
Cseh, Ágnes; Skutella, Martin

Working Paper

Paths to stable allocations

IEHAS Discussion Papers, No. MT-DP - 2018/20

Provided in Cooperation with:
Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences

Suggested Citation: Cseh, Ágnes; Skutella, Martin (2018) : Paths to stable allocations, IEHAS
Discussion Papers, No. MT-DP - 2018/20, Hungarian Academy of Sciences, Institute of Economics,
Budapest

This Version is available at:
https://hdl.handle.net/10419/222033

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/222033
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

MŰHELYTANULMÁNYOK DISCUSSION PAPERS

INSTITUTE OF ECONOMICS, CENTRE FOR ECONOMIC AND REGIONAL STUDIES,

HUNGARIAN ACADEMY OF SCIENCES - BUDAPEST, 2018

MT-DP – 2018/20

Paths to stable allocations

ÁGNES CSEH – MARTIN SKUTELLA

2

Discussion papers

MT-DP – 2018/20

Institute of Economics, Centre for Economic and Regional Studies,

Hungarian Academy of Sciences

KTI/IE Discussion Papers are circulated to promote discussion and provoque comments.

Any references to discussion papers should clearly state that the paper is preliminary.

Materials published in this series may subject to further publication.

Paths to stable allocations

Authors:

Ágnes Cseh

research fellow
Hungarian Academy of Sciences, Centre for Economic and Regional Studies,

Institute of Economics
E-mail: cseh.agnes@krtk.mta.hu

Martin Skutella
Einstein-Professor für Mathematik und Informatik

TU Berlin, Institut für Mathematik, Germany
E-mail: skutella@math.tu-berlin.de

August 2018

3

Paths to stable allocations

Ágnes Cseh – Martin Skutella

Abstract

The stable allocation problem is one of the broadest extensions of the well-known stable

marriage problem. In an allocation problem, edges of a bipartite graph have capacities and

vertices have quotas to fill. Here we investigate the case of uncoordinated processes in stable

allocation instances. In this setting, a feasible allocation is given and the aim is to reach a

stable allocation by raising the value of the allocation along blocking edges and reducing it on

worse edges if needed. Do such myopic changes lead to a stable solution?

In our present work, we analyze both better and best response dynamics from an algorithmic

point of view. With the help of two deterministic algorithms we show that random

procedures reach a stable solution with probability one for all rational input data in both

cases. Surprisingly, while there is a polynomial path to stability when better response

strategies are played (even for irrational input data), the more intuitive best response steps

may require exponential time. We also study the special case of correlated markets. There,

random best response strategies lead to a stable allocation in expected polynomial time.

Keywords: stable matching, stable allocation, paths to stability, best response strategy,

better response strategy, correlated market

JEL Classification: C63, C78

Acknowledgement:

A short version of this paper has appeared in the proceedings of SAGT 2014, the 7th

International Symposium on Algorithmic Game Theory. Cseh was supported by OTKA grant

K128611, the Hungarian Academy of Sciences (KEP-6/2017), its Momentum Programme

(LP2016-3/2016) and its János Bolyai Research Fellowship.

4

Stabil allokációkhoz vezető utak

Cseh Ágnes – Martin Skutella

Összefoglaló

A stabil allokációprobléma a stabil párosításprobléma egy általánosítása.

Egy allokációproblémában az adott páros gráf élein kapacitások, csúcsain pedig kvóták

találhatók. Cikkünkben a központi koordináció nélküli folyamatokat vizsgáljuk. Ebben a

kérdéskörben egy megengedett allokáció adott és a cél az, hogy blokkoló élek kielégítésével

stabilizáljuk ezt az allokációt. Fő kérdésünk az, hogy ilyen változásokkal eljuthatunk-e egy

valóban stabil megoldáshoz.

Mind a jobb, mind a legjobb lépések módszerét tanulmányozzuk cikkünkben.

Két determinisztikus algoritmus segítségével megmutatjuk, hogy egy valószínűséggel ér el

mindkét fent említett folyamat stabil megoldást. Meglepő módon a jobb lépések módszerének

esetében létezik polinomiális hosszú út a stabilitáshoz, míg a kézenfekvőbb legjobb lépések

módszere exponenciálisan hosszú is lehet. Tanulmányozzuk az összefüggő piacok esetét is,

ahol várható polinomiális időben konvergál stabil megoldáshoz a legjobb lépések módszere.

Tárgyszavak: stabil párosítás, stabil allokáció, út a stabilitáshoz, legjobb lépések

módszere, jobb lépések módszere, összefüggő piacok

JEL: C63, C78

Paths to stable allocations

Ágnes Cseh · Martin Skutella

Abstract The stable allocation problem is one of the broadest extensions of
the well-known stable marriage problem. In an allocation problem, edges of
a bipartite graph have capacities and vertices have quotas to fill. Here we in-
vestigate the case of uncoordinated processes in stable allocation instances. In
this setting, a feasible allocation is given and the aim is to reach a stable allo-
cation by raising the value of the allocation along blocking edges and reducing
it on worse edges if needed. Do such myopic changes lead to a stable solution?

In our present work, we analyze both better and best response dynamics
from an algorithmic point of view. With the help of two deterministic algo-
rithms we show that random procedures reach a stable solution with proba-
bility one for all rational input data in both cases. Surprisingly, while there
is a polynomial path to stability when better response strategies are played
(even for irrational input data), the more intuitive best response steps may
require exponential time. We also study the special case of correlated markets.
There, random best response strategies lead to a stable allocation in expected
polynomial time.

Keywords stable matching · stable allocation · paths to stability · best
response strategy · better response strategy · correlated market

A short version of this paper has appeared in the proceedings of SAGT 2014, the 7th In-
ternational Symposium on Algorithmic Game Theory. Cseh was supported by OTKA grant
K128611, the Hungarian Academy of Sciences (KEP-6/2017), its Momentum Programme
(LP2016-3/2016) and its János Bolyai Research Fellowship.

Á. Cseh
Hungarian Academy of Sciences, Centre for Economic and Regional Studies, Institute of
Economics, Tóth Kálmán u. 4., 1097 Budapest, Hungary
Tel.: +36-1-224-6700
E-mail: cseh.agnes@krtk.mta.hu

M. Skutella
TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
E-mail: skutella@math.tu-berlin.de

2 Ágnes Cseh, Martin Skutella

1 Introduction

Capacitated matching markets without prices model various real-life problems
such as, e. g., employee placement, task scheduling or admission procedures.
Research on those markets focuses on maximizing social welfare instead of
profit. Stability is probably the most widely used optimality criterion in that
case.

Finding equilibria in markets that lack a central authority of control is an-
other widely studied, challenging task. Besides modeling uncoordinated mar-
kets such as third-generation (3G) wireless data networks [11] and ride-sharing
systems [18], selfish and uncontrolled agents can also represent modifications
in coordinated markets, e. g., the arrival of a new agent or slightly changed
preferences [4]. In our present work, those two topics are combined: we study
uncoordinated capacitated matching markets.

1.1 Stability in matching markets

The theory of stable matchings has been investigated for decades. Gale and
Shapley [10] introduced the notion of stability on their well-known stable mar-
riage problem. An instance of this problem consists of a bipartite graph where
the two vertex groups symbolize men and women, respectively. Each agent
has a preference list of their acquaintances of the opposite gender. A set of
marriages (a matching) is stable, if no pair blocks it. A blocking pair is an un-
married pair so that the man is single or he prefers the woman to his current
wife and vice versa, the woman is single or she prefers the man to her current
husband. The Gale-Shapley algorithm was the first proof for the existence of
stable matchings.

A natural extension of matching problems arises when capacities are in-
troduced. The stable allocation problem is defined in a bipartite graph with
edge capacities and quotas on vertices. The exact problem formulation and a
detailed example are provided in Section 2.

1.2 Better and best response steps in uncoordinated markets

Central planning is needed in order to produce a stable solution with the Gale-
Shapley algorithm. In many real-life situations, however, such a coordination is
not available. Yet stability is a naturally desirable property of uncoordinated
markets. A stable matching seems to be the best reachable solution for all
agents, because they cannot find any partnership that could improve their
own position. In uncoordinated markets, agents play their selfish strategy,
trying to reach the best possible solution.

A path to stability is a series of myopic operations, each of which can occur
without any central coordination. The intuitive picture of a myopic operation
is the following. If a man and a woman block a marriage scheme, then they

Paths to stable allocations 3

j3j2j1

m1 m2 m3

3

1

1

2

2

1

1

3

2

1

3

2

2

2

3

3

1

3

Fig. 1 A stable marriage instance and a cycle of best response blocking edges. Starting
with the unstable matching (j2m2, j3m3), and saturating the blocking edges j1m3, j2m1,
j3m1, j1m2, j2m2, j3m3 in this order leads back to the same unstable matching. In each
round, the chosen blocking edge is the best blocking edge of the corresponding vertex ji.

both agree to form a couple together, even if they divorce their current partners
to that end. The recently divorced agents may induce new blocking pairs. In
a path to stability, such changes are made until a stable matching is reached.

The study of uncoordinated matching processes has a long history. In
the case of one-to-one matchings, two different concepts have been studied:
better and best response dynamics. One of the agent groups is chosen to be
the active side. These vertices submit proposals to the passive vertices. Ac-
cording to best response dynamics, the best blocking edge of an active vertex
is chosen to perform myopic changes along. In better response dynamics, any
blocking edge can play this role. Observe that the Gale-Shapley algorithm it-
self can be seen as series of best response steps, with men being the active
side.

The core questions regarding uncoordinated processes rise naturally. Can a
series of myopic changes result in returning back to the same unstable match-
ing? If yes, is there a way to reach a stable solution? How do random procedures
behave? The first question about uncoordinated two-sided matching markets
was brought up by Knuth [15] in 1976. He also gives an example of a match-
ing problem where better response dynamics cycle. More than a decade later,
Roth and Vande Vate [17] came up with the next result on the topic. They
show that random better response dynamics converge to a stable matching
with probability one. Analogous results for best response dynamics were pub-
lished in 2011 by Ackermann et al. [2]. They also show an instance in which
best response dynamics cycle (see Figure 1), give a deterministic algorithm for
reaching a stable solution in polynomial time and prove that the convergence
time is exponential in both random cases.

Besides these works on the classical stable marriage problem, there is a
number of papers investigating variants of it from the paths-to-stability point
of view. For the stable roommates problem, the non-bipartite version of the
stable marriage problem, it is known that there is a series of myopic operations

4 Ágnes Cseh, Martin Skutella

that leads to a stable solution, if one exists [7]. A path to stability also exists in
the bipartite matching case with payments where flexible salaries and produc-
tivity are taken into account [5]. In the hospitals/residents assignment problem
with couples, the existence of such a path is only guaranteed if the preferences
are weakly responsive [14]. Weak responsiveness ensures consistence between
the preferences of each partner and the couple’s preference list on pairs of
hospitals. In many-to-many markets, supposing substitutable preferences on
one side and responsive preferences on the other side, a path to stability can
be found [16]. Both substitutable and responsive preferences are defined in
instances where preferences are given on sets of vertices. In the case of one-to-
one bipartite matching markets, closely related optimality concepts, such as
socially stable, locally stable, friendship matching, and considerate matching
have also been investigated in uncoordinated markets [13]. Although many
variants of the stable marriage problem have been studied, no paper discusses
the case of allocations (instead of matchings or b-matchings), where edges are
capacitated, and thus, might be partially contained in stable solutions. Our
present work makes an attempt to fill this gap in the literature.

Structure of the paper In the next section, the essential theoretical basis is pro-
vided: besides stable allocations, better and best response modifications are
also defined formally. In Section 3, allocation instances with characteristic pref-
erence profiles are investigated. We show that although random best response
processes generally run in exponential time, in the case of correlated markets,
polynomial convergence is expected. Better and best response dynamics in
the general case on rational input are extensively studied in Section 4. We
describe two deterministic algorithms that generalize the result of Ackermann
et al. on one-to-one matching markets to stable allocation instances and also
show algorithmic differences between better and best response strategies. In
the case of random procedures, convergence is shown for both strategies. Sec-
tion 5 focuses on running time efficiency and contains our main result. There,
a better response algorithm is presented that terminates with a stable solution
in O(|V |2|E|) time in a graph with |V | vertices and |E| edges, even for irra-
tional input data. A counterexample proves that such an acceleration cannot
be reached for the best response dynamics. Our contribution is summarized
in Table 1.

shortest path to stability random path to stability
best response dynamics exponential length converges with probability 1
better response dynamics polynomial length converges with probability 1

Table 1 Our results for a shortest and a random path to a stable allocation in instances
with rational input.

Applied to a matching instance, our best-response algorithm (in Section 4)
performs the same steps as the two-phase best response algorithm of Acker-
mann et al. Our better-response variant can also be interpreted as an extended

Paths to stable allocations 5

version of the above mentioned method. The only difference is that while our
first phase is better response, while theirs is best response. However, this seems
to be a minor difference, as their proof is also valid for a better response
first phase, and our proof still holds if only best blocking edges are chosen.
Moreover, stable allocations might be the most complex model in which this
approach brings results. The most intuitive extension of Ackermann et al.’s al-
gorithm for stable flows, defined by Fleiner [8], does not even result in feasible
myopic changes.

On the other hand, our accelerated better-response algorithm (in Section 5)
generalizes another known method, the polynomial algorithm that finds a sta-
ble allocation. Applied directly to an instance with empty allocation, our accel-
erated Phase II performs augmentations like the augmenting path algorithms
of Baïou and Balinski [3], and of Dean and Munshi [6]. Since our acceler-
ated Phase II is a slightly modified variant of our first algorithm, our solution
concept offers a bridge between two known methods for solving two different
problems, namely the paths to stability problem in stable marriage instances
and the stable allocation problem, providing a solution to both of them.

2 Preliminaries

In this section we define stable allocations formally, and then proceed to the
description of better and best response myopic changes in stable allocation
instances.

2.1 Stable allocations

The stable marriage problem has been extended in several directions. A great
deal of research effort has been spent on many-to-one and many-to-many
matchings, sometimes also referred to as b-matchings. Their extension is called
the stable allocation problem, also known as the ordinal transportation prob-
lem, since it is a direct analog of the classical cost-based transportation prob-
lem. In this problem, the vertices of a bipartite graph G = (V,E) have quo-
tas q : V (G) → R≥0, while edges have capacities c : E(G) → R≥0. Both
functions are real-valued, unlike the respective functions in many-to-many in-
stances, where capacities are unit, while quotas are integer-valued. Therefore,
allocations can model more complex problems, for example where goods can
be divided unequally between agents. In order to avoid confusion caused by
terms associated with the marriage model, we call the vertices of the first side
jobs and the remaining vertices machines. For each machine, its quota is the
maximal time spent working. A job’s quota is the total time that machines
must spend on the job in order to complete it. In addition, machines have a
limit on the time spent on a specific job; this is modeled by edge capacities.
A feasible allocation is a set of contracts where no machine is overloaded and
no job is worked on after it has been completed.

6 Ágnes Cseh, Martin Skutella

Definition 1 (allocation) Function x : E(G) → R≥0 is called an allocation
if for every edge e ∈ E(G) and every vertex v ∈ V (G):

1. x(e) ≤ c(e);
2. x(v) :=

∑
e∈δ(v) x(e) ≤ q(v), where δ(v) is the set of edges incident to v.

For an edge e with x(e) > 0 we say that e is in x. To define stability
we need preference lists as well. All vertices rank their incident edges strictly.
Vertex v prefers uv to wv, if uv is ranked better on v’s preference list than
wv: rankv(uv) < rankv(wv). In this case we say that uv dominates wv at v.
A stable allocation instance consists of four elements: (G, q, c, O), where O is
the set of all preference lists.

Definition 2 (blocking edge, stable allocation) An allocation x is blocked
by an edge jm if all of the following properties hold:

1. x(jm) < c(jm);
2. x(j) < q(j) or j prefers jm to its worst edge with positive value in x;
3. x(m) < q(m) or m prefers jm to its worst edge with positive value in x.

A feasible allocation is stable if no edge blocks it.

In other words, edge jm is blocking if it is unsaturated and neither end
vertices of jm has filled up its quota with at least as good edges as jm. If an
unsaturated edge fulfills the second criterion, then we say that it dominates x
at j. Similarly, if the third criterion is fulfilled for an unsaturated edge, then
we talk about an edge dominating x at m.

Example 1 Figure 2 illustrates a stable allocation instance. We use the same
example throughout the entire paper to demonstrate different notions defined
here. For the sake of simplicity, all edge capacities are unit. The numbers
within parenthesis over and under the vertices represent the quota function.
The preferences can be seen on the edges: the more preferred edges carry a
better rank, i.e., a smaller number. For example, machine m1’s most preferred
job is j2, its second choice is j3, while its least preferred, but still acceptable job
is j1. The function x = 1 on the colored edges and x = 0 on the remaining edges
is a feasible allocation, since no quota or capacity constraint is violated. The
unique blocking edge is easy to find: j3m1 blocks x, because it is unsaturated
and both end vertices have free quota.

Baïou and Balinski [3] prove that stable allocations always exist. They also
give two algorithms for finding them, an extended version of the Gale-Shapley
algorithm and an inductive algorithm. The worst case running time of the first
algorithm is exponential, but the latter one runs in strongly polynomial time.
Dean and Munshi [6] speed up the polynomial algorithm using sophisticated
data structures: their version runs in O(|E| log |V |) time for any real-valued
instance.

Paths to stable allocations 7

j3 (1.9) j4 (1)j2 (1)j1 (1)

m1 (2.8) m2 (1) m3 (1)

2

2

1

2

3

1

1

2

2

113

Fig. 2 A stable allocation instance with unit capacities and a feasible, but unstable alloca-
tion, marked by colored edges.

2.2 Better and best response steps for allocations

First, we provide some basic definitions and notations we will use throughout
the entire paper. A feasible, but possibly unstable allocation x is given at the
beginning, thus the instance can be written as I= (G, q, c, O, x). In our in-
stance I, jobs form the active side J , while machines M are passive players.
For the sake of simplicity we denote the residual capacity c(jm) − x(jm) of
edge jm by x̄(jm) and similarly, the residual quota q(v) − x(v) of vertex v
by x̄(v). The definition of better and best response strategies is not as straight-
forward as it is in the matching instance with unit quotas and capacities. Here,
the possible outcomes for a player are ordered lexicographically. We say that
machine m prefers allocation x1 to allocation x2 if x1(j′m) > x2(j′m) the for
the best ranked edge j′m among edges with x1(jm) 6= x2(jm).

Although lexicographic order seems to be a natural choice, it is somewhat
against the convention when discussing stable allocations. In most cases, when
comparing the position of an agent in two stable allocations, the so called min-
min criterion is used [3]. According to this rule, the agent prefers the allocation
in which its worst edge in x is ranked better. In order to make use of such
an ordering relation, each vertex has to have the same allocation value in
all stable solutions. Therefore here, when studying and comparing arbitrary
feasible allocations, this concept proves to be counter-intuitive.

An active player j having some blocking edges is chosen to perform a best
response step on the current allocation x. Amongst j’s blocking edges, let jm
be the one ranked best on j’s preference list. The aim of player j is to reach
its best possible lexicographic position via increasing x(jm). To this end, j is
ready to allocate all its remaining quota x̄(j) to jm, moreover, it may reassign
allocation from all edges worse than jm to jm. Thus, j aims to increase x(jm)
by x̄(j)+x(edges dominated by jm at j). To preserve feasibility, x(jm) is not
increased by more than x̄(jm). The passive player m agrees to increase x(jm)
as long as it does not lose allocation on better edges. This constraint gives the
third upper bound, x̄(m) + x(edges dominated by jm at m). To summarize
this, in a best response step x(jm) is increased by the following amount.

8 Ágnes Cseh, Martin Skutella

A := min{x̄(j) + x(edges dominated by jm at j), x̄(jm),
x̄(m) + x(edges dominated by jm at m)}

Once this A and the new x(jm) is determined, j and m fill their remaining
quota, then refuse allocation on their worst allocated edges, until x becomes
feasible.

Better response steps are much less complicated to describe. The chosen
active vertex j increases the allocation on an arbitrary blocking edge jm. Both
j and m are allowed to refuse allocation on worse edges than jm. This rule
guarantees that j’s lexicographic situation improves and that the change is
myopic for both vertices. By definition, best response steps are always better
response steps at the same time. The execution of a single better response step
consists of modifications on at most |δ(j)|+ |δ(m)| − 1 ≤ |V | − 1 edges.

Example 2 In our example above, j3 and m1 mutually agree to allocate value
1 to j3m1. If best response strategies are played, m1 refuses 0.2 amount of
allocation from j1m1, while j3 reduces x(j3m2) to 0.9. Through this step,
they induce blocking elsewhere in G: now j4m2 blocks the new x, because m2
lost some allocation. Thus, another myopic change would now be to increase
x(j4m2), and so on. A better response step of the same vertex j3 would be
for example to increase x(j3m1) to 1, while refusing j3m2 entirely. To keep
feasibility, m1 has to refuse 0.2 amount of allocation on j1m1.

3 Correlated markets

Before tackling the general paths to stability problem, we first restrict ourselves
to instances with characteristic preference profiles. In this section, we study
the case of stable allocations on an uncoordinated market with correlated
preferences. Later we will prove that the convergence time of random best and
better response strategies is exponential in general instances. By contrast, here
we show that on correlated markets, random best response strategies terminate
in expected polynomial time, even in the presence of irrational data. At the end
of this section we also elaborate on the behavior of better response dynamics.

Definition 3 (correlated market) An allocation instance is correlated, if
there is a function f : E(G)→ N such that rankv(uv) < rankv(wv) if f(uv) <
f(wv) for every u, v, w ∈ V (G) and no two edges have the same f value.

Correlated markets are also called instances with globally ranked pairs or
acyclic markets. The latter property means that there is no cycle of inci-
dent edges such that every edge is preferred to the previous one by their
common vertex. Abraham et al. [1] show that acyclic markets are correlated
and vice versa. The instance depicted in Figure 2 is not correlated: edges
(j3m3, j4m3, j4m2, j3m2) form a preference cycle. Ackermann et al. [2] were

Paths to stable allocations 9

the first to prove that random better and best response dynamics reach a
stable matching on correlated markets in expected polynomial time. Using a
similar argumentation, we extend their result to allocation instances.

Theorem 1 In correlated allocation instances with real-valued input data,
random best response dynamics reach a stable solution in expected time O(|V |2|E|).

Proof Before studying paths to stability we show that in correlated instances,
the set of stable solutions has cardinality one. There is an absolute minimum
of f(jm). The single edge jm with this minimal f value must be in all stable
allocations with value min {c(jm), q(j), q(m)}, otherwise it is blocking. Fixing
x on jm and decreasing the quotas of j and m respectively leads to another
correlated allocation instance. In this instance, the stable solutions are ex-
actly the stable solutions of the original instance without jm. This leads to
an inductive algorithm that proves that there is a unique stable allocation
on correlated markets. We now turn to showing that random best response
dynamics reach this unique solution in expected polynomial time.

Whenever a job j with an unsaturated edge jm of an absolute mini-
mal f(jm) is chosen to submit an offer, its best response strategy is to in-
crease x on jm. Due to this single best response operation performed by j,
x(jm) = min {c(jm), q(j), q(m)} is reached. The probability that a vertex
j ∈ J is chosen to take the next step is at least 1

|J| . As mentioned in Sec-
tion 2.2, one best response step requires at most O(|V |) modifications. Thus,
in order to reach x(jm) = min {c(jm), q(j), q(m)} on the best edge in G,
|J | · |V | = O(|V |2) modifications are needed in expectation. After this, the
edge jm with minimal f value will have reached its final position in the unique
stable allocation. From this point on, x(jm) will never be reduced, because
neither j, nor m have a better incident edge. Thus, x(jm) can be fixed, and a
new minimum of f can be chosen for the same procedure as before. The num-
ber of iterations is bounded from above by the number of edges in the graph.
The unique stable allocation is thus reached in O(|V |2|E|) time in expectation.

In order to establish a similar result for better response dynamics in real-
valued correlated instances, an exact interpretation of random events would
be needed. In the matching case, best and better response dynamics differ
exclusively in the rank of the chosen blocking edge: when playing best response
strategy, the best blocking edge is chosen by an active vertex j. In contrast
to this, here, better response steps differ also in the amount of modification
and in the edges chosen to refuse allocation along. The first factor indicates a
continuous state space.

However, if we assume that any better response step results in reassigning
the highest possible allocation value to an arbitrary blocking edge, an analo-
gous proof can be derived.

Theorem 2 On correlated allocation instances with real-valued input data,
random better response dynamics reach a stable solution in expected time O(|V |3|E|).

10 Ágnes Cseh, Martin Skutella

Proof The only difference to the setting with best response steps is that after
j is chosen, the expected time of reaching x(jm) = min {c(jm), q(j), q(m)} is
larger. In this case, j chooses jm with probability at least 1

|δ(j)| . This implies
that reaching the stable allocation value on the best edge takes |δ(j)| ·(|δ(j)|+
|δ(m)| − 1) = O(|V |2) steps in expectation. In total, for all vertices j ∈ J and
all edges the algorithm takes O(|V |3|E|) steps in expectation.

4 Best and better responses with rational data

In this section, the case of allocations in an uncoordinated market with ratio-
nal data is studied. As already mentioned, better and best response dynamics
can cycle in such instances. We describe two deterministic methods, a better-
response and a best-response algorithm that yield stable allocations in finite
time. Our best response algorithm is by definition a better response algorithm
as well, yet we present a different, better but not best response strategy in Sec-
tion 4.1, because it can be accelerated to reach a stable solution in polynomial
time, while the best response strategy cannot, as shown in Section 4.2. The
main idea of our algorithms is to distinguish between blocking edges based on
the type of blocking at the job: dominance or free quota.

A blocking edge can be of two types. Recall point 2 of Definition 2: if jm
blocks x, then x(j) < q(j) or j prefers jm to its worst edge with positive value
in x. We talk about blocking of type I in the latter case, if jm blocks x because
j prefers jm to its worst edge having positive value in x. Blocking of type II
means that j has no allocated edge that is worse than jm, but j has not filled
up its quota yet, x(j) < q(j). Note that the reason of the blocking property
at m is not involved when defining the two types.

Example 3 Recall our example in Figure 2. The unique blocking edge j3m1 is
of type I, because j3, its active vertex, prefers edge j3m1 to its worst allocated
edge j3m2.

4.1 Better response dynamics

First, we provide a deterministic algorithm that constructs a finite path to
stability from any feasible allocation. In the first phase of our algorithm, only
blocking edges of type I are chosen to perform myopic changes along. The ac-
tive vertices (jobs) choose one of their blocking edges of type I, not necessarily
the best one. In all cases, withdrawal is executed along worst allocated edges.
The amount of new allocation added to the blocking edge is determined in
such a way that at least one edge or a vertex becomes saturated or empty.
Thus, in the first phase, active vertices replace their worst edges with better
ones, even if they have free quota. When no blocking edge of type I remains,
the second phase starts. The allocation value is increased on blocking edges of
type II such that they cease to be blocking.

Paths to stable allocations 11

The runtime of our algorithm is exponential. Later, in Section 5 we will
show that this algorithm can be accelerated such that a stable solution is
reached in strongly polynomial time.

Theorem 3 For every allocation instance with rational data and a given ra-
tional feasible allocation x, there is a finite sequence of better responses that
leads to a stable allocation.

The main idea of the proof is the following. We need to keep track of the
change in the size of the allocation and in the lexicographic position of the
active vertices simultaneously. In one step of the first phase along edge jm, ei-
ther both j andm refuse edges, thus, the size of the allocation |x| =

∑
j∈J x(j)

decreases, or only j does so, leaving |x| unchanged and improving j’s situation
lexicographically. Since both procedures are monotone and the second one does
not impair the first one, the first phase terminates. Termination of the second
phase is implied by the fact that passive vertices improve their lexicographic
situation in each step. The technical details of this proof sketch are presented
as Claims 4.1 and 4.1.

In the first phase, the jobs propose along arbitrary blocking edges of type I.
We will show that this process ends with an allocation where no job has a
blocking edge of type I. In the second phase, the jobs propose along their
best blocking edges of type II. Later we will see that during this phase until
termination, no job gets a blocking edge of type I. A pseudocode is provided
after the description of both phases.

First phase In one step, an arbitrary blocking edge jm of type I is chosen.
Both end vertices, j and m may refuse some allocation along worse edges
when increasing x on jm. Job j has a refusal pointer r(j) that denotes the
worst edge allocated to j, if any exists. Similarly, r(m) stands for the worst
currently allocated edge of m. A step of Phase I consists of two or three
operations, each along jm, r(j) and possibly along r(m). Two operations take
place, if m has not filled up its quota yet. In this case, x(r(j)) is decreased
by A := min {x(r(j)), x̄(jm), x̄(m)}. At the same time, x(jm) is increased by
the same amount. Depending on which expression is the minimal one, edge
r(j) becomes empty or jm becomes saturated or m fills up its quota. Note
that r(m) plays no role because m does not refuse any allocation. In the
remaining case, if m has a full quota, three operations take place, since m
has to refuse some allocation. The amount of allocation we deal with is now
A := min {x(r(j)), x̄(jm), x(r(m))}. The allocation on the blocking edge jm
will be increased by A, on the other two edges it will be decreased by A, until
one of them becomes empty or saturated. We emphasize that whenever a job
j with free quota adds a new edge better than its worst allocated edge to x,
it withdraws some allocation from the worst edge.

Example 4 We return to our example again. It has already been mentioned
that the unique blocking edge j3m1 is of type I. The refusal pointer r(j3)

12 Ágnes Cseh, Martin Skutella

is j3m2. Since m1 has not filled up its quota yet, its refusal pointer j1m1 is ir-
relevant at the moment. Due to the same reason, two operations take place. We
augment with the following amount of allocation: min {x(j3m2), x̄(j3m1), x̄(m1)} =
0.8. After this operation, x(j3m1) = 0.8, x(j3m2) = 0.2, and j3m1 is still a
Phase I blocking edge. Since x(m1) = q(m1) holds now, three operations are
executed with A = min {x(j3m2), x̄(j3m1), x(j1m1)} = 0.2. Now j3m1 is satu-
rated, hence it ceases to be blocking. During the first operation, j4m2 became
blocking of type I, because m2 lost allocation. In the next step, one unit of
allocation is reallocated to j4m2 from j4m3. But j3m3 then becomes blocking
of type I, and so on.

Claim Phase I terminates in finite time.

Proof. We use the following potential function in order to show that the process
does not cycle:

Θ(x) :=
∑
j∈J

∑
jm∈E(G)

x(jm) rankj(jm)

Recall that rankj(jm) stands for the rank of jm on j’s preference list. The
smaller rankj(jm) is, the better m is for j. The expression above is bounded
for any feasible allocation x:

0 ≤ Θ(x) ≤ |J | · max
jm∈E(G)

c(jm) ·max
j∈J
|δ(j)|.

We will show that Θ(x) decreases in each step of the procedure. The process
terminates if the amount of decrement is always greater than a fixed positive
constant. If all data are rational, this is guaranteed.

Considering the potential function, we need to keep track of those two jobs
that proposed or got refused, since the allocation of all other jobs remains the
same, thus their contributions to the summations of Θ(x) do not change.

As mentioned above, a step consists of either two or three edges changing
their value in x. In the first case, when only two edges change their value in x,
there is only one job j that modifies its contribution. Thus Θ(x) decreases,
because some allocation will move from a less preferred edge to jm. In the
second case, where three edges are involved, there is a job j that improves its
lexicographic position, and another job j′ that loses allocation. The effect of
the first change at j is just as above, Θ(x) decreases. Losing allocation for j′
also decreases Θ(x), since x(j′) decreases. �

Second phase When the first phase terminates, all blocking edges are of type II.
In the second phase, we are allowed to increase x(j). When improving the
allocation along a blocking edge jm of type II, m may refuse some allocation,
but j cannot, since the reason of blocking is that j has not filled up its quota
yet. Thus, we do not need the pointer r(j) any more. One step consists of
changes along one edge if x(m) < q(m), or along two edges otherwise. If m
has not filled up its quota yet, then we simply assign as much allocation to

Paths to stable allocations 13

j′′ j j′

m m′

32

2

1

1

Fig. 3 Edges affected by one myopic operation along the blocking edge jm of type II.

jm as possible without x(j), x(m) and x(jm) exceeding q(j), q(m) and c(jm),
respectively. If m has to refuse something from a job j′ in order to accept
better offers from j, we improve m’s position until j′m becomes empty or jm
becomes saturated or j’s quota is filled up.

Claim No step in Phase II can induce a blocking edge of type I.

Proof. One step in Phase II leaves all vertices but j,m and the possibly refused
j′ unchanged. Thus, if there is a blocking edge of type I after the modification,
it must be incident to one of those vertices. The three cases, illustrated in
Figure 3, are the following.
– Edge j′′m blocks x. The position of m became lexicographically better,

thus, no new blocking edge incident to m was introduced. The existing
blocking edges j′′m of type II cannot become of type I, because j′′’s position
remained unchanged.

– Edge jm′ (or jm) blocks x. The only change at j is that x(jm) increases,
thus, j also improves its lexicographic position. Therefore, no new blocking
edge incident to j appeared. Blocking edges of type II can change their
type of blocking only if j increased its allocation on a worse edge. But this
cannot happen since we chose the best blocking edge jm in Phase II.

– Edge j′m′ (or j′m) blocks x. The only change in j′’s neighborhood is
that x(j′m) decreases. After this step, consider an unsaturated edge j′m′
preferred by j′ to its worst allocated edge. Since no machine worsens its
lexicographic position in Phase II, if j′m′ dominates the new allocation x,
it already dominated the previous allocation. Therefore, j′m′ must have
been a blocking edge of type II prior to the modification and thus remains
of type II.

We have argued that once Phase II has started, Phase I can never return. �
The last step ahead of us is to show that Phase II may not cycle. But this

follows from the fact that in each step exactly one machine strictly improves its
lexicographic situation, while all other machines maintain the same allocation
as before. In case of a rational input, this improvement is bounded from below,
thus, the second phase of the algorithm terminates.

With this we finished the proof of Theorem 3.

14 Ágnes Cseh, Martin Skutella

Algorithm 1 Two-phase better response algorithm
while ∃j ∈ J with a blocking edge of type I do

Improvement_I(j)
end while
while ∃j ∈ J with a blocking edge of type II do

Improvement_II(j)
end while

procedure Improvement_I(j)
jm← blocking edge of type I of j
if x(m) < q(m) then

A := min {x(r(j)), x̄(jm), x̄(m)}
x(r(j)) := x(r(j))−A
x(jm) := x(jm) +A

else
A := min {x(r(j)), x̄(jm), x(r(m))}
x(r(j)) := x(r(j))−A
x(jm) := x(jm) +A
x(r(m)) := x(r(m))−A

end if
end procedure

procedure Improvement_II(j)
jm← best blocking edge of type II of j
if x(m) < q(m) then

A := min {x̄(jm), x̄(j), x̄(m)}
x(jm) := x(jm) +A

else
A := min {x(r(m)), x̄(jm), x̄(j)}
x(jm) := x(jm) +A
x(r(m)) := x(r(m))−A

end if
end procedure

j1(N) j2(N)

m1(N) m2(N + 1)

1

2

2

1

1

2

2

1

j1(N + 1) j2(N)

m1(N) m2(N)

1

2

2

1

1

2

2

1

Fig. 4 Worst-case instances for our better response algorithm. On the graph on the left
hand-side, Phase I cycles along 〈j1m2, j2m2, j2m1, j1m1〉 N times. In the second instance,
Phase II first assigns N amount of allocation to edges j1m2 and j2m1 and then cycles N
times along 〈j1m1, j2m1, j2m2, j1m2〉.

Example 5 The duration of both phases strongly depends on the capacities
and quotas. The examples in Figure 4 show two bad instances. The capacity
is N on all edges, where N is an arbitrarily large integer. Quotas are marked
above and below the vertices. In the first instance, the initial allocation for
Phase I is N on j1m1 and on j2m2 and zero on the remaining two edges.
The first phase performs N augmenting steps along the same cycle. Phase II
terminates after N iterations in the second instance, starting with the empty
allocation.

This algorithm also proves an important result regarding rational random
better response processes. If the input is rational (there is a smallest positive
number that can be represented as a linear combination of all data), it is
clearly worthwhile to restrict the set of feasible better response modifications

Paths to stable allocations 15

to the ones that reassign a multiple of this unit. Under this assumption, the
set of reachable allocations is finite and they can be seen as states of a discrete
time Markov chain. Our algorithm proves that from any state there is a finite
path to an absorbing state with a positive probability.

Theorem 4 In the rational case, random better response strategies terminate
with a stable allocation with probability one.

Polynomial time convergence cannot be shown for random better response
strategies, since they need exponential time to converge in expectation even
in matching instances [2].

4.2 Best response dynamics

In this subsection, we derive analogous results for best response modifications
to the ones established for better response strategies. The main difference from
the algorithmic point of view is that instances can be found in which no series
of best response strategies terminates with a stable solution in polynomial
time. A simple example shown on the right in Figure 4 resembles the instance
given by Baïou and Balinski [3] to prove that the Gale-Shapley algorithm
requires exponential time to terminate in stable allocation instances.

Example 6 Let G be a complete bipartite graph on four vertices, with quota
q(j1) = N + 1, (j2) = q(m1) = q(m2) = N , and initial allocation x(j1m1) =
x(j2m2) = N for an arbitrary large number N . If the preference profile is
chosen to be cyclic, such that rankj1(m1) = rankj2(m2) = rankm1(j2) =
rankm2(j1) = 2, the unique series of best response steps consists of 2N opera-
tions. This example shows that a polynomial path to stability does not exist,
not even for rational input data. A path of exponential length to stability can
still be found. Our next theorem shows that this is the case in general.

Theorem 5 For every allocation instance with rational data and a given ra-
tional feasible allocation x, there is a finite sequence of best responses that
leads to a stable allocation.

Proof Similar to our method for better response strategies, we prove that there
is a two-phase algorithm that terminates with a stable solution.

All blocking edges we take into account are best blocking edges of their
job j. Depending on their rank compared to j’s worst allocated edge r(j), they
are either of type I or type II. A job j’s best blocking edge jm is

– of type I(a), if rankj(jm) < rankj(r(j)) and
x̄(j) < min {x̄(jm), x̄(m) + x(edges dominated by jm at m)};

– of type I(b), if rankj(jm) < rankj(r(j)) and
x̄(j) ≥ min {x̄(jm), x̄(m) + x(edges dominated by jm at m)};

– of type II, if rankj(jm) ≥ rankj(r(j)).

16 Ágnes Cseh, Martin Skutella

The intuitive interpretation of the grouping above is given by the steps that
we need to execute when jm is chosen to perform a best response operation.
If jm is of type I(b), then jm can be saturated without any refusal made
by j, since j has sufficient free quota. On the other hand, if j agrees to reduce
x(r(j)) in order to accommodate more allocation on jm, then jm is a blocking
edge of type I(a). The remaining case occurs when jm is not better than r(j),
that is, j accepts min {x̄(m), x̄(j), x̄(jm)} allocation from m. In this case, no
rejection is called by j.

In Phase I, only best blocking edges of type I(a) and I(b) are selected.
Then, when only type II blocking edges remain, Phase II starts. In order to
prove finite termination, we introduce two potential functions, Θ(x) and Ψ(x).
When proving termination of the first phase, both of them are used, while the
second phase is discussed by analyzing the behavior of Ψ(x) only.

The first function Θ(x) comprises two components. The first component
is the sum consisting of the rank of refusal pointers at jobs. The second term
is a sum consisting of the allocation value of refusal pointers at jobs. When
we say that Θ(x) decreases, it is meant in the lexicographic sense. The second
function, Ψ(x) is a set of |M | vectors, each of them corresponding to a ma-
chine. Each vector contains |δ(m)| entries, defined as x(jm) for all jm ∈ δ(m),
ordered as they appear in m’s preference list. We denote these vectors by
lex(m), because lex(m) increases lexicographically if and only if the lexico-
graphic position of m improves. We added a minus sign in order to keep the
terms decreasing. When we say that Ψ(x) decreases we mean that at least one
vector in it decreases lexicographically and no vector increases lexicographi-
cally. This also implies that we could add up the i-th elements of these vectors
and follow the lexicographic increment of the resulting vector. We choose not
to do so for intuitive reasons, but the reader can also think of Ψ(x) as a single
vector of maxm∈M deg(m) scalar components.

Θ(x) := (Θ1(x), Θ2(x)) :=

∑
j∈J

rankj(r(j)),
∑
j∈J

x(r(j))

Ψ(x) := −

(
lex(m1), lex(m2), ..., lex(m|M |)

)
Claim The best response step of job j along edge jm of type I(a) decreasesΘ(x).

Proof. Due to the type-defining characteristics listed above, there is a rejection
on r(j). If x(r(j)) becomes 0 through this step, then Θ1(x) decreases, while
Θ2(x) might increase. Otherwise, if x(r(j)) > 0 holds even after executing
the step, hence Θ1(x) remains unchanged, but Θ2(x) decreases. Any other
decrement in x, such as allocation refused by m on r(j′) for some j′ 6= j can
only further decrease both components of Θ(x). �

Claim The best response step of job j along edge jm of type I(b) decreases
Ψ(x) and does not increase Θ(x).

Paths to stable allocations 17

Proof. Since j does not reject any allocation, x(r(j)) remains unchanged. If
any other r(j′) for some j′ 6= j is affected, Θ(x) is decreased. The only machine
whose position changes ism itself: it clearly improves its lexicographic position,
thus one component of Ψ(x) decreases, while the remaining vectors remain
unchanged. �

For any rational input data, the changes in Θ(x) or Ψ(x) in each round are
bounded from below. Since both functions have an absolute minimum, Phase I
terminates in finite time.

Claim The best response step of job j along edge jm of type II decreases Ψ(x).
Moreover, no edge becomes blocking of type I(a) or I(b).

Proof. During the second phase, no machine loses allocation, thus, their lexi-
cographic position cannot worsen. In addition, for the machine of the current
blocking edge jm, lex(m) improves. This also implies that no edge j′m′ dom-
inates x at m′ that has not already dominated it before the myopic change.
Moreover, edges that lost allocation during that step are the worst-choice edges
of j, hence they cannot be blocking of type I(a) or I(b). If there is an edge
j′m′ that became blocking of type I(a) or I(b), then it is better than the worst
edge in x at j′. These edges were already unsaturated before the last step and
also already dominated x at both end vertices. This contradicts the fact that
best blocking edges are chosen in each step.

The same arguments as above, in Theorem 4, imply the result on random
procedures.

Theorem 6 In the rational case, random best response strategies terminate
with a stable allocation with probability one.

5 Irrational data – the accelerated algorithm

Both of our presented algorithms require exponentially many steps to termi-
nate. Moreover, in our previous section we relied several times on the fact
that in each step, x is changed with values greater than a specific positive
lower bound. When irrational data are present, e.g., q, c or x are real-valued
functions, this can no longer be guaranteed. Hence, our arguments for termi-
nation are no longer valid. As a matter of fact, some algorithmic ideas do not
work with irrational input data, such as in the case of the well-known Ford-
Fulkerson algorithm for finding a maximum flow, which fails when irrational
capacities are present: the calculated flow might not even converge towards
the maximum flow [9,19]. In this section, we describe a fast version of our
two-phase better response algorithm that terminates in polynomial time with
a stable allocation for irrational input data as well. We also give a detailed
proof of correctness for the first phase and show a construction with which all
Phase II steps can be interpreted as Phase I operations in a slightly modified
instance.

18 Ágnes Cseh, Martin Skutella

As usual in graph theory, an alternating path with respect to an allocation
x is a sequence of incident edges that are saturated in x and of those that are
unsaturated in x in an alternating manner.

5.1 Accelerated first phase

The algorithm and the proof of its correctness can be outlined in the following
way (see also Algorithm 2 below). A helper graph is built in order to keep
track of edges that may gain or lose some allocation. A potential function is
also defined, which stores information about the structure of the helper graph
and the degree of instability of the current allocation. In the helper graph we
are looking for paths and cycles to augment along. The amount of allocation
we augment with is specified in such a way that the potential function de-
creases and the helper graph changes. When using paths and cycles instead of
proposal-refusal triplets, more than one myopic operation can be executed at a
time. Moreover, we also keep track of consequences of locally myopic improve-
ments. For example, we spare running time by avoiding reducing allocation on
edges that later become blocking anyway.

First, we elaborate on the structure of the helper graph, define alternating
paths and cycles and specify the amount of augmentation. The algorithm,
the proof of its correctness, a pseudocode, and an example execution are all
described in detail in this section.

Helper graph

Recall that our real-valued input I consists of a stable allocation instance
(G, q, c, O) and a feasible allocation x. First, we define a helper graph H(x) on
the same vertices as G. This graph is dependent on the current allocation x
and will be changed whenever we modify x. The edge set of H(x) is partitioned
into three disjoint subsets. The first subset P is the set of Phase I blocking
edges. Each job j that has at least one edge with positive x value, also has a
worst allocated edge r(j). When a myopic change is made, jobs tend to reduce
x along exactly these edges. These refusal pointers form R, the second subset
of E(H(x)). We also keep track of edges that are currently not of blocking
type I, but later on they may enter set P. This last subset P ′ consists of
edges that may become blocking of type I after some myopic changes. An edge
jm /∈ P has to fulfill three criteria in order to belong to P ′:

1. c(jm) > x(jm);
2. m has at least one refusal edge, i.e., δ(m) ∩R 6= ∅;
3. rankj(jm) < rankj(r(j)).

Such an edge immediately becomes blocking of type I if m loses allocation
along one of its refusal edges. Edges in P ′ are called possibly blocking edges,
the set P ∪ P ′ forms the set of proposal edges. Note that a job j may have
several edges in P and P ′, but at most one in R. Moreover, if j has a proposal

Paths to stable allocations 19

edge in H(x), it also has an edge in R. Regarding the machines, if m has a
P ′-edge, it also has an R-edge. Note that (P ∪ P ′) ∩ R = ∅, because both P
and P ′ per definition comprises edges that are ranked better by j than r(j).
The following lemma provides an additional structural property of H(x).

Lemma 1 If jm ∈ P and j′m ∈ P ′, then rankm(jm) < rankm(j′m).
That is, blocking edges are preferred to possibly blocking edges by their common
machine m.

Proof Since jm ∈ P is a blocking edge of type I, jm dominates x at m. If
the statement is false, then rankm(jm) > rankm(j′m) for some unsaturated
edge j′m that is better than the worst allocated edge of j′. Then also j′m
dominates x at m. This, together with the first and last properties of possibly
blocking edges implies that j′m ∈ P.

Example 7 Once again we return to our example shown in Figure 2. The only
blocking edge j3m1 alone forms P. The set R contains all four edges with
positive allocation value: j1m1, j2m1, j3m2 and j4m3. Edges j3m3 and j4m2
are possibly blocking. Thus, in this case, G = H(x).

Alternating paths and cycles

Our algorithm performs augmentations along alternating paths and cycles, so
that the allocation value of refusal edges decreases, while the value of proposal
edges increases. This is done in such a way that R, P, or P ′ (and thus, H(x))
changes. The main idea behind these operations is the same we used in the
proof of Theorem 3: reassigning allocation to blocking edges from worse edges,
such that the procedure is monotone. The difference between this method and
the one presented in Section 4.1 is that, while our first algorithm tackles a
single blocking edge in each step, here we deal with several blocking edges
(forming the alternating path or cycle) at once.

When constructing the alternating proposal-refusal path or cycle ρ to aug-
ment along, the following rules have to be obeyed:

1. The first edge j1m1 is a P-edge and it is the best proposal edge of m1.
2. P and P ′-edges are added to ρ together with the refusal edge they are

incident with on the active side.
3. Machines choose their best P or P ′-edge.
4. Walk ρ ends at m if

(i) m has no proposal edge or
(ii) ρ returns to its starting vertex, that is, m = m1 or
(iii) m’s best proposal edge runs to a job already visited by ρ or
(iv) m’s best proposal edge runs to a job whose refusal pointer points to

a machine already on ρ.

As long as there is a blocking edge of type I, the first edge j1m1 of such
a path or cycle can always be found. Lemma 1 guarantees that if j1m1 is the
best proposal edge of m1, then j1m1 ∈ P. After taking r(j1), all that remains

20 Ágnes Cseh, Martin Skutella

is to continue on best proposal edges of machines and refusal edges of jobs they
end at. Since H(x) is a finite graph, ρ either terminates at a machine without
any proposal edge or it visits a vertex already listed. These are exactly the
cases listed in point 4. According to these rules, proposal-refusal edge pairs are
added to the current path until I) there is no pair to add (4(i)) or II) the path
reaches a vertex already visited (4(ii)-(iv)). In cases 4(i), 4(iii), and 4(iv), ρ is
a path. In the remaining case 4(ii), ρ is a cycle.

Example 8 In our example in Figure 2, ρ consists of the following edges:
m1j3, j3m2,m2j4, j4m3. Even if j3m3 ∈ P ′, ρ halts atm3, because j3 is already
on ρ.

Before elaborating on the amount of augmentation, we emphasize that ρ is
just a subset of the set of edges whose x value changes during an augmentation
step. The goal is to reassign allocation from refusal edges to blocking edges,
until a stable solution is derived. Naturally, on an alternating path or cycle,
refusal edges lose the same amount of allocation that proposal edges gain.
However, if augmentations are performed along a path, the first machine m1
on ρ gains allocation in total (and the last machine on ρ loses allocation).
In order to preserve feasibility, m1 might have to refuse allocation on edges
not belonging to ρ. The exact amount of these refusals is discussed later,
together with the amount of augmentation along ρ. Since no other vertex gains
allocation in an augmentation step, feasibility cannot be violated elsewhere.
Thus, these are the only edges not on ρ that need to be modified.

By contrast, if the augmentation is performed along a cycle C, refusals
only happen on r(j) ∈ C ∩ R edges. Even if the machine m1 that started C
has a full quota, it does not need to refuse any allocation, since x(m1) remains
unchanged during the augmentation.

Amount of augmentation

Once ρ is fixed, the amount of allocation A to augment with has to be de-
termined. It must be chosen so that 1) a feasible allocation is derived and
2) at least one refusal edge becomes empty or at least one proposal edge
leaves P ∪ P ′. These points guarantee that H(x) changes. To fulfill these two
requirements, the minimum of the following terms is determined.

1. Allocation value on refusal edges along ρ: x(r(j)), where r(j) ∈ ρ ∩R.
2. Residual capacity on proposal edges along ρ: x̄(p), where p ∈ ρ∩ (P ∪P ′).
3. If ρ is a path, thenm1 may refuse a sufficient amount of allocation such that
j1m1 does not become saturated, but it stops dominating x at m1. In this
case, the residual quota of m1 must be filled up and, in addition, the sum
of allocation values on edges worse than j1m1 must be refused. With this,
j1m1 becomes the worst allocated edge of a full machine. Until reaching this
point, j1m1 may gain x̄(m1)+x(edges dominated by j1m1 at m1) amount
of allocation in total.

Paths to stable allocations 21

To summarize, we augment with

A := min{x(r(j)), x̄(p)|r(j) ∈ ρ ∩R, p ∈ ρ ∩ (P ∪ P ′)}

if ρ is a cycle, because the last case with the starting vertex m1 does not occur.
Otherwise, the amount of augmentation is

A := min{x(r(j)), x̄(p), x̄(m1) + x(edges dominated by j1m1 at m1)|
r(j) ∈ ρ ∩R, p ∈ ρ ∩ (P ∪ P ′)}.

We now provide a pseudocode for our algorithm. To simplify notation, we
refer to the vertices occurring on path ρ as V (ρ).

Algorithm 2 Accelerated Phase I
while |P| > 0 do

FindWalk(H(x))
if ρ is a cycle then

AugmentCycle(ρ)
else

AugmentPath(ρ)
end if
update R, P, P ′

end while

procedure FindWalk(H(x))
i := 1, ρ := ∅, find any m1 ∈M with a P-edge
while mi has a best proposal edge jimi and r(ji) ∩ (V (ρ) \m1) = ∅

do
ρ := ρ ∪ {jimi} ∪ {r(ji)}
if mi 6= m1 then

jimi+1 := r(ji), i := i+ 1
end if

end while
end procedure

procedure AugmentCycle(ρ)
A := min{x(r(j)), x̄(p)|r(j) ∈ ρ ∩R, p ∈ ρ ∩ (P ∪ P ′)}
for p ∈ ρ ∩ (P ∪ P ′) do

x(p) := x(p) +A
end for
for r(j) ∈ ρ ∩R do

x(r(j)) := x(r(j))−A
end for

end procedure

22 Ágnes Cseh, Martin Skutella

j3(1.9) j4(1)j2(1)j1(1)

m1(2.8) m2(1) m3(1)

2

2

1

2

3

1

1

2

2

11

0.8

3

Fig. 5 After the first round of the accelerated Phase I algorithm.

procedure AugmentPath(ρ)
A := min{x(r(j)), x̄(p), x̄(m1)+x(edges dominated by j1m1 at m1)|r(j) ∈

ρ ∩R, p ∈ ρ ∩ (P ∪ P ′)}
if A− x̄(m1) > 0 then

m1 refuses A− x̄(m1) allocation from its worst edges
end if
for p ∈ ρ ∩ (P ∪ P ′) do

x(p) := x(p) +A
end for
for r(j) ∈ ρ ∩R do

x(r(j)) := x(r(j))−A
end for

end procedure

Example 9 Recall the example instance in Figure 2 again. Checking both pro-
posal and both refusal edges on ρ = 〈m1j3, j3m2,m2j4, j4m3〉, the residual
capacity of m1, and the allocation on m1’s worst edges, one can compute
that A = 1. Thus, allocation x shown in Figure 5 is obtained after the first
augmentation. Edge j3m1 leaves P, and j3m3 enters it. The set of refusal
edges consists of all edges with positive allocation value. P ′ is empty. In the
second round, ρ is easy to find: it is 〈m3j3, j3m1〉. After reassigning allocation
of value 1 to j3m3, Phase I ends. The allocation derived is not yet stable: j1m1
and j3m2 block it, but they are both of type II.

Note that executing several local myopic steps greedily, like in our first
algorithm (Algorithm 1), would lead to a different output. A simple example
for that can be seen on a slightly modified version of the first instance in
Figure 4, depicted in Figure 6.

Example 10 Let us assume that q(m2) = N + 2 and m2 has an edge j3m2
ranked third, where c(j3m2) = 1. Let us start with the allocation x(j1m1) =
x(j2m2) = N, x(j3m2) = 1. Edge j1m2 ∈ P, so we can start ρ at m1, augment
along 〈m2j1, j1m1,m1j2, j2m2〉 with allocation value 1 and arrive at a stable
solution. On the other hand, our step-by-step better response algorithm pre-

Paths to stable allocations 23

j1(N) j2(N) j3(1)

m1(N) m2(N + 2)

1

2

2

1

1

2

2

1 3

Fig. 6 An example for a cycle augmentation in the accelerated better response algorithm. In
the accelerated version, j3m2 remains intact, while in the step-by-step version (Algorithm 1)
it gets deleted and then added again.

sented in Section 4.1 would first reject j3m2 fully, augment along the same
cycle and, in Phase II, add j3m2 again.

It is easy to see that the emptying and then again adding edges like j3m2
can cause more superfluous rounds if the instance is more complex. Generally
speaking, here we avoid m1 refusing edges, knowing that it loses allocation
later. As a result of that, m1 would go under its quota, and would possibly
create new blocking edges. Both strategies are better response, the difference
is that our second algorithm keeps track of changes made as a consequence of
a myopic operation.

We will later show that the first phase of our algorithm can be easily
transformed into a second phase. We now turn to proving the correctness and
running time of the first phase in detail.

Theorem 7 For every real-valued allocation instance and given feasible allo-
cation, there is a sequence of better responses leading to an allocation blocked
by edges of type II exclusively. The sequence can be executed in O(|V |2|E|)
time.

Proof. Potential function. We show with the help of the following bicriteria
potential function that the procedure is monotone and finite:

Θ(x) := (Θ1(x), Θ2(x)) :=(∑
j∈J

rankj(r(j)), −
∑
m∈M

rankm(best proposal edge at m)
)
.

If x(j) = 0, then rankj(r(j)) can be interpreted as a large number, for
example as |M | + 1. In lack of proposal edges, the expression in the second
component can also be interpreted as a large constant, for example as |J |+ 1.
In order to keep both terms decreasing, a minus sign is added to the second
expression. When function Θ(x) decreases, it does so in the lexicographic sense.

24 Ágnes Cseh, Martin Skutella

Since Θ(x) is a bounded, integer-valued function, any procedure that mod-
ifies it strictly monotonically, is finite. We first show that each augmentation
step strictly decreases Θ(x). Later, we elaborate on the running time of our
algorithm.

Finiteness. The amount of allocation we augment with depends only on
the extreme points of the min function determining the amount of augmenta-
tion A. Recall the three points we listed when defining A.

1. x(r(j))
The worst allocated edge of j becomes empty. Thus, Θ1(x) decreases unless
j gains an edge in x that is worse than r(j) was.

2. x̄(p)
If one of the proposal edges reaches its capacity, it stops being a proposal
edge. Since p was the best proposal edge of its machine, Θ2(x) decreases,
unless p’s machine gains a proposal edge better than p. Moreover, Θ1(x)
does not increase unless j gains an edge in x that is worse than r(j) was.

3. In case of a path ρ: x̄(m1) + x(edges dominated by j1m1 at m1)
The first blocking edge on ρ, m1’s best proposal edge ceases to dominate
x at m1, hence Θ2(x) decreases, unless m1 gains a proposal edge better
than p. Moreover, Θ1(x) does not increase unless j gains an edge in x that
is worse than r(j) was.

To summarize this, Θ strictly decreases after a round unless a job gets a
worse refusal edge than before or a machine gets a better proposal edge than
before without any refusal edge improving. The upcoming two claims eliminate
the possibility of these two cases.

Claim In our algorithm, no job j gains an edge in x that is worse than r(j).

Proof The only edges x is increased on are proposal edges in augmenting paths
and cycles. These are by definition better than r(j) in j’s list.

Claim If a machine m gains a proposal edge that is better than m’s best
proposal edge in a round of our algorithm, then the same round shifted the
refusal edge of some job to m.

Proof. Assume that j′m became a better proposal edge ofm than the previous
best proposal edge jm was. Since the preference lists are fixed, this is only
possible, if j′m was not in P ∪ P ′ before. Proposal edges by definition have
to fulfill three criteria, out of which at least one was not fulfilled before the
augmentation.

1. j′m became unsaturated
– One of the two possibilities for an edge to lose allocation occurs when
j′m ∈ ρ ∩ R. Since j′m is already the worst allocated edge of j′, it
cannot become a blocking edge of type I or possibly blocking, unless an
even worse edge gains allocation, which is not possible, since it is only
best proposal edges that do so.

Paths to stable allocations 25

– Even if j′m /∈ ρ, it can lose allocation, but only if x(j′m) was reduced
by m = m1, the starting vertex of an alternating path. This j′m is
worse than jm, which contradicts our assumption.

2. r(j′) became worse than j′m
Claim 5.1 shows that r(j′) never becomes worse during Phase I.

3. m gained an allocated edge worse than j′m or x(m) dropped below q(m)
(necessary for a blocking edge of type I) or
m gained a refusal pointer (necessary for a possibly blocking edge)
– In the first case, m increased x along an edge worse than j′m. This

worse edge was m’s best proposal edge, hence any better unsaturated
edge from a job with worse edges in x was already in P ∪P ′ too. Thus,
j′m cannot enter P ∪ P ′ solely because m gained an allocated edge
worse than j′m. The previous two points eliminate the possibility of
the two cases that could be combined with it in order to make j′m
enter P ∪ P ′.

– If m lost some allocation, then it was the last vertex on ρ and thus,
it had a refusal pointer. According to our definitions, any unsaturated
edge of m from a job with worse edges in x was already in P ∪P ′. The
same applies as above, j′m cannot enter P ∪ P ′ just because m lost
allocation.

– A refusal pointer moves to m, proving our statement. �

Running time

The helper graph H(x) has at most as many edges and vertices as G. In
each iteration, Θ(x) improves. Consider first the case when only Θ2 changes.
The best proposal edge of each machine m can move along all |δ(m)| edges
of m. Since the procedure is monotone, |E| such steps can be executed in
total, for the machines altogether. Then, Θ1 has to improve. Just like Θ2,
Θ1’s monotone behavior also allows |E| steps in total. Yet it is not possible
that both components need all |E| rounds. When a refusal pointer r(j) = jm
switches to a better edge jm′, most of the elements in the sum for Θ2 remain
unchanged.

Upon shifting a refusal pointer, Θ2 can clearly be increased, since only lexi-
cographic monotonicity of Θ(x) can be shown. However, Claim 5.1 proves that
shifting a single refusal pointer r(j) = jm to jm′ might cause m′’s sole com-
ponent in Θ2 to increase by |J | < |V | at most and leaves all other components
in the sum unaffected.

This argumentation shows that the number of iterations can be bounded
by O(|V ||E|) from above. Next, we determine how much time is needed to
execute a single augmentation. Procedure FindWalk starts with choosing
any machine that has a blocking edge of type I. This can be done in O(|V |)
time. Adding the best proposal edge and the refusal pointer takes constant
time, if they are stored for each vertex. Since at most one vertex is visited
twice by the walk, after O(|V |) steps ρ is chosen. Then, either of the two

26 Ágnes Cseh, Martin Skutella

augmenting procedures is called. It modifies x on at most O(|V |) edges. At
last, R,P, and P ′ are updated, which involves at most O(|V |) edges.

In total, the algorithm performs O(|V ||E|) rounds, each of which needs
O(|V |) time to be computed. Thus the accelerated Phase I algorithm runs in
O(|V |2|E|) time.

Notice that our algorithm does not only take O(|V |2|E|) steps as computa-
tion time, but each of the O(|V ||E|) iterations also can be seen as a sequence
of O(|V |) better response steps. If ρ is a path, then the first agent acting my-
opically is j1 and the other jobs follow it in the order of their occurrence in ρ.
Each agent simply sets the value of its edges in ρ to the value calculated by
our algorithm. If ρ is a cycle, then in this first step, j1 increases x(j1m1) by an
arbitrary, small amount and decreases x(r(j)) so that it reaches its final value
calculated by our algorithm. Notice that this is a lexicographic improvement.
Now the last proposal edge added by the algorithm is blocking of type I and a
better response step sets the value of both of its edges in ρ to the final value.
We proceed backwards in the cycle in this manner, until we reach j1 again,
who increases x(j1m1) to its final value and we are done. We admittedly do
not argue that such a sequence of myopic changes is likely to occur without
any central authority of control. Yet it proves that there is a polynomial-length
better-response path to stability, nicely complementing our result that such a
path for best responses does not exist in all markets.

Our method resembles the well-known notion of rotations [12]. They can be
used when deriving a stable solution from another, by finding an alternating
cycle of matching and non-matching edges and augmenting along them. In
our algorithm, when we are searching for augmenting cycles or walks, we use
an approach similar to rotations: jobs candidate their edges better than their
worst edge in x, while machines choose the best one out of them. However,
two differences can be spotted right away. While rotations are always assigned
to a stable solution different from the job-optimal, our method works on an
unstable input. Moreover, besides cycles we also augment along paths.

5.2 Accelerated second phase

The second phase can be accelerated in a very similar manner to the first phase.
Instead of describing this new algorithm directly and proving its correctness
using the same methods as above, we choose a simpler approach. The main
idea in this subsection is that the accelerated second phase of our algorithm is
actually the accelerated first phase of the same algorithm in a slightly modified
instance. Thus, its correctness and running time have already been proved.

At the beginning of our argumentation we make modifications in the in-
stance I given at termination of the accelerated Phase I algorithm. We show
that the set of blocking edges of type I in the modified instance I ′ and the set
of blocking edges of type II in I coincide. Then we let our accelerated Phase I
algorithm run in I ′. At the end, we argue that its output is stable in I.

Paths to stable allocations 27

j3(1.9) j4(1)j2(1)j1(1)

m1(2.8) m2(1) m3(1)

2

2

1

2

3

1

1

2

2

11

0.8

3

j3(1.9) j4(1)j2(1)j1(1)

m1(2.8) m2(1) m3(1)

1

0.8

3

jd(4.8)

4 3 3

2

2

1

2

3

1

1

2

2

1

Fig. 7 The top figure depicts allocation x0 in I, denoted by colored edges, while allocation
x′

0 in I′ is denoted by colored edges in the bottom figure.

Modified instance

After termination of the first phase, an allocation x0 is given so that all block-
ing edges are of type II. This input of the second phase is modified in the
following way. A dummy job jd and edges between each machine and jd are
added to G. The capacity of these edges equals the maximum quota amongst
all machines, and q(jd) is their sum. While jd’s preference list can be chosen
arbitrarily, the new edges are ranked worst on the preference lists of the ma-
chines. The new graph is called G′. Not only the graph, but also the allocation
x0 is slightly modified: machines under their quota assign all their free quota
to jd. In this new allocation x′0 all machines are saturated. The new instance I ′
consists of G′, q′, c′, O′ and x′0. An example instance modification is illustrated
in Figure 7.

As mentioned above, our goal is to perform Phase I operations in I ′. In
order to be able to do so, we swap the two sides: jobs play a passive role, while
machines become the active players. Since each active vertex has a filled up
quota, all blocking edges are of type I in I ′.

Note that I ′ was constructed in such a way that – regardless of the type
of blocking – each edge blocking x also blocks x′ and vice versa. This is due to
the fact that the only difference between the two instances is that machines’
free quota appears as allocation on their worst edge in I ′. The definition of
a blocking edge does not distinguish between those two notions. In particu-

28 Ágnes Cseh, Martin Skutella

lar, given a specific allocation x0 with no blocking edge of type I, the set of
(Phase II) blocking edges in I and the set of (Phase I) blocking edges in I ′
trivially coincide.

Let us denote the output of the accelerated Phase I algorithm in I ′ by x′,
and its restriction to E(G) by x.

Claim Allocation x is stable in I.

Proof Suppose edge jm blocks x. In I ′, jm is unsaturated and dominates x′
at both end vertices, hence jm blocks x′ as well. Since x′ is the output of the
accelerated Phase I algorithm in I ′, jm is of type II. Our goal is to show by
induction that x′(m) = q(m) for all machines. Thus, a contradiction is derived,
because in I ′ no Phase II blocking edge can occur.

Initially, x′(m) = q(m) for all machines. The key property of x′0 is that
all unsaturated edges that dominate x′0 at their (saturated) machine are not
better than their job’s worst edge in x′0. Otherwise, they would be blocking
edges of type I for x0. Augmenting along a blocking edge jm in x′0 can therefore
never result in a refusal by the passive vertex j. Thus, after the first round,
x′(m) = q(m) still holds. Alternating walks are chosen in such a manner that
jobs increase x′ only on their best proposal edges. This guarantees that even
after the first round, if jm dominates the current allocation x′1 at m, it is not
better than j’s worst edge in x′1. From here on, induction applies.

The running time of this phase cannot exceed the running time of the
accelerated Phase I algorithm, since the size of I ′ does not exceed the size of
I significantly.

With this we finished the proof of the following result.

Theorem 8 For every allocation instance and given feasible allocation x,
there is a sequence of better responses that leads to a stable allocation in
O(|V |2|E|) time.

Conclusion and open questions

We solved the problem of uncoordinated processes in stable allocation in-
stances algorithmically. Our first method is a deterministic better response
algorithm that finds a stable solution through executing myopic steps. In case
of rational input data, the existence of such an algorithm guarantees that
random better response strategies terminate with a stable solution with prob-
ability one. Analogous results are shown for best response dynamics. We also
prove that random best response strategies terminate in expected polynomial
time on correlated markets, even in the presence of irrational data. An accel-
erated version of our first, better-response algorithm is provided as well. For
any real-valued instance, it terminates after O(|V |2|E|) steps with a stable
allocation. We also show a counterexample for a possible acceleration for the
case of best response dynamics.

Paths to stable allocations 29

Future research may involve more complex stability problems from the
paths-to-stability point of view. For example, any of the problem variants
listed in Section 1.2 can be combined with our general setting of allocations.

Acknowledgements

We would like to thank Péter Biró, Tamás Fleiner, and the reviewers of an
earlier version of the paper for their valuable comments.

References

1. D. J. Abraham, A. Levavi, D. F. Manlove, and G. O’Malley. The stable roommates
problem with globally-ranked pairs. Internet Mathematics, 5:493–515, 2008.

2. H. Ackermann, P. W. Goldberg, V. S. Mirrokni, H. Röglin, and B. Vöcking. Uncoordi-
nated two-sided matching markets. SIAM Journal on Computing, 40:92–106, 2011.

3. M. Baïou and M. Balinski. Erratum: the stable allocation (or ordinal transportation)
problem. Mathematics of Operations Research, 27:662–680, 2002.

4. Y. Blum, A. E. Roth, and U. G. Rothblum. Vacancy chains and equilibration in senior-
level labor markets. Journal of Economic Theory, 76:362–411, 1997.

5. B. Chen, S. Fujishige, and Z. Yang. Random decentralized market processes for stable
job matchings with competitive salaries. Journal of Economic Theory, 165:25–36, 2016.

6. B. C. Dean and S. Munshi. Faster algorithms for stable allocation problems. Algorith-
mica, 58:59–81, 2010.

7. E. Diamantoudi, E. Miyagawa, and L. Xue. Random paths to stability in the roommate
problem. Games and Economic Behavior, 48:18–28, 2004.

8. T. Fleiner. On stable matchings and flows. Algorithms, 7:1–14, 2014.
9. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
10. D. Gale and L. S. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69:9–15, 1962.
11. M. X. Goemans, E. L. Li, V. S. Mirrokni, and M. Thottan. Market sharing games

applied to content distribution in ad hoc networks. IEEE Journal on Selected Areas in
Communications, 24:1020–1033, 2006.

12. D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press, 1989.

13. M. Hoefer and L. Wagner. Matching dynamics with constraints. In T.-Y. Liu, Q. Qi,
and Y. Ye, editors, 10th International Conference on Web and Internet Economics
(WINE), pages 161–174. Springer International Publishing, 2014.

14. B. Klaus and F. Klijn. Paths to stability for matching markets with couples. Games
and Economic Behavior, 58:154–171, 2007.

15. D. Knuth. Mariages Stables. Les Presses de L’Université de Montréal, 1976. English
translation in Stable Marriage and its Relation to Other Combinatorial Problems, vol-
ume 10 of CRM Proceedings and Lecture Notes, American Mathematical Society, 1997.

16. F. Kojima and M. Ünver. Random paths to pairwise stability in many-to-many matching
problems: a study on market equilibration. International Journal of Game Theory,
36(3-4):473–488, 2008.

17. A. E. Roth and J. H. Vande Vate. Random paths to stability in two-sided matching.
Econometrica, 58:1475–1480, 1990.

18. X. Wang, N. Agatz, and A. Erera. Stable matching for dynamic ride-sharing systems.
Transportation Science, online first, 2017.

19. U. Zwick. The smallest networks on which the Ford-Fulkerson maximum flow procedure
may fail to terminate. Theoretical Computer Science, 148(1):165–170, 1995.

