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Computational Methods in Survival Analysis

Toshinari Kamakura1

Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
kamakura@indsys.chuo-u.ac.jp

Survival analysis is widely used in the fields of medical science, pharmaceu-
tics, reliability and financial engineering, and many others to analyze positive
random phenomena defined by event occurrences of particular interest. In the
reliability field, we are concerned with the time to failure of some physical
component such as an electronic device or a machine part. This article briefly
describes statistical survival techniques developed recently from the stand-
point of statistical computational methods focussing on obtaining the good
estimates of distribution parameters by simple calculations based on the first
moment and conditional likelihood for eliminating nuisance parameters and
approximation of the likelihoods. The method of partial likelihood (Cox, 1972,
1975) was originally proposed from the view point of conditional likelihood
for avoiding estimating the nuisance parameters of the baseline hazards for
obtaining simple and good estimates of the structure parameters. However, in
case of heavy ties of failure times calculating the partial likelihood does not
succeed. Then the approximations of the partial likelihood have been stud-
ied, which will be described in the later section and a good approximation
method will be explained. We believe that the better approximation method
and the better statistical model should play an important role in lessening the
computational burdens greatly.

1 Introduction

Let T be a positive random variable with density function f(t) and distribu-
tion function F (t). The survival function S(t) is then defined as

S(t) = 1 − F (t) = Pr{T > t},
and the hazard function or hazard rate as

λ(t) = lim
h→0

Pr{t < T ≤ t+ h|T > t}
h

.
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The hazard function can also be expressed as

λ(t) =
f(t)
S(t)

. (1)

The right-hand side (RHS) of Eq.(1) becomes

f(t)
S(t)

= − d

dt
logS(t),

and inversely

S(t) = exp
{
−

∫ t

0

λ(u)du
}
. (2)

1.1 Nonparametric Model

We assume that the observed data set consists of failure or death times ti and
censoring indicators δi, i = 1, · · · , n. The indicator δ is unity for the case of
failure and zero for censoring. The censoring scheme is an important concept
in survival analysis in that one can observe partial information associated with
the survival random variable. This is due to some limitations such as loss to
follow-up, drop-out, termination of the study, and others.

The Kaplan-Meier method (Kaplan and Meier, 1958) is currently the stan-
dard for estimating the nonparametric survival function. For the case of a
sample without any censoring observations, the estimate exactly corresponds
to the derivation from the empirical distribution. The dataset can be arranged
in table form, i.e.,

Table 1. Failure time data

failure times t1 t2 · · · ti · · · tk

the number of failures d1 d2 · · · di · · · dk

the number of individuals of risk set n1 n2 · · · ni · · · nk

where, ti is the i-th order statistic when they are arranged in ascending order
for distinct failure times, di is the number of failures at the time of ti, and ni is
the number of survivors at time ti− 0. Under this notation the Kaplan-Meier
estimate becomes

Ŝ(t) =
∏
j:tj<t

(
1 − dj

nj

)
. (3)

The standard error of the Kaplan-Meier estimate is

SE
{
Ŝ(t)

}
=

[
Ŝ(t)

]⎧⎨
⎩

∑
j:tj<t

dj
nj(nj − dj)

⎫⎬
⎭

1/2

. (4)
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The above formula is called “Greenwood’s formula” described by Greenwood
(1926).

1.2 Parametric Models

The most important and widely-used models in survival analysis are exponen-
tial, Weibull, log-normal, log-logistic, and gamma distributions. The first two
models will be introduced for later consideration. The exponential distribu-
tion is simplistic and easy to handle, being similar to a standard distribution
in some respects, while the Weibull distribution is a generalization of the ex-
ponential distribution and allows inclusion of many types of shapes. Their
density functions are

f(t;λ) = λe−λt (λ, t > 0) (5)

f(t;m, η) =
m

η

(
t

η

)m−1

exp
{
−

(
t

η

)m}
(m, η, t > 0), (6)

where the parameter λ is sometimes called the failure rate in reliability engi-
neering. Two models may include additional threshold parameters, or guar-
antee times. Let γ be this threshold parameter. The Weibull density function
then becomes

f(t;m, η, γ) =
m

η

(
t− γ

η

)m−1

exp
{
−

(
t− γ

η

)m}
(m, η, γ, t > 0). (7)

Here, note that in the case ofm = 1, the Weibull probability density function is
exactly the exponential density function placing λ = 1/η, and that we cannot
observe any failure times before threshold time (t < γ) or an individual cannot
die before this time.

As the Weibull distribution completely includes the exponential distri-
bution, only the Weibull model will be discussed further. The Weibull dis-
tribution is widely used in reliability and biomedical engineering because of
goodness of fit to data and ease of handling. The main objective in lifetime
analysis sometimes involves (i) estimation of a few parameters which define the
Weibull distribution, and (ii) evaluation of the effects of some environmental
factors on lifetime distribution using regression techniques. Inference on the
quantiles of the distribution has been previously studied in detail (Johnson
et al., 1994).

The maximum likelihood estimate (MLE) is well known, yet it is not ex-
pressed explicitly in closed form. Accordingly, some iterative computational
methods are used. Menon (Menon (1963)) provided a simple estimator of 1/m,
being a consistent estimate of 1/m, with a bias that tends to vanish as the
sample size increases. Later, Cohen (Cohen, 1965; Cohen and Whitten, 1988)
presented a practically useful chart for obtaining a good first approximation
to the shape parameter m using the property that the coefficient of variation
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of the Weibull distribution is a function of the shape parameterm, i.e., it does
not depend on η. This is described as follows.

Let T be a random variable with probability density function (6), the r-th
moment around the origin is then calculated as

E[T r] = ηrΓ
(
1 +

r

m

)
.

Here Γ (·) is the complete gamma function. ¿From this, the first two moments
obtained are the mean life and variance, i.e.,

E[T ] = ηΓ

(
1 +

1
m

)
,

V ar[T ] = η2

{
Γ

(
1 +

2
m

)
− Γ 2

(
1 +

1
m

)}
.

Considering that the coefficient of variation

CV =
√

(V ar[T ])/E[T ]

does not depend on the parameter η allows obtaining simple and robust mo-
ment estimates, which may be the initial values of the maximum likelihood
calculations. Dubey (1967) studied the behavior of the Weibull distribution in
detail based on these moments, concluding that the Weibull distribution with
shape parameter m = 3.6 is relatively similar to the normal distribution.

Regarding the three-parameter Weibull described by (7), Cohen and Whit-
ten (1988) suggested using the method of moments equations, noting that

E[T ] = γ + ηΓ1(m),
V ar[T ] = η2

{
Γ2(m) − Γ 2

1 (m)
}
,

E[X(1)] = γ +
η

n1/m
Γ1(m),

and equating them to corresponding samples, where Γr(m) = Γ (1 + r/m).
As for obtaining an inference on the parameter of the mean parameter

µ = E(T ), this has not yet been investigated and will now be discussed.
When one would like to estimate µ, use of either the MLE or the standard
sample mean is best for considering the case of an unknown shape parameter.
This is true because the asymptotic relative efficiency of the sample mean to
the MLE is calculated as

ARE(T̄ ) =
nAvar(µ̃)
nAvar(T̄ )

=
6

m2π2
· 1
CV 2

[
π2

6
+ {c− 1 + ψ(1 + 1/m)}2

]
, (8)

where c is Euler’s constant, ψ(·) a digamma function, µ̃ the MLE, and T̄ the
sample mean.
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Table 2. ARE of the sample mean to the MLE

m eff m eff m eff

.1 0.0018 1.1 .9997 2.1 .9980

.2 0.1993 1.2 .9993 2.2 .9981

.3 0.5771 1.3 .9988 2.3 .9982

.4 0.8119 1.4 .9984 2.4 .9983

.5 0.9216 1.5 .9981 2.5 .9984

.6 0.9691 1.6 .9980 2.6 .9984

.7 0.9890 1.7 .9979 2.7 .9985

.8 0.9968 1.8 .9979 2.8 .9985

.9 0.9995 1.9 .9979 2.9 .9985
1.0 1.0000 2.0 .9980 3.0 .9986

Table 2 gives the ARE with respect to various values of m. Note the re-
markably high efficiency of the sample mean, especially for m ≥ 0.5, where
more than 90% efficiency is indicated. The behavior of ARE(T̄ ) form m > 1
is that ARE(X̄) has a local minimum 0.9979 at m = 1.7884 and a local maxi-
mum 0.9986 at m = 3.1298, and that for the largerm, ARE(T̄ ) monotonically
decreases in m and the infimum of ARE(T̄ ) is given in m→ ∞;

lim
m→∞ARE(T̄ ) =

6(π2 + 6)
π4

∼= 0.9775. (9)

When m is known and tends to infinity, the behavior of ARE(T̄ ) is as follows:

lim
m→∞

1
(mCV )2

=
6
π2

∼= 0.6079. (10)

A higher relative efficiency of the sample mean for unknown m is shown
compared to known m. From a practical standpoint, the sample mean is easily
calculated for a point estimation of the Weibull mean if no censored data are
included. These results support the benefits of using the sample mean for the
complete sample.

2 Estimation of Shape or Power Parameter

Let us now consider the class of the lifetime distributions, whose distribution
functions are expressed by

F (t;α, γ, σ) = G

((
t− γ

σ

)α)
, (11)

where G(·) is also a distribution function. For the Weibull model, G(t) =
1− exp(−t) is an exponential distribution. Nagatsuka and Kamakura (Nagat-
suka and Kamakura, 2003, 2004) proposed a new method using the location-
scale-free transformation of data set to estimate the power parameter in the
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Castillo-Hadi model (Castillo and Hadi, 1995). That is, let T1, . . . , Tn be in-
dependently distributed according to the distribution function (11). Consider
the W-transformation to be defined as

Wi =
Ti − T(1)

T(n) − T(1)
, (i = 2, . . . , n− 1), (12)

where T(k) is the k-th order statistic of Ti’s. The new random variables Wi’s
derived by this W-transformation are then free from location and scale pa-
rameter. The arithmetic mean of Wi’s gives the approximation to the original
distribution of T . Let Vi, i = 1, . . . , n be i.i.d. distributed with common distri-
bution function FV (v), and let the i-th order statistic V(i) have the marginal
distribution function FV(i)(v). Then

Fv(v) =
1
n

n∑
i=1

FV(i)(v). (13)

This equation indicates that the arithmetic mean of the marginal distributions
of n order statistics is exactly the original distribution. In the case of the
Cstillo-Hadi Model, Nagatsuka and Kamakura (2004) provided a theorem
regarding this approximation, i.e.,

Theorem 1. (Nagatsuka and Kamakura, 2004)
The mixture of the marginal distributions of W(i), i = 2, . . . , n− 1:

F (n)(w) =
1

n− 2

n−1∑
i=2

FW(i)(w) (14)

is the approximate distribution of Wi’s and the limiting distribution (14) is
the power function distribution with parameter 1/α. That is

lim
n→∞

1
n− 2

n−1∑
i=2

FW(i)(w) = w
1
α , 0 < w < 1.

In the case of the Weibull distribution, the marginal distribution of W(i) is
calculated as
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FW(i)(w) = Pr
(
W(i) ≤ w

)
= Pr

(
T(i) − T(1)

T(n) − T(1)
≤ w

)

=
∫ ∞

0

∫ ∞

u

n(n− 1)f(u)f(v)

[
n−2∑
k=i−1

(
n− 2
k

)

×{F ((1 − w)u + wv) − F (u)}k

×{F (v) − F ((1 − w)u + wv)}n−k−2

]
dvdu

=
∫ 1

0

∫ 1

u

n(n− 1)
n−2∑
k=i−1

(
n− 2
k

)

× [1 − exp {−α(w,m, u, v)} − u]k

× [v − (1 − exp {−α(w,m, u, v)})]n−k−2
, (15)

where

α(w,m, u, v) =
[
(1 − w) {− log(1 − u)} 1

m + w {− log(1 − v)} 1
m

]m
.

Calculations show that F (n)(w) has a first moment of

µn(m) =
∫ ∞

0

{
1 − F (n)(w)

}
dw

= − 1
n− 2

+
n(n− 1)

m

∫ 1

0

∫ 1

u

(v − u)n−3

× Γ ( 1
m ,− log(1 − u),− log(1 − v))

{− log(1 − v)} 1
m − {− log(1 − u)} 1

m

dvdu. (16)

where Γ (·, ·, ·) is the incomplete generalized gamma function defined by

Γ (a, z0, z1) =
∫ z1

z0

ta−1e−tdt.

Now, an estimating of the shape parameter m is obtained by equating the
theoretical population mean with sample mean of W-transformed W ’s. Na-
gatsuka and Kamakura (2003) provided a table for obtaining estimates and
concluded based on simulation studies that the robust estimate of m is possi-
ble without using any existing threshold parameter.

3 Regression Models

Survival analysis is now a standard statistical method for lifetime data. Fun-
damental and classical parametric distributions are also very important, but
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regression methods are very powerful to analyze the effects of some covariates
on life lengths. Cox (1972) introduced a model for the hazard function λ(t;x)
with survival time T for an individual with possibly time-dependent covariate
x, i.e.,

λ(t;x) = λ0(t) exp(β�x), (17)

where λ0(t) is an arbitrary and unspecified base-line hazard function and
x� = (x1, . . . , xp) and β� = (β1, . . . , βp). Cox generalized (17) this to a
discrete logistic model expressing y as

λ(t;x)
1 − λ(t;x)

=
λ0(t)

1 − λ0(t)
exp(β�x). (18)

Kamakura and Yanagimoto (1983) compared the estimators of regression pa-
rameters in the proportional hazards model (17) or (18) when we take the
following methods; the Breslow-Peto (Breslow, 1974; Peto, 1972) method, the
partial likelihood (Cox, 1972, 1975) method and the generalized maximum
likelihood method (Kalbfleish and Prentice, 1980; Miller, 1981).

3.1 The Score Test

In many applications it is necessary to test the significance of the estimated
value, using for example the score test or the likelihood ratio test based on
asymptotic results of large sample theory. First we express the three likelihood
factors defined at each failure time as LBP , LPL, LGML corresponding to the
Breslow-Peto, the partial likelihood and the generalized maximum likelihood
methods, respectively;

LBP (β) =
∏r
i=1 exp(β�xi)

{∑n
i=1 exp(β�xi)}r

, (19)

LPL(β) =
∏r
i=1 exp(β�xi)∑

Ψ

∏r
i=1 exp (β�xψi)

, (20)

LGML(β) =
∏r
i=1 λ exp(β�xi)∏n

i=1 {1 + λ exp(β�xi)} , (21)

where x1, . . . , xn denote covariate vectors for n individuals at risk at a failure
time and x1, . . . , xr correspond to the failures, and Ψ denotes the set of all
subsets {ψ1, . . . , ψr} of size r from {1, . . . , n}. The overall likelihood obtained
by each method is the product of these cases of many failure times. It can
be shown that the first derivatives of the three log likelihoods with respect β
have the same values, i.e.,

r∑
i=1

xji − r

n

n∑
i=1

xji (j = 1, . . . , p)

at β = 0.
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The Hessian matrices of the log likelihoods evaluated at β = 0 are respec-
tively,

−
( r
n

)
S,

−
{
r(n − r)
n(n− 1)

}
S,

−
{
r(n − r)
n2

}
S,

where S is a matrix whose elements sjk are defined by

sjk =
n∑
i=1

(xji − x̄j.)(xki − x̄k.).

The first two results were derived by Farewell and Prentice (1980). Maximizing
out λ from LGML gives the last one, which is obtained in an unpublished
manuscript. Since

r

n
≥ r(n− r)
n(n− 1)

>
r(n− r)
n2

,

we conclude that the Breslow-Peto approach is the most conservative one.

3.2 Evaluation of Estimators in the Cox Model

Farewell and Prentice (1980) pointed out in their simulation study that when
the discrete logistic model is true the Breslow-Peto method causes downward
bias compared to the partial likelihood method. This was proven in Kamakura
and Yanagimoto (1983) for any sample when β is scalar-valued, i.e.,

Theorem 2. (Kamakura and Yanagimoto, 1983)
Let β̂BP be the maximum likelihood estimator of LBP (β) and β̂PL be that of
LBP (β). Suppose that all xi’s are not identical. Then both β̂BP and β̂PL are
unique, if they exist, and sgn(β̂BP ) = sgn(β̂PL) and∣∣∣β̂BP ∣∣∣ ≤ ∣∣∣β̂PL∣∣∣ . (22)

The equality in (22) holds when β̂PL is equal to zero or the number of ties r
is equal to one.

Corollary 1. (Kamakura and Yanagimoto, 1983)
The likelihood ratio test for β = 0 against β �= 0 is also conservative if we
use the Preslow-Peto method. The statement is also valid in the multivariate
case.

This theorem and corollary confirm the conservatism of the Breslow-Peto
approximation in relation to Cox’s discrete model (Oaks, 2001).
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3.3 Approximation of Partial Likelihood

Yanagimoto and Kamakura (1984) proposed an approximation method using
full likelihood for the case of Cox’s discrete model. Analytically the same
problems appear in various fields of statistics. Prentice and Breslow (1978) and
Farewell (1979) remarked that the inference procedure using the logistic model
contains the same problems in case-control studies where data are summarized
in multiple 2 × 2 or k × 2 tables. The proportional hazards model provides
a type of logistic model for the contingency table with ordered categories
(Pregibon, 1982). As an extension of the proportional hazards model, the
proportional intensity model in the point process is employed to describe an
asthma attack in relation to environmental factors (Korn and Whittemoore,
1979; Yanagimoto and Kamakura, 1984). For convenience, although in some
cases partial likelihood becomes conditional likelihood, we will use the term
of partial likelihood.

It is worthwhile to explore the behavior of the maximum full likelihood
estimator even when the maximum partial likelihood estimator is applicable.
Both estimators obviously behave similarly in a rough sense, yet they are
different in details. Identifying differences between the two estimators should
be helpful in choosing one of the two.

We use the notation described in the previous section for expressing the
two likelihoods. Differentiating logLPL gives

LP (β) =
r∑
i=1

xi −
∑
Ψ

∑
ψ xj exp

(
β� ∑

ψ xj

)
∑
Ψ exp

(
β� ∑

ψ xj

) = 0.

Differentiating logLGML with respect to β and λ allows obtaining the maxi-
mum full likelihood estimator, i.e.,

r∑
i=1

xi −
n∑
i=1

λxi
exp(β�xi)

1 + λ exp(β�xi)
= 0

and
r

λ
−

n∑
i=1

exp(β�xi)
1 + λ exp(β�xi)

.

¿From the latter equation λ(β) is uniquely determined for any fixed β. Using
λ(β), we define

LF (β) =
r∑
i=1

xi −
n∑
i=1

λ(β)xi
exp(β�xi)

1 + λ exp(β�xi)
.

The maximum full likelihood estimator, β̂GML, is a root of the equation
LF (β) = 0. We denote λ(β) by λ for simplicity.
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Note that the entire likelihoods are the products over all distinct failure
times T . Thus the likelihood equations in a strict sense are

∑
LPt(β) = 0

and
∑
LFt(β) = 0, where the summations extend over t in T . As far as we

are concerned, the results in a single failure time can be straightforwardly
extended to those with multiple failure times. Let us now focus on likelihood
equations of a single failure time and suppress the suffix t.

Proposition 1. (Yanagimoto and Kamakura, 1984)
Let K(β) be either of LF (β) or LP (β). Denote

∑n
i=1 xi/n by x̄, and x(1) +

· · ·+ x(r) and x(n−r+1) + · · ·+ x(n) by L(x; r) and U(x; r) respectively, where
x(1), . . . , x(n) are ordered covariates in ascending order. K(β) accordingly has
the following four properties:

(i) K(0) = x1 + · · · + xr − rx̄.
(ii) K ′(β) is negative for any β, that is, K(β) is strictly decreasing.
(iii) limβ→−∞K(β) = U(x; r).
(iv) limβ→∞K(β) = L(x; r).

Extension to the case of vector parameter β is straightforward. ¿From
Proposition 1 it follows that if either of the two estimators exists, then the
other also exists and they are uniquely determined. Furthermore, both the
estimators have a common sign.

Theorem 3. (Yanagimoto and Kamakura, 1984)
Suppose that

∑
(xi − x̄)2 �= 0. The functions LP (β) and LF (β) then have a

unique intersection at β = 0. It also holds that LP (β) < LF (β) for β > 0.The
reverse inequality is valid for β < 0.

The above theorem proves that β̂GML > β̂PL for the case of LP (0) = LF (0) >
0.

To quantitatively compare the behaviors of LF (β) and LP (β), their their
power expansions are presented near the origin. Since both functions behave
similarly, it is expected that the quantitative difference near the origin is crit-
ical over a wide range of β. Behavior near the origin is of practical importance
for studying the estimator and test procedure.

Proposition 2. (Yanagimoto and Kamakura, 1984)
The power expansions of LF (β) and LP (β) near the origin up to the third
order are as follows: for n ≥ 4,

(i)

LF (β) ≈
r∑
i=1

xi −
[
rx̄+

r(n − r)
n2

s2β +
1
2
r(n− r)(n − 2r)

n3
s3β

2

+
1
6
r(n− r)
n5

{
n(n2 − 6rn+ 6r2)s4 − 3(n− 2r)2s22

}
β3

]
,
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(ii) (Cox, 1970)

LP (β) ≈
r∑
i=1

xi −
[
rx̄+

r(n − r)
n(n− 1)

s2β +
1
2
r(n− r)(n − 2r)
n(n− 1)(n− 2)

s3β
2

+
1
6

r(n− r)
n2(n− 1)(n− 2)(n− 3)

{
n(n2 − 6rn+ 6r2 + n)s4

+ 3(r − 1)n(n− r − 1)s22
}
β3

]
,

where sk =
∑

(xi − x̄)k, k = 2, 3 and 4.

The function LF (β) has a steeper slope near the origin than LP (β). The
relative ratio is n/(n − 1), which indicates that LF (nβ/(n − 1)) is close to
LP (β) near the origin. The power expansion of LA(β) = LF (nβ/(n− 1)) is
expressed by

LA(β) ≈
r∑
i=1

xi −
{
rx̄ +

r(n− r)
n(n− 1)

s2β +
(

n

n− 1

)2

c3β
2 +

(
n

n− 1

)3

c4β
3

}
,

(23)
where c3 and c4 are coefficients of order 2 and 3 of LF (β). Although LA(β)
is defined to adjust the coefficient of LF (β) of order 1 to that of LP (β), the
coefficient of order 2 of LA(β) becomes closer to that of LP (β) than that of
LF (β). The following approximations are finally obtained.

LP (β) ≈ LA(β), (24)

β̂PL ≈ (n− 1)β̂GML

n
. (25)

The proposed approximated estimator and test statistic are quite helpful
in cases of multiple 2 × 2 table when the value of both n and r are large
(Yanagimoto and Kamakura, 1984).

4 Multiple Failures and Counting Processes

The standard methods of survival analysis can be generalized to include mul-
tiple failures simply defined as a series of well-defined event occurrences. For
example, in software reliability, engineers are often interested in detecting soft-
ware bugs. Inference from a single counting process has been studied in detail
(Cox and Lewis, 1966; Musa et al., 1987), with multiple independent processes
being considered as a means to estimate a common cumulative mean function
from a nonparametric or semi-parametric viewpoint (Lawless and Nadeau,
1993; Nelson, 1992). Kamakura (1996) discussed problems associated with
parametric conditional inference in models with a common trend parameter
or possibly different base-line intensity parameters.
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4.1 Intensity function

For multiple failures, intensity functions correspond to hazard functions in
that the intensity function is defined as discussed next.

In time interval [t0, t] we define the number of occurrences of events or
failures as N(t). The Poisson counting process {N(t) : t ≥ t0} is given such
that it satisfies the following three conditions for t ≥ t0.

1. Pr{N(t0) = 0} = 1
2. The increment Ns,t = N(t)−N(s) (t0 ≥ s < t)has a Poisson distribution

with the mean parameter Λt−Λs, for some positive and increasing function
in t.

3. {Nt : t ≥ t0} is a process of independent increments. That is, for any
(t0 <)t1 < t2 < · · · < tn, n increments,N(t1)−N(t0), . . . , N(tn)−N(tn−1)
are mutually independent.

For this counting process {N(t) : t ≥ t0} we can define the intensity
function as

λ(t) = lim
∆→0

1
∆

Pr{N(t+∆t) −N(t) = 1|H(t)}, (26)

where H(t)is the history of the process up to t:

H(t) = {N(u) : t0 ≤ u ≤ t}.
Note that

Λ(t) =
∫ t

t0

λ(t)dt.

Expectation of E[Ns,t]becomes

E[Ns,t] =
∞∑
n=0

nPr{Nn,s = n} = Λt − Λs, (27)

and
λ(t) =

d

dt
Λt =

d

dt
E[N(t)]. (28)

The nonparametric estimate of the intensity function is easy to determine
and is quite useful for observing the trend of a series of events. If a data
set of failure times {t1, t2, . . . , tn} is available, assuming constant intensity in
(tk1 , tk], then

λ(t) = λk (tk−1 < t ≤ tk),

and the nonparametric ML estimates becomes

λk =
1

tk − tk−1
(k = 1, . . . , n), (29)

where t0 = 0.
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4.2 Multiple Counting Processes

We assume several independent counting processes {Nk(tk), i.e., 0 < tk ≤
τk, k = 1, . . . ,K}. The cumulative mean function for Nk(t) is expressed by

Mk(t) = E {Nk(t)} . (30)

Nelson (1992) described a method for estimating the cumulative mean
function of an identically distributed process without assuming any Poisson
process structure, while Lawless and Nadeau (1993) developed robust variance
estimates based on the Poisson process. All these methods are basically con-
cerned with nonparametric estimation. Here, parametric models for effectively
acquiring information on the trend of an event occurrence are dealt with.
Kamakura (1996) considered generalized versions of two primal parametric
models to multiple independent counting processes under the framework of a
nonhomogeneous Poisson process.

Cox and Lewis (Cox and Lewis, 1966) considered a log-linear model for
trend testing a singe counting process, i.e.,

λ(t) = exp(α+ βt), (31)

where λ(t) is the intensity function corresponding to the derivative of the mean
function in the continuous case. Note that for a single case the subscript k is
omitted. They assumed the above nonhomogeneous Poisson process and gave
a simple test statistic for H0 : β = 0 against HA : β �= 0, i.e.,

U =
∑n

i=1 ti − 1
2τ0

τ0
√

n
12

. (32)

The distribution of this statistic steeply converges to the standard normal
distribution when n → ∞. This statistic is sometimes called the U statistic
and is frequently applied to trend testing in reliability engineering.

Kamakura (1996) generalized this log-linear model to the multiple case,
with the log-linear model for k-th individual being

λk(t) = exp (αk + βt) . (33)

In this modeling we assume the common trend parameter β and are mainly
interested in estimating and testing this parameter. The full likelihood for the
model becomes

L(β, α1, α2, . . . , αK) =
K∏
k=1

[{
nk∏
i=1

λk(tki)

}
exp

{
−

∫ τk

0

λk(u)du
}]

(34)

= exp

{
K∑
k=1

nkαk + β

K∑
k=1

nk∑
i=1

tki − 1
β

K∑
k=1

eαk
(
eβτk − 1

)}
.
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If K is large, it is difficult to compute all parameter estimates based on such
full likelihood.

Given Nk(τk) = nk, k = 1, 2, . . . ,K, conditional likelihood is considered as

CL(β|Nk(τk) = nk, i = 1, . . . ,K) =
∏K
k=1(nk!)β

P
nkeβ

P P
tki∏K

k=1 (eβτk − 1)nk
. (35)

Note that the nuisance parameter αk’s do not appear. Fisher information is
calculated as

I(β) = E

[
−∂

2 logCL
∂β2

]

=

⎧⎨
⎩

∑K
k=1 nk

{
1
β2 − τ2

ke
−βτk

(1−e−βτk)2

}
(β �= 0)

1
12

∑K
k=1 nkτ

2
k (β = 0)

. (36)

The test statistic obtained from the above calculations becomes

Uk =
logCL|β=0√

I(0)

=
∑K

k=1

∑nk

i=1 tki − 1
2

∑K
k=1 nkτk√

1
12

∑K
k=1 nkτ

2
k

. (37)

To obtain the conditional estimate, numerical calculations are required
such as Newton-Raphson method. However, the log conditional likelihood and
its derivatives are not computable at the origin of the parameter β. In such a
case, Taylor series expansions of the log conditional likelihood are used around
the origin (Kamakura, 1996).

4.3 Power Law Model

Crow (1982) considered the power law model, sometimes called the Weibull
process model. This model was generalized to the multiple case using the
following intensity for the k-th individual (Kamakura, 1996):

λk(t) = θkmt
m−1. (38)

In this case it is easy to calculate the MLE. Direct calculation of the likelihood
gives rise to the MLE m̂ and θ̂k i.e.,

m̂ =
∑K

k=1 nk∑K
k=1

∑nk

i=1 log
(
τk

tki

) , (39)

θ̂k =
nk

τm̂k
. (40)
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Putting

Z =
2m

∑K
k=1 nk
m̂

, (41)

the distribution of Z becomes a chi-square with 2
∑K

k=1 nk degrees of freedom.
Based on this result we can make an inference of the common parameter m.

4.4 Models Suitable for Conditional Estimation

Estimation based on conditional likelihood allows effectively eliminating the
nuisance parameter and obtaining information on the structure parameter.
Let us now consider the class of nonhomogeneous Poisson process models
which are specified by the intensity parameterized by two parameters. The
first parameter α is concerned with the base line occurrences for the individ-
ual, while the second parameter β is concerned with the trend of intensity.
For simplicity, the property of the intensity for K = 1 is examined. Using
conditional likelihood is convenient because the nuisance parameter α need
not be known. This is of great importance in multiple intensity modeling, i.e.,

Theorem 4. (Kamakura, 1996) Conditional likelihood does not include the
nuisance parameter α iff the intensity is factorized as two factors, a function
of α and a function of β and the time t, in the class of nonhomogeneous
Poisson process models. That is, the intensity is expressed as

λ(t;α, β) = h(α)g(β; t). a.s. (42)

Several intensity models for software reliability are described in Musa et al.
(1987): the log-linear model, geometric model, inverse linear model, inverse
polynomial model, and power law model, all of which are included in this class
satisfying the condition of the theorem.
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