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New and simple algorithms for stable flow problems 

 

Ágnes Cseh – Jannik Matuschke 

 

Abstract 

Stable flows generalize the well-known concept of stable matchings to markets in which 

transactions may involve several agents, forwarding flow from one to another. An instance of 

the problem consists of a capacitated directed network in which vertices express their 

preferences over their incident edges. A network flow is stable if there is no group of vertices 

that all could benefit from rerouting the flow along a walk. 

Fleiner [13] established that a stable flow always exists by reducing it to the stable allocation 

problem.We present an augmenting path algorithm for computing a stable flow, the first 

algorithm that achieves polynomial running time for this problem without using stable 

allocations as a black-box subroutine. We further consider the problem of finding a stable 

flow such that the flow value on every edge is within a given interval. For this problem, we 

present an elegant graph transformation and based on this, we devise a simple and fast 

algorithm, which also can be used to find a solution to the stable marriage problem with 

forced and forbidden edges. 

Finally, we study the stable multicommodity flow model introduced by Király and Pap [27]. 

The original model is highly involved and allows for commoditydependent preference lists at 

the vertices and commodity-specific edge capacities. 

We present several graph-based reductions that show equivalence to a significantly simpler 

model. We further show that it is NP-complete to decide whether an integral solution exists. 
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Új és egyszerű algoritmusok stabil folyamproblémákra 

 

Cseh Ágnes – Jannik Matuschke 

 
Összefoglaló 

A stabil folyamprobléma a stabil párosításprobléma egy általánosítása olyan piacokra, 

amelyeken számos játékos kooperál egymásnak folyamot küldve. A feladat egy inputja egy 

kapacitással ellátott irányított hálózatból áll, amelyen minden játékos kifejezi a vele 

szomszédos éleken vett szigorú preferenciáit. Egy hálózati folyam pontosan akkor stabil, ha 

játékosok egyetlen csoportja sem tud megegyezni egyfajta változtatásban. 

Fleiner bebizonyította, hogy stabil folyam mindig létezik a stabil allokációproblémára való 

visszavezetéssel. Cikkünkben egy augmentáló út típusú algoritmussal számítunk ki egy stabil 

folyamot, ami az első polinomiális algoritmus a stabil allokációs algoritmus használata 

nélkül. Ezen felül tanulmányozzuk a tiltott és kötelező élek esetét, azaz amikor a 

folyamértéknek egy megadott intervallumba kell esnie. A problémát egy elegáns 

gráftranszformációval oldjuk meg, aminek segítségével egy gyors algoritmust tervezünk. 

Végül a Király és Pap által bevezetett többtermékes folyamokat is vizsgáljuk. Az eredeti 

modell igen bonyolult, amit gráfredukciókkal jelentősen mérsékelünk. Bebizonyítjuk azt is, 

hogy az egészértékű megoldás találása NP-teljes probléma. 

 

Tárgyszavak: stabil folyam, korlátozott élek, többtermékes folyam, polinomiális 

algoritmus, NP-teljesség 
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New and simple algorithms for stable flow problems

Ágnes Cseh · Jannik Matuschke

Abstract Stable flows generalize the well-known concept of stable matchings to
markets in which transactions may involve several agents, forwarding flow from one
to another. An instance of the problem consists of a capacitated directed network in
which vertices express their preferences over their incident edges. A network flow is
stable if there is no group of vertices that all could benefit from rerouting the flow
along a walk.

Fleiner [13] established that a stable flow always exists by reducing it to the stable
allocation problem. We present an augmenting path algorithm for computing a stable
flow, the first algorithm that achieves polynomial running time for this problem
without using stable allocations as a black-box subroutine. We further consider the
problem of finding a stable flow such that the flow value on every edge is within
a given interval. For this problem, we present an elegant graph transformation and
based on this, we devise a simple and fast algorithm, which also can be used to find
a solution to the stable marriage problem with forced and forbidden edges.

Finally, we study the stable multicommodity flow model introduced by Király
and Pap [27]. The original model is highly involved and allows for commodity-
dependent preference lists at the vertices and commodity-specific edge capacities.
We present several graph-based reductions that show equivalence to a significantly
simpler model. We further show that it is NP-complete to decide whether an integral
solution exists.

A preliminary version of this paper appeared at the 43rd International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2017). The authors were supported by the
Hungarian Academy of Sciences under its Momentum Programme (LP2016-3/2016), OTKA
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Research (BMBF).
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1 Introduction

Stability is a well-known concept used for matching markets without monetary trans-
actions [33]. A stable solution provides certainty that no two agents are willing to
selfishly modify the market situation. Stable matchings were first formally defined
in the seminal paper of Gale and Shapley [19]. They described an instance of the
college admission problem and introduced the terminology based on marriage that
since then became wide-spread. Besides this initial application, variants of the sta-
ble matching problem are widely used in employer allocation markets [34], university
admission decisions [2,4], campus housing assignments [5,32] and bandwidth allo-
cation [18]. A recent honor proves the currentness and importance of results in the
topic: in 2012, Lloyd S. Shapley and Alvin E. Roth were awarded the Sveriges Riks-
bank Prize in Economic Sciences in Memory of Alfred Nobel for their outstanding
results on market design and matching theory.

In the classic stable marriage problem, we are given a bipartite graph, where the
two classes of vertices represent men and women, respectively. Each vertex has a
strictly ordered preference list over his or her possible partners. A matching is stable
if it is not blocked by any edge, that is, no man-woman pair exists who are mutually
inclined to abandon their partners and marry each other [19].

In practice, the stable matching problem is mostly used in one of its capacitated
variants, which are the stable many-to-one matching, many-to-many matching and
allocation problems. The stable flow problem can be seen as a high-level generaliza-
tion of all these settings. As the most complex graph-theoretical generalization of the
stable marriage model, it plays a crucial role in the theoretical understanding of the
power and limitations of the stability concept. From a practical point of view, stable
flows can be used to model markets in which interactions between agents can involve
chains of participants, e.g., supply chain networks involving multiple independent
companies.

In the stable flow problem, a directed network with preferences models a market
situation. Vertices are vendors dealing with some goods, while edges connecting
them represent possible deals. Through his preference list, each vendor specifies
how desirable a trade would be to him. Sources and sinks model suppliers and end-
consumers. A feasible network flow is stable, if there is no set of vendors who mutually
agree to modify the flow in the same manner. A blocking walk represents a set of
vendors and a set of possible deals so that all of these vendors would benefit from
rerouting some flow along the blocking walk.

Literature review. The notion of stability was extended to so-called “vertical net-
works” by Ostrovsky in 2008 [30]. Even though the author proves the existence of a
stable solution and presents an extension of the Gale-Shapley algorithm, his model
is restricted to unit-capacity acyclic graphs. Stable flows in the more general setting
were defined by Fleiner [13], who reduced the stable flow problem to the stable allo-
cation problem. Since then, the stable flow problem has been investigated in several
papers [15,16,24,29]. Recently, stable flows have been used to derive conflict-free
routings in multi-layer graphs [35].
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The best currently known computation time for finding a stable flow isO(|E| log |V |)
in a network with vertex set V and edge set E. This bound is due to Fleiner’s re-
duction to the stable allocation problem and its fastest solution described by Dean
and Munshi [8]. Since the reduction takes O(|V |) time, it does not change the in-
stance size significantly, and the weighted stable allocation problem can be solved in
O(|E|2 log |V |) time [8], the same holds for the maximum weight stable flow prob-
lem. The Gale-Shapley algorithm can also be extended for stable flows [7], but its
straightforward implementation requires pseudo-polynomial running time, just like
in the stable allocation problem.

It is sometimes desirable to compute stable solutions using certain forced edges
or avoiding a set of forbidden edges. This setting has been an actively researched
topic for decades [6,9,14,22,28]. This problem is known to be solvable in polynomial
time in the one-to-one matching case, even in non-bipartite graphs [14]. Though
Knuth presented a combinatorial method that finds a stable matching in a bipartite
graph with a given set of forced edges or reports that none exists [28], all known
methods for finding a stable matching with both forced and forbidden edges exploit
a somewhat involved machinery, such as rotations [22], LP techniques [10,11,23] or
reduction to other advanced problems in stability [9,14].

In many flow-based applications, various goods are exchanged. Such problems
are usually modeled by multicommodity flows [25]. A maximum multicommodity
flow can be computed in strongly polynomial time [36], but even when capacities are
integer, all optimal solutions might be fractional, and finding a maximum integer
multicommodity flow is NP-hard [21]. Király and Pap [27] introduced the concept of
stable multicommodity flows, in which edges have preferences over which commodi-
ties they like to transport and the preference lists at the vertices may depend on the
commodity. They show that a stable solution always exists, but it is PPAD-hard to
find one.

Our contribution and structure. In this paper we discuss new and simplified algo-
rithms and complexity results for three differently complex variants of the stable
flow problem. Section 2 contains preliminaries on stable flows.

• In Section 3 we present a polynomial algorithm for stable flows. To derive an
efficient solution method operating directly on the flow network, we combine the
well-known pseudo-polynomial Gale-Shapley algorithm and the proposal-refusal
pointer machinery known from stable allocations into an augmenting path algo-
rithm for computing a stable flow. Besides polynomial running time, the method
has the advantage that it is easy to implement and that it provides new insights
into the structure of the stable flow problem, which we exploit in later sections.

• Then, in Section 4 stable flows with restricted intervals are discussed. We provide
a simple combinatorial algorithm to find a flow with flow value within a pre-
given interval for each edge. Surprisingly, our algorithm directly translates into
a very simple new algorithm for the problem of stable matchings with forced
and forbidden edges in the classical stable marriage case. Unlike the previously
known methods, our result relies solely on elementary graph transformations.

• Finally, in Section 5 we study stable multicommodity flows. First, we answer an
open question posed in [27] by providing tools to simplify stable multicommodity
flow instances to a great extent. In particular, we show that it is without loss of
generality to assume that no commodity-specific preferences at the vertices and
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no commodity-specific capacities on the edges exist. Then, we reduce 3-sat to
the integral stable multicommodity flow problem and show that it is NP-complete
to decide whether an integral solution exists even if the network in the input has
integral capacities only.

2 Preliminaries

A network (D, c) consists of a directed graph D = (V,E) and a capacity function
c : E → R≥0 on its edges. The vertex set of D has two distinct elements, also called
terminal vertices: a source s, which has outgoing edges only and a sink t, which
has incoming edges only. Besides differentiating between the source and the sink,
we will assume that D does not contain loops or parallel edges, and every vertex
v ∈ V \ {s, t} has both incoming and outgoing edges. These three assumptions are
without loss of generality and only for notational convenience. We denote the set of
edges leaving a vertex v by δ+(v) and the set of edges running to v by δ−(v).

Definition 1 (flow) Function f : E → R≥0 is a flow if it fulfills both of the
following requirements:

1. capacity constraints: f(uv) ≤ c(uv) for every uv ∈ E;
2. flow conservation:

∑
uv∈E f(uv) =

∑
vw∈E f(vw) for all v ∈ V \ {s, t}.

A stable flow instance is a triple I = (D, c, r). It comprises a network (D, c) and
r, a ranking function that induces for each vertex an ordering of their incident edges.
Each non-terminal vertex ranks its incoming and also its outgoing edges strictly and
separately. Formally, r = (rv)v∈V \{s,t}, contains an injective function rv : δ+(v) ∪
δ−(v)→ R for each v ∈ V \ {s, t}. We say that v prefers edge e to e′ if rv(e) < rv(e).
Terminals do not rank their edges, because their preferences are irrelevant with
respect to the following definition.

Definition 2 (blocking walk, stable flow) A blocking walk of flow f is a directed
walk W = 〈v1, v2, ..., vk〉 such that all of the following properties hold:

1. f(vivi+1) < c(vivi+1), for each edge vivi+1, i = 1, ..., k − 1;
2. v1 = s or there is an edge v1u such that f(v1u) > 0 and rv1 (v1v2) < rv1 (v1u);
3. vk = t or there is an edge wvk such that f(wvk) > 0 and rvk(vk−1vk) < rvk(wvk).

A flow is stable, if there is no blocking walk with respect to it in the graph.

Intuitively, a blocking walk is an unsaturated walk in the graph so that both
its starting vertex and its end vertex are inclined to reroute some flow along it.
Notice that the preferences of the internal vertices of the walk do not matter in this
definition.

Unsaturated walks fulfilling point 2 are said to dominate f at start, while walks
fulfilling point 3 dominate f at the end. We can say that a walk blocks f if it
dominates f at both ends.

Problem 1 sf
Input: I = (D, c, r); a directed network (D, c) and r, the preference ordering of
vertices.
Question: Is there a stable flow f?
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s v1 v2 v3 v4 v5 v6
t

1 1 1 1 1 1 1 1 1 1 1 1

2

2
2

2
2

2

Fig. 1 The maximum flow (marked by colored edges) has value 3 in this unit-capacity network,
while the unique stable flow is of value 1 and is sent along the path 〈s, v1, v2, ..., t〉. It is easy
to see that this instance can be extended to demonstrate the ratio Ω(|E|).

Theorem 1 (Fleiner [13]) sf always has a stable solution and it can be found in
polynomial time. Moreover, for a fixed sf instance, each edge incident to s or t has
the same value in every stable flow.

This result is based on a reduction to the stable allocation problem. The second
half of Theorem 1 can be seen as the flow generalization of the so-called Rural Hos-
pitals Theorem known for stable matching instances [20]. While Theorem 1 implies
that all stable flows have equal value, we remark that this value can be much smaller
than that of a maximum flow in the network. In Example 1 we demonstrate a gap
of Ω(|E|).

Example 1 (Small stable flow value) Flows with no unsaturated terminal-terminal
paths are maximal flows. We know that every stable flow is maximal and it is folklore
that the ratio of the size of maximal and maximum flows can be of O(|E|). As the
instance in Fig. 1 demonstrates, this ratio can also be achieved by the size of a stable
flow vs. that of a maximum flow.

3 A polynomial-time augmenting path algorithm for stable flows

Using Fleiner’s construction [13], a stable flow can be found efficiently by computing a
stable allocation in a transformed instance instead. Another approach is adapting the
widely used Gale-Shapley algorithm to sf. As described in [7], this yields a preflow-
push type algorithm, in which vertices forward or reject excessive flow according to
their preference lists. While this algorithm has the advantage of operating directly
on the network without transformation to stable allocation, its running time is only
pseudo-polynomial.
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In the following, we describe a polynomial time algorithm to produce a stable
flow that operates directly on the network D. Our method is based on the well-
known augmenting path algorithm of Ford and Fulkerson [17], also used by Baïou
and Balinski [1] and Dean and Munshi [8] for stability problems. The main idea is to
introduce proposal and refusal pointers to keep track of possible Gale-Shapley steps
and execute them in bulk. Each such iteration corresponds to augmenting flow along
an s-t-path or a cycle in a restricted residual network.

3.1 Our algorithm

In the algorithm, every vertex (except for the sink) is associated with two pointers,
the proposal pointer and the refusal pointer. Throughout the course of the algorithm,
the proposal pointer traverses the outgoing edges of the vertex in order of decreasing
preference while the refusal pointer traverses its incoming edges in order of increasing
preference. For the source s, we assume an arbitrary preference order. Starting with
the 0-flow, the algorithm iteratively augments the flow along a path or cycle in the
graph induced by the pointers. This graph consists of the edges pointed at by the
proposal pointers and the reversals of the edges pointed at by the refusal pointer.

After each augmentation step, pointers pointing at saturated or refused edges
are advanced. The algorithm terminates when the proposal pointer of the source has
traversed all its outgoing edges. We prove that when this happens, the algorithm
has found a stable flow. As in each iteration, at least one pointer is advanced, the
running time of the algorithm is polynomial in the size of the graph. The complete
algorithm is listed as Algorithm 1. In the following we describe the individual parts
in detail.

Initializing and updating pointers. For notational convenience, we introduce two ar-
tificial elements, ∗ at the top and ∅ at the bottom of each preference list with the
convention rv(∗) = −∞ and rv(∅) =∞.

Every vertex v ∈ V \ {t} is associated with a proposal pointer π[v] and a refusal
pointer ρ[v], both pointing to elements on the preference list. Initially, π[v] points
to the most preferred outgoing edge on v’s preference list, i.e., the entry right after
∗, whereas ρ[v] is inactive, which is denoted by ρ[v] = ∅. We also set ρ[t] = ∅ for
notational convenience (we will never change ρ[t] during the algorithm). Note that
this implies rv(ρ[t]) =∞.

The pointers at v are advanced through the procedure AdvancePointers(v);
see Algorithm 1, lines 11-17 for a formal listing. A call of this procedure works as
follows:

• If π[v] is active, it is advanced to point to the next less-preferred outgoing edge on
v’s preference list (lines 12-14). If all of v’s outgoing edges have been traversed,
π[v] reaches its inactive state, i.e., π[v] = ∅, and ρ[v] gets advanced from its
inactive state to pointing to the least-preferred incoming edge on v’s preference
list. Note that in this latter case, the state of π[v] changes from active to inactive
between line 12 and line 15, and thus both if-conditions are fulfilled in the same
call of the procedure.

• If π[v] is already inactive, the refusal pointer ρ[v] gets advanced to the next more-
preferred incoming edge on the preference list (lines 15-17). Once ρ[v] traversed
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Algorithm 1: Augmenting path algorithm for stable flows
// Initialize proposal pointers to point at most-preferred outgoing edges,

refusal pointers inactive.
1 Set π[v] := argminvw∈E rv(vw) and ρ[v] := ∅ for all v ∈ V .
2 Set f := 0.

// Ensure pointers only point to residual, non-refused edges.
3 while ∃uv ∈ EHπ,ρ with cf (uv) = 0 or (π[u] = uv and rv(uv) ≥ rv(ρ[v])) do
4 AdvancePointers (u)

// Stop once proposal pointer of source becomes inactive.
5 if π[s] = ∅ then
6 return f

// Augment flow along path/cycle induced by proposal and refusal pointers.
7 Let W be an s-t-path or cycle in Hπ,ρ.
8 Set ∆ := mine∈W cf (e).
9 Augment f by ∆ along W .

// Repeat.
10 Goto line 3.

11 procedure AdvancePointers (v)
// If proposal pointer is active, advance it to next less-preferred

outgoing edge.
12 if π[v] 6= ∅ then
13 Set P := {vw ∈ E : rv(vw) > rv(π[v])} ∪ {∅}.
14 Set π[v] := argmine∈P rv(e).

// If proposal pointer has passed all edges, advance refusal pointer to
next more-preferred incoming edge.

15 if π[v] = ∅ and ρ[v] 6= ∗ then
16 Set R := {uv ∈ E : rv(uv) < rv(ρ[v])} ∪ {∗}.
17 Set ρ[v] := argmaxe∈R rv(e).

v’s most preferred incoming edge, we set ρ[v] = ∗, denoting all incoming edges of
v have been refused (the procedure will not be called again for this vertex after
this point).

The helper graph. With any state of the pointers π, ρ, we associate a helper graph
Hπ,ρ. It has the same vertex set as D and the following edge set:

EHπ,ρ := {π[v] : v ∈ V \ {t}, π[v] 6= ∅}
∪ {rev(ρ[v]) : v ∈ V \ {t}, π[v] = ∅, ρ[v] 6= ∗},

where rev(uv) := vu denotes the reversal of a given edge. Hence, for every vertex
v ∈ V \ {t}, the graph Hπ,ρ either contains the edge π[v], if the proposal pointer is
still active, or it contains the reversal rev(ρ[v]) of the edge ρ[v], if the refusal pointer
is active, or neither of these, if both pointers are inactive. Each edge e ∈ EHπ,ρ has
a residual capacity cf (e) depending on the current flow f , defined by

cf (e) :=

{
c(e)− f(e) if e ∈ E,
f(e) if e = rev(e′) for some e′ ∈ E.
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s
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1

1

1

2

2

1

Fig. 2 Example instance for illustrating a run of Algorithm 1. Numbers next to the vertices
indicate preferences of incident edges. Edge capacities are c(sv) = c(vw) = 2 and c(sw) =
c(vt) = c(wt) = 1. For the algorithm, we choose the arbitrary preference order of the source s
to prefer edge sv over sw.
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Fig. 3 The proposal and refusal pointers at the beginning of augmentations 1, 2, and 3,
respectively. Proposal pointers are marked by solid black edges, while refusal pointers are the
solid gray edges. The dashed edges do not belong to the current set of pointers.

At the beginning of each iteration of the algorithm, we ensure that no proposal
or refusal pointer points to an edge with residual capacity 0 and that no proposal
pointer points to an edge that has already been refused by its head (lines 3-4).

Augmenting the flow. The algorithm iteratively augments the flow f along an s-t-
path or cycle W in Hπ,ρ by the bottleneck capacity mine∈W cf (e) (lines 7-9). Aug-
menting a flow f along a path or cycle W by ∆ means that for every e ∈ W , we
increase f(e) by ∆ if e ∈ E and decrease f(e′) by ∆ if e = rev(e′) for some e′ ∈ E.
Note that after the augmentation, cf (e) = 0 for at least one edge e ∈ W , implying
that at least one pointer is advanced before the next augmentation. Lemma 2 below
shows that an augmenting path or cycle in Hπ,ρ exists as long as π[s] is still active.
The algorithm stops when π[s] = ∅ (lines 5-6).

3.2 Example run of the algorithm

Before we analyze the algorithm, we illustrate it by running it on the example in-
stance given in Fig. 2. To each augmentation, the set of pointers is drawn in Fig 3.

Augmentation 1: Initially, the proposal pointers are set to π[s] = sv, π[v] = vw,
π[w] = [wt], while all refusal pointers are inactive (pointing to ∅). The graph Hπ,ρ

consists of the edges sv, vw, and wt, which comprise a unique s-t-path W1. The
algorithm augments f along W1 by its bottleneck capacity 1, yielding the flow
f(sv) = f(vw) = f(wt) = 1 and f(sw) = f(vt) = 0.
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Pointer update: Because the residual capacity of wt is 0, AdvancePointers(w) is
called. The procedure advances π[w] to the inactive state ∅ and hence immediately
activates ρ[w] with ρ[w] = vw. Because also π[v] = vw, this pointer is also advanced
according to the second criterion of the while loop. It reaches π[v] = vt.

Augmentation 2: With π[s] = sv, ρ[w] = vw, and π[v] = vt, the graph Hπ,ρ consists
of the edges sv, rev(vw) = wv, and vt. The unique s-t-path W2 = 〈s, v, t〉 is chosen,
the bottleneck capacity is cf (sv) = cf (vt) = 1. After augmenting f along W2 by 1
unit, the new flow is f(sv) = 2, f(vw) = f(vt) = f(wt) = 1 and f(sw) = 0.

Pointer update: Because cf (sv) = 0, the pointer π[s] is advanced to sw. Because
cf (vt) = 0, also π[v] is advanced to ∅ and ρ[v] gets activated with ρ[v] = sv.

Augmentation 3: With π[s] = sw, ρ[w] = vw, and ρ[v] = sv, the graph Hπ,ρ con-
sists of the edges sw, wv, and vs. These edges comprise the cycle W3. The residual
capacities are cf (sw) = cf (wv) = 1 and cf (vs) = 2. Augmenting f along W3 by 1
unit yields the flow f(sv) = f(sw) = f(vt) = f(wt) = 1 and f(vw) = 0.

Pointer update: Because cf (wv) = 0, the pointer ρ[w] is updated to sv, also trig-
gering an update of π[s] that was pointing at the same edge. After advancing π[s] it
reaches ∅ and hence the algorithm terminates.

3.3 Analysis

In the proof of correctness we utilize the following notation. We say the proposal
pointer π[v] has reached edge vw if rv(π[v]) ≥ rv(vw). We say π[v] has passed the
edge vw if rv(π[v]) > rv(vw). We use analogous terms for the refusal pointer ρ[v]
with reversed inequality signs, respectively.

We now make a few observations on the behavior of the pointers. We first ob-
serve that π[v] moves from most-preferred to least-preferred edge and ρ[v] moves
from least-preferred to most-preferred edge, the ranks of the two pointers are non-
decreasing or non-increasing, respectively, during the course of the algorithm (note
that the lowest rank in P is always higher than the current rank of π[v] in line 13
and the highest rank in R is always lower than the current rank of ρ[v] in line 16).

Observation 1 Throughout the algorithm, rv(π[v]) never decreases and rv(ρ[v])
never increases for any v ∈ V \ {t}.

Also, for each vertex, at most one of its two pointers is active at any time, as the
refusal pointer is only advanced once the proposal pointer reaches the inactive state.

Observation 2 Throughout the algorithm, for each v ∈ V \ {t} either ρ[v] = ∅ or
π[v] = ∅.

Finally, we observe that proposal/refusal pointers do not skip any outgoing/incoming
edge, respectively. This is due to the construction of P in line 13 and R in line 16,
which contain every edge that has a rank strictly higher/lower, respectively, than
the edge currently pointed at by the pointer.
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Observation 3 Let uv ∈ E.

• If ru(π[u]) < ru(uv) before a call of AdvancePointers(u), then ru(π[u]) ≤
ru(uv) after that call.

• If rv(ρ[v]) > rv(uv) before a call of AdvancePointers(v), then rv(ρ[v]) ≥
rv(uv) after that call.

We next establish a set of invariants that are useful for analyzing the algorithm.

Lemma 1 The following invariants hold true for each uv ∈ E any time the algo-
rithm is in lines 5-10:

1. If rv(ρ[v]) ≤ rv(uv) then π[u] 6= uv.
2. If rv(ρ[v]) < rv(uv) then f(uv) = 0.
3. If ru(π[u]) < ru(uv) then f(uv) = 0.
4. If ru(π[u]) > rv(uv) then f(uv) = c(uv) or rv(ρ[v]) ≤ rv(uv).

Note that due to the monotonicity of the pointers, once the premise of invariant
1, 2, or 4 is fulfilled for an edge, it will stay this way for the rest of the algorithm.
Intuitively, the invariants state that (1) a proposal pointer does not point to a refused
edge, (2) once a refusal pointer has passed an edge, the edge carries no flow, (3) an
edge can only carry flow after it is reached by its proposal pointer, and (4) after
a proposal pointer has passed an edge, the edge is fully saturated until the refusal
pointer of its end not has reached it.

Proof (of Lemma 1) Invariant 1: Note that the pointers are only changed in the
while loop in lines 3-4. If π[u] = uv, then uv ∈ EHπ,ρ . Therefore the while loop does
not terminate while π[u] = uv and rv(uv) ≥ rv(ρ[v]).

Invariant 2: Observe the invariant is true after intialization since f(uv) = 0.
Note that f(uv) can only increase in line 9 when π[u] = uv. In that case, Invariant 1
ensures that rv(ρ[v]) > rv(uv). So the invariant can only become invalid by advanc-
ing the pointer ρ[v] past uv. Consider the first time this happens in the algorithm.
By Observation 3, this can only happen with a call of AdvancePointers(v) when
ρ[v] = uv. But then π[v] = ∅ by Observation 2 and therefore the call of Advance-
Pointers(v) can only be triggered by the condition cf (vu) = 0 of the while loop.
But this implies f(uv) = 0, so the invariant did not become invalid.

Invariant 3: Initially, f(uv) = 0. The flow can only increase when uv is part of
an augmenting path or cycle in line 9. This can only happen while π[u] = uv by
construction of EHπ,ρ . Because ru(π[u]) is non-decreasing, ru(π[u]) ≥ ru(uv) is true
at any time after the first increase of f(uv).

Invariant 4: This invariant is true initially because ρ[v] = ∅. It can only lose its
validity by advancing π[u] or decreasing f(uv). By Observation 3, π[u] can only pass
uv when AdvancePointers(u) is called in line 4 while π[u] = uv. This call can be
triggered because rv(ρ[v]) ≤ rv(uv) or because cf (uv) = 0 (implying f(uv) = c(uv)).
In either case, the invariant is not violated. The flow on f(uv) can only decrease
when rev(uv) ∈W ⊆ EHπ,ρ . By definition, this can only happen if ρ[v] = uv, which
is already enough to fulfill the invariant. ut

With the following lemma, we show that, at the beginning of each iteration, the
algorithm can actually find an s-t-path or cycle.



New and simple algorithms for stable flow problems 11

Lemma 2 Each time the algorithm reaches line 7, the graph Hπ,ρ contains an s-t-
path or a cycle.

Proof Consider any v ∈ V \ {s, t} at any time the algorithm reaches line 7. We show
that if v has an incoming edge in Hπ,ρ, then it also has an outgoing edge in Hπ,ρ.
Note that by definition of EHπ,ρ , the only situation in which v has no outgoing edge
is when ρ[v] = ∗.

Let uv ∈ EHπ,ρ be an incoming edge of v. This implies that either uv ∈ E and
π[u] = uv or vu ∈ E and ρ[u] = vu by definition of Hπ,ρ.

If π[u] = uv, Invariant 1 of Lemma 1 ensures that rv(ρ[v]) > rv(uv) and hence
ρ[v] 6= ∗. Therefore v has an outgoing edge in Hπ,ρ.

If vu ∈ E and ρ[u] = vu, the termination criterion of the while loop (lines 3-4)
guarantees f(vu) = cf (rev(uv)) > 0. Hence, by flow conservation, v must also have
an incoming edge u′v ∈ E with f(u′v) > 0. By Invariant 2 of Lemma 1, this implies
ρ[v] 6= ∗.

Thus every non-terminal vertex with an incoming edge also has an outgoing edge.
Now observe that π[s] 6= ∅ ensures that s also has an outgoing edge in Hπ,ρ. Thus,
we can start a walk at s and extend it until we visit a vertex as second time, closing
a cycle, or until we reach t having found an s-t-path. This concludes the proof of the
lemma. ut

Theorem 2 Algorithm 1 computes a stable flow in polynomial time.

Proof We first show that the algorithm indeed computes a stable flow. Assume by
contradiction there is a walk W = 〈v1, v2, . . . , vk〉 blocking f . We use the previously
established invariants to prove the following claim.

Claim For every i ∈ {1, . . . , k−1}, the pointer π[vi] has passed vivi+1, i.e., rvi(π[vi]) >
rvi(vivi+1).

Proof. We show the claim by induction on i. First consider the case i = 1. Due to
point 2 in Definition 2, either v1 = s or rv1 (v1v2) < rv1 (v1w) for some v1w ∈ E with
f(v1w) > 0. In the former case, π[s] has passed v1v2 as the termination criterion of
the algorithm implies π[s] = ∅. In the latter case, f(v1w) > 0 implies that π[v1] has
at least reached v1w by Invariant 3 of Lemma 1 and thus it has passed v1v2.

Now consider any i ∈ {2, . . . , k − 1}. Note that by induction hypothesis π[vi−1]
has passed vi−1vi. Furthermore f(vi−1vi) < c(vi−1vi) because no edge of W is satu-
rated. Hence, Invariant 4 of Lemma 1 implies that ρ[vi] must have reached vi−1vi. In
particular, ρ[vi] 6= ∅ and hence π[vi] = ∅ by Observation 2, implying π[vi] has passed
all edges. This completes the induction and proves the claim. �

Now consider vk, the last vertex ofW . Note that, due to the claim above, π[vk−1]
has passed vk−1vk. Furthermore, f(vk−1vk) < c(vk−1vk) as the blocking walk W is
unsaturated. Hence, by Invariant 4 of Lemma 1, ρ[vk] has reached at least vk−1vk,
i.e., rvk(ρ[vk]) ≤ rvk(vk−1vk).

Observe that this implies rvk(ρ[vk]) <∞ = rt(ρ[t]) and therefore vk 6= t (remem-
ber that ρ[t] = ∅ never changes). Now consider any uvk ∈ E with rvk(vk−1vk) <
rvk(uvk). Then rvk(ρ[vk]) ≤ rvk(vk−1vk) < rvk(uvk) implies f(uvk) = 0 by Invari-
ant 2 of Lemma 1. Therefore W does not dominate f at the end, i.e., it does not
fulfill point 3 of Definition 2. Thus W is not a blocking walk and the returned flow
f is stable.
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We now turn to the running time. Note that in every iteration of the while loop
(lines 3-4), a pointer of a vertex is advanced. Thus the total number of iterations of
the while loop throughout the whole algorithm is bounded by 2|E| by monotonicity
of the pointers and the fact that each edge appears in at most two preference lists.
Since every vertex has at most one incoming and one outgoing edge in Hπ,ρ by by
construction, finding edges violating the termination criterion of the loop can be done
in time O(|V |). The same is true for finding an augmenting path or cycle in line 7.
As after each augmentation, the residual capacity of at least one edge drops to 0, at
least one pointer is advanced in line 4 between any two augmentations, limiting the
number of augmentations by 2|E|. Hence the total running time of the algorithm is
bounded by O(|E||V |). We remark that a more sophisticated implementation using
the dynamic-tree data structure can reduce this running time to O(|E| log |V |). How-
ever, since our primary aim in this article is to provide new and simple approaches,
we omit further investigation of this complication. ut

4 Stable flows with restricted intervals

Various stable matching problems have been tackled under the assumption that re-
stricted edges are present in the graph [9,14]. A restricted edge can be forced or
forbidden, and the aim is to find a stable matching that contains all forced edges,
while it avoids all forbidden edges. Such edges correspond to transactions that are
particularly desirable or undesirable from a social welfare perspective, but it is un-
desirable or impossible to push the participating agents directly to use or avoid the
edges. We thus look for a stable solution in which the edge restrictions are met
voluntarily.

A natural way to generalize the notion of a restricted edge to the stable flow
setting is to require the flow value on any given edge to be within a certain interval.
To this end, we introduce a lower and an upper bound function.

Problem 1 sf restricted
Input: I = (D, c, r, l, u); an sf instance (D, c, r), a lower bound function l : E → R≥0
and an upper bound function u : E → R≥0.
Question: Is there a stable flow f so that l(uv) ≤ f(uv) ≤ u(uv) for all uv ∈ E?

Note that in the above definition, the upper bound u does not affect blocking
walks, i.e., a blocking walk can use edge uv, even if f(uv) = u(uv) < c(uv) holds. In
particular, it is not without loss of generality to assume c(uv) = u(uv) for all edges
uv, as decreasing c(uv) may enlarge the set of stable flows.

In the following, we describe a polynomial algorithm that finds a stable flow with
restricted intervals or proves its nonexistence. We start with an instance modification
step in Section 4.1. Then we prove that restricted intervals can be handled by small
network modifications that reduce the problem to the unrestricted version of sf. We
show this separately for the case where only forced edges occur, which we call sf
forced, in Section 4.2 and for the case where only forbidden edges occur, called sf
forbidden, in Section 4.3. It is straightforward to see that these two results can be
combined to solve the general version of sf restricted.

We mention that it is also possible to solve sf restricted by transforming the
instance first into a weighted sf instance, and then into a weighted stable allocation
instance, both solvable in O(|E|2 log |V |) time [8]. The advantages of our method
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Fig. 4 Splitting an edge with lower and upper bounds. Due to the preferences, capacities and
bounds defined on the modified instance, the first l(uv) units of flow will saturate 〈u, x, v〉, then,
the coming u(uv)− l(uv) units of flow will saturate 〈u, y, v〉, and the remaining c(uv)− u(uv)
units of flow will use 〈u, z, v〉.

are that it can be applied directly to the sf restricted instance and it also gives
us insights to solving the stable roommate problem with restricted edges directly,
as pointed out at the end of Sections 4.2 and 4.3. Moreover, our running time is
only O(|P ||E| log |V |), where P is the set of edges with u(uv) < c(uv).

4.1 Problem simplification

sf restricted generalizes the natural notion of requiring flow to use an edge to
its full capacity (by setting l(uv) = c(uv)) and of requiring flow not to use an edge
at all (by setting u(uv) = 0), which corresponds to the traditional cases of forced
and forbidden edges. In fact, it turns out that any given instance of sf restricted
can be transformed into an equivalent instance in which l(uv), u(uv) ∈ {0, c(uv)} for
all uv ∈ E.

First observe that if l(uv) > u(uv) for some uv ∈ E, then sf restricted trivially
has no solution. Therefore, we henceforth assume l(uv) ≤ u(uv) for all uv ∈ E. We
further execute the following technical change to the instance in order to obtain an
equivalent instance with the desired properties. As shown in Fig. 4, we substitute
each edge uv ∈ E with three parallel paths (to avoid parallel edges): 〈u, x, v〉, 〈u, y, v〉
and 〈u, z, v〉. While uy and yv take over the rank of uv, ux and xv are ranked just
above, uz and zv are ranked just below uy and yv. The capacities and bounds of the
introduced edges are as follows.

l(ux) = l(xv) = u(ux) = u(xv) = c(ux) = c(xv) = l(uv)
l(uy) = l(yv) = 0
u(uy) = u(yv) = c(uy) = c(yv) = u(uv)− l(uv)
l(uz) = l(zv) = u(uz) = u(zv) = 0
c(uz) = c(zv) = c(uv)− u(uv)

In words, we split each edge uv with lower and upper bounds into three paths:
the first path 〈u, x, v〉 requires an amount of flow exactly equal to its capacity l(uv),
the middle path 〈u, y, v〉 has capacity u(uv)− l(uv) and is unrestricted, the last path
〈u, z, v〉 with capacity c(uv)− u(uv) must not carry any flow.

Note that we can map any flow f in original graph to a flow f ′ in the modi-
fied graph by splitting the flow on each edge uv into three parts, setting f ′(ux) =
f ′(xv) = min{f(uv), l(uv)}, f ′(uy) = f ′(yv) = min{max{f(uv)− l(uv)), 0}, u(uv)},
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and f ′(uz) = f ′(zv) = max{f(uv) − u(uv)), 0}. Conversely, every flow f ′ in the
modified instance induces a flow f in the original instance, simply by aggregating
the flow values on the three paths, i.e., setting f(uv) = f(ux) + f(uy) + f(uz).

Note that different flows in the modified instance can map to the same flow f
in the original network, but it is easy to check that if f is stable, only a unique
stable flow in the modified instance maps to f . Thus there is a one-to-one correspon-
dence between stable flows in the original instance and in the modified instance.
Furthermore, it is straightforward to check that f respects the bounds l and u in
the original instance if and only if f ′ does the same in the modified instance. The
modified instance is thus equivalent to the original instance.

Remark 1 Note that the encoding size of the modified instance is within a constant
factor of the instance size of the original instance. More precisely, the number of edges
in the new instance is 6|E| and the number of nodes in the new instance is |V |+3|E|,
where V and E are the sets of vertices and edges of the original instance, respectively.
Also the set P of edges with u(e) < c(e) only grows by a factor of 2. Note that because
we assumed the original graph to be simple and connected, |V | − 1 ≤ |E| ≤ |V |2
and therefore log(|V |+3|E|) = O(log |V |). Therefore the asymptotic running time of
O(|P ||E| log |V |) which we will establish for our algorithm on the modified instance
is the same for the original instance.

Henceforth, we will assume that our instances are of this form and use the nota-
tion Q := {uv ∈ E : l(uv) = c(uv)} and P := {uv ∈ E : u(uv) = 0} for the sets of
forced and forbidden edges, respectively.

4.2 Forced edges

In this section we consider an instance of sf restricted where P = ∅. As mentioned
earlier, we call this problem sf forced. In Section 4.2.1 we show how to deal with the
case |Q| = 1 by reducing the corresponding sf forced instance with a single forced
edge to an instance of sf without forced edges. Then, in Section 4.2.2, we argue that
the same technique can be applied to multiple forced edges simultaneously. At last,
in Section 4.2.3 we elaborate on the application of our technique for stable matching
instances.

4.2.1 A single forced edge

Let us first consider a single forced edge uv. We modify graphD to derive a graphD′.
The modification consists of deleting the forced edge uv and introducing two new
edges sv and ut to substitute it. Both new edges have capacity c(uv) and take over
uv’s rank on u’s and on v’s preference lists, respectively, as shown in Fig. 5. The rest
of D remains unchanged in D′.

In Lemma 3 we show that flows saturating uv in D are equivalent to flows satu-
rating both sv and ut in D′. Then we refer to the extension of the Rural Hospitals
Theorem (Theorem 1) to solve the latter problem.

Lemma 3 Let f be a flow in D with f(uv) = c(uv). Let f ′ be the flow in D′ derived
by setting f ′(sv) = f ′(ut) = f(uv) and f ′(e) = f(e) for all e ∈ E \ {uv}. Then f is
stable if and only if f ′ is stable.
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Fig. 5 Substituting forced edge uv by edges sv and ut in D′.

Proof We prove this lemma by showing that walks blocking f also block f ′ and vice
versa. We first observe that the set of edges not saturated by f in D is the same as
the set of edges not saturated by f ′ in D′. This is because uv is saturated by f , and
therefore ut, sv are saturated by f ′, and all other edges are present in both graphs
with identical capacities and flow values, respectively. Note that this implies the set
of walks in D not saturated by f and the set of walks in D′ not saturated by f ′ is
the same.

Now consider any node u′ ∈ V and any number r > 0. Observe that there is
an edge u′v′ in D with ru′(u′v′) = r and f(u′v′) > 0 if and only if there is u′v′′ in
D′ with ru′(u′v′′) = r and f ′(u′v′′) > 0 (either u′v′ itself is in D′ or u′v′ = uv, in
which case u′v′′ = ut fulfills the requirement). Therefore an unsaturated walk W in
D dominates f at the start if and only if it dominates f ′ at the start. A symmetric
argument holds for dominance at the end of an unsaturated walk. This implies that
any blocking walk for f in D is a blocking walk for f ′ in D′ and vice versa. ut

Checking the existence of a flow in D′ that saturates both sv and ut can be done
by finding any stable flow in D′. This is because Theorem 1 guarantees that all stable
flows have the same value on any edge incident to s or t.

4.2.2 Multiple forced edges

We observe that we can replace all edges in Q one after the other, applying Lemma 3
inductively on the resulting graph. This yields the following theorem.

Theorem 3 Let DQ be the graph obtained from D when replacing each edge in uv ∈
Q by edges ut and sv with same rank and capacity. Let Q̄ be the set of newly added
edges in DQ. Let f be a flow in D saturating all edges in Q. Then f is stable if and
only if the corresponding flow f ′ in DQ obtained by setting f ′(sv) = f ′(ut) = f(uv)
for all uv ∈ Q and f(e) = f ′(e) for all e ∈ E \Q is stable.

In fact, the Rural Hospitals Theorem (Theorem 1) guarantees that either all
stable flows in DQ saturate all edges in Q̄ or none does. Thus we can solve sf
forced by a single stable flow computation in DQ.

Theorem 4 sf forced can be solved in time O(|E| log |V |).

Proof As DQ contains at most twice as many edges as D, we can compute a stable
flow f ′ in DQ in time O(|E| log |V |), as discussed at the end of Section 3. If f ′(sv) =
f ′(ut) = c(uv) for all uv ∈ Q, the corresponding flow in D with f(uv) = f ′(sv)
is a stable flow in D saturating all edges in Q. Now assume f ′(sv) < c(uv) or
f ′(ut) < c(uv) for some uv ∈ Q. Then by Theorem 1, any stable flow in DQ has this
property. Hence, no stable flow in D saturates all edges in Q. ut
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4.2.3 Stable matchings with forced edges

We shortly discuss the case of forced edges in stable matching instances. Notice
that our observations are valid in the so-called stable roommates setting, where the
underlying graph is not bipartite. The definition of a blocking edge is exactly the
same as in the classical bipartite case. An edge uv /∈ M blocks M if both u and v
prefer each other to their respective partners in M .

Problem 2 sr forced
Input: I = (G, r,Q); a graph G (not necessarily bipartite), the preference ordering r
of vertices, and a set of forced edges Q.
Question: Is there a stable matching covering all edges in Q?

The technique described above provides a fairly simple method for solving sr
forced, because the Rural Hospitals Theorem holds for the stable roommates prob-
lem as well [22, Theorem 4.5.2]. After deleting each forced edge uw ∈ Q from the
graph, we add uws and utw edges to each of the pairs, where ws and ut are newly
introduced vertices. These edges take over the rank of uw. Unlike in sf, here we need
to introduce two separate dummy vertices to each forced edge, simply due to the
matching constraints. There is a stable matching containing all forced edges if and
only if an arbitrary stable matching covers all of these new vertices ws and ut. The
proof for this is analogous to that of Lemma 3.

The running time of this algorithm is O(|E|), since it is sufficient to construct a
single stable solution in an instance with at most 2|V | vertices. More vertices cannot
occur, because in a matching problem more than one forced edge incident to a vertex
immediately implies infeasibility. Notice that solving sr forced has the same time
complexity O(|E|) as solving the stable roommates problem without any restriction
on the edges.

4.3 Forbidden edges

In order to handle sf forbidden, we present here an argumentation of the same
structure as in the previous section. In Section 4.3.1, we show how to solve the
problem of stable flows with a single forbidden edge by solving two instances on two
different extended networks. Then, in Section 4.3.2 we show how these constructions
can be used to obtain an algorithm for the case of multiple forbidden edges. Finally,
in Section 4.3.3 we discuss the implication of our results to stable matching instances.

Now we introduce some notation used in this section. We remind the reader that
P is the set forbidden edges, where l(e) = c(e). For e = uv ∈ P , we define edges
e+ = sv and e− = ut. We set c(e+) = ε > 0 and set rv(e+) = rv(e) − ε, i.e.,
e+ occurs on v’s preference list exactly before e. Likewise, we set c(e−) = ε and
ru(e−) = ru(e)− ε, i.e., e− occurs on u’s preference list exactly before e. For F ⊆ P
we define E+(F ) := {e+ : e ∈ F} and E−(F ) := {e− : e ∈ F}.

4.3.1 A single forbidden edge

Assume that P = {e0} for a single edge e0. First we present two modified instances
that will come handy when solving sf forbidden. The first is the graph D+, which
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Fig. 6 Adding edges e+
0 = sv in D+ and e−0 = ut in D− to forbidden edge E = uv.

we obtain from D by adding the edge e+
0 to E. Similarly, we obtain the graph D−

by adding e−0 to E. Both graphs are illustrated in Fig. 6.
In the following, we characterize sf forbidden instances with the help of D+

and D−. Our claim is that sf forbidden in D has a solution if and only if there
is a stable flow f+ in D+ with f+(e+) = 0 or there is a stable flow f− in D−

with f−(e−) = 0. These existence problems can be solved easily in polynomial time,
since all stable flows have the same value on edges incident to terminal vertices by
Theorem 1.

We start with a straightforward observation, which follows from the fact that the
deletion of an edge that does not carry any flow in a stable flow neither affects flow
conversation nor can create blocking walks.

Observation 4 If f(e) = 0 for an edge e ∈ E and stable flow f in D, then f
remains stable in D − e as well.

Now we are ready to prove the correctness of our transformation.

Lemma 4 Let f be a flow in D = (V,E) with f(e0) = 0. Then f is a stable flow in
D if and only if at least one of the following properties hold:

Property 1: The flow f+ with f+(e) = f(e) for all e ∈ E and f+(e+
0 ) = 0 is stable

in (V,D+).
Property 2: The flow f− with f−(e) = f(e) for all e ∈ E and f−(e−0 ) = 0 is stable

in (V,D−).

Proof Sufficiency of any of the two properties follows immediately from Observation 4
by deletion of e+

0 or e−0 , respectively, since there edges carry zero flow.
To see necessity, assume that f is a stable flow in D. By contradiction assume

that neither f+ nor f− is stable. Then there is a blocking walk W+ for f+ and
a blocking walk W− for f−. Since W+ is not a blocking walk for f in D, it must
contain e+

0 . This is only possible ifW+ starts with e+
0 , because e

+
0 starts at a terminal

vertex. Similarly, since W− is not a blocking walk for f in D, it must end with
e−0 . Let W ′+ := W+ \ {e+

0 } and W ′− := W− \ {e−0 }. Consider the concatenation
W := W ′− ◦e0 ◦W ′+. Note thatW is an unsaturated walk in D. IfW ′− 6= ∅, thenW
starts with the same edge asW− and thus dominates f at the start. IfW ′− = ∅, then
W starts with e0, which dominates any flow-carrying edge dominated by e−0 , and
hence it dominates f at the start also in this case. By analogous arguments it follows
that W also dominates f at the end. Hence W is a blocking walk, contradicting the
stability of f . We conclude that at least one of Properties 1 or 2 must be true if f is
stable. ut

This method can be used to solve sf forbidden if |P | = 1, by simply computing
stable flows f+ in D+ and f− in D−. Note that by the extension of the Rural
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Hospitals Theorem (Theorem 1), the flow values f+(e+
0 ) and f−(e−0 ) do not depend

on the choice of f+ and f−, since they are the same for all stable flows in an instance.
If f+(e+

0 ) = 0 or f−(e−0 ) = 0, then we have found a stable flow in f avoiding the
forbidden edge e0. On the other hand, if the flow value is positive in both cases,
there is no stable flow avoiding e0.

4.3.2 Multiple forbidden edges

For |P | > 1, Lemma 4 guarantees that we can add either e+ or e− for each forbidden
edge e ∈ P without destroying any stable flow avoiding the forbidden edges. However,
it is not straightforward to decide for which forbidden edges to add e+ and for which
to add e−. Simply checking the two properties in Lemma 4 and creating either a D−
or D+ graph for each forbidden edge in an arbitrary order does not lead to correct
results, since the modification steps can impact each other. It is possible that the
forbidden edge checked first allows for both D− and D+, and it turns out at a later
forbidden edge that only one of these two choices can be combined with network
modifications induced when tackling other forbidden edges, as the following example
reveals. The same example demonstrates that adding both e+ and e− to all forbidden
edges at the same time might lead to an instance that admits no stable matching
avoiding all added edges, even though a stable matching avoiding all forbidden edges
exists in the original instance. After the example we describe how to resolve this
issue and obtain a polynomial time algorithm for sf forbidden.

Example 2 (Stable flows with forbidden edges) In the unit-capacity network
of Fig. 7, the dashed edges u1v1 and u2v2 form P , while the thin gray edges sv2
and u1t are not part of the original graph but are added by the application of
Lemma 4. The instance admits two stable flows. Both of them saturate all edges
leaving s and all edges entering t. In the rest of the graph, stable flow f1 is de-
noted by purple, and it sends one unit of flow along the edges in {u1v2, u2v1, u3v3},
while stable flow f2 is denoted by green, and it sends one unit of flow along the
edges in f2 = {u1v1, u2v3, u3v2}. Since u1v1 ∈ P is used by f2, only f1 avoids P .
If tested separately, edge u2v2 fulfills both Properties 1 and 2 of Lemma 4, while
u1v1 only fulfills Property 2. Yet requiring Property 1 for u2v2 and Property 2 for
u1v1 by adding sv1 and u2t to the graph (as the gray edges indicate) results in
a graph where every stable flow uses both sv2 and u1t. This is because the only
stable flow in the modified network with the edges sv2 and u1t saturates edges
su1, su2, su3, sv2, u2v1, u3v3, v1t, v2t, v3t and u1t.

We now sketch our algorithm that can deal with the presence of multiple forbid-
den edges. For any A,B ⊆ E, let us denote by D[A|B] the network with vertices V
and edges E ∪ E+(A) ∪ E−(B). We remind the reader that E+(A) := {e+ : e ∈ A}
and E−(B) := {e− : e ∈ B}. Our algorithm maintains a partition of the forbidden
edges in two groups P+ and P−. Initially P+ = P and P− = ∅. In every iteration,
we compute a stable flow f in D[P+|P−]. If f(e+) > 0 for some e ∈ P+, we move
e from P+ to P− and repeat. If f(e+) = 0 for all e ∈ P+ but f(e−) > 0 for some
e ∈ P−, we will show that no stable flow avoiding all forbidden edges exists in D.
Finally, if we reach a flow f where neither of these two things happens, then f ’s
restriction to D is a stable flow in D avoiding all forbidden edges, since f(e+) = 0
or f(e−) = 0 implies f(e) = 0 by choice of the ranks.
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Fig. 7 The greedy algorithm fails to report the existence of a stable solution in this instance.

Algorithm 2: Stable flow with forbidden edges
1 Initialize P+ = P and P− = ∅.
2 repeat
3 Compute a stable flow f in D[P+|P−].
4 if ∃ e ∈ P+ with f(e+) > 0 then
5 P+ := P+ \ {e} and P− := P− ∪ {e}

6 until f(e+) = 0 for all e ∈ P+;
7 if ∃ e ∈ P− with f(e−) > 0 then
8 return ∅
9 else

10 return f

Before proving its correctness, we present our algorithm run on the instance of
Fig. 7.

Example 3 (Execution of Algorithm 2) Since P = {u1v1, u2v2}, we initial-
ize P+ to be {u1v1, u2v2} and P− to be the empty set. This defines the network
D[P+|P−], which is D complemented by sv1 and sv2. The stable flow f computed
by Algorithm 1 in D[P+|P−] saturates the edges sv1, v1t, su2, u2v3, v3t, su3, u3v2,
and v2t. Since f(sv1) > 0, the edge u1v1 is removed from P+ and added to P−.

In the second iteration, D[P+|P−] is D complemented by u1t and sv2. The
algorithm computes the stable flow in this network saturating the edges su1, u1t,
sv2, v2t, su3, u3v3, and v3t. Because f(sv2) > 0, the edge u2v2 is moved from P+ to
P−.

In the third iteration, D[P+|P−] is D complemented by u1t and u2t. The algo-
rithm computes the stable flow in this network saturating the edges su1, u1v2, v2t,
su2, u2v1, v1t, su3, u3v3, and v3t. Since P+ = ∅ and f(e−) = 0 for all e ∈ P−, the
algorithm terminates by returning this flow.



New and simple algorithms for stable flow problems 20

For the analysis of Algorithm 2, the following consequence of the augmenting
path algorithm presented earlier (Algorithm 1) is helpful. It essentially states that
removing an edge leaving s and recomputing a stable flow cannot decrease the flow
value on any other edge leaving s. This observation will allow us to prove an impor-
tant invariant of Algorithm 2.

Lemma 5 Let f be a stable flow in D. Let f ′ be a stable flow in D′ = D − e′ for
some edge e′ ∈ δ+(s). Then f ′(e) ≥ f(e) for all e ∈ δ+(s) \ {e′}.

Proof We run Algorithm 1 on the networks D and D′, respectively, to obtain stable
flows f and f ′. Recall that Algorithm 1 uses an arbitrary but fixed order of the
outgoing edges of s. We choose this order such that e′ comes last for the run in D.
Observe that the algorithms run identically on both instances until π[s] reaches e′
for the run on D and terminates on D′, respectively. Thus the flow f̄ computed by
the algorithm on D right before π[s] is advanced to e′ is identical to f ′. Further note
that the algorithm does not increase the flow value on any edge e ∈ δ+(s) \ {e′}
after π[s] has passed e, which comes before e′ by our choice of preferences. Hence
f(e) ≤ f̄(e) = f ′(e). ut

Lemma 6 Algorithm 2 maintains the following invariant. There is a stable flow in
D avoiding P if and only if there is a stable flow in D[∅|P−] avoiding P+∪E−(P−).

Proof Clearly, the invariant holds initially as P+ = P and P− = ∅. Now consider
any later iteration of the algorithm in which P+, P− are changed. Let f0 be the
computed stable flow in D[P+|P−] and let e0 be the edge with f0(e+

0 ) > 0 found
in that iteration. Let P+

old, P
−
old and P+

new, P
−
new denote the partition before and after

the update, i.e., P+
new = P+

old \ {e0} and P−new = P−old ∪ {e0}.
If there is a stable flow in D[∅|P−new] avoiding P+

new ∪ E−(P−new), then this flow
also avoids P , as for every e ∈ P either e ∈ P+

new or e− ∈ E−(P−new) (note that in
the latter case e− dominates e at the start and ends at a terminal).

Conversely, if there is a stable flow in D avoiding P , then by induction hypothesis
there is a stable flow f in D[∅|P−old] avoiding P+

old∪E−(P−old). Note that e+
0 starts at a

terminal and recall that f0(e+
0 ) > 0 for the stable flow f0 in D[P+

old|P
−
old]. By repeated

application of Lemma 5, deleting every e+ ∈ E+(P+
old \ {e0}) from D[P+

old|P
−
old], we

obtain that f ′(e+
0 ) > 0 for every stable flow f ′ in D[{e0}|P−old]. In particular, this

means that Property 1 of Lemma 4 fails for f and e0. Therefore, by Lemma 4,
Property 2 must hold for f , i.e., the extension of f to D[∅|P−old ∪ {e

−
0 }] = D[∅|P−new]

with f(e−0 ) = 0 is a stable flow avoiding P+
old ∪E−(P−old)∪{e−0 }. As P+

new ⊆ P+
old and

E−(P−new) = E−(P−old) ∪ {e−0 }, which completes the induction. ut

Lemma 7 If Algorithm 2 returns ∅, then no stable flow in D avoids P .

Proof If the algorithm returns ∅, then the algorithm computed a stable flow f in
D[P+|P−] with f(e+) = 0 for all e ∈ P+ but f(e−) > 0 for some e ∈ P−. Note that
by Observation 4, the restriction of f is also stable in D[∅|P−]. As e− is incident
to a terminal, f(e−) > 0 for every stable flow in D[∅|P−]. Therefore, by Lemma 6,
there is no stable flow in D avoiding P . ut

Lemma 8 If Algorithm 2 returns flow f , then f is stable in D and it avoids P .
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Proof If the algorithm returns flow f then f(e+) = 0 for all e ∈ P+ and f(e−) = 0
for all e ∈ P−. Hence the restriction of f to E is stable and avoids P+∪P− = P . ut

The correctness of Algorithm 2 follows immediately from the above lemmas. The
running time of this algorithm is bounded by O(|P ||E| log |V |), as each stable flow
f can be computed in O(|E| log |V |) time and in each round either |P+| decreases
by one or the algorithm terminates.

4.3.3 Stable matchings with forbidden edges

Just as earlier, in Section 4.2.3, we finish this part with the direct interpretation of
our results in the stable marriage instances.

Problem 3 sm forbidden
Input: I = (G, r, P ); a bipartite graph G, the preference ordering r of vertices, and
a set of forbidden edges P .
Question: Is there a stable matching avoiding all edges in P?

Let A ∪ B be the bipartition of the vertices. One possibility to solve sm for-
bidden would be to transform it into an instance of sf forbidden by the standard
transformation of bipartite matching to flow (directing all edges from A to B and
augmenting the graph by a super source and a super sink connected to all vertices
in A and B, respectively). Running Algorithm 2 on this instance gives a stable flow
that can be transformed into a matching in the original instance.

However, we can adapt the Algorithm 2 to directly run on the matching instance
as follows. For forbidden each edge e ∈ P we introduce a new vertex ve. We maintain
a partition of P into sets sets PA and PB , with PA = P and PB = ∅ initially. For each
e = ab ∈ PA we introduce the edge ave to the graph with ra(ave) = ra(ab)−ε, and for
each edge e = ab ∈ PB we introduce the edge bve instead with rb(bve) = rb(ab)− ε.
We then compute a stable matching in the resulting graph. If an edge ave is in the
matching for some e ∈ PA we remove a from PA and add it to PB . We then again
compute a stable matching and repeat this procedure until no edge ave is in the
matching for any e = ab ∈ PA.

If in the resulting matching the vertices ve for e ∈ P are unmatched, i.e., also no
edge bve is used for any e = ab ∈ PB , the matching is stable in the original graph
and it does not use any edge in P (due to the choice of the ranks). If not, using
the same line of argumentation as in the proof of Lemma 6 we can show that no
stable matching avoiding P exists. (Here, the bipartite structure of the graph yields
a straightforward analogue of Lemma 5. We remark that it is an open problem how
to adapt this technique to the stable roommates problem for non-bipartite graphs.)

Our algorithm for several forbidden edges runs in O(|P ||E|) time, because com-
puting stable matchings in each of the at most |P | rounds takes only O(|E|) time.
With this running time, it is somewhat slower than the best known methods [9,14]
that require only O(|E|) time, but it is a reasonable assumption that the number of
forbidden edges is small.

4.4 Forced and forbidden edges

If both forced and forbidden edges occur in the same instance, then they can be
handled by our two algorithms, applying them one after the other. tt First, all forced
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edges in the graph D are substituted by the construction discussed in Section 4.2.2,
obtaining the graph DQ where the edges in Q are replaced by artificial edges Q̄. The
following corollary is a direct implication of Theorem 3.

Corollary 1 There is a stable flow in D saturating all edges in Q and avoiding all
edges in P if and only if there is a stable flow in DQ saturating all edges in Q̄ and
avoiding all edges in P .

We now run Algorithm 2 from Section 4.3.2 on DQ. If the algorithm asserts that
no stable flow in DQ avoiding P exists, then by Corollary 1, there is no stable flow
in D saturating all edges in Q and avoiding all edges in P . If, instead, the algorithm
returns a stable flow f ′ avoiding P , we check whether it also saturates all edges in
Q̄. If this is the case, the corresponding flow in D is a stable flow avoiding P and
saturating all edges in Q. If there is an edges e ∈ Q̄ with f ′(e) < c(e), then this is
true for every stable flow in DQ by the Rural Hospital Theorem (Theorem 1) and
hence, no flow saturating all edges in Q exists in D.

The procedure described above runs in time O(|P ||E| log |V |), as DQ can be
constructed in time linear in |E| and the number of edges and vertices in DQ is
at most twice the number of edges and vertices in D, respectively (remember that
we already argued in Remark 1 that the initial transformation of the instance in
Section 4.1 does not change this asymptotic running time). We conclude the following
result:

Theorem 5 sf restricted can be solved in O(|P ||E| log |V |) time.

5 Stable multicommodity flows

In this section we turn our attention to stable multicommodity flows. We first present
the original definition of this concept by Király and Pap [27] and outline their re-
sults, including the existence of a stable solution. We then proceed to our results: a
reduction of the general model to a much simpler special case and a hardness proof
for deciding the existence of an integral solution.

5.1 Problem definition

Multicommodity networks model scenarios in which a common network is used by
several commodities. For example, roads serve personal vehicles, and also various
sorts of commercial transport vehicles. While each person and each type of goods
has its own origin and destination, they all share the same roads, which have a
capacity on all vehicles altogether and sometimes also separately on a specific type
of vehicle.

A multicommodity network (D, ci, c), 1 ≤ i ≤ n consists of a directed graph
D = (V,E), non-negative commodity capacity functions ci : E → R≥0 for all the n
commodities and a non-negative cumulative capacity function c : E → R≥0 on E.
For every commodity i, there is a source si ∈ V and a sink ti ∈ V , also referred to
as the terminals of commodity i.

Definition 3 (multicommodity flow) A set of functions f i : E → R≥0, 1 ≤ i ≤ n
is a multicommodity flow if it fulfills all of the following requirements:
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1. capacity constraints for commodities:
f i(uv) ≤ ci(uv) for all uv ∈ E and commodity i;

2. cumulative capacity constraints:
f(uv) =

∑
1≤i≤n f

i(uv) ≤ c(uv) for all uv ∈ E;
3. flow conservation:∑

uv∈E f
i(uv) =

∑
vw∈E f

i(vw) for all i : 1 ≤ i ≤ n and v ∈ V \ {si, ti}.

The concept of stability was extended to multicommodity flows by Király and
Pap [27]. A stable multicommodity flow instance I = (D, ci, c, rE , riV ), 1 ≤ i ≤ n
comprises a network (D, ci, c), 1 ≤ i ≤ n, edge preferences rE over commodities,
and vertex preferences riV , 1 ≤ i ≤ n over incident edges for commodity i. Each
edge uv ranks all commodities in a strict order of preference. Separately for every
commodity i, each non-terminal vertex ranks its incoming and also its outgoing edges
strictly with respect to commodity i. Note that these preference orderings of v can be
different for different commodities and they do not depend on the edge preferences
rE over the commodities. If edge uv prefers commodity i to commodity j, then we
write ruv(i) < ruv(j). Analogously, if vertex v prefers edge vw to vz with respect to
commodity i, then we write riv(vw) < riv(vz). We denote the flow value with respect
to commodity i by f i =

∑
u∈V f

i(siu).

Definition 4 (stable multicommodity flow) A blocking walk with respect to
commodity i of a multicommodity flow f is a directed walk W = 〈v1, v2, ..., vk〉
such that all of the following properties hold:

1. f i(vjvj+1) < ci(vjvj+1) for each edge vjvj+1, j = 1, ..., k − 1;
2. v1 = si or there is an edge v1u such that f i(v1u) > 0 and riv1

(v1v2) < riv1
(v1u);

3. vk = ti or there is an edge wvk such that f i(wvk) > 0 and rivk(vk−1vk) <
rivk(wvk);

4. if f(vjvj+1) = c(vjvj+1), then there is a commodity i′ such that f i′(vjvj+1) > 0
and rvjvj+1 (i) < rvjvj+1 (i′).

A multicommodity flow is stable, if there is no blocking walk with respect to any
commodity.

In words, a walk blocks the multicommodity flow with respect to commodity i
if both the starting and end vertices of the walk are willing to reroute some units
of flow of commodity i along it, moreover, the edges along the walk either have
free capacity for forwarding these or they are inclined to drop some units of flow
of another commodity. This last point can be seen as a clear difference to single-
commodity stable flows. Due to point 4, Definition 4 allows saturated edges to occur
in a blocking walk with respect to commodity i, provided that these edges are inclined
to trade in some of their forwarded commodities for more flow of commodity i. On
the other hand, the role of edge preferences is limited: blocking walks still must start
at vertices who are willing to reroute or send extra flow along the first edge of the
walk according to their vertex preferences with respect to commodity i.

Problem 2 smf
Input: I = (D, ci, c, rE , riV ), 1 ≤ i ≤ n ; a directed multicommodity network

(D, ci, c), 1 ≤ i ≤ n, edge preferences over commodities rE and vertex preferences
over incident edges riV , 1 ≤ i ≤ n.
Question: Is there a stable multicommodity flow?
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Theorem 6 (Király, Pap [27]) A stable multicommodity flow exists for any in-
stance, but it is PPAD-hard to find.

Király and Pap use a polyhedral version of Sperner’s lemma [26] to prove the
existence result. PPAD-hardness [31] is considered a somewhat weaker evidence of
intractability than NP-hardness that applies for problems whose decision versions
have a ’yes’ answer for sure. Note that smf is one of the very few problems in
stability [3] where a stable solution exists, but no extension of the Gale-Shapley
algorithm is known to solve it – not even a variant with exponential running time.

5.2 Problem simplification

The definition of smf involves many distinct components and constraints. It is nat-
ural to investigate how far the model can be simplified without losing any of its
generality. In particular, Király and Pap [27] pose an open question on the PPAD-
hardness of the problem if there are no individual capacities. Here we give a positive
answer to this and further intuitive questions on possible restricted cases. It turns
out that the majority of the commodity-specific input data can be dropped, as shown
by Theorem 7. This result not only simplifies the instance, but it also sheds light to
the most important characteristic of the problem, which seems to be the preference
ordering of edges over commodities.

Theorem 7 There is a polynomial-time transformation that, given an instance I of
smf, constructs an instance I ′ of smf with the following properties:

1. all commodities have the same source and sink,
2. at each vertex, the preference lists are identical for all commodities,
3. there are no commodity-specific edge capacities,

and there is a polynomially computable bijection between the stable multicommod-
ity flows of I and the stable multicommodity flows of I ′. The bijection preserves
integrality.

Proof We present the construction in three steps, each ensuring one of the properties
without destroying those established before.

1. All commodities have the same source and sink.
We introduce two new super terminals s∗ and t∗. These will substitute all commodity-
specific sources and sinks. For every commodity i and its terminals si and
ti, we introduce the edges s∗si and tit∗ with capacities ci(s∗si) = c(s∗si) =∑

e∈δ+(si) c(e) and ci(tit∗) = c(tit∗) =
∑

e∈δ−(ti) c(e). We assign arbitrary ranks
to the edges originally incident to si or ti and put s∗si and tit∗ to the end of the
preference list of si and ti for all commodities. Finally, we set s∗ and t∗ as source
and sink for every commodity i. It is easy to verify that a flow f is stable in the
original network D if and only if the natural extension of f to the added edges
is a stable flow.

2. At each vertex, the preference lists over the edges are identical for all commodities.
The main idea here is to substitute every edge by a gadget that separates different
commodities. Then the edges can be ranked in a single preference list, since each
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Fig. 8 The gadget ensuring that the preference lists of each vertex are identical for all com-
modities.

edge is designated to carry its own commodity only and for edges carrying a
specific commodity, the list on other edges is irrelevant.
For any e ∈ E, we remove e = uv from the graph and replace it by the construc-
tion shown in Fig. 8. We introduce two new vertices v′e and v′′e and add the edge
v′ev
′′
e with c(v′ev′′e ) = ci(v′ev′′e ) = c(e) for every commodity i. We also add n new

edges e′i for 1 ≤ i ≤ n from u to v′e. We set c(e′i) = ci(e′i) = ci(e), cj(e′i) = 0
for j 6= i, and ru(e′i) = |E|i + riu(e). We choose rv′e(e

′
i) arbitrarily. Likewise, we

add n new edges e′′i for 1 ≤ i ≤ n from v′′e to v. We set c(e′′i ) = ci(e′′i ) = ci(e),
cj(e′′i ) = 0 for j 6= i, and rv(e′′i ) = |E|i+ riv(e). We choose rv′′e (e′i) arbitrarily. Let
D′ be the network resulting from this modification.
If f is a stable flow in D, then we define a flow f ′ in D′ as follows. For every
commodity i and every e ∈ E, we set f ′i(e′i) = f ′i(v′ev′′e ) = f ′i(e′′i ) = f i(e) and
we set f ′j(e′i) = f ′j(e′′i ) = 0 for j 6= i. It is easy to check that f ′ is a stable flow
in D′ and that the mapping from f to f ′ is a bijection between stable flows in
D and D′.

3. There are no commodity-specific capacities.
Finally we ensure that ci(e) = c(e) for all i and all e ∈ E, which implies that the
commodity-specific capacities do not play any role. To this end, we introduce a
new commodity i∗. Each edge will be replaced by a gadget in which the capacity
on a specific commodity translates into an edge willing to carry i∗ rather than
forwarding more flow of the specific commodity.
Note that the transformation described in point 2 above already ensures that for
every edge e ∈ E one of the following is true: Either ci(e) = c(e) for all i, or
there is an i such that ci(e) = c(e) and cj(e) = 0 for all j 6= i. We only have to
deal with the latter case, that is, edge e being designated to carry commodity i
only, up to its full capacity. Let edge e and commodity i be such a pair.
We replace e = uv by the gadget He,i, depicted in Fig. 9. First, four new vertices
u′, u′′, v′ and v′′ are introduced. We add the edges uu′, u′v′, v′v, su′′, u′′v′′, v′′t,
u′′u′ and v′v′′, all with capacity c(e). For the edges su′′, u′′v′′, v′′t, u′′u′ and
v′v′′ the new commodity i∗ is on top of their preference list, followed by all other
commodities in arbitrary order. For edge u′v′ commodity i is first on the list,
i∗ is second, followed by all other commodities in arbitrary order. For the edges
uu′ and v′v, commodity i∗ is last on the list, the rank of the other commodi-
ties is arbitrary. For the vertex preferences, we set ru′′(u′′u′) < ru′′(u′′v′′) and
rv′′(v′v′′) < rv′′(u′′v′′), as well as ru′(u′′u′) < ru′(uu′) and rv′(v′v′′) < rv′(v′v).
We further set ru(uu′) = ru(e) and rv(v′v) = rv(e).
Let us denote the modified network by D̄. For a stable flow f in the original
network D, we define a flow f̄ in D̄ as follows. For edges e that were not replaced
by a gadget in D̄, we set f̄ i(e) = f i(e) for all i. For every e that was replaced
by a gadget (because ci(e) = c(e) and cj(e) = 0 for all j 6= i), we set the flow
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Fig. 9 The gadget ensuring that there are no commodity-specific capacities.

values within the gadget as follows. For the new commodity i∗ we set f̄ i(uu′) =
f̄ i(u′v′) = f̄ i(vv′) = f i(e). We set f̄ i∗(u′′u′) = f̄ i∗(u′v′) = f̄ i∗(v′v′′) = c(e) −
f i(e), so that u′v′ is saturated with its two top-ranked commodities. Furthermore
we set f̄ i∗(su′′) = f̄ i∗(v′′t) = c(e), and f̄ i∗(u′′v′′) = f i(e). All other flow values
are set to zero within the gadget (recall that f j(e) = 0 for all j 6= i).

Claim The flow f̄ is stable in D̄.

Proof We have constructed f̄ so that it respects all capacities and fulfills flow
conservation in D̄. To see that f̄ is a stable flow, assume by contradiction that
there is an f̄ -blocking walk W̄ for some commodity j.
First assume W̄ starts in the interior of a gadget, i.e., with an edge of a gadget
He,i different from uu′. We eliminate the edges of the gadget one by one to show
that this is not possible.
• W̄ cannot start with su′′, as this edge is saturated with its most preferred

commodity i∗.
• W̄ also cannot start with u′′v′′, u′v′, or v′v, as these edges are the last-choice

outgoing edges on the preference lists of u′′, u′ and v′ respectively.
• If W̄ starts at u′′u′, then j = i∗, because this is the only commodity on the

dominated edge u′′v′′. But then W̄ must end at u′ because u′v′ is saturated
with commodities it ranks at least as high as i∗. However, f̄ i∗(uu′) = 0, so
W̄ does not dominate f at u′.

• Finally, if W̄ starts with v′v′′, then j 6= i∗ because f̄ i∗(v′v) = 0. But it can
neither end at v′′ as v′′ only receives commodity i∗ from u′′v′′, nor can it
continue as v′′t is saturated with its favorite commodity.

We conclude that W̄ cannot start in the interior of a gadget. By a symmetric
argument, W̄ cannot end in the interior of a gadget, i.e., with an edge of a gadget
He,i different from v′v.
Thus, if W̄ contains any edge of a gadget He,i, it must traverse all the edges
uu′, u′v′, v′v of the gadget. As u′v′ is saturated with commodities i and i∗, we
conclude that j = i and c(e)−f i(e) = f̄ i

∗(u′v′) > 0. We replace all such segments
uu′, u′v′, v′v from any traversed gadget He,i with the corresponding edge e and
get a walk W in D. Because f i(e) < c(e) for all inserted edges, W is a blocking
walk for f , contradicting the stability of f . �

It is easy to see that the mapping defined by φ(f) = f̄ is injective, and as argued
above, preserves stability. We now show that it is indeed a bijection from stable
flows in D to stable flows in D̄.
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Claim For any stable flow y in D̄, there is a stable flow f in D with φ(f) = y.

Proof Let y be a stable flow in D̄. Consider a gadget He,i. By contradiction
assume yi∗(uu′) > 0. Then yi

∗(su′′) = yi
∗(u′′u′) = c(e) as otherwise either

〈s, u′′, u〉 or 〈u′′, u′〉 is a blocking walk for commodity i∗. But then yi
∗(uu′) +

yi
∗(u′′u′) > c(e) ≥ yi

∗(u′v′), contradicting flow conservation. Hence yi∗(uu′) =
0 and, by a symmetric argument, yi∗(v′v) = 0. As no flow of commodity i∗

enters or leaves He,i, and the path 〈s, u′′, v′′, t〉 is not blocking, we conclude
that yi∗(su′′) = yi

∗(v′′t) = c(e). By flow conservation, yi∗(u′′u′) = yi
∗(u′v′) =

yi
∗(v′v′′) = c(e)− yi∗(u′′v′′). Since the path 〈u′′, u′, v′, v′′〉 is not blocking and i

is the only commodity that comes before i∗ on an edge of that path, we conclude
that yi∗(u′v′)+yi(u′v′) = c(e). Hence, by flow conservation, yi(uu′) = yi(u′v′) =
yi(v′v) = c(e)− yi∗(v′v′′), and yj(e′) = 0 for all j /∈ {i, i∗} and all edges e′ in the
gadget He,i.
Now define f by setting f i(e) = yi(u′v′) for every gadget He,i in D̄ and f i(e) =
yi(e) for all edges in E∩ED̄ and all commodities i. Using the above observations,
it is easy to check that φ(f) = y and that f fulfills flow conservation and respects
all capacity constraints (in particular f j(e) = yj(u′v′) = 0 for all j 6= i at any
gadget He,i). To see that f is a stable flow, assume by contradiction that there
is a blocking walk W for f and commodity i. We obtain a walk W̄ in D̄ by
replacing the edges of W with the corresponding gadgets He,i. At any such edge,
f i(e) < c(e) because W is blocking with respect to i and i is the only commodity
that can traverse e. Hence, yi(uu′) = yi(u′v′) = yi(v′v) < c(e). Also, as the
preference lists of non-gadget vertices are the same in D and D̄, W̄ is indeed a
blocking walk for y contradicting its stability. �

It is easy to check that all transformations described above can be carried out in
polynomial time and that integral stable flows in the original graph correspond to
integral stable flows in the transformed graph. ut

5.3 Integral multicommodity stable flows

First we modify Definition 2 so that it describes the integral version of smf. Then
we carefully analyze an example network with no integral solution. This network is
used in the last part of this subsection, in which we present our hardness proof.

Problem 3 ismf
Input: I = (D, ci, c, rE , riV ), 1 ≤ i ≤ n ; a directed multicommodity network

(D, ci, c), 1 ≤ i ≤ n, edge preferences over commodities rE and vertex preferences
over incident edges riV , 1 ≤ i ≤ n.
Question: Is there a stable multicommodity flow with integral f i(uv) values for all
uv ∈ E and 1 ≤ i ≤ n?

Király and Pap [27] give, for every integer N , an example instance with N com-
modities and N vertices, where no stable multicommodity flow exists with denom-
inators at most N . Here we present a small and slightly modified version of that
instance as an example and later use it as a gadget in our hardness proof.

Example 4 (ISMF instance with no solution) Consider the network depicted
in Fig. 10. We consider two variants of an ismf instance in this network. In both
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Fig. 10 The edge preferences are marked with colored labels in the middle of edges, while riV
is black and closer to the vertices. For all edges, c = 1. The purple edges of the triangle can
forward two commodities, while the bent black edges can carry only one commodity.

cases, u is the only terminal vertex in the graph, but the variants differ in that either
3 or only 2 commodities are present:

1. s1 = s2 = s3 = t1 = t2 = t3 = u (see Lemma 9) and
2. ∃i ∈ {1, 2, 3} : {si, ti} = ∅ (see Lemma 10).

We will show below that in the first case, the instance admits no integer multicom-
modity flow, whereas such a flow exists in the second case.

The edge capacities with respect to commodities are 1 for the commodities that
appear in rE for the specific edge and 0 for the remaining commodities. All edges have
cumulative capacity 1. The vertex preferences are the same for all commodities: v1, v2
and v3 are inclined to receive and send the flow along the edges between themselves
rather than trading with u. Each commodity i has a unique feasible cycle Ci through
u and it is easy to see that due to the choice of the ci functions, no other cycle or
terminal-terminal path exists in the network.

• C1 = 〈u, v1, v2, v3, u〉
• C2 = 〈u, v2, v3, v1, u〉
• C3 = 〈u, v3, v1, v2, u〉

Lemma 9 If s1 = s2 = s3 = t1 = t2 = t3 = u, then there is no integer stable
multicommodity flow.

Proof Assume that there is an integral stable multicommodity flow f in the instance.
The empty flow cannot be f , because there is a cycle running through u for each
commodity and such cycles block the empty flow. Without loss of generality we can
now assume that C1 is saturated by commodity 1:

f1(uv1) = f1(v1v2) = f1(v2v3) = f1(v3u) = 1,
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while all other flow values must be 0 due to commodity capacity constraints on edges.
This flow is blocked by commodity 3 on the cycle 〈u, v3, v1, v2, u〉. It is easy to see
that analogous arguments work for C2 and C3 as well. Thus, no integer stable flow
exists in the graph. ut

Lemma 10 If u is a terminal for at most two out of the three commodities, then an
integer stable multicommodity flow exists.

Proof Let us now investigate the same instance with a slight modification: s1 = s2 =
t1 = t2 = u, but {s3, t3} = ∅. Then, the following integer flow is stable:

f1(uv1) = f1(v1v2) = f1(v2v3) = f1(v3u) = 1.

A blocking walk with respect to commodity 1 cannot exist, because all edges that can
carry commodity 1 also carry it to their upper capacity. Commodity 2 could block
along C2, but edge v2v3 is saturated with its most preferred commodity. It is trivial
that the same flow remains stable if we set s1 = t1 = u and {s2, t2} = {s3, t3} = ∅.
If {s1, t1} = {s2, t2} = {s3, t3} = ∅, then the empty flow is stable. ut

To sum up the established results about Example 4: the instance admits an
integer stable flow if and only if u has at most two commodities. This argument will
help us prove Claim 5.3 later in our hardness proof.

Theorem 8 Deciding whether ismf has a solution is NP-complete. This holds even
if all commodities share the same set of terminal vertices, all vertices have the same
preferences with respect to all commodities, and edges do not have commodity-specific
capacities (but edges have preferences over different commodities).

Proof In the following, we show NP-completeness for the general version ismf.
By Theorem 7, this also implies NP-completeness for ismf restricted to instances
with identical terminal sets, commodity-independent vertex preferences, and with-
out commodity-specific edge capacities.

Testing whether a feasible integral multicommodity flow is stable can be done in
polynomial time, as pointed out also in [27]. It is sufficient to check the existence of
edges fulfilling points 2 and 3 in Definition 4 for every commodity and then execute
a breadth-first search for every pair of vertices as v1 and vk vertices of the potential
blocking walk. Thus ismf is in NP.

We now describe how to construct an ismf instance I ′ from any given instance I
of 3-sat with n variables and m clauses, also illustrated in Fig. 11. For each variable
i in the Boolean formula we create 2 commodities, i and ī, corresponding to truth
values true and false. To simplify notation, we say that ¯̄i = i. Every clause in the
formula is assigned a clause gadget, identical to the instance presented in Example 4,
but with u being a non-terminal for all commodities. The three relevant commodities
are the commodities corresponding to the negations of the three literals appearing
in the clause. The preferences of u in such a gadget are chosen so that the edges of
the gadget are preferred to edges outside of the gadget. The order of the edges at u
inside the gadget is irrelevant due to the commodity-specific capacity constraints.

All commodities share the same terminals s and t. There is a long path run-
ning from s to t, consisting of three segments. The first and the third segments are
two disjoint copies of the same variable gadget, while the second segment consists
of the u-vertices of the m clause gadgets. A variable gadget is defined on vertices
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Fig. 11 A variable gadget and the entire construction for ismf.

{a, b1, b2, ..., bn, d}, where edges with c = 1 and unrestricted commodity capacities
run from a to each bi and from each bi to d. Edge abi ranks commodity i best, ī
second, and the rest in arbitrary order, while bid ranks commodity ī best, i second,
and the rest in arbitrary order. The vertex preferences of a and d are also arbitrary.
These three segments are chained together so that the only edge of s ends at a′ in
the first variable gadget, d′ in the same gadget is connected to the first u vertex
of the second segment, the last u of the same segment is adjacent to a′′ in the sec-
ond variable gadget and d′′ in this gadget has an edge running to t. For the edges
connecting the segments and the u-vertices of clause gadgets with each other and
with the terminals, the capacities are set to ci = c = n for all 1 ≤ i ≤ n, and edge
preferences are chosen arbitrarily.

Having described the full construction we now prove in Lemmas 11 and 12 the
equivalence between the existence of an integral stable multicommodity flow in I ′
and a truth assignment in I.

Lemma 11 If an integral stable multicommodity flow f exists in I ′, then there is a
truth assignment in I.

Proof As defined after Definition 3, f i denotes the total flow value with respect to
commodity i.

Claim For every commodity i, f i + f ī = 1.

Proof. If f i(abi) + f ī(abi) < 1 for some commodity i and edge abi of a variable
gadget, then there is an s-t path through bi, where edges are either unsaturated or
they prefer both i and ī to the commodities they carry. This path blocks f . Since
c(abi) = 1 for every 1 ≤ i ≤ n, f i(abi) + f ī(abi) = 1, thus edges abi and bid of the
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variable gadgets are saturated with commodities i and ī. This already implies that
f i + f ī = 1 for every 1 ≤ i ≤ n. �

This claim allows us to assign exactly one truth value to each variable: xi is true
if f i = 1 and it is false if f ī = 1.

Claim For every clause C = xi∨xj∨xk, where the variables in C can be in a negated
or unnegated form, f ī + f j̄ + f k̄ ≤ 2, for every 1 ≤ i, j, k ≤ n.

Proof. Since u prefers sending flow along its edges in the gadget over forwarding it
to the next u vertex on the path, u can be seen as a terminal vertex with respect to
the commodities reaching it. As we have shown in Example 4, if there is a solution
to ismf, then at most two of the three relevant commodities are present at u. This
is why we decided to take the negated version of each literal in the clause: at most
two literals are false in each clause. � ut

Lemma 12 If there is a truth assignment in I, then there is an integral stable
multicommodity flow f in I ′.

Proof. The constructed flow to the given truth assignment is the following. For every
variable i, f i = 1, f ī = 0 if i is true, and f i = 0, f ī = 1 otherwise. This rule obviously
determines f on all edges not belonging to clause gadgets. Since we started with a
valid truth assignment, each clause gadget has at most two out of the three relevant
commodities i1, i2 and i3 reaching u. Commodity ij corresponds to commodity j in
Example 4. If commodity ij , j ∈ {1, 2, 3} is not present at u, then we send commodity
ij+1 (modulo 3) along cycle Cij+1 and set all other flow values in the gadget to 0.
If two commodities are missing, we send the third along its cycle. If no relevant
commodity reaches the gadget, then we leave all edges of the gadget empty.

We need to show now that f is an integral stable flow. Feasibility and integrality
clearly follows from the construction. Since the a-d paths in the two variable gad-
gets are saturated and one of them carries its most preferred commodity to its full
cumulative capacity, no blocking walk W leaves s or reaches t, in fact, W must run
between d′ and a′′.

Having eliminated the terminals as starting or end vertices of W , we also elimi-
nated the possibility that a commodity i with f i = 0 blocks f . Now we investigate
which edge can play the role of the starting edge of a blocking walk W .

• Blocking walks cannot start or end with edges outside of clause gadgets, because
these edges are the least preferred edges of both of their end vertices.

• Assume now without loss of generality that the first edge of W is uv1 in some
clause gadget with relevant commodities i1, i2 and i3, in this order. Then, f i1 = 1,
but commodity i1 was not chosen to fill C1. According to our rules above, the
only reason for it is that commodity i2 is not present at u and commodity i3
saturates C3. But the only edge that could be the second edge in W is then v1v2
in the gadget and it is saturated by its best ranked commodity i3.

• The last possibility to check is whether W can start with an edge of a clause
gadget not incident to u. Without loss of generality let us assume this edge
is v1v2, but it is the only outgoing edge of v1, thus it cannot fulfill point 2 of
Definition 4, because each commodity has exactly one outgoing edge at each of
vertices v1, v2 and v3. �

ut
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6 Conclusion and open problems

In this paper we presented four results:

1. a polynomial version of the Gale-Shapley algorithm for stable flows;
2. a direct algorithm for stable flows with restricted intervals;
3. a simplification of the stable multicommodity flow problem;
4. the NP-completeness of the integral stable multicommodity flow problem.

A natural open question regarding the problem of stable flows with restricted
edges presented in Section 4 is that of approximation. The approximation concept of
minimum number of blocking edges or minimum number of violated restrictions [6]
can be translated to sf restricted. Even if there is no stable flow saturating all
forced edges or avoiding all forbidden edges, how can stability be relaxed such that
all edge conditions are fulfilled? Or the other way round: how many edge conditions
must be violated by stable flows?

The big open question of Section 5 is clearly algorithms for finding a (possibly
fractional) stable multicommodity flow. Even though Theorem 6 states that it is
PPAD-hard to find a solution in the general case, it is natural to ask whether this
complexity changes when restricting the number of commodities, the maximum de-
gree, or other parameters of the instance. Since the Gale-Shapley algorithm typically
executes steps with integer values if the input is integral and we showed the hard-
ness of ismf, it is likely that a novel approach is needed. Linear programming is
a promising direction, but constructing a description of the smf polytope seems to
be an extremely challenging task. At the moment, the most elaborate structure for
which a linear program is known is many-to-many stable matchings [12].

Finally, all stable flow models discussed in this paper can be combined with other
common notions in stability or flows, such as ties in preference lists, edge weights,
unsplittable flows, and so on.

Acknowledgment We thank Tamás Fleiner for discussions on Lemma 3.
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