
Backhoff-Veraguas, Julio; Beißner, Patrick; Horst, Ulrich

Working Paper

Robust contracting in general contract spaces

Discussion Paper, No. 242

Provided in Cooperation with:
University of Munich (LMU) and Humboldt University Berlin, Collaborative Research Center
Transregio 190: Rationality and Competition

Suggested Citation: Backhoff-Veraguas, Julio; Beißner, Patrick; Horst, Ulrich (2020) : Robust
contracting in general contract spaces, Discussion Paper, No. 242, Ludwig-Maximilians-Universität
München und Humboldt-Universität zu Berlin, Collaborative Research Center Transregio 190 -
Rationality and Competition, München und Berlin

This Version is available at:
https://hdl.handle.net/10419/222139

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/222139
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Robust Contracting in General Contract Spaces

Julio Backhoff-Veraguas (University of Twente)

Patrick Beissner (Australian National University)

Ulrich Horst (HU Berlin)

Discussion Paper No. 242
May 14, 2020

Collaborative Research Center Transregio 190 | www.rationality-and-competition.de

Ludwig-Maximilians-Universität München | Humboldt-Universität zu Berlin

Spokesperson: Prof. Dr. Klaus M. Schmidt, University of Munich, 80539 Munich, Germany

+49 (89) 2180 3405 | info@rationality-and-competition.de
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Abstract. We consider a general framework of optimal mechanism design un-
der adverse selection and ambiguity about the type distribution of agents. We
prove the existence of optimal mechanisms under minimal assumptions on the
contract space and prove that centralized contracting implemented via mecha-
nisms is equivalent to delegated contracting implemented via a contract menu
under these assumptions. Our abstract existence results are applied to a series of
applications that include models of optimal risk sharing and of optimal portfolio
delegation.

Keywords: robust contracts, nonmetrizable contract spaces, ambiguity, financial markets

JEL subject classification: C02, D82

1. Introduction

Questions of contracting are often based on parties that have a narrow idea
about the opponent. This applies to many real-world situations, such as investing
in another part of the world (lack of information) or delegating the management
of pension schemes (lack of experience). This suggests the need to incorporate
ambiguous beliefs about the agent’s characteristics in the principal-agent problem,
and to assume that the principal evaluates contracts by the worst-case performance
with respect to (w.r.t.) di↵erent beliefs. Recent studies that analyze such problems
in which the principal is uncertain about agents’ characteristics include Bodoh-Creed
(2012); Carroll (2015); Auster (2018); De Castro and Yannelis (2018).

We consider a principal-agent model that has incomplete information on one
side: the agent’s preferences are type-dependent and private information to the
agent. The principal holds ambiguous beliefs about the distribution of types. The
principal’s preferences for ambiguity can be captured by the maxmin expected utility
model of Gilboa and Schmeidler (1989) or, more generally, via variational preferences
à la Maccheroni, Marinacci, and Rustichini (2006). Our framework allows for a very
general set of possible beliefs; in particular, we do not assume that the principal has
a reference belief, nor we capture model discrepancy by means of relative entropy
as in Hansen and Sargent (2001).
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2 ROBUST CONTRACTING IN GENERAL CONTRACT SPACES

Our main contribution is to establish the existence of an optimal contract under
minimal assumptions on the contract space. In particular, we do not require the
contract space to be metrizable. Nonmetrizable contract spaces arise naturally in
principal-agent models when the utility levels of the agent are the relevant contract
variables. The contracting problem over the original contracting space, and the
one over the space of the resulting utility levels, are equivalent under very mild
conditions on the agent’s utility function. Quantifying the decision variable of the
principal accounted in utility units of the agent is a well-known approach; see Spear
and Srivastava (1987), Schättler and Sung (1993) and more recently Sannikov (2008).
In our case, the transformation has a di↵erent purpose. After the transformation,
the agent’s utility, as a function of type and contract, reduces to a bilinear form on
the contract/type space pair. This significantly simplifies the incentive compatibility
constraint. Moreover, conditions on the continuity of the agent’s utility boil down
to the joint continuity of this bilinear form. As a result, the following trade-o↵
appears: a solvable model of optimal contracts with large type (contract) space
typically only allows for a small contract (type) space. This dichotomy is well
known for the commodity-price duality in general equilibrium analysis. We show in a
series of applications that this seemingly mathematical generalization is of relevance.
Our applications include models of optimal reinsurance and market optimized risk
sharing, and models of optimal portfolio delegation. The latter models combine
adverse selection and moral hazard e↵ects.

Our abstract existence result extends Page (1992)1 by dropping the assumption
of a metrizable contract space. Without a metric on the contract space, we sub-
stitute the usual Hausdor↵ metric topology on the set of contract menus by the
Fell topology (the topology of closed convergence). The appeal of this topology is
that the hyperspace of all closed subsets is compact, as long as the original space is
compact.2 Working with the space of closed subsets under the Fell topology, we can
show continuity of the utility functions defined on sets and hence the existence of
an optimal contract menu. Subsequently, we prove that delegated contracting im-
plemented via contract menus is equivalent to centralized contracting implemented
via contract mechanisms. This equivalence is not an obvious result, because the
usual measurable selection theorems on which the proof of the revelation principle
is based, do not apply in nonmetrizable spaces.

The rest of the paper is organized as follows. Section 2 provides several examples
that account for robustness and a contract space that cannot be captured by existing
results. Section 3 provides the results on the existence of an optimal contract.
Section 4 provides a series of applications. Section 5 concludes by comparing the
results of the present work with those in the literature. Appendix A recalls a series
of abstract topological results; Appendix B presents the proofs.

2. Motivating Examples

In this section, we present three motivating examples that illustrate the way in
which nonmetrizable compact contract spaces over utility units arise naturally in

1In this study, a characterization of incentive compatibility is established in a Polish type space
combined with a compact metric contract space.

2Appendix A provides a detailed account of all involved topological concepts.
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models of reinsurance and optimal risk sharing with non-compact metric contract
spaces. We analyze each example in greater detail in Section 4.

In what follows we denote by L
0(Q), L1(Q), and L

1(Q) the class of all almost
surely finite, integrable, respectively essentially bounded random variables defined on
some probability space (⌦,F , Q). On L

0(Q) we consider the topology of convergence
in Q-probability; the set Lp(Q), 0 < p  1 is equipped with the usual Lp-norm k·kp.
A set of random variables X is called uniformly norm bounded if supx2X kxk1 < 1.
It is called bounded in Q-probability if limR%1 supx2X Q(|x| � R) = 0.

2.1. A reinsurance model with utilities on the positive half line. Let us
consider a reinsurance model between an uninformed principal and an informed
agent. Risk exchange can occur over a set X of random variables defined on a prob-
ability space (⌦,F , Q). The principal’s endowment is given by a random variable
ep 2 L

1(Q). She may hedge her risk by exchanging payo↵s x 2 X with the agent.
Her utility from a risk transfer x is given by

EP 0 [v(ep � x)]

for some bounded, concave utility function v : R+ ! R on the positive half line, and
some belief P 0 about the distribution of the states of the world. We assume that the
belief is equivalent to Q with bounded density.

The agent is endowed with a claim ea 2 L
1(Q). His utility from a risk transfer

x 2 X is given by

EP [u(ea + x)]

for some strictly increasing, concave, continuous utility function u : R+ ! R on
the positive half line and some belief P that is also equivalent to Q with bounded
density. We refer to P as the agent’s type. Types are private knowledge to the
agent; the principal only knows the set of possible types Q. We identify Q with the
set of densities dP

dQ
. Incorporating the non-negativity constraint on both parties’

payo↵, the set of admissible transfers (the contract space in payo↵ units) is given by

X := {x 2 X : �ea  x  ep} .

2.1.1. The contracting problem over contingent claims. The principal faces the prob-
lem of designing an optimal risk-sharing rule x : Q ! X that assigns a transfer to
any agent type P 2 Q and that maximizes her utility, subject to the usual individual
rationality and incentive compatibility constraint. We assume that the principal’s
utility from a risk-sharing mechanism x : Q ! X is given by a variational utility
function (see Maccheroni, Marinacci, and Rustichini (2006)) of the form

(1) inf
2K

⇢Z

Q
EP 0 [v (ep � xP )](dP ) + ↵()

�

where K⇢ �(Q) is a set of probability measures on Q, and ↵ : K ! R is a convex
penalty function. Our choice of utility function allows the principal to be uncertain
about the distribution of the agent type. The principal’s optimization problem is



4 ROBUST CONTRACTING IN GENERAL CONTRACT SPACES

thus given by: find a menu x : Q ! X that maximizes

inf
2K

⇢Z

Q
EP 0 [v (ep�xP )](P ) + ↵()

�

subject to P 7! EP 0 [v (ep�xP )] is measurable,

EP [u(xP+ea)� u(ea)] � 0, P 2 Q

EP [u(xP+ea)� u(x
P̂
+ea)] � 0, P, P̂ 2 Q.

(2)

Set X is �(L1(Q), L1(Q))-compact, owing to the Dunford-Pettis theorem.3 How-
ever, it is usually not norm compact.4 At the same time, the agent’s utility function
is continuous w.r.t. the norm topology under mild technical conditions but usually
fails to be continuous w.r.t. the �(L1(Q), L1(Q))-topology (unless the agent is risk
neutral).5

2.1.2. The contracting problem over utility units. Without continuity assumptions
on the agent’s utility function and compactness conditions on the contract space, it
is di�cult to establish the existence of a solution for the contracting problem over
contingent claims. To overcome this problem, we follow an approach that goes back
at least to Spear and Srivastava (1987) and Schättler and Sung (1993) and that has
more recently been used by Sannikov (2008) and many others, and consider instead
the following set

C := {u(ea + x) : x 2 X}
of the agent’s utility levels as the new contract space. Since u is continuous, C is
�(L1(Q), L1(Q))-compact. This leads to the following equivalent problem over a
compact contract space: find a menu c : Q ! C that maximizes

inf
2K

⇢Z

Q
EP 0

⇥
v
�
ep + ea � u

�1( cP )
�⇤

(dP ) + ↵()

�

subject to P 7! EP 0
⇥
v
�
ep + ea � u

�1( cP )
�⇤

is measurable,

EP [cP � u(ea)] � 0, P 2 Q

EP [cP � c
P̂
] � 0, P, P̂ 2 Q.

(3)

Although the change of variables helps to overcome the continuity problem (at the
level of utility units, the agent’s utility functional is linear), a new problem emerges:
space L

1(Q) is essentially never separable, and hence, set C cannot be expected to
be metrizable when equipped with the weak topology. We show in Section 4 how
our general existence result from Section 3 can be used to overcome this problem,
and to establish the existence of an optimal risk-sharing rule under the preceding

3The Dunford-Pettis theorem states that a family of random variables (Xi)i2I ⇢ L1(Q) where I
is an arbitrary index set is uniformly integrable if and only if it is relatively compact for the weak
topology �(L1(Q), L1(Q)); see (Föllmer and Schied, 2011, Theorem A.45).

4For the lack of norm compactness, observe as an illustration that when �ea < ep are both
constants, ⌦ = [0, 1], and Q is Lebesgue measure on [0, 1], then X contains a sequence of {�ea, ep}-
valued functions that oscillate increasingly, thus having no accumulation point w.r.t. Q-a.s. con-
vergence and hence neither in L1(Q)-norm. By the Riesz lemma, the unit ball {x : kxk  1} in a
normed vector space (X, k · k) is compact if and only if X is finite dimensional.

5Although (2) is a static problem, an extension to continuous time, as in Mirrlees and Raimondo
(2013), is possible.
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assumptions on utility functions u and v if all the densities inQ are uniformly L
1(Q)

bounded, that is, uniformly norm bounded.

2.2. A reinsurance model with utilities on the whole real line. Let us now
consider a modification of the preceding reinsurance model. We assume again that
risk transfer occurs over a set of random variables X . The agent is endowed with
a bounded initial claim ea, his utility function u : R+ ! R is still defined on the
positive half-line but the principal’s utility function v : R ! R is now defined on the
whole real line, for example, it is the exponential utility function. Thus, in contrast
to Subsection 2.1, the principal’s payo↵ is not subject to a non-negativity constraint.
In this case, we choose as our set of admissible transfers a set

(4) X ⇢ {x 2 X : �ea  x}

that is closed in L
0(Q), convex and bounded in Q-probability. For instance, if

X is convex we may consider all transfers that are bounded below by �ea and
bounded above by some positive random variable y 2 L

0(Q). Unlike in the previous
subsection, set X is not necessarily weakly compact. Nonetheless, we prove in
Subsection 4.1.2 that set C := {u(ea + x) : x 2 X} of the agent’s utility levels is
again �(L1(Q), L1(Q))-compact under the above assumptions on X if u satisfies
a certain asymptotic elasticity condition. Moreover, we prove that the contracting
problem (3) has a solution if the agent’s maximal attainable utility from reinsurance
is finite and the type space Q is L1(Q)-norm compact.

Remark 2.1. If the principal’s utility function v is bounded as it was assumed in
the preceding subsection, then the type space only needs to be norm bounded. In
the present setup, we can no longer assume that v is bounded because it is now
defined on the whole real line.

2.3. A hedging problem with financial markets. We close this section with a
financial market framework for the general setting of Section 2.2. Specifically, we
consider an incomplete continuous-time financial market for which the asset price
dynamics is described by a d-dimensional semi-martingale (St) defined on a filtered
probability space (⌦, (Ft),F , Q). We consider a contracting problem between an
investor (the principal) and a broker (the agent). The broker’s assessment of the
financial market dynamics is private knowledge. We assume that the principal can-
not (or does not want to) trade in the financial market, either because she has no
access to the market or because she finds it too costly. Instead, she may hedge her
risk by exchanging payo↵s with the agent. The agent is endowed with a bounded
claim ea and accepts all transfers that he could super-replicate at zero initial in-
vestment by trading in the financial market over the time interval [0, T ]. Here, a
contingent claim e 2 L

0(Q) is called super-replicable at zero initial investment if
an admissible trading strategy ⇡ exists such that the resulting gains from trading
satisfy e  (⇡ · S)T :=

R
T

0
⇡tdSt. An admissible trading strategy is an (Ft) adapted

d-dimensional stochastic process (⇡s) such that (⇡ · S)T is uniformly bounded from
below. Let X be the set of super-replicable claims. We prove in Subsection 4.1.3
that the resulting set X in (4) is indeed closed in L

0(Q), convex and bounded in
Q-probability.
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3. An Abstract Adverse Selection Problem

Let (⇥, ⌧
⇥) and (C, ⌧C) be topological spaces. We endow each of them with

their Borel sigma-algebras, denoted B(⇥) and B(C) respectively. Space C is the
space of contracts that the principal may o↵er the agent. Space ⇥ is the space of

possible types that the agent may have.

3.1. Menus. If the agent is of type ✓ 2 ⇥ and contract c 2 C is chosen, the agent’s
utility is denoted by U(✓, c) and the principal’s utility is denoted by V (✓, c). Let

K 6= ;
be a set of regular Borel probability measures on ⇥. Set K comprises the principal’s
beliefs about the agent’s type distribution.

Assumption 3.1. Throughout, we make the following standing assumptions:

(a) (C, ⌧C) and (⇥, ⌧
⇥) are compact Hausdor↵ spaces.

(b) U : ⇥⇥ C ! R is jointly continuous on ⇥⇥ C.
(c) V : ⇥⇥ C ! R is jointly upper semicontinuous on ⇥⇥ C.

Remark 3.2. The standard situation we focus on is one in which C and ⇥ are
subsets of Banach spaces E and E

0 that form a dual pair hE,E
0i, where ⌧

C is
the weak topology on C and ⌧

⇥ is a norm topology on ⇥, and where U(✓, c) is a
continuous function of the duality product hc, ✓i.

The family of all ⌧C-closed subsets of C (excluding ;) is denoted by CL(C).

Definition 3.3. A menu is a non-empty closed subset of contracts. In other words,
menus are the elements of CL(C).

A menu D 2 CL(C) is automatically compact. Whenever C is not metrizable,
we cannot introduce the familiar Hausdor↵ distance on CL(C). Instead, we equip
CL(C) with the Fell topology ⌧F . We recall the Fell topology and the related concept
of Kuratowski-Painlevé convergence6 in Appendix A. Then, in Appendix B, we also
prove the following well-known result for the reader’s convenience:

Lemma 3.4. Space (CL(C), ⌧F ) is compact Hausdor↵.

3.2. Agent. Let us consider the agent’s utility over menus. Given a menu D 2
CL(C), an agent of type ✓ derives as utility the maximum U

⇤(✓, D) he can attain
out of the contracts in the menu:

U
⇤ : ⇥⇥ CL(C) ! R, U

⇤(✓, D) := sup
d2D

U(✓, d).

Proposition 3.5. U
⇤
is continuous on (⇥⇥ CL(C), ⌧⇥ ⇥ ⌧F ).

For the agent let � be the optimal contracts, depending on types and menu:

(5) � : ⇥⇥ CL(C) ⇣ C, �(✓, D) := argmax
d2D

U(✓, d).

Set �(✓, D) contains all contracts within menu D, which are optimal for the agent
of type ✓.

6Limits in this sense are where the sets accumulate. Note that we have to work with nets instead
of sequences unless the contract set is metrizable.
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Proposition 3.6. � is a jointly upper hemicontinuous correspondence with compact

non-empty values.

To formulate the individual rationality constraint, we assume that the agent
agrees with a proposed menu only if he is left better o↵ than if he had just retained
his given (type-dependent) reservation utility u, that is, if

(6) U
⇤(✓, D) � u(✓), for all ✓ 2 ⇥.

We assume that function u : ⇥ ! R is common knowledge and the following standing
assumption holds:7

Assumption 3.7. There exists c⇤ 2 C such that

U(✓, c⇤) � u(✓), for all ✓ 2 ⇥.

To describe the set of individually rational menus, let T : ⇥ ⇣ CL(C) be the
correspondence defined by

T (✓) := {D 2 CL(C) : U⇤(✓, D) � u(✓)}
= U

⇤(✓, ·)�1[u(✓),1),

which is closed-valued (by Proposition 3.5) and hence compact-valued. By Assump-
tion 3.7, c⇤ 2 C exists such that {c⇤} 2 T (✓) for all ✓ 2 ⇥. As a result, we might
define, with a slight abuse of notation,

(7) T :=
\

✓2⇥
T (✓) ⇢ CL(C),

which is compact and non-empty. We call T the set of individually rational menus.

3.3. Principal. Given an agent’s type ✓ 2 ⇥ and a menu D, the principal will only
consider those contracts in D that are optimal w.r.t. her utility for this given type.
This defines a type-dependent utility for the principal, namely:

V
⇤ : ⇥⇥ CL(C) ! R, V

⇤(✓, D) := sup
d2�(✓,D)

V (✓, d).

The counterpart to Proposition 3.5 is the following:

Proposition 3.8. V
⇤
is upper semicontinuous on (⇥⇥ CL(C), ⌧⇥ ⇥ ⌧F ).

To specify the principal’s utility, we recall that the (non-empty) set K consists
of regular Borel probability measures on the type space and thus it collects the
principal’s possible priors over the type of the agent. We fix a penalty function

↵ : K ! R
and define the principal’s utility of a menu D in variational form as follows:

(8) inf
2K

⇢Z

✓2⇥
V

⇤(✓, D)d(✓) + ↵()

�
.

7The assumption states that at least one individually rational contract exists. For instance, one
formally expects that the action “c⇤ =do nothing” (often c⇤ = 0 is a concrete model) belongs to C
and u(✓) := U(✓, c⇤) holds for all ✓ 2 ⇥.
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We stress that these integrals are well-defined if we assume that the type space is
compact, as we have assumed so far, or if merely the principal’s utility function is
bounded. The principal’s optimization problem over menus reads:

(9) sup
D2T

inf
2K

⇢Z

✓2⇥
V

⇤(✓, D) d(✓) + ↵()

�

The following result states a general existence of optimal contracts.

Theorem 3.9. Under the standing Assumptions 3.1 and 3.7, an optimal solution

D
⇤ 2 T to problem (9) exists.

We now present two extensions of the preceding theorem. The first deals with
non-compact type spaces but assumes that the principal’s utility is bounded.

Proposition 3.10. Let V be uniformly bounded. Further suppose that Assumption

3.7 holds, as well as Assumptions 3.1 where the compactness of the type space (⇥, ⌧
⇥)

is dropped. Then, an optimal solution D
⇤ 2 T to the problem (9) exists.

The second extension applies to a situation in which the principal evaluates her
performance according to a worst-case approach. In this case, the existence of an
optimal menu can be shown under considerably weaker conditions. The proof is a
straightforward modification of the proof of Theorem 3.9.

Proposition 3.11. Assume that Assumption 3.7 and the following conditions hold:

(a’) (C, ⌧C) is a compact Hausdor↵ space.

(b’) U : ⇥⇥ C ! R is continuous on C for any fixed type ✓.

(c’) V : ⇥⇥ C ! R is upper semicontinuous on C for any fixed type ✓.

Then, an optimal solution D
⇤ 2 T to the problem of maximizing D 7! inf✓2⇥ V

⇤(✓, D)
over T exists.

3.4. On optimal contract mechanisms. A contract mechanism is a mapping
' : ⇥ ! C from the type space into the contract space. A contract mechanism is
individually rational if

(10) U(✓,'(✓)) � u(✓), for all ✓ 2 ⇥.

and incentive compatible if

(11) U(✓,'(✓)) � U(✓,'(✓0)), for all ✓, ✓0 2 ⇥.

We denote by M the set of all contract mechanisms that are individually ratio-
nal and incentive compatible. In defining a principal-agent problem over optimal
mechanisms, rather than over contract menus, the first di�culty is that the integral

Z

⇥

V (✓,'(✓))d(✓),

is not defined unless ✓ 7! V (✓,'(✓)) is measurable. Thus, we introduce set

M̂ := {' 2 M : V (·,'(·)) is measurable}
and define the principal-agent problem over contract mechanisms as follows:

(12) sup
'2M̂

inf
2K

⇢Z

⇥

V (✓,'(✓))d(✓) + ↵()

�
.
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Theorem 3.12. Under the assumptions of either Theorem 3.9 or Proposition 3.10,

an optimal solution '
⇤ 2 M̂ for problem (12) exists.

The proof of Theorem 3.12 relies on Theorem 3.9/Proposition 3.10. In fact,
this proof reveals that delegated contracting implemented via contract menus is
equivalent to centralized contracting implemented via contract mechanisms.

4. Applications

In this section, we consider several examples for which we can establish the
existence of an optimal contract by using the results of Section 3. We are mostly
interested in the case in which the type space ⇥ is a subset of L

1(Q) and the
contract space C in utility units is a �(L1(Q), L1(Q))-compact subset of L1(Q).
The agent’s utility function then depends on the duality product

h·, ·i : L1(Q)⇥ L
1(Q) ! R.

The duality product is sequentially continuous when L
1(Q) is equipped with the

�(L1(Q), L1(Q))-topology (see (Aliprantis and Border, 2006, Theorem 9.37)) but
may fail to be continuous in general. Therefore, to guarantee continuity of the
duality product we need to consider the norm topology on L

1(Q) and assume that
⇥ is subset of L1(Q).

First, we revisit the motivating examples presented in Section 2. Subsequently,
we consider two examples in which the agent can trade in a financial market after
transacting with the principal.

4.1. The motivating examples revisited.

4.1.1. The reinsurance model of Section 2.1. Since the agent’s utility function is
strictly increasing, the contracting problems (2) and (3) are equivalent. We apply
our abstract existence results to the contracting problem over utility levels. In the
notation of Section 3, ⌧C is the �(L1(Q), L1(Q))-topology on the contract space

C = {u(ea + x) : x 2 X}
of utility levels, ⌧⇥ is the L

1(Q) norm-topology on the type space ⇥ = Q, whereas

U(P, c) = EP [c] and V (P, c) = EP 0 [v(ep + ea � u
�1(c))].

The utility function U is jointly continuous for our choice of topologies. To establish
the upper semicontinuity of the utility function V , we recall the following result; see
Proposition 2.10 in Barbu and Precupanu (2012).

Lemma 4.1. Let L be a normed vector space and let f : L ! R be concave. Then,

norm upper-semicontinuity of f is equivalent to the weak upper-semicontinuity of f .

Since u
�1 is convex by definition, �u

�1(·) is concave, and hence V is concave
because v is concave. Since V is also L

1(Q)-norm upper semicontinuous by Fatou’s
lemma, it follows that V is (jointly) weakly upper semicontinuous. Moreover, if
Q ⇢ L

1(Q) is norm-bounded then V is uniformly bounded because v is bounded.
Thus, if an individually rational contract exists, then the existence of a solution
to the contracting problem follows from Theorem 3.12. By reverting the change of
variables from X to C, we obtain an optimal mechanism for problem (2).
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4.1.2. The reinsurance model of Section 2.2. This section analyzes the model of Sec-
tion 2.2 in a broader context. Our analysis is inspired by (Kramkov and Schacher-
mayer, 2003, Section 2). We assume that the agent’s utility function u : R+ ! R
satisfies the following conditions.

Assumption 4.2. The utility function u : R+ ! R is lower bounded, strictly
increasing, strictly concave, continuously di↵erentiable, and it satisfies the Inada
condition and the following asymptotic elasticity (AE) condition:

lim sup
z!1

zu
0(z)

u(z)
< 1.

The (AE) condition was first introduced by Kramkov and Schachermayer (1999)
to show that optimal solutions exist for a wide class of utility maximization problems.

Example 4.3. The CRRA class of utility functions u(z) = z
p

p
for p 2 (0, 1) satisfies

Assumption 4.2.

To handle utilities v on the whole real line, let X ⇢ L
0(Q) be the contract space

in payo↵ units that satisfies the following condition:

Assumption 4.4. Set X is convex and closed in L
0(Q). Further, for any � 2 R the

following set is bounded in Q-probability:

{x 2 X : x � �}.

We assume that the agent is endowed with a bounded random variable ea 2
L
1(Q) and introduce the set of feasible risk transfers

X (ea) := {x 2 L
0(Q) : 0  x  ea + x̄ for some x̄ 2 X}(13)

= (ea + X � L
0

+(Q)) \ L
0

+(Q).

This set represents in abstract terms the set of risk transfers that are feasible to the
agent. It follows from Assumption 4.4 and the Komlos lemma that X (ea) is convex,
solid,8 and closed in L

0(Q). Next, we introduce the polar set of X (ea), namely,

X (ea)
0 := {x0 2 L

0

+(Q) : EQ[xx
0]  1 for all x 2 X (ea)}

along with the convex conjugate u
⇤ of u:

u
⇤(y) := sup

z2R
{u(z)� zy}.

Lemma 4.5. Under Assumptions 4.2 and 4.4, assume that some y > 0 and a

random variable x
0 2 X (ea)0 exist such that

EQ[u
⇤(x0y)] < 1.(14)

Then, the contract space in utility units C := u(X (ea)) = {u(x) : x 2 X (ea)} is

contained in L
1(Q) and is �(L1(Q), L1(Q))-compact.

The following lemma gives a su�cient condition that guarantees condition (14).
It essentially states that the agent’s maximal attainable utility from risk transfer is
finite. The proofs of Lemmas 4.5 and 4.6 are presented in Appendix B.

8This means that if x 2 X (ea) and y  x, then y 2 X (ea).
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Lemma 4.6. Let keak be considered a constant function. If

sup
x2X (keak)

EQ[u(x)] < 1,(15)

where X (keak) has been introduced in (13), then condition (14) holds.

With Lemma 4.5 and 4.6 at hand, we can now use the same arguments as in the
preceding subsection along with Theorem 3.12 to establish the following result. It
shows that the contracting problem introduced in Section 2.2 has a solution if the
agent’s utility from risk sharing is finite.

Theorem 4.7. Under Assumptions 4.2 and 4.4, if (15) holds and if Q ⇢ L
1(Q) is

norm compact,
9
then the contracting problem of finding a mechanism x : Q ! X (ea)

that maximizes

inf
2K

⇢Z

Q
EP 0 [v (ep � ea + xP ))](dP ) + ↵()

�

subject to P 7! EP 0 [v (ep � ea + xP ))] , is measurable

EP [u(xP )� u(ea)] � 0, P 2 Q

EP [u(xP )� u(x
P̂
)] � 0, P, P̂ 2 Q,

(16)

has a solution as soon as an individually rational contract exists (this is the case if,

for instance, 0 2 X ).

4.1.3. The hedging problem of Section 2.3. The analysis of the hedging problem is
related to the analysis in Cvitanić, Schachermayer, and Wang (2001). A trading
strategy ⇡ is called admissible, if the gain from trade, modelled as a stochastic
integral (⇡.S)T =

R
T

0
⇡tdSt, is well–defined and lower bounded. We put

X0 := {x : x  (⇡.S)T , ⇡ is admissible},
and

umax := sup
x2X0

EQ[u(x+ ea)].

For the considered financial market, we require a form of no-arbitrage:

Assumption 4.8. A probability measure Q
0 ⇡ Q exists such that the process t 7!

(⇡.S)t is a Q
0-local martingale for every admissible trading strategy ⇡. Moreover,

umax < 1.

The key observation, made in (Kramkov and Schachermayer, 2003, Lemma 1)
for the case without random endowments, but easily obtainable in our setting as
well, is the following:

Lemma 4.9. Assumptions 4.2 and 4.8 imply �(L1(Q), L1(Q))-compactness of C =
{u(x) : x 2 (X0 + ea) \ L

0
+(Q)}.

Again, in the notation of Section 3, ⌧C is the �(L1(Q), L1(Q))-topology on C

of utility levels, ⌧⇥ is the L
1(Q) norm-topology on set ⇥ = Q, and

U(P, c) = EP [c] and V (P, c) = EP 0 [v(e+ ea � u
�1(c))].

9Special cases of norm-compact subsets of L1(Q) can be constructed using Arzela and Ascoli’s
theorem when ⌦ is a topological space.
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The agent’s utility U is jointly continuous and the principal’s utility V is upper
semicontinuous. As a result, the hedging problem introduced in Section 2.3 has a
solution if the set of densities in Q is L1(Q)-norm-compact. This result is formally
covered by Theorem 4.7, but not quite, since hypothesis umax < 1 is weaker than
(15).

4.2. Market optimized risk sharing. In the previous examples, the agent had
to decide whether to accept (or reject) a contract based on his portfolio after the
risk transfer. In this section we consider two examples in which he decides to accept
(or reject) a contract based on the “indirect utility” that arises after investing in a
financial market about which he has private information. Specifically, we consider a
continuous time financial market model with one risk-free and one risky asset. The
price of the risk-free asset is normalized to one. The discounted price of the risky
asset follows a geometric Brownian motion with drift:

dSt

St

= dWt + f
0(Wt)dt, S0 = s, 0  t  T

where W is a one-dimensional standard Brownian motion defined on the Wiener
space (⌦,F , (Ft)0tT , Q) and f 2 F where F is a class of real-valued twice con-
tinuously di↵erentiable, uniformly bounded, uniformly equicontinuous functions f :
R ! R with common compact support that satisfy the normalization constraint
f(0) = 010. The closure F̄ of F w.r.t. the topology of uniform convergence is a
compact subset of the set of continuous functions on R w.r.t. the supremum norm
by the theorem of Arzela and Ascoli. By Girsanov’s theorem, for any f 2 F̄ there
exists a unique equivalent martingale measure Pf whose density is given by

dPf

dQ
= e

f(WT )
.

We assume that the pricing kernel is private knowledge to the agent and choose as
our type set the function space

⇥ := F̄

equipped with the topology of uniform convergence. In particular, the financial
market is complete from the agent’s point of view. The agent is endowed with a
bounded claim ea 2 L

1(Q). His preferences over payo↵s are defined by an expected
utility functional of the form EQ[u(·)] for some Bernoulli utility function u : R ! R
that we choose to be the exponential (Subsection 4.2.1), respectively the logarithmic
(Subsection 4.2.2) one. The principal is endowed with a bounded claim ep 2 L

1(Q);
her preferences over payo↵s are defined by an expected utility functional of the form
EQ[v(·)] for some concave Bernoulli utility function v : R ! R. An admissible
trading strategy for the agent is an adapted real-valued stochastic process vector ⇠
that satisfies EQ[

R
T

0
⇠
2
t dt] < 1.

10We think of f 0 as being a constant outside a large compact set. In this case, the price dynamics
essentially reduces to geometric Brownian motion.
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4.2.1. Risk- sharing with hedging. Let us first consider a risk-sharing problem in
which the agent can hedge his risk by trading in the financial market after transacting
with the principal. We assume that

u(y) = 1� e
�↵y

with CARA parameter ↵ > 0. Given his initial endowment ea 2 L
1(Q), the budget

set of agent f 2 F̄ is given by

(17) B(f) :=
�
x 2 L

1(Q) : Ef [x� ea]  0
 

where Ef denotes the expectation under the pricing measure Pf . We notice that
Ef [ea] is finite because Pf has a bounded density w.r.t. Q. The following result can
be inferred from (Föllmer and Schied, 2011, Chapter 3, Example 3.37). It yields the
optimal claim and the optimal utility from trading for any agent type.

Lemma 4.10. The optimal attainable payo↵ over all admissible trading strategies

for an agent of type f in the budget set (17) is

x
⇤ = � 1

↵
log

dPf

dQ
+ Ef [ea] +

1

↵
H(Pf |Q),

and the optimal utility from trading in the market is

EQ[u(x
⇤)] = 1� e

�↵Ef [ea]�H(Pf |Q)
.

Here, H(Pf |Q) := Ef [log(dPf/dQ)] = EQ

⇥
e
f(WT )

f(WT )
⇤
< 1 denotes the relative

entropy of Pf w.r.t. the Wiener measure Q.

Let X ⇢ L
1(Q) be a closed set of uniformly integrable financial positions x : ⌦ !

R. By the Dunford-Pettis theorem, this is equivalent to X being �(L1(Q), L1(Q))-
compact. We take X , equipped with the �(L1(Q), L1(Q)) topology as our set of
contractible payo↵s:

C = X .

When o↵ered a payo↵ x 2 X the agent’s endowment before trading is ea + x. It
follows from the above lemma that his optimal optimal utility after trading in the
financial market, that is, his indirect utility function is given by

U (f, x) = 1� e
�↵Ef [ea+x]�H(Pf |Q)

.

Since all functions f 2 F̄ are uniformly bounded it follows from the dominated
convergence theorem that the mapping f 7! H(Pf |Q) is continuous. As a result,
the mapping

(f, x) 7! U (f, x)

on ⇥ ⇥ X is jointly continuous. A direct computation shows that a mechanism
f 7! xf is incentive compatible if and only if

Ef [xf � xf 0 ] � 0, for all f, f 0 2 F̄.

We assume that at least one individually rational incentive compatible mechanism
exists. The principal’s utility from transacting with agent f is

V (xf ) = EQ[v(eP � xf )].
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Since v is concave, V is upper semicontinuous, and thus, it follows from Theorem
3.12 that the principal’s optimization problem to find a mechanism x : F̄ ! C that
maximizes

inf
2K

⇢Z

f2F̄
V (xf ) d(f) + ↵()

�

subject to the usual incentive compatibility, individual rationality, and measurability
condition, has a solution.

4.2.2. A model of optimal portfolio delegation. In the previous applications, the prin-
cipal’s utility function was independent of the agent type (f 2 F̄). In this section, we
consider a simple model of optimal portfolio delegation in which the principal’s util-
ity function depends on the agent type. We now assume that the agent’s Bernoulli
utility function is

u(y) = ln(y).

We retain the assumption that the drift of the stock price process is private infor-
mation to the agent. The budget set of an agent of type f is the same as in (17).
The following result can again be inferred from (Föllmer and Schied, 2011, Chapter
3, Example 3.43):

Lemma 4.11. The optimal attainable payo↵ over all admissible trading strategies

for an agent of type f in the budget set (17) is

x
⇤ = Ef [ea]

dQ

dPf

,

and the optimal utility from trading in the market is

EQ[u(x
⇤)] = lnEf [ea] +H(Q|Pf ) = lnEf [ea]� EQ[f(WT )].

The principal, considered an investor, outsources her portfolio selection to a man-
ager (the agent) who has private information about the financial market dynamics
and whose investment decisions in the above-specified financial market cannot be
monitored. Following Ou-Yang (2003); Backho↵ and Horst (2016), we restrict the
class of admissible contracts to linear ones: the principal can o↵er the agent some
contingent claim plus a fraction of the gains or losses from trading. In particular, the
agent is liable for possible losses. That is, a contract consists of some F-measurable
random variable x, the contingent claim, that we again assume to belong to some
�(L1(Q), L1(Q))-compact set X and some number � 2 [0, 1], the proportion of
wealth the agent can keep. That is,

C = X ⇥ [0, 1],

equipped with the product topology. When o↵ered a contract (x,�), the agent’s
wealth from an admissible trading strategy ⇠ is

ea + x+ �

Z
T

0

⇠sdSs.

By Lemma 4.11, since asset prices are martingales under measure Pf the agent’s op-
timal utility after trading in the market can be described by the continuous indirect
utility function

U(f, x) := lnEf [ea + x] +H(Q|Pf ).
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In particular, the agent’s optimal utility is independent of the performance part
of his contract11 and a mechanism f 7! (xf ,�f ) is incentive compatible if and only
if

Ef [xf � xf 0 ] � 0 for all f, f 0 2 F̄.
It is important to note that although the agent’s optimal utility is independent

of the performance part of his contract, the optimal trading strategy ⇠
⇤ and the

income w
⇤ to the principal do both depend on the agent’s type. Since the optimal

claim for the agent can be decomposed as x⇤ = x+ea+�
R
T

0
⇠
⇤
t dSt the optimal gains

from trading are given by
Z

T

0

⇠
⇤
t dSt =

1

�

✓
Ef [ea + x]

dQ

dPf

� x� ea

◆

and hence, the principal’s income from trading is given by

w
⇤ =

1� �

�

✓
Ef [ea + x]

dQ

dPf

� (ea + x)

◆
.

Hence, unlike in the previous section, the principal’s utility function now depends
on the type of the agent with whom she interacts. Her utility when interacting with
a type f agent and o↵ering a contract (x,�) is given by

V (f, (x,�)) = EQ


v

✓
ep � x+

1� �

�

✓
Ef [ea + x]

dQ

dPf

� (ea + x)

◆◆�
.

This function is jointly upper semicontinuous. We can now use the same arguments
as in the previous subsection to conclude that the principal’s optimization problem
of finding a mechanism (x,�) : F̄ ! C that maximizes

inf
2K

⇢Z

F̄
V (f, (xf ,�f )) d(f) + ↵()

�

subject to the usual incentive compatibility, individual rationality, and measurability
condition, has a solution (provided a feasible mechanism exists).

5. Concluding Remarks

We considered a very general setting for a mechanism design problem in the
presence of adverse selection. Under mild hypotheses we proved that optimal con-
tracts exist and that centralized contracting implemented via contract mechanisms
is equivalent to delegated contracting implemented via contract menus. The guid-
ing principle of our work was to use the utility levels of the agent as the relevant
contract variables. When doing so, the agent’s utility function is given by a bilinear
form. This does not only significantly simplify the incentive compatibility condition
but also yields a natural duality between the type and the contract type. Simulta-
neously, it naturally results in a framework in which the relevant topological spaces
for the contracting problem may lack metrizability (and possibly separability too),
as we illustrated with various examples.

Our study was greatly influenced by the works Page (1992, 1997), and in particu-
lar, by Page’s idea of considering contract menus rather than mechanisms. However,
the lack of metrizability precludes us from applying the results therein, because it

11This has previously been observed in Ou-Yang (2003) and Backho↵ and Horst (2016).
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rules out the use of measurable selection results. For instance, in Page (1992), the
contract space is given by sequentially compact subsets of L1. Under an additional
separability assumption that would not be needed in our setting, the contract space
is metrizable. Compared with Page (1992), we reverse the role of the contract and
type space: in all our examples, the contract spaces are subsets of L1, which is very
natural when the agent is an expected utility maximizer, whereas the type spaces
are subsets of L1. The choice of norm-bounded, respectively compact, type spaces
in L

1 is an immediate consequence of the fact that the agent’s utility function is
given by a bilinear form after the transformation of variables.

To the best of our knowledge, the existence of mechanisms does not follow from
existing Komlos-type results used or established in other studies, such as Page
(1991); Balder (1996, 1990); Balder and Hess (1996). Our setting does not seem
to fulfill the hypotheses needed for such arguments. Under various topological as-
sumptions on the contract space, it has been shown that if the principal knows the
distribution µ of the agent types and if the set of incentive compatible mechanisms is
convex,12 then a sequence {'k} of strongly measurable incentive compatible mecha-
nisms admits an almost surely Cesaro convergent subsequence, that is, a subsequence
{nk} exists such that

1

nk

nkX

i=1

'i(✓) ! '
⇤(✓) µ-a.s. as k ! 1.

Our setting does not seem to fulfill the hypotheses needed for such arguments. More
strikingly, our framework allows to consider very general sets of beliefs about the
type distribution. By contrast, Komlos-type arguments always need a reference
distribution w.r.t. which the principal’s beliefs are absolutely continuous. Such a
reference distribution does not exist if the principal evaluates her performance ac-
cording to a worst-case approach w.r.t. the agent’s type. A further advantage of the
approach used here is that we show that suitably-measurable contract mechanisms,
and contract menus, are largely equivalent even though we cannot use measurable
selection arguments. In other words, we do not require mechanisms to be measurable
functions; only the principal’s utility from implementing these mechanisms needs to
be measurable.

Appendix A. Abstract Results

A.1. The Fell Topology. We denote by C a compact Hausdor↵ topological space
and recall that CL(C) stands for the family of all non-empty closed subsets of C.

Definition A.1. The Fell topology on CL(C), which we denote ⌧F , is the topology
generated by the subbase consisting of all sets of the form

V
� := {A 2 CL(C) : A \ V 6= ;},

and
W

+ := {A 2 CL(C) : A ⇢ W},
where V and W are non-empty open subsets of C.

12This is the case if the contract space is convex and the agent’s utility function is a�ne. The
latter is guaranteed if mixed contracts are considered.
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The definition of Fell topology when C is only Hausdor↵ can be found in (Beer,
1993, Definition 5.1.1.), and it reduces to Definition A.1 in the present case of C
being compact.

Let us now recall the notions of lower and upper closed limits for nets of sets.
For a net {A�}�2⇤ in CL(C), let Li(A�) denote the set of all limit points of {A�}�2⇤.
These are the points c 2 C such that each neighborhood of c intersects A� for all
� in some residual subset of ⇤. By contrast, Ls(A�) denotes the set of all cluster
points of {A�}�2⇤. These are the points c 2 C such that each neighborhood of c
intersects A� for all � in some cofinal subset of ⇤. We always have Li(A�) ⇢ Ls(A�).

Since C is a compact Hausdor↵ space, convergence w.r.t. the Fell topology and
the notion of Kuratowski-Painlevé convergence of nets coincide (Beer, 1993, Theorem
5.2.6). Hence, we focus on the latter convergence, which is easier to apply in the
proofs.

Definition A.2. Let{A�}�2⇤ be a net in CL(C) and A 2 CL(C). We say that
{A�}�2⇤ converges in the Kuratowski-Painlevé sense to A (denoted A = K lim�A�)
if Li(A�) = A = Ls(A�).

A.2. Semicontinuity of an integral functional. We made use of the following
result, which is nontrivial in the present nonmetrizable setting:

Lemma A.3. Let X,Y be compact Hausdor↵ spaces, � a regular probability measure

on B(X), and g : X ⇥ Y ! R a jointly upper semicontinuous function. Then,

Y 3 y 7!
Z

X

g(x, y)d�(x),

is well-defined and upper semicontinuous.

Proof. Compact Hausdor↵ spaces are completely regular, and in a completely regular
space every finite upper semicontinuous function equals the pointwise infimum of its
continuous majorants:

g(x, y) = inf
c2S

c(x, y), S := {c : c � g everywhere, c continuous};

see for example (Bourbaki, 1958, Proposition 7, No 7, Chapter IX.10). Let us assume
for the moment13 that for c : X ⇥ Y ! R continuous we have

y↵ ! y implies sup
x

|c(x, y↵)� c(x, y)| ! 0.(18)

From the duality of continuous functions and finite measures, we find that

y 7!
Z

X

c(x, y)d�(x),

is continuous. Next, note that set S is downwards directed, and hence, in particular,
it can be seen as a decreasing net. In line with (Baranov and Woracek, 2009, Propo-
sition 2.13), where the regularity of � is needed, applied to the (upper-bounded)

13Actually, this follows immediately from the fact that the topologies on X and Y are generated
by uniformities: we prefer to give self-contained arguments, perhaps paving the way for future
extensions.
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upper semicontinuous function g, we easily deduce
Z

X

g(x, y)d�(x) =

Z

X

✓
inf
c2S

c(x, y)

◆
d�(x) = inf

c2S

Z

X

c(x, y)d�(x).

Thus, the function on the l.h.s. is an infimum of continuous functions and therefore
upper semicontinuous.

Let us return to (18), which would be trivial in the metrizable setting. We fix y

and let ✏ > 0. For each x we have by continuity the existence of neighborhoods UX
x

and V
Y
x of x and y respectively, such that

|c(x̄, ȳ)� c(x, y)|  ✏/2 for all x̄ 2 U
X

x , 8ȳ 2 V
Y

x .

We now cover X ⇥ {y}, a compact, with
S

x2X U
X
x ⇥ V

Y
x . Therefore, we obtain

x1, . . . , xn such that

X ⇥ {y} ⇢
[

in

U
X

xi
⇥ V

Y

xi
,

and we introduce V := \inV
Y
xi
. This is an open set containing y, and thus,

X ⇥ {y} ⇢
[

in

U
X

xi
⇥ V.

Therefore, given x̄ arbitrary and ȳ 2 V , there is some i  n such that (x̄, ȳ) 2 U
X
xi
⇥V

and thus

|c(x̄, y)� c(x̄, ȳ)|  |c(x̄, y)� c(xi, y)|+ |c(xi, y)� c(x̄, ȳ)|
 ✏/2 + ✏/2.

This shows that supx2X |c(x, y)� c(x, ȳ)|  ✏ for all ȳ 2 V , as desired. ⇤
Corollary A.4. Let X be a Hausdor↵ space, and let Y be a compact Hausdor↵

space. Let � a regular probability measure on B(X), and g : X ⇥ Y ! R a jointly

upper semicontinuous bounded function. Then

Y 3 y 7!
Z

X

g(x, y)d�(x),

is well-defined and upper semicontinuous.

Proof. Let (Xn) be an increasing sequence of compact subsets ofX such that �(Xn) "
1, the existence of which is guaranteed by the (inner) regularity of �. By Lemma
A.3, the mappings

Gn(y) :=

Z

Xn

g(x, y)d�(x)

are well-defined and upper semicontinuous for each n 2 N. Subtracting from g its
lower bound, we may assume that g is non-negative. For any y and � a.e. x we have
1Xn(x)g(x, y) % g(x, y), and hence, by sequential monotone convergence

lim
n!1

Gn(y) = sup
n

Gn(y) =

Z

X

g(x, y)d�(x) =: G(y).

Thus, G is well-defined, and its upper semicontinuity remains to be proved. Since
g is bounded, we have kGn �Gk1 ! 0 as n ! 1. Hence, if y↵ ! y is a net, then
for any ✏ > 0 and n = n(✏) big enough

lim supG(y↵)  ✏+ lim supGn(y↵)  ✏+Gn(y)  ✏+G(y),
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which concludes the proof. ⇤

Appendix B. Proofs

We now present the proof of Lemma 3.4, which actually follows by (Beer, 1993,
Proposition 5.1.2 and Exercise 5.1.4(a)). For the reader’s convenience, we provide
the complete argument:

Proof of Lemma 3.4. Since C is compact Haussdorf, for each A1, A2 2 CL(C) dis-
joint, we can find U1, U2 2 ⌧

C disjoint such that Ai ⇢ Ui. Then, U+

1
and U

+

2
are

disjoint open neighborhoods in ⌧F of A1 and A2 respectively. Thus ⌧F is Hausdor↵.
To prove that ⌧F is compact, we follow (Beer, 1993, Theorem 5.1.3). Let {V� :

� 2 ⇤} and {W� : � 2 ⌃} be two families of non-empty open sets of C, such that

CL(C) = {V �
�

: � 2 ⇤} [ {W+

� : � 2 ⌃}.
By the Alexander subbase theorem, it su�ces to check the existence of a finite
subcovering for this kind of coverings, to obtain proof of compactness of ⌧F . Note
that if ⇤ is empty, then C 2 [�W

+
� , therefore, for some �̄ 2 ⌃ we must have W�̄ = C

and consequently W
+

�̄ = CL(C) is a finite subcovering. Hence, we now assume that
⇤ is non-empty. If ⌃ is empty, then 8c 2 C : {c} 2 [�V

�
�
, and thus, these V�’s form

an open covering of C. Then, we find C = [n

i=1
V�n and get

CL(C) = [n

i=1V
�
�n

is a finite subcovering.
Finally, if both ⇤ and ⌃ are non-empty, some �0 2 ⌃ must exist such that

(W�0)
c ⇢ [�V�. Indeed, if this was not the case, we may choose c� 2 (W�)c\[�V� for

each �, and then the closed set {c� : � 2 ⌃}⌧ intersects no V� and is not contained in
any W�, contradicting the covering assumption. Since (W�0)

c is compact, it follows
(W�0)

c ⇢ [m

k=1
V�k

and then clearly W
+
�0

[k V
�
�k

= CL(C). ⇤

Proof of Proposition 3.5. Let I : ⇥⇥CL(C) ⇣ ⇥⇥C be the identity correspondence

(✓, D) 7! I(✓, D) := {✓}⇥D.

It is easy to see that I is a continuous correspondence (see (Aliprantis and Border,
2006, Lemmata 17.4-17.5)) where the domain is given the topology (⌧⇥⇥⌧F ) and the
range is given (⌧⇥⇥ ⌧

C). Since by Assumption 3.1, function U is jointly continuous,
it follows by (Aliprantis and Border, 2006, Berge Maximum Theorem 17.31) that
U

⇤ is continuous too. ⇤

Proof of Proposition 3.6. Since D 2 CL(C) is compact, we have �(✓, D) 6= ; by the
continuity of U(✓, ·). Further, since set D \ U(✓, ·)�1({U⇤(✓, D)}) ⇢ C is closed, it
must be compact too, showing that �(✓, D) is compact.

We now prove upper hemicontinuity. Since C is compact, by (Aliprantis and
Border, 2006, 17.11 Closed Graph Theorem) we need only check that the graph of �
is closed. Let {(✓�, D�)}�2⇤ be a net with (✓�, D�) ! (✓, D), and let f� 2 �(✓�, D�)
with f� ! f . We must show that f 2 �(✓, D). Since f is a limit point of {f�}, with
f� 2 D� and D = Li(D�), we obtain f 2 D. On the other hand, by definition

U(✓�, f�) = U
⇤(✓�, D�).
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Since U and U
⇤ are continuous (Proposition 3.5), we can go into the limit, finding

U(✓, f) = U
⇤(✓, D).

This finding and f 2 D conclude the proof. ⇤

Proof of Proposition 3.8. By Proposition 3.6, the correspondence (✓, D) 7! �(✓, D)
is upper hemicontinuous and has non-empty compact values. On the other hand, by
Assumption 3.1, the function (✓, f) 7! V (✓, f) is upper semicontinuous. It follows
that the mapping V

⇤(·, ·) is upper semicontinuous; see (Berge, 1963, Theorem 2 (p.
116)) or (Aliprantis and Border, 2006, Lemma 17.30). ⇤

Proof of Theorem 3.9. First, define F
 : CL(C) ! R by

F
(D) :=

Z

⇥

V
⇤(✓, D)d(✓),

for  2 K. We have V
⇤(✓, D)  sup✓2⇥, c2C V (✓, c), the r.h.s. of which is finite

by compactness and u.s.c. of V . By Lemma A.3, taking g := V
⇤, we have that

F
 is well-defined and, in fact, upper semicontinuous in CL(C). It follows that

inf2K F
(·) is also upper semicontinuous. The set T is non-empty and compact,

see (7). The result follows. ⇤

Proof of Proposition 3.10. Since V is assumed bounded, the proof follows from the
same arguments as for Theorem 3.9], using Corollary A.4 instead of Lemma A.3. ⇤

Proof of Theorem 3.12. Let D⇤ be the optimizer of (3.9). Since set �(✓, D⇤) is non-
empty and compact for each ✓, we deduce that set

argmax
d2�(✓,D⇤)

V (✓, d)

is non-empty. By axiom of choice, we select '⇤(✓) 2 argmaxd2�(✓,D⇤) V (✓, d), thus,
by definition,

V (✓,'⇤(✓)) = V
⇤(✓, D⇤), for all ✓.

Observe that V (·,'⇤(·)) is measurable, because V ⇤(·, D⇤) is measurable. In addition,
since '

⇤(✓) 2 D
⇤ for each ✓, we deduce in particular

'
⇤(✓) 2 �(✓, D⇤),

which yields that

U(✓,'⇤(✓)) � U(✓,'⇤(✓0)), for all ✓0 2 ⇥.

Finally, since D
⇤ 2 T and '

⇤(✓) 2 �(✓, D⇤) we conclude that U(✓,'⇤(✓)) � u(✓).
Thus far, we have established that '⇤ 2 M̂ . Now, let ' 2 M̂ arbitrary, and let D be
the closure of '(⇥). It follows that '(✓) 2 �(✓, D), since ' is incentive compatible
and by continuity of U . Thus V (✓,'(✓))  V

⇤(✓, D) by definition. Since ' is
individually rational, it follows D 2 T . All in all,

Z

⇥

V (✓,'(✓))d(✓) 
Z

⇥

V
⇤(✓, D)d(✓)


Z

⇥

V
⇤(✓, D⇤)d(✓) =

Z

⇥

V (✓,'⇤(✓))d(✓),

from which ' is optimal for Problem (12).
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⇤

Proof of Lemma 4.5. Without loss of generality, we may assume that u � 0. By
(14) and the definitions of v and X (ea)0 we obtain that C is bounded in L

1(Q).
By Eberlein-Smulian’s theorem, it is enough to check sequential compactness. By
contradiction suppose that C is not �(L1(Q), L1(Q))-relatively compact, and hence
not uniformly integrable. As in the proof of (Kramkov and Schachermayer, 2003,
Lemma 1), we obtain the existence of a sequence {gn} ⇢ X (ea), a sequence of disjoint
measurable events {An} and an ↵ > 0 such that

EQ[u(gn)1An ] � ↵.

Accordingly, if we define Hk :=
P

nk
u(gn)1An we find EQ[Hk] � k↵. Note that

as in (Kramkov and Schachermayer, 1999, Lemma 6.3), u⇤(y/2)  au
⇤(y) + b, and

thus, in particular,
u
⇤(y2�m)  amu

⇤(y) + bm.

Now, clearly

Hk = u

0

@
X

nk

gn1An

1

A  u
⇤(Y ) + Y

X

nk

gn1An ,

for every non-negative random variable Y . Let us temporarily assume that we could
choose Y

⇤ independent of k and such that for some L < ↵:

EQ

2

4Y ⇤
X

nk

gn1An

3

5  Lk.(19)

Then from the above computations we would have

k↵  EQ[Hk]  EQ[u
⇤(Y ⇤)] + Lk,

and hence, if further

EQ[u
⇤(Y ⇤)] < 1,(20)

this would yield a contradiction with L < ↵. We now show the existence of Y ⇤

fulfilling (19) and (20). By Assumption (14), there exists y > 0, Y 2 X (ea)0 such
that EQ[u⇤(yY )] < 1. However, then

EQ[u
⇤(2�m

yY )] < 1,

for all m > 0. We now take m large so that L := y2�m
< ↵ and define Y

⇤ := LY .
Then

EQ

2

4Y ⇤
X

nk

gn1An

3

5  EQ

2

4Y ⇤
X

nk

gn

3

5  Lk.

Hence Y
⇤ fulfills (19)-(20) as desired.

It remains to show that C is weakly closed. First we show that C is convex.
Since u

�1 is increasing and u concave, for X, X̄ 2 X (ea) and � 2 [0, 1] we have

u
�1

�
�u(X) + (1� �)u(X̄)

�
 u

�1
�
u(�X + (1� �)X̄)

�

= �X + (1� �)X̄ 2 X (ea).
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Because X (ea) is solid, then u
�1

�
�u(X) + (1� �)u(X̄)

�
2 X (ea), and therefore

�u(X) + (1� �)u(X̄) 2 C. Since C is convex, it is weakly closed if and only if it is
strongly closed. Let us recall the bipolar theorem of (Brannath and Schachermayer,
1999, Theorem 1.3), which applies here since X (ea) is convex, solid, and closed in
L
0(Q), that states

X 2 X (ea) () EQ[XY ]  1for all Y 2 X (ea)
0
.

Now let {U(Xn)}n ⇢ C converge in L
1-norm to Z, and let Y 2 X (ea)0 be arbitrary.

Then,
EQ[Y u

�1 � u(Xn)] = EQ[Y Xn]  1,

and therefore, by Fatou’s lemma EQ[Y u
�1(Z)]  1 too, and by the bipolar theorem

u
�1(Z) 2 X (ea). Consequently, Z 2 C, finishing the proof. ⇤

Proof of Lemma 4.6. Observe that X (ea) ⇢ X (keak), and, as a consequence,

8X 2 X (keak) : EQ[XY ]  1 ) 8X 2 X (ea) : EQ[XY ]  1.

Assumption (15) allows us to apply (Kramkov and Schachermayer, 1999, Theorem
3.1) to the pairing between X (keak) and its polar. As a particular consequence,
there exists y � 0 and Y in the polar of X (keak) such that

EQ[u
⇤(yY )] < 1.

Since the polar of X (ea) is larger, we conclude the proof. ⇤
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