling periods, areas, objects and units (carriers of 
interest) are involved. Moreover, relational data mining, as described by Dzeroski 
and Lavrac (2001) and Wrobel (2001), is devoted to such data structures. 

File systems are appropriate if only single user-access and weakly logically 
connected files with simple constraints are effective. Note that application 
programs must be specially tailored to execute queries, and to achieve data safety 
and security. This implies data dependence between the software and the files 
referenced, which reduces the program's flexibility with respect to structural 
changes of the data structure. These pitfalls can be overcome by DBSs. 

2.2 Relational Database Systems (RDBS) 

Multi-user access, complex data structures and logical restrictions ask for a 
relational database system (RDBS). It consists of a set T of relations (flat tables) 
together with a set S of corresponding schemas and a set C of constraints, a 
database management system and application software. A database schema 
describes the attributes (variables) of a specific table, its data types and roles. To 
avoid redundancy and anomalies during insert, delete or update transactions, those 
tables should be transformed into a "normal form", see Elmasri and Navathe 
(1999). As an example, we take a Census. When we look at the RDBS ´Census´ 



from a conceptual point of view, there are four table schemas involved: Census-
questionnaire, household, dwelling, and employment. We shall consider only the 
first two in some detail, and select only some few attributes for the sake of brevity.  
The first schema is 

census_questionnaire(case_id, age-group, gender, 
profession, ...). 

Its first three attributes are numeric and the fourth one is of type 'string'. The 
attribute case_id acts as a primary key, i.e., the remaining attributes are 
functionally dependent on it. Because a key attribute uniquely identifies any tuple 
(record) of the corresponding table (set of tuples), there is one constraint among 
others saying that duplicates in a given table are not allowed. In order to mention 
just one further constraint, the domain of the identifier case_id may be 
restricted to the set of positive integers.  

The next schema is  

household (household_id, case-id, role,...). 

The first two attributes have a numeric domain, while role is of type 'string' with 
the value set {"member", "owner"}. Of course, we have again the constraint that 
duplicates are not allowed, but we need at least one further restriction to ensure 
reference integrity, i.e., whenever there exist entries of people grouped together in 
a household, each of their corresponding records in census_questionnaire 
has to exist.  

Last but not least, we reconsider our sales example from the introduction. The 
schema is  

sales (transaction_id, customer_id, date, product_name, 
quantity, price, amount) 

The primary key is transaction_id, which implies that only one product can 
be part of any transaction. Evidently, this scheme is not normalized, because 
price depends on product_name besides of transaction_id, and 
amount = quantity * price. The relation itself is of degree (number of 
attributes) seven. The six attributes customer_id, date, ..., amount span 
a six-dimensional data space, where each tuple has six data elements, and is 
identified by its corresponding transaction_id. We represent four tuples in 
Table 1 to illustrate the difference between a schema and its corresponding 
relation (table). We use abbreviations in the header of the table sales. 

 

 

 



Table 1: The relational table sales of degree 7 and cardinality 4 
 

Transaction_id customer_id date Product_name quantity price amount 

015 A 4 Jan 97 Tennis Shoes 200 95 19000.00 

018 A 4 Jan 97 Tennis Balls 300 1.50 450.00 

004 A 3 Jan 97 Tennis Nets 350 27 9450.00 

009 C 3 Jan 97 Tennis Shoes 100 95 9500.00 

… … … … … ... ... 

 

The need of various users for different data can be satisfied by the concept of 
virtual relations (views), which can be created on top of an existing DBS. 

Note that the term “table” used in a relational database to store such information is 
quite different from the tables statisticians use for the same purpose. Table 2 
shows the representation of the same information in a different table structure that 
allows the natural computation of aggregates along rows and columns (“margin 
sums” etc.). Note that this table structure cannot be mapped directly into a 
relational database context due to the margins (Total or ALL), see Gray et al. 
(1996). 

Table 2:  sales data in the form of the three-way  
statistical table total_sales 
 

3 Jan 1997 Tennis Shoes Tennis Balls Tennis Nets 

Customer A 0 0 350

Customer B 0 0 0

Customer C 100 0 0

Total 100 0 350

 

4 Jan 1997 Tennis Shoes Tennis Balls Tennis Nets 

Customer A 300 400 450

Customer B 1100 1100 800

Customer C 600 1600 350

Total 2350 3400  1900



Let us close this example with a discussion of the background information needed. 
We mentioned above metadata like schema names, attribute names, data types, 
roles (key vs. non key) of attributes, constraints etc. All this can be considered as 
technical metadata. Moreover, we need further metadata of a semantic and 
statistical type. Take for instance the attributes quantity, price and amount. 
What is their definition? As far as amount is concerned we have “amount = 
quantity * price”. Furthermore, we need the corresponding measurement 
units which may be units, €/unit and €. As far as data collection at Statistical 
Offices is concerned, we may need information about the periodicity of data 
surveys like 'annual', 'quarterly' or 'monthly'. With respect to data analysis we may 
be interested in the measurement scale. While product_name has a nominal 
scale allowing only operations like 'equal' and 'not equal', the attributes 
quantity, price and amount have a metric scale allowing for all basic 
numerical operations. There exist further ambiguities. For example, the generation 
mode of the attribute sales may have the categories 'real', 'simulated' or 
'forecasted'. There may exist further vagueness about sales of category 'real' 
unless its update state is set to 'final', and not to 'provisional'. 

 

2.3 Data Warehouse Systems (DWS) 

A data warehouse system (DWS) consists of a (replicated) micro database, a set of 
materialized or virtual multi-way tables (data cubes) needed to represent macro 
(pre-aggregated and grouped) data, a data warehouse management system 
(DWMS), and a repository, which stores all required technical, statistical and 
semantic metadata.  

As an example of a data cube, we remind the reader of the three-way table 
presented above: 

 total_sales (date.month, date.year, customer_id,   
  product_name, sum(sales)).  

This table is represented in a relational form, where date, customer_id and 
product_name are concatenated as a primary key. These attributes are called 
dimensions. Evidently, the non-key attribute sum(sales) is fully dependent 
upon this key, i.e. given the values of date.month, date.year, 
customer_id, product_name there exist one and only one value of 
sum(sales)if missing values (null values) are excluded. 

Views are useful again and can be provided by joining cubes or sub-cubes in 
combination with table projections to lower dimensions. It is worthwhile 
considering separately the attributes sum(sales), date and 
product_name. The first attribute is sometimes called summary attribute and 



is composed of the statistical sum applied to the attribute sales, see Shoshani 
(1997). This operation is feasible because the function sum and the attribute 
sales have an identical data type, i.e., a metric type. Moreover, the attribute 
sales is of attribute type flow, but not stock.  While summarizing over 
flows (rates) is reasonable, such an operation over stocks like 'number of 
customers' is nonsense. Evidently, such and further integrity constraints must be 
effective for a DWS, in order to protect the naive user from nonsense queries. This 
is extremely important for data warehousing, because contrary to database queries, 
in DWS the application of statistical functions is an inherent part of any query. 

Furthermore, there exists a specific problem related to date. This attribute can be 
decomposed into month and year but these components are functionally 
dependent, i.e., for a given month of a calendar year the year is fixed. We thus 
have (month, year) -> year as a functional dependency. Therefore only one 
dimension called date is used for the two attributes month and year in the 
data cube above. There may be further temporal levels like hour, day, month, 
quarter and year. Such hierarchical attributes are called taxonomies and need 
special attention, see Lehner et al. (1998). It is quite remarkable that all 
dimensions can be allocated to three principal groups: time, location and subject. 
This is called the 3D-principle, see Lenz (1994). 

Let us have a further look at taxonomies that are unbalanced and asymmetric. This 
may happen in case of a product or regional hierarchy. In our running example the 
subgroups tennis shoes and balls may be grouped together as product_group1, 
while tennis nets build-up product_group2, but are free of sub-grouping. Both 
groups 1 and 2 build the root group product_all. As subgroups exist only for shoes 
and balls, subgroups are no longer functionally dependent on product_name, 
but only weakly functionally dependent, see Lehner et al. (1998), Fig. 1. This 
implies that queries, which involve sub-grouping over products, are not feasible 
and must be refused. Further pitfalls of operations on a data-cube are given in 
Lenz and Shoshani (1997) and Lenz and Thalheim (2001). 

product_all

product_group1 product_group2

tennis balls tennis shoes

tennis netscolor size  width  color

(product
_name)

 
Fig. 1: The product taxonomy with a weak functional dependency  



This discussion shows that real data without metadata is more or less useless 
especially for on-line analytical processing (OLAP). A repository with metadata 
has become a prerequisite of any DBS engineering and sound data analysis. 

3 Architectures, Concepts and Operators 

We first consider the architecture of micro or operational data used for online 
transaction processing (OLTP), and then illustrate the different architecture of 
macro or analytical data used for decision support and its relation to operational 
data, see OLAP. We note that the key features of a DBS for OLTP data are: 
transaction-oriented, measurement- or record-based, real time processing of 
inserts, deletes and updates of records. In contrary, a DWS for OLAP data is 
characterized by the features: subject-oriented, integrated and aggregated, calendar 
or fiscal period related, and non-volatile, see Inmon (1992). 

3.1 Architecture of a database system for OLTP 
The architecture of DBS can be represented by the quintuple (data sources, 
application server, DB server with a DBMS, application server, DB and 
repository); see also Fig. 2. As mentioned above, business processes act as data 
sources in commercial systems, while at statistical offices data is supplied by 
surveys, periodic reports or a census. Similarly, in science the data is generated by 
observations or measurements collected by field or simulation experiments. We 
represent the architecture in Fig.2. 

access

read/write

loadBusiness
Operations

DB Server
(DBMS)

DB Repository

use

read

Application
Server

Client

 
Fig. 2: Architecture of a DBS used to manage and query operational data 



As an example from business we consider a company, which manages wages and 
salaries of its employees. The data is generated by bookkeeping, the DBMS 
administers the real and metadata, processes queries, and controls transactions. 
The application server is responsible for running the software for wage and salary 
computation, while the client is used as a presentation layer. 

3.2 Architecture of a data warehouse 

The main components of the architecture of any OLAP application are 
heterogeneous data sources S like internal or external databases or files, an OLAP 
server with DWMS, DW, Repository and Data Marts, and OLAP clients. The 
DWMS is responsible for load management, query management and warehouse 
management. 

S0

S1

S2 DW

DWMS

Repository

data marts

query

Data sources OLAP server OLAP clients

read write read

load

operational data

transform

external data
extract

 
Fig. 3: DW Architecture 

The DW (see Fig. 3) incorporates data replications, archived data and aggregated 
data stored as data cubes. The departmental view on the whole data is given by 
subsets of the data cube, called data marts. 

As can be seen from Fig. 3, analytical processing is concerned with data from 
various data sources, i.e., external or internal (operational) data. These sources are 
integrated by ETL in data marts in an unified manner. The data marts can be 
viewed as collections of data cubes. 

There exist two types of OLAP clients:  

(i) stand-alone applications like spreadsheets with a DW interface, and  

(ii) Web clients that use an Internet browser and often applets. 



3.3 Concepts (ROLAP, MOLAP, HOLAP, cube operators) 

As we have seen above, the schema of a data cube consists of a cube identifier 
(name), a list of identifying attributes called dimensions and a statistical function 
like min, max, count (frequency), sum, avg (arithmetic mean) applied to a 
summary attribute. Furthermore, the data types of the attributes and integrity 
constraints must be given. As an example we take from above the data cube "sales 
cross-classified by (month, year), customer and product":  

total_sales (date.month, date.year, customer_id, 
product_name, sum(sales)). 

Evidently, the dimensions span a three-dimensional space on which the statistical 
function sum (sales) is defined.  The corresponding data types are date 
(mm.yyyy), integer, string and decimal.  

3.3.1 Relational OLAP (ROLAP) 

In the following we turn to the conceptual mapping of a data cube into a relational 
database schema. This approach is called ROLAP for Relational OLAP, see Raden 
(1996). There exist two schemas, star and snowflake schemas. As illustrated in 
Fig. 4, the star schema uses two different types of schemas, which refer to two 
types of corresponding tables: 

1. a fact table with a primary key reference to each dimension and the facts 
which are composed of at least a statistical function and a summary 
attribute. 

2. a dimension table for each dimension with a primary key and a level 
indicator for each entry of a hierarchical attribute. 

Date_id

month-no
month-label
year-no
year label
level

Product_id

group-no
group-label
sub-group-no
sub-group 
label
level

sum(sales)

Date_id
Product_id
Customer_id

Customer_id

cust-label
cust-group-no
cust-group-
label
level

Product

Customer

Date

Fact table sales

 
Fig. 4: Star schema of a three-dimensional data cube (one fact table, three 

dimension tables; the product hierarchy is assumed to have two levels) 



The star schema models all kind of hierarchical attributes including parallel 
hierarchies, see Lehner et al. (1997). The schema is not normalized as becomes 
obvious, for example, from the dimension table Date. The attributes month and 
year are nested, which implies some redundancy. For small or medium-sized 
data volumes, such schemas have a sufficient performance because join operations 
are only necessary between the fact table and the related dimension tables.  

In order to normalize tables by level attributes, the snowflake schema was 
introduced. Instead of modelling each dimension by one table, a table is created 
for each level of a hierarchical attribute. The schemas involved are related by 
identifiers, which play the role either of a primary or a foreign key. In Fig. 5 we 
display only the normalized dimension tables Month and Year and the fact table 
Sales. The identifiers are month-no in the fact table and dimension table 
Month and year-no in the dimension table Year. 

month-no
month-label
year-no

year-no
year-label

sum(sales)...
month-no
...

Month

Year

Fact Table Sales

 
Fig. 5: Data cube Sales represented (fractionally) as a snowflake schema 

It can be shown that the normalization is lossless by applying an inner join to the 
tables of a snowflake schema. 

3.3.2 Other Storage Modes (MOLAP, HOLAP) 

The above conceptual model of a star or snowflake schema may lead to the wrong 
conclusion that data cubes are exclusively represented by a relational data model 
approach. There exist further storage modes, which are in use. 

The main advantage of ROLAP lies in the reliability, security and ease of loading 
of the DW based on Relational DBMS (RDBMS) technology. As was mentioned 
above, this is achieved due to the mapping of facts into a normalized relation and 
dimension into a mostly non-normalized relation of a relational database. As the 
set of statistical functions in SQL is too restrictive, some of the functionality of 
OLAP must be added to the application server. An example is to find the top-ten 
among all products sold in a given period. 



Multi-dimensional OLAP (MOLAP) makes use of specially tailored data 
structures like arrays and associated dimension lists or bitmaps. The operational 
data is extracted and stored as aggregates in those structures. The performance is 
acceptable for up to medium-sized data sets (< 1Gbyte). There exists a multi-
dimensional query language called MDX (Multidimensional Expressions), see 
Microsoft (1998). "XML for Analysis" defines a standardized programming 
interface for an OLAP server, see http://www.xmla.org.  An OLAP client 
encodes a query of a data cube and inserts it into a XML document, which 
specifies the method "execute" and the accompanying parameters according to the 
"Simple Object Access Protocol" (SOAP). This document is transmitted over the 
Internet based on the "Hypertext Transfer Protocol" (HTTP). After decoding the 
OLAP server executes the query, and sends the data back in a XML document to 
the client according to SOAP. For further details see Messerschmidt and 
Schweinsberg (2003). MOLAP has the disadvantage of "miss hits" if a data cube 
cannot be stored fully in-core and an access to a second storage device is 
necessary. Moreover, array compression or sparse array handling is needed 
because mostly the data cube or, equivalently, the arrays are sparse.  

Hybrid OLAP (HOLAP) tries to combine the advantages of relational and multi-
dimensional database technology. The relational model is used to store replicated 
and low-level aggregates, while the multi-dimensional model is responsible for 
high-level aggregates. 

3.3.3 Data Cube Operators 

Data cubes are used for analytical purposes and not for (simple) transaction 
processing. Therefore there does not exist a clear boundary between data 
extraction or retrieval and data analysis. Therefore there does not exist a minimal, 
closed and complete set of OLAP operators. The mostly built-in operators on data 
cubes in commercial DWs are the following, see Shoshani (1997) and Jarke et al. 
(2000). 

Slicing σc(T) is to select data from a cube T according to a fixed condition c. This 
operation is called in Statistics conditioning if only frequencies (counts) applied to 
multi-way tables are considered. For example, we can retrieve data from 
total_sales according to σproduct_id, customer_id, month, year==97 

(total_sales). 

Dicing πc(T) is table projection on T by selecting a sub-cube T'  of some lower 
dimension c than the original cube T has. This operation is equivalent to 
marginalization in Statistics, i.e. projection of a data space into a lower dimension. 
For instance πdate, customer_no(total_sales) retrieves a sub-cube of total sales 
cross-classified by date and customer. 

Table aggregation (roll-up) and disaggregation (drill-down) are operations on 
data cubes if at least on dimension is hierarchical. For example ρyear, customer_no, 



product_no(total_sales) is a query for less fine-grained data, i.e. for years 
and summarizing over all months per year. This specific operation is called 
temporal aggregation. We observe that such an operation is not allowable if a type 
conflict happens with respect to the summary attribute. This is the case if the 
attribute 'sales' is substituted by 'no of employees', see Lenz and Shoshani (1997).  

Drill-across δlevel, node, attribute(T) is a navigation on the same level through the 
various subtrees of a hierarchical attribute starting at a given node. For example, 
retrieving products from level 1 (product_group) with start at product_group1 
(shoes and balls) of the taxonomy "Product" delivers data about tennis nets. 

 In order to compute ratios, products etc. of data cubes the join operator γ⊗(T1,T2)  
is needed. For instance, as sales = turnover * price we have 
sales:=γ*(turnover, price). 

We note that there exist further operators like pivot (rotation of a cube), see Jarke 
et al. (2000), or cube, which was introduced by Gray et al. (1996). It delivers the 
margins ALL for any subset of dimensions. 

3.4 Summarizability and Normal Forms 

The main objective of summarizability is to guarantee correct results of the cube 
operation roll-up and the utilization of statistical (aggregation) functions like min, 
max, avg, sum and count under all circumstances, see Lenz and Shoshani (1997). 
The corresponding integrity constraints are non-overlapping levels of dimensions, 
completeness and type compatibility. The first condition assures that each node of 
a taxonomy has at most one preceding node except for the root node.  The second 
one ascertains that any node on a low level granularity corresponds to at least one 
node of a higher granularity. Type compatibility guarantees that the application of 
any statistical function on a summary attribute is sound. In a preceding section we 
mentioned the unfeasibility of aggregation of stocks over time. Another example 
is the misuse of the sum operator applied to  code numbers of professions. 

As Lehner et al. (1998) pointed out, the integrity constraint of completeness may 
turn out to be too restrictive. This happens if there exist structural missing values 
(null values) in taxonomies. For example, the German state Bavaria is divided into 
regions called "Kreise". Berlin is a city as well as an autonomous German state. It 
is not divided into regions, but into suburbs called "Bezirke". In such cases a 
context sensitive summarizability constraint is appropriate. The authors 
consequently proposed three multi-dimensional normal forms for fact tables. 
Lechtenbörger and Vossen (2001) improved the design of these normal forms. 

 



3.5 Comparison of Terminologies 

 

To sum up this chapter, Tables 3 and 4 compare the terminology of statistical 
databases and OLAP, see Shoshani (1997).  

Table 3: Comparison of Concepts 
 

Statistical Databases OLAP 

Categorical attribute Dimension 

Structural attribute Dimension hierarchy 

Category Dimension value 

Summary attribute Fact 

Statistical object, multidimensional table Data cube 

Cross product Multidimensionality 

 

Table 4: Comparison of Operators 
 

Statistical Databases OLAP 

table  projection Dice 

table selection Slice 

table aggregation Roll-up 

table disaggregation Drill-down 

table join term missing 

term missing Drill across 

viewing pivoting 



4 Access Methods 

4.1 Views (Virtual Tables) 

Statistical databases are often accessed by different users with different intentions 
and different access rights. As already indicated in section 2.2, these different 
requirements can be accounted for by using views. These views are derived virtual 
tables, which are computed from the (actually stored) base tables, see Elmasri and 
Navathe (1999). There are two main purposes for the use of views. 

1. It makes the use of the DBS or DW more convenient for the user by 
providing only customized parts of the whole data cube. 

2. It enforces security constraints by restricting operations on the base tables 
and by granting users access to their specific views only. 

The following SQL statement creates a view for the manager of the product 
"Tennis Nets" from our example in Table 1. It only permits to look up the 
revenues for "Tennis Nets" while for all other products, viewing the sales and 
modifying the corresponding base tables is not possible. 

CREATE VIEW tennis_nets_manager AS  
SELECT date.month, date.year, customer_id, 
sum(sales) 
FROM total_sales WHERE product_name = "Tennis 
Nets"; 

Views can never contain information that is not present in the base tables as the 
DBS translates all view queries into equivalent queries that refer only to base 
tables. 

Base tables of a DW may contain millions of tuples. Scanning these tables can be 
time-consuming and may slow down the interaction between the decision support 
system and the user significantly. One strategy to speed up the access to 
aggregated data is to pre-compute a range of probable queries and to store the 
results in materialized views, see Gupta et al. (1997). The access to these 
materialized views is then much faster than computing data on demand. Yet there 
are drawbacks to this strategy. The pre-computed data need space, the prediction 
of the users' queries is difficult, and each change in the base table requires an 
update of the materialized view also. This is known as the view maintenance 
problem, see Huyn (1997). 



4.2 Tree-based Indexing 

The tables of a DW can physically be accessed either by a sequential scan or by 
random access. With today's hard disks, a sequential scan is 10 to 20 times faster 
than random access, see Jürgens (2002). That means if more than approximately 
5% to 10% of the data has to be accessed in a table, it is faster to scan the entire 
table than addressing specific tuples via random access. In order to avoid full table 
scans, the number of tuples involved in the result computation has to be reduced. 
This can be achieved via index structures, which permit a fast look-up of specific 
tuples. 

The best-known index structure for one-dimensional data (i.e. data with just one 
key such as product_id) is the B-tree, see Bayer and McCreight (1972), Comer 
(1979). Pointers to the data items are stored in the leaf nodes of a balanced tree. 
The B-tree is a very general and flexible index structure, yet in some specific 
cases it may be outperformed by different kinds of hashing, see Gaede and 
Günther (1998). 

The universal B-tree (UB-tree, see Bayer, 1997) is an extension of the B-tree for 
indexing multidimensional data such as total_sales (date.month, 
date.year, customer_id, product_name, sum(sales)). The 
approach partitions the multidimensional data space into squares each of which is 
captured by a space-filling Z-curve, see Fig. 6. For each record, the Z-address of 
the square, which contains the key values is computed. These Z-addresses are one-
dimensional and serve as the new primary keys for the records, which can then be 
indexed with a standard B-tree. 
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Fig. 6: The UB-Tree: Partition and capture of multidimensional space with the Z-

curve 

Another approach for indexing multidimensional data is the R-tree, see Guttman 
(1984). It uses rectangles to represent multidimensional intervals. The leaf 
rectangles correspond to entries in the database. The parent nodes contain all child 
nodes and the minimal bounding rectangle. The root rectangle covers the entire 



query space. An example of how to store sales indexes in an R-tree when 
product_name and customer_id build the concatenated primary key is 
shown in Fig. 7. The minimal bounding rectangle of the dashed-line rectangles A, 
B and C constitutes the entire search space. 
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Fig. 7: An exemplary R-Tree 

Refinements are the R+-tree of Sellis et al. (1985), the R*-tree of Beckmann et al. 
(1990) and a slightly improved version called *

aR -tree of Jürgens (2002). 

4.3 Bitmap Index Structures 

An important alternative to tree index structures is bitmap indexing. For each 
value of an attribute, a bitmap vector indicates whether or not it is assumed in the 
records of the table, see Chan and Ioannidis (1998), O'Neil and Quass (1997), Wu 
and Buchmann (1998). Table one shows a bitmap index for the attribute 
product_name corresponding to the example presented in Table 5. 

Table 5: Bitmap index for the attribute product_name 
 

transaction_id Tennis Balls Tennis Nets Tennis Shoes 

015 0 0 1 

018 1 0 0 

004 0 1 0 

009 0 0 1 

 
The bitmap vector for the attribute value "Tennis Balls" is (0, 1, 0, 0)T. Such a set 
of bitmap vectors is created for all dimensions. In our total_sales example, 



bitmap indexes have to be created further for (date.month, date.year) 
and customer_id. 

The size of the bitmap index depends on the number of tuples and on the 
cardinality of the attribute domain. As the required operations on bitmaps are 
simple they are very fast. Thus loading blocks from disc and performing the basic 
Boolean operations is efficient, especially if the number of dimension is high, see 
Jürgens (2002). As bitmaps are often sparse, they are well suited for compression 
techniques. This is the reason why many commercial DBSs are implemented using 
bitmaps. However, standard bitmaps indexes become space consuming for high 
attribute's domain cardinality, and they are not very efficient for (low 
dimensional) range queries, which are typical for DW systems. 

Several approaches have been proposed to overcome these drawbacks like the 
multi-component equality encoded bitmap index, see Chan and Ioannidis (1998). 
The basic idea is to compress bitmap indexes by encoding all values into a smaller 
number system by applying modular multiplication. This significantly reduces the 
space requirements for attributes of high cardinality. 

To summarize, bitmaps are more suited for high-dimensional queries with low 
attribute cardinality. Tree index structures are better for low-dimensional range 
queries with attributes of high cardinality. 

5 Extraction, Transformation and Loading (ETL) 

ETL is a shorthand notation for a workflow of the initial popularization or a 
follow-up update of a DW, a data mart or an OLAP application. In the first step 
data must be extracted from the various data sources and temporarily stored in a 
so-called staging area of a DWS. Transformation means to modify data, schema 
and data quality according to requirement specifications of the DWS. Loading is 
the integration of replicated and aggregated data in the DW. As the data volume 
may be huge, incremental loading within pre-selected time slots by means of a 
bulk loader is appropriate.  

5.1.1 Extraction 

Extraction can be triggered by events linked to time and state of a DBS in 
operation or can be executed under human control. Mostly extraction is deferred 
according to an extraction schedule supplied by monitoring of the DWS. 
However, changes of data in the source system are tracked in real time, if the 
actuality of data is mandatory for some decision makers, see Kimball (1996). 

As the data sources are generally heterogeneous, the efforts to wrap single data 
sources can be enormous. Therefore software companies defined standard 



interfaces, which are supported by almost all DBMS and ETL tools. For example, 
the OLE database provider for ODBC, see Microsoft (1998, 2003), Oracle (2003) 
and IBM (2003). 

5.1.2 Transformation 

Transformations are needed to resolve conflicts of schema and data integration 
and to improve data quality, see Chapter \ref{III.9}. 

We first turn to the first type of conflicts. Spaccapietra et al. (1992) consider four 
classes of conflicts of schema integration, which are to be resolved in each case. 

(i) Semantic conflicts exist, if two source schemas refer to the same object, 
but the corresponding set of attributes is not identical, i.e. the class 
extensions are different. As an example take two customer files. One 
record structure includes the attribute name gender, while it is missing 
in the other one. 

(ii) A second kind of conflict of integration happens if synonyms, homonyms, 
different data types, domains or measurements units exist. For instance, 
think of the synonym part / article, a homonym like water / money pool, 
string /date as a domain, and Euro / USD. The ambiguity of our natural 
language becomes clear when one thinks of the meaning of "name" – 
family name, nickname, former family name, artist name, friar name,... 

(iii) Schema heterogeneity conflicts appear if the source schemas differ from 
the target schema of the DW. For example, sales and departments can be 
modeled as two relations Sales and Department of a relational data 
model or as a nested relation Department \ Sales as part of an 
object oriented model. Another kind of conflict corresponds to the 
mapping of local source keys to global surrogates, see Bauer and Günzel 
(2001). This problem gets tightened if entity identification is necessary in 
order decide whether a pair of records from two data sources refer to 
same entity or not. Fellegi and Sunter (1969) were the first to solve this 
problem by the record-linkage technique, which is now considered as a 
special classification method, see Neiling (2003). 

(iv) Structural conflicts are present if the representation of an object is 
different in two schemas. There may exist only one customer schema 
with the attribute gender in order to discriminate between "males" and 
"females". Alternatively, there may be two schemas in use, one linked to 
"females", the other one to "males". 

The second type of conflicts, i.e., conflicts of data integration, happens, if false or 
differently represented data are to be integrated. False data are generated by 
erroneous or obsolete entries. Differences in representation are caused by non- 



identical coding like male/female versus 0/1 or by different sizes of rounding-off 
errors. 

6 Metadata and XML 

McCarthy (1982) described metadata as data about data. However, the technical 
progress of OLTP and OLAP DBSs, workflow techniques and information 
dissemination has made it necessary, to use a more general definition of metadata. 

Metadata is now interpreted as any kind of integrated data used for the design, 
implementation and usage of an information system. This implies that metadata 
not only describes real data, but functions or methods, data suppliers or sources 
and data receivers or sinks, too. It does not only give background information 
about the technology of a DBS or DWS, but about its semantic, structure, statistics 
and functionality. Especially, the semantic metadata enable the common user to 
retrieve definitions of an attribute, to select and filter values of meta attributes, and 
to navigate through taxonomies. 
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Fig. 8: Statistical view of metadata 

 

In Fig. 8 we present a view of a conceptually designed metadata. Its core is given 
by a statistical object, which is either a specialisation of a data matrix or a data 



cube. It is uniquely described by a definition, and is related in a many to many 
way to validation and processing rules, surveys or reports and attributes. As we 
present only a view, no further refinement is given with respect to attributes like 
roles (measure, key, property), scales (nominal, ordinal, cardinal), ontologies or 
even domains (natural, coded) etc. Each statistical object is linked to at least one 
survey or report. Surveys or reports can be sequenced according to preceding or 
succeeding ones, are related to a statistical framework ("statistical 
documentation") giving details about sampling scheme and frame, population and 
statistical methods, and are associated to a chronicle as calendar of events. 
Furthermore references to the specific literature and law are included. The 
corresponding substructure is not displayed in Fig. 8. For further information 
about the metadata structure from the user's point of view, see Lenz (1994). 

As metadata is stored and can be retrieved similar to real data, it is captured in a 
repository and is managed by a metadata manager. A repository can be accessed 
by users, administrators and software engineers according to their privileges and 
read-write rights.  

Such repositories are offered from various vendors. Microsoft (2001) labelled its 
repository as "metadata services", and it is integrated in its SQL server. Alliances 
were founded to harmonize the metadata models and to standardize the exchange 
formats. Leading examples are the Open Information Model of the Metadata 
Coalition (MDC), see http://www.mdcinfo.com, and the Common 
Warehouse Metamodel (CWM), which was developed by the Object Management 
Group (OMG), see http://www.omg.org. Since the year 2000 both groups 
were fused and try to merge their models. Due to the increasing importance of 
XML and XML databases, import and export format of metadata based on XML is 
becoming an industrial standard. This happened to OLAP client-server 
architectures, see "XML for Analysis" as referred in section 3.3.2. 

7 Privacy and Security 

7.1 Preventing Disclosure of Confidential Information 

The statistical databases that are built by government agencies and non-profit 
organizations often contain confidential information such as income, credit 
ratings, type of disease or test scores of individuals. In corporate DWs, some 
strategic figures that are not related to individuals like sales for recently launched 
products may also be confidential. Whenever sensitive data is exchanged, it must 
be transmitted over a secure channel like the Secure Socket Layer (SSL), see 
Netscape (1996) in order to prevent unauthorized use of the system. For the 



purposes of this chapter, we assume that adequate measures for security and 
access control are in place, see Stallings (1999). 

However, even if the information in the statistical database safely reaches the 
correct addressee, the system has to ensure that the released information does not 
compromise the privacy of individuals or other confidential information. Privacy 
breaches do not only occur as obvious disclosures of individual values in single 
queries. Often, the combination of multiple non-confidential query results may 
allow for the inference of new confidential facts that were formerly unknown. 

We give an example. From Table 1, we take the total sales for “Tennis Shoes” 
(28,500), “Tennis Balls” (450), “Tennis Nets” (9450) and a fourth, new product 
(“Tennis Socks”, 500). We assume that sum queries for groups of products are 
allowed but that single, product-specific sales values are confidential. After 
querying the sum for balls and shoes (28,950) and for balls and socks (950), the 
user can infer an interval of [28,000; 28,950] for the sales of shoes, as sales cannot 
be negative. The length of the interval, which is the maximum error of the user's 
estimation of the confidential shoe sales is only 3.3% of the actual value. This 
particular case of disclosure is called interval inference, see Li et al. (2002). Other 
types of inference include exact inference (concluding the exact value of 28,500 
for shoes sales) and statistical inference (inferring estimates like mean  

        
_
x Tennis Shoes = 30,000 and standard deviation sTennis Shoes = 5,000).  

If a researcher is granted ad-hoc access to a statistical database, there are basically 
two different approaches to protect information that is private and confidential 
from being revealed by a malevolent snooper, see Adam and Wortmann (1989), 
Agrawal and Srikant (2000), Fig. 9. In the first approach, the kind and number of 
queries that a researcher poses to the statistical database is restricted (query 
restriction). In the second approach, the entire database is subject to a 
manipulation that protects single values but preserves the statistical properties 
which are of interest to the user. Then the perturbed database can be accessed by a 
researcher without restrictions (data perturbation). In the following, we give an 
overview of disclosure protection techniques of this kind. 
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Fig. 9: (a) Query set restriction and (b) data perturbation  

Source: Adam and Wortmann (1989) 

7.2 Query set restriction 

With this approach a query is either denied or responded with an exact answer as 
the upper sketch in Fig. 9 indicates. 

Query set size control, Fellegi (1972) works by setting lower and upper bounds for 
the size of the query answer set based on the properties of the database and on the 
preferences fixed by the database administrator. If the number of returned records 
did not lie within these bounds, the information request would have to be rejected 
and the query answer is denied. As queries that are issued sequentially by one user 
often have a large numbers of entities in common, an improvement is the 
restriction of these entities to a maximum number, see Dobkin et al. (1979). 
Although popular, this method is not robust enough as a stand-alone solution, see 
Denning (1982).  

Auditing involves keeping up-to-date logs of all queries made by each user and 
constantly checking for possible disclosures whenever a new query is issued. One 
major drawback of this method is that it requires huge amounts of storage and 
CPU time to keep these logs updated. A well-known implementation of such an 
audit system is Audit Expert by Chin and Özsoyoglu (1982). It uses binary 
matrices, see bitmap indexes in section 4.3, to indicate whether or not a record 
was involved in a query. 

Cell suppression, see Cox (1980) is an important method for categorical databases 
when information is published in tabular form. Especially Census Bureaus often 
make use of tabular data and publish counts of individuals based on different 
categories. One of the main privacy objectives is to avoid answers of small size. 
For example, if a snooper knows somebody's residence, age and employer, he can 
issue a query for (ZIP=10178, Age= 57, Employer= 'ABC'). If the 



answer is one entity, the snooper could go on and query for (ZIP= 10178, 
Age= 57, Employer= 'ABC', Diagnosis= 'Depression'). If the 
answer is one again, the database is compromised and the person with the 
diagnosis identified. The cells should have to be suppressed. A common criterion 
to decide whether or not to suppress a cell is the N-k rule where a cell is 
suppressed if the top N respondents contribute at least k% of the cell total. N and k 
are parameters that are fixed by the database administrator, i.e. the Census Bureau. 
In the exemplary case of N= 2 and k= 10%, a cell which indicates aggregated 
income ($10M) of 100 individuals would have to be suppressed if the top two 
earners’ aggregate income exceeded $1M. 

7.3 Data Perturbation 

In the query restriction approach, either exact data is delivered from the original 
database or the query is denied. As depicted in the lower sketch of Fig. 9, an 
alternative is to perturb the original values such that confidential, individual data 
become useless for a snooper while the statistical properties of the attribute are 
preserved. The manipulated data is stored in a second database and is then freely 
accessible for the users. 

If in Table 1, we permute the sales of tennis balls, tennis nets and tennis shoes, 
individual sales data is not correct anymore. But the arithmetic average and the 
standard deviation of the attribute sales stay the same. This procedure is called 
data swapping , see Denning (1982). 

Noise addition for numerical attributes, see Traub et al. (1984), means adding a 
disturbing term to each value: Yk= Xk+ek,, where Xk is the original value and ek 
adheres to a given probability distribution with mean zero. As for every value Xk 
value, the perturbation ek is fixed, conducting multiple queries does not refine the 
snooper's search for confidential single values. 

A hybrid approach are random-sample queries, Denning (1982), where a sample 
is drawn from the query set in such a way that each entity of the complete set is 
included in the sample with probability P. If, for example, the sample of a 
COUNT query has n entities, then the size of the  not perturbed query set can be 
estimated as n/P. If P is large, there should be a set-size restriction to avoid small 
query sets where all entities are included.  

7.4 Disclosure Risk vs. Data Utility 

All methods presented in the preceding sections aim at lowering the disclosure 
risk for data that is private and confidential. But at the same time, each of these 
methods reduces, in some way, the utility of the data for the legitimate data user. 
Duncan and Keller-McNulty (2001) present a formal framework to measure this 



trade-off between disclosure risk and data utility, the Risk-Utility (R-U) map. 
There are numberless measures for disclosure risk, see Domingo-Ferrer et al. 
(2002) for an excellent overview. We already gave an intuitive measure for 
interval inference. The sales for tennis shoes were predicted with an error of only 
3.3%, see section 7.1. 

However, it is far more difficult to measure data utility because it strongly 
depends on the varying preferences of the data user. Especially for this reason, 
classifying statistical disclosure control methods as presented here on an absolute 
scale is almost an impossible task. 
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