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In this paper we study time-varying coefficient models with time trend function and serially

correlated errors to characterize nonlinear, nonstationary and trending phenomenon in time se-

ries. Compared with the Nadaraya-Watson method, the local linear approach is developed to

estimate the time trend and coefficient functions. The consistency of the proposed estimators

is obtained without any specification of the error distribution and the asymptotic normality of

the proposed estimators is established under the α-mixing conditions. The explicit expressions

of the asymptotic bias and variance are given for both estimators. The asymptotic bias is just

in a regular nonparametric form but the asymptotic variance is shared by parametric estima-

tors. Also, the asymptotic behaviors at both interior and boundary points are studied for both

estimators and it shows that two estimators share the exact same asymptotic properties at the

interior points but not at the boundaries. Moreover, proposed are a new bandwidth selector

based on the nonparametric version of the Akaike information criterion, a consistent estimator of

the asymptotic variance, and a simple nonparametric version of bootstrap (i.e. wild bootstrap)

test for testing the misspecification and stationarity. Finally, we conduct some Monte Carlo

experiments to examine the finite sample performances of the proposed modeling procedures

and test.
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1 Introduction

The analysis of nonlinear and nonstationary time series particularly with time trend has been

very active during the last two decades because most of time series, in particular, observed from

economics and business, are nonlinear or nonstationary or trending (Granger and Teräsvirta 1993;

Franses 1996, 1998; Phillips 2001; Tsay 2002). For example, the market model in finance is an

example that relates the return of an individual stock to the return of a market index or another

individual stock. Another example is the term structure of interest rates in which the time evolu-

tion of the relationship between interest rates with different maturities is investigated. For more

examples in macroeconomic activity, see the survey paper by Phillips (2001). To characterize these

phenomena, during the recent years there have been proposed several nonlinear and nonstationary

parametric, semiparametric and nonparametric time series models with/without time trend in the

econometrics, finance and statistics literature. For more detailed discussions on this aspect, see the

papers by Park and Phillips (1999, 2002) and Chang, Park and Phillips (1999), Phillips (2001),

Karlsen and Tjøstheim (2001), and Karlsen, Myklebust and Tjøstheim (2001), and the books by

Granger and Teräsvirta (1993), Franses (1996, 1998) and Tsay (2002) and the references therein.

Although the literature is already vast and continues to grow swiftly, as pointed out by Phillips

(2001), the research in this area is just beginning.

There are several ways to explore the nonlinearity and nonstationarity and one of the most

attractive models is the time-varying coefficient time series models with time trend and serially

correlated errors. Indeed, regression models with serially correlated (time series) errors are widely

applicable in economics and finance, but it is one of most commonly misused econometric models

because the serial dependence in the errors is often overlooked. Recently, there are some new de-

velopments. Roussas (1989) studied the following fixed design time series model without exogenous

variables

Yi = β0(ti) + ui (1)

under the assumption that {ui} is a sequence of α-mixing random variables and other types of

dependence. He considered a linear estimator and obtained consistency of the proposed estimator.

Indeed, this model deals with only the time trend function β0(t). Roussas, Tran and Ioannides

(1992) derived the asymptotic normality but without giving the explicit expressions of the asymp-

totic bias and variance and Tran, Roussas, Yakowitz and Van (1996) considered the above model

by assuming that {ui} is a linear process. For more references, see the paper by Tran, Roussas,

Yakowitz and Van (1996). Actually, model (1) is very useful in various applied fields such as the

longitudinal study in medical sciences. The reader is referred to the book by Müller (1988) for

details.

To allow for the presence of exogenous (explanatory) variables (covariates)Xi = (Xi1, . . . , Xid)
T

which might be important in an econometric context or other fields, we consider the following time-
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varying coefficient time series models with time trend

Yi = β0(ti) +
d∑

j=1

βj(ti)Xij + ui = X̃
T
i β(ti) + ui, (2)

where X̃i = (1, XT
i )

T , β(t) = (β0(t), β1(t), . . . , βd(t))
T and E(ui |Xi) = 0. Since the trend function

β0(·) might not be polynomial in many applications in econometrics, as pointed out by Phillips

(2001), here β(·) is unspecified but is assumed to be smooth. To include the heteroscedasticity in

the model, E(u2
i |Xi) is allowed to be a function of Xi. This is particularly appealing in economics

and finance. Finally, {(ui, Xi)} is assumed to be stationary. Clearly, both models (1) and (2)

include the deterministic time trend function β0(t), the time series {Yi} is not stationary, and (2)

covers (1) as a special case. The deterministic time trend function β0(t) might be an important

ingredient in modeling the economic and financial data and it might not be polynomial as pointed

out by Phillips (2001) who gave an excellent review on some present developments and future

challenges about the trending time series models. Also, if all the coefficient functions including

β0(t) are constant, the time series {Yi} generated by the above models is stationary if so is the

time series {(ui, Xi)}. Finally, the model is closely related to the functional-coefficient time series

regression models which allow the coefficient functions to depend on some random variables rather

than time, studied by Chen and Tsay (1993), Xia and Li (1999) and Cai, Fan and Yao (2000),

and the time-varying coefficient autoregressive models with Xi being a vector of lagged variables,

explored by Cai and Tiwari (2000) and Kim (2001).

Robinson (1989) studied model (2) under the assumptions that the time series {Xi} is stationary
α-mixing and the errors {ui} are iid and independent of Xi and developed the Nadaraya-Watson

method to estimate the coefficient functions and studied the asymptotic properties of the proposed

estimator. More importantly, he demonstrated that making β(t) to depend on the sample size n is

necessary to provide the asymptotic justification for any nonparametric smoothing estimators. For

more discussions on this point, see the paper by Robinson (1989) and Section 3.1. Later, Robinson

(1991) considered a more general model and relaxed the iid assumption on {ui} to α-mixing.

The main contribution of this paper is to consider model (2) and to propose using the local

linear estimation to estimate the coefficient functions and to make a comparison with the Nadaraya-

Watson method. It is showed that the estimators based on both the local linear fitting and the

Nadaraya-Watson method share the exact same asymptotic behavior at the interior points but not

at boundaries. Also, it shows that the consistency of the proposed estimators can be obtained

without specifying the error distribution and the asymptotic variance of the proposed estimator

depends on not only the variance of the error but also the autocorrelations. This property is shared

by parametric estimators. Further, to choose the data-driven fashioned bandwidth, we propose a

new bandwidth selector based on the nonparametric version of the Akaike information criterion

and we propose a consistent estimator of the asymptotic variances which can be used to construct

the pointwise confidence intervals. Finally, an important econometric question in fitting model (2)
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arises whether the coefficient functions are actually varying (namely, if a linear model is adequate or

the time series {Yi} is stationary) or more generally if a parametric model fits the given data or there

is no time trend β0(t) at all or there are some exogenous variables not statistically significant. This

amounts to testing whether the coefficient functions are constant or zero or in a certain parametric

form. This is an important issue in the econometric misspecification and stationarity tests. We

propose a new testing procedure based on the comparison of the residual sum of squares under

the null and alternative models. This is related to the generalized likelihood ratio statistic of Fan,

Zhang and Zhang (2001) and the nonparametric F -test of Hastie and Tibshirani (1990, Section

3.9) for the iid sample, Cai and Tiwari (2000) for the time-varying coefficient autoregressive time

series model and Cai (2002a) for the additive time series model. The null distribution of the

proposed test statistic is estimated by using a simple nonparametric version of bootstrap sampling

scheme (i.e. wild bootstrap) which can include the heteroscedasticity in the model. Therefore, this

paper provides some deeper insights into how to apply for the statistical tools to make econometric

modeling of (2) and to make model (2) practically applicable and useful.

The rest of the paper is organized as follows. Section 2 is devoted to the presentation of

the estimation methods and a new bandwidth selector based on the nonparametric version of the

Akaike information criterion. In Section 3, the asymptotic theory is presented along with conditions

and some remarks, a consistent estimator of the asymptotic variance is provided and a new test

procedure for the misspecification and stationarity is proposed. Finally, Section 4 reports some

results from numerical simulations and we conclude with a brief discussion in Section 5. All the

technical proofs are relegated to the Appendix.

2 Modeling Procedures

2.1 Local Linear and Constant Estimation

For estimating {βj(·)} in (2), a local linear method is employed, although a general local poly-

nomial method is also applicable. Local (polynomial) linear methods have been widely used in

nonparametric regression during recent years due to their attractive mathematical efficiency, bias

reduction and adaptation of edge effects (see Fan 1993; Fan and Gijbels 1996). Assuming {βj(·)}
have a continuous second derivative, then {βj(·)} can be approximated by a linear function at any

fixed time point t as follows:

βj(ti) ' aj + bj (ti − t), 0 ≤ j ≤ d,

where ' denotes the first order Taylor approximation and aj = βj(t) and bj = β′j(t). Hence (2) is

approximated by

Yi ' ZT
i θ + ui,
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where Zi = (X̃
T
i , X̃

T
i (ti − t))T and θ = θ(t) = (βT (t),β′

T
(t))T . Therefore, the locally weighted

least square is
n∑

i=1

{
Yi − ZT

i θ
}2

Kh(ti − t), (3)

where Kh(u) = K(u/h)/h, K(·) is the kernel function and h = hn > 0 is the bandwidth satisfying

h→ 0 and nh→∞ as n→∞ which controls the amount of smoothing used in the estimation.

By minimizing (3) with respect to θ, we obtain the local linear estimate of βj(t), denoted by

β̂j(t), which is equal to the first (d+1) elements of θ̂, and the local linear estimator of the derivative

of βj(t), denoted by β̂′j(t), which is equal to the last (d+ 1) elements of θ̂. It is easy to show that

the minimizer of (3) is given by

θ̂ =

(
Sn,0(t) ST

n,1(t)

Sn,1(t) Sn,2(t)

)−1 (
Tn,0(t)

Tn,1(t)

)
≡ S−1

n (t)Tn(t), (4)

where

Sn,0(t) = n−1
n∑

i=1

X̃iX̃
T
i Kh(ti − t), Sn,1(t) = n−1

n∑

i=1

X̃iX̃
T
i (ti − t) Kh(ti − t),

Sn,2(t) = n−1
n∑

i=1

X̃iX̃
T
i (ti − t)2 Kh(ti − t), and Tn,k(t) = n−1

n∑

i=1

X̃i (ti − t)kKh(ti − t) Yi

for k = 0 and 1. Note that the local linear estimator can be viewed as the least square estimator

of the following working linear model

K
1/2
h (ti − t)Yi = K

1/2
h (ti − t)ZT

i θ1 +K
1/2
h (ti − t)ZT

i (ti − t)θ2 + εi.

Therefore, the computational implementation can be easily carried out by any standard statistical

softwares.

If βj(·) is approximated by a constant at any fixed time point t, then (2) is approximated by

Yi ' X̃
T
i θ

∗ + ui, where θ
∗ = β(t), and the locally weighted least square becomes

n∑

i=1

{
Yi − X̃

T
i θ

∗
}2

Kh(ti − t). (5)

Minimizing (5) with respect to θ∗ gives the local constant (Nadaraya-Watson) estimator of β(t),

denoted by β̃(t), which can be expressed as follows

β̃(t) = θ̂
∗
= S−1

n,0(t)Tn,0(t). (6)

We remark that the local linear estimator given by (3) does not take into the account of

autocorrelations of {ui}. The efficiency improvements are possible by correcting the disturbance
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serial correlation. For example, given a known autocorrelation structure of {ui}, we can replace

(3) with

{Y− Z θ}T K1/2
h Σ−1K

1/2
h {Y− Z θ}

where Y and Z are obtained by stacking the Yi and Zi, respectively, and Σ is the covariance

matrix of {ui}, and K1/2
h is a diagonal matrix with i-th diagonal element being K

1/2
h (ti− t). When

the autocorrelations of {ui} are unknown but can be modelled by certain parametric models such

as the ARMA models, it is then possible to use an iterative procedure to estimate jointly the

nonparametric function and the unknown parameters. The same remark can be applied to the

local constant estimator given by (5). In this paper, we adopt the simple locally weighted least

square approach and use equation (3) to construct our estimator.

Note that many other nonparametric smoothing methods can be used here. The locally weighted

least square method or the Nadaraya-Watson approach is just one of the choices. There is a vast

literature in theory and empirical study on the comparison of different nonparametric smoothing

methods (see Härdle 1990; Fan and Gijbels 1996; Pagan and Ullah 1999).

The restriction to the locally weighted least square method suggests that the normality is at

least being considered as a baseline. However, when the non-normality is clearly present, a robust

approach would be considered. Cai and Ould-Said (2001) considered this aspect in nonparametric

regression estimation for time series. If some of Xi are endogenous variables, the various instru-

mental variable type estimates of linear and nonlinear simultaneous equations and transformation

models can be easily applied here with some modifications. For example, we can apply the two-

stage local linear technique proposed by Cai, Das, Xiong and Wu (2002) and the nonparametric

generalized method of moments proposed by Cai (2002b).

2.2 Bandwidth Selection

From the asymptotic results presented in Section 3, we can see that the bandwidth plays an

essential role in the trade-off between reducing bias and variance. Therefore, the selection of the

bandwidth is similar to the model selection for linear models. The practitioner is often able to

choose the bandwidth satisfactorily by some ad hoc methods, however, it is desirable to have a

reliable data-driven and easily implemented bandwidth selector, which is also very important issue

in econometric modeling. In nonparametric regression setting with the Gaussian errors, there have

been a considerable amount of methods devoted to selecting the optimal bandwidth, some of which

can be adapted to handle dependence in time series. For the problem discussed in this paper, an

easy way is to derive an analogue to the cross-validation or its variations, however, as pointed out

by Fan, Heckman, and Wand (1995) and Fan and Gijbels (1996), the cross-validation performs

poorly due to its large sample variation, even worse for dependent data, and its computation might

be a burden.

Inspired by classical Akaike information criterion (AIC) discussed in Engle, Granger, Rice, and

Weiss (1986) for time series data for the bandwidth selection, here we propose a simple and quick
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method to select bandwidth for the foregoing estimation procedures. Indeed, this procedure can be

regarded as a nonparametric version of the AIC to be attentive to the structure of time series data

and the over-fitting or under-fitting tendency. Note that the idea is also motivated by its analogue

of Cai and Tiwari (2000) for the time-varying coefficient autoregressive models.

The basic idea is described as follows. For given observed values {Yt}nt=1, the fitted values can

be expressed as Ŷ = HλY, where Y = (Y1, . . . , Yn)
T and Hλ is called the n × n smoother (or

hat) matrix associated with the smoothing parameter λ. Motivated by the classical AIC for linear

models under the likelihood setting

−2 (maximized log likelihood) + 2 (number of estimated parameters), (7)

here we propose the following nonparametric version of AIC to select h by minimizing

AIC(λ) = log {SSE}+ ψ(nλ, n), (8)

where SSE =
∑n

t=1(Yt − Ŷt)
2, regarded as the replacement of the first term in (7) and nλ is the

trace of the hat matrix Hλ, called to be the effective number of parameters or the nonparametric

version of degrees of freedom by Hastie and Tibshirani (1990, Section 3.5) for nonparametric models.

Particularly, we choose ψ(nλ, n) to be the form of the bias-corrected version of the AIC, due to

Hurvich and Tsai (1989),

ψ(nλ, n) = 2 (nλ + 1)/(n− nλ − 2). (9)

It has been suggested that we try (9), as recommended by Brockwell and Davis (1991, Section

9.3), which penalizes extra parameters for larger values of the number of parameters. For the

nonparametric setting, nλ would be very large since the parameter space is functional space with

infinite dimension. Therefore, (9) is particularly suitable for this case. Indeed, (8) is a very general

formulation. For example, when ψ(nλ, n) = −2 log(1 − nλ/n), then (8) becomes the generalized

cross-validation (GCV) criterion of Wahba (1977). When ψ(nλ, n) = 2nλ/n, then (8) is the

classical AIC discussed in Engle, Granger, Rice, and Weiss (1986) for time series data. When

ψ(nλ, n) = − log(1 − 2nλ/n), (8) is the T-criterion proposed and studied by Rice (1984) for iid

samples. It is clear that when nλ/n→ 0, then the nonparametric AIC, the GCV and the T-criterion

are asymptotically equivalent. However, the T-criterion requires nλ/n < 1/2, and, when nλ/n is

large, the GCV has relatively weak penalty. This is especially true for the nonparametric setting.

Therefore, the criterion proposed here counteracts the over-fitting tendency of the GCV.

Alternatively, one might use some existing methods in the literature although they may require

more computing, for example, see the papers by Robinson (1989), Yao and Tong (1994), View

(1994), and Tschernig and Yang (2000).
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3 Statistical Results

3.1 Asymptotic Theory

The estimation methods described in Section 2 can accommodate both fixed and random designs.

Here, the main focus of this paper is on fixed-design. The reason of doing so is that it might be

suitable for pure time series data, such as financial and economic data. Since data are generally

observed in time order in many applications, we only consider the equal spaced design points

ti = i/n for simplicity although the theoretical results developed later still hold for non-equal

spaced design points. As pointed out by Robinson (1989), it is necessary to make β(t) to depend

on the sample size n to provide the asymptotic justification for any nonparametric smoothing

estimators. See Robinson (1989) for the detailed discussions on this aspect. This type of assumption

is commonly used in fixed-design nonparametric regression contexts. Detailed discussions on this

respect can be found in Müller (1988), Roussas (1989), Robinson (1989, 1991), Roussas, Tran, and

Ioannides (1992), Tran, Roussas, Yakowitz and Van (1996), Cai and Chen (2002), among others for

nonparametric regression estimation. For random design, it is commonly assumed in the statistics

literature that the design points ti, for i = 1, . . . , n, are chosen independently according to some

continuous and positive design density, and they are independent of {ui}. Note that this type of

assumption is particularly common in longitudinal data study to avoid the difficulties in theoretical

derivations (Cai and Wu 2002).

The errors in a deterministic trend time series model such as (1) or (2) are usually assumed to

follow certain linear time series models such as an ARMA process. Here we consider a more general

structure – the α-mixing process, which includes many linear and nonlinear time series models as

special cases. The asymptotic results here are derived under the α-mixing assumption. However,

Roussas (1989) considered linear processes without satisfying the mixing condition. Potentially the

theoretical results derived here can be extended to such cases. It is well-known in the econometrics

and statistics literature that α-mixing is reasonably weak and is known to be fulfilled for many linear

and nonlinear time series models under some regularity conditions. For example, Gorodetskii (1977)

and Withers (1981) derived the conditions under which a linear process is α-mixing. In fact, under

very mild assumptions, linear autoregressive and more generally bilinear time series models are α-

mixing with mixing coefficients decaying exponentially. On the other hand, Auestad and Tjøstheim

(1990) provided illuminating discussions on the role of α-mixing (including geometric ergodicity)

for model identification in nonlinear time series analysis. Chen and Tsay (1993) showed that the

functional autoregressive process is geometrically ergodic under certain conditions. Further, Masry

and Tjøstheim (1995, 1997), Lu (1998) and Cai and Masry (2000) demonstrated that under some

mild conditions, both autoregressive conditional heteroscedastic processes and nonlinear additive

autoregressive models with exogenous variables, particularly popular in econometrics and finance,

are stationary and α-mixing.

We first list all the assumptions needed for the asymptotic theory although some of them might

not be the weakest possible.
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ASSUMPTION A:

A1. The kernel K(u) is symmetric and satisfies the Lipschitz condition and u2K(u) is bounded.

A2. Assume that {(ui, Xi)} is a strictly stationary α-mixing and there exists some δ > 0 such that

E|Xi|2(2+δ) <∞, E|ui X̃i|2(1+δ) <∞ and the mixing coefficient α(i) satisfies α(i) = O (i−τ )

with τ = (2 + δ)(1 + δ)/δ.

A3. nh1+4/δ →∞.

It is clear that assumptions listed above are not strong. For example, the commonly used kernel

functions such as the Gaussian density and Epanechnikov kernel K(u) = 0.75 (1 − u2) I(|u| ≤ 1)

satisfy Assumption A1. Assumption A2 is a standard requirement for moments and the mixing

coefficient for an α-mixing time series. If δ > 1, then the optimal bandwidth hopt = O(n−1/5) (see

below) satisfies Assumption A3.

Note that all the asymptotic results here assume that n → ∞. Define, for k ≥ 0, µk =
∫
ukK(u) d u and νk =

∫
ukK2(u) d u. Let Rk = cov(ui X̃i, ui+k X̃i+k) for any i and k. Set

Σ0 =
∑∞

k=−∞Rk. Then Σ0 exists by Assumption A2 (see Lemma 1 later). If it is assumed that

{Xi} is independent of {ui}, then Rk = rkΩk, where Ωk = E(X̃i X̃
T
i+k) and rk = cov(ui, ui+k) for

any i and k. Let H = diag{Id+1, h Id+1}, where Id+1 is the (d+1)× (d+1) identity matrix. Define

S =

(
Ω0 0

0 µ2Ω0

)
, Σβ = Ω−1

0 Σ0Ω
−1
0 and ∆ =

(
ν0Σ0 0

0 ν2Σ0

)
.

Now we state the asymptotic properties of both the local linear and Nadaraya-Watson estimators

β̂(t) and β̃(t) at both the interior and boundary points, respectively. All the detailed proofs are

relegated to the Appendix.

Theorem 1. Under Assumptions A1 and A2, for any t ∈ (0, 1), we have,

H−1
(
θ̂(t)− θ(t)

)
− h2

2

(
µ2

0

)
⊗ β′′(t) + op(h

2) = Op((nh)
−1/2).

In particular,

β̂(t)− β(t)− h2

2
µ2 β

′′(t) + op(h
2) = Op((nh)

−1/2) (10)

and (10) is true for β̃(t).

Theorem 2. Under Assumptions A1 - A3, for any t ∈ (0, 1), we have

√
nh

{
H−1

(
θ̂(t)− θ(t)

)
− h2

2

(
µ2

0

)
⊗ β′′(t) + op(h

2)

}
−→ N

(
0, S−1∆S−1

)

In particular,

√
nh

{
β̂(t)− β(t)− h2

2
µ2 β

′′(t) + op(h
2)

}
−→ N (0, ν0Σβ) (11)

8



and (11) is true for β̃(t).

It follows from Theorems 1 and 2 that both β̂(t) and β̃(t) share the exact same asymptotic

behavior at the interior points: they are consistent estimator of β(t) with the same convergence

rate and they have the same asymptotic bias and variance so that the common mean square error

(AMSE) is given by

AMSE =
h4

4
µ2

2

∣∣∣∣β′′(t)
∣∣∣∣2

2 +
ν0 tr(Σβ)

nh
.

Minimizing the AMSE gives the optimal bandwidth

hopt =
{
ν0 tr(Σβ)µ

−2
2

∣∣∣∣β′′(t)
∣∣∣∣−2

2

}−1/5
n−1/5.

Hence, the optimal convergence rate of the AMSE for them is of the order of n−4/5, as one would

have expected. Also, the asymptotic variance of both estimators is independent of the time point

t. Moreover, it is interesting to note that if {Xi} are mean zero and independent of {ui}, then

Σβ =
∑∞

k=−∞ rk

(
1 0

0 Ω−1
x,0Ωx,kΩ

−1
x,0

)
, where Ωx,k = E(XiX

T
i+k). This implies that β̂0(t) and

β̂j(t) (1 ≤ j ≤ d) are asymptotically independent. Further, in addition, if {Xi} are iid , then Σβ

is reduced to Σβ =

(∑∞
k=−∞ rk 0

0 r0Ω
−1
x,0

)
. This implies that the asymptotic variance of β̂j(t)

(1 ≤ j ≤ d) depends on only the variance of {ui} but not the autocorrelations (
∑∞

k=1 rk).

More importantly, Theorem 2 shows that the asymptotic variance of both estimators depends

on not only the variance of the error (R0 = var(ui X̃i)) but also the autocorrelations (
∑∞

k=1Rk).

This property is shared by parametric estimators but it is different from that for random design

nonparametric time series regression models (see Fan and Gijbels 1996, p.17) and the functional-

coefficient time series models (see Cai, Fan and Yao 2000) for which the asymptotic variance of

the estimators depends on only the variance of the error. The intuitive explanation is that for the

random design case, the short term dependence does not have much effect on the local smoothing

method. The reason is that for any two given random variables ti and tj and a point t, the random

variables Kh(ti − t) and Kh(tj − t) are nearly uncorrelated as h → 0. For more discussions, see

Fan and Gijbels (1996, p.219). Finally, from Theorem 2, it might be strange that the asymptotic

biases for β̃(t) and β̂(t) are the exact same but they are different for random design time series

regression models (see Fan and Gijbels 1996, p.17) and the functional-coefficient time series models

(see Cai, Fan and Yao 2000). The intuitive is that for fixed design case, there does not exist the

design density ft(t) so that the extra term h2 µ2 β
′(t) f ′t(t)/ft(t) (see Fan and Gijbels 1996, p.17)

in the asymptotic bias expression for the random design case disappears.

A natural question arises whether two estimators would still have the same asymptotic properties

at the boundary points. To answer this question, we offer the following theorems for the asymptotic

results for β̂(t) and β̃(t) at the left end point t = c h (0 < c < 1) (say) and the similar results

hold for the right end point t = 1 − c h. To this purpose, define, for k ≥ 0, µk,c =
∫∞
−c u

kK(u) d u,
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νk,c =
∫∞
−c u

kK2(u) d u,

Sc = µc ⊗Ω0 with µc =

(
µ0,c µ1,c

µ1,c µ2,c

)
and ∆c =

(
ν0,c ν1,c

ν1,c ν2,c

)
⊗Σ0,

where ⊗ denotes the Kronecker product.

Theorem 3. Under Assumptions A1 and A2, we have,

H−1
(
θ̂(c h)− θ(c h)

)
− h2

2
µ−1

c

(
µ2,c

µ3,c

)
⊗ β′′(t) + op(h

2) = Op((nh)
−1/2).

In particular,

β̂(c h)− β(c h)− h2

2
bc β

′′(0+) + op(h
2) = Op((nh)

−1/2),

where bc = (µ2
2,c − µ1,c µ3,c)/(µ0,c µ2,c − µ2

1,c) and β
′′(0+) = limt↓0 β

′′(t), and

β̃(c h)− β(c h)− hµ−1
0,c µ1,c β

′(0+) + op(h) = Op((nh)
−1/2).

Theorem 4. Under Assumptions A1 - A3, we have

√
nh

{
H−1

(
θ̂(c h)− θ(c h)

)
− h2

2
µ−1

c

(
µ2,c

µ3,c

)
⊗ β′′(t) + op(h

2)

}
−→ N

(
0, S−1

c ∆c S
−1
c

)
.

In particular,

√
nh

{
β̂(c h)− β(c h)− h2

2
bc β

′′(0+) + op(h
2)

}
−→ N (0, acΣβ) ,

where ac = (µ2
2,c ν0,c − 2µ1,c µ2,c ν1,c + µ2

1,c ν2,c)/(µ0,c µ2,c − µ2
1,c)

2, and
√
nh

{
β̃(ch)− β(ch)− hµ−1

0,c µ1,cβ
′(0+) + op(h)

}
−→ N (0, a∗c Σβ) ,

where a∗c = ν0,c/µ
2
0,c.

From Theorems 3 and 4, we can see that limc→1 bc = µ2 and limc→1 ac = ν0. More importantly,

from Theorem 4, it can be seen clearly that the asymptotic biases and variances for β̂(c h) and

β̃(c h) are different. Indeed, the significant difference is that the convergence rate for the asymptotic

bias of β̃(c h) is only of the order h but not h2, the order for β̂(c h). Based on the above discussions,

it concludes that the local linear estimators do not suffer from boundary effects but the Nadaraya-

Watson estimator does.

3.2 Estimation of Variance

In practice, it is desirable to have a quick and easy implementation to estimate the asymptotic

variance of β̂(t) to construct pointwise confidence intervals. The explicit expression of the asymp-

totic variances in Theorems 2 and 4 provides a direct estimator. To estimate Σβ , we can construct

the estimation of Σ0 by using the sample auto-covariances to estimate {Rk} and Ω0 by using the

method of moments.
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3.3 Test for Misspecification and Stationarity

In econometrics, it is interesting to consider the following testing hypothesis

H0 : βj(t) = αj(t, γ), 0 ≤ j ≤ d, (12)

where αj(t,γ) is a given family of functions indexed by unknown parameter vector γ. This is to

test whether model (2) holds with a specified parametric form, particularly, the stationary time

series regression model (that is, all coefficient functions in (2) are constant) or no time trend. This

kind of test problem has been considered in the literature. For example, Fan, Zhang and Zhang

(2001) proposed the generalized likelihood ratio test for independent samples, Cai, Fan and Yao

(2000) and Hong and Lee (1999) considered the comparison of the residual sum of squares (RSS)

from both parametric and nonparametric fittings for the functional-coefficient time series regression

models and used a simple version of nonparametric bootstrap to estimate the null distribution of

the test statistic whereas Cai and Tiwari (2000) and Cai (2002a) proposed the F -type test statistic

for the time-varying coefficient autoregressive and additive time series models, Kim (2001) utilized

the Wald type test statistic for the locally stationary processes, and Juhl (2002) employed the

t-ratio test for unit root for the functional coefficient models under unit root behavior.

For easy implementation purpose, here we adapt a misspecification test based on comparing the

residual sum of squares from both parametric and nonparametric fittings. This method is closely

related to the generalized likelihood ratio test method proposed by Fan, Zhang and Zhang (2001)

who demonstrated the optimality of this kind of procedures for independent samples. The empirical

work conducted by the aforementioned papers shows that the resulting testing procedure is indeed

powerful and the bootstrap procedure does give the correct null distribution. This is consistent

with the Wilks phenomenon observed by Fan, Zhang and Zhang (2001).

The testing method is described as follows. Let γ̂ be an estimator of γ (say MLE). The RSS

under the null hypothesis is RSS0 = n−1∑n
i=1 û

2
i,0, where ui,0 = Yi−X̃

T
i α(ti γ̂) and the RSS under

Ha is RSS1 = n−1∑n
i=1 û

2
i,1, where ûi,1 = Yi − X̃

T
i β̂(ti). We define the test statistic is defined as

Tn = (RSS0−RSS1)/RSS1 = RSS0/RSS1− 1 and we reject the null hypothesis (12) for large value

of Tn. For simplicity, we evaluate the p-value by using the following nonparametric wild bootstrap

approach which can accommodate the heteroscedasticity in the model.

First, we generate the wild bootstrap residuals {u∗i }ni=1 from the centered nonparametric resid-

uals {ûi}ni=1, where ûi = ûi,1 − ¯̂ui,1 with ¯̂ui,1 = n−1∑n
i=1 ûi,1, and define the bootstrap sample

Y ∗i = X̃
T
i α(ti, γ̂) + u∗i . In practice, we can define u∗i = ûi · ηi, where {ηi} is a sequence of iid

random variables with mean zero and unit variance. See Kreiss, Neumann, and Yao (1998) for

the detailed discussions. Next, we calculate the bootstrap test statistic T ∗n based on the bootstrap

sample {(Xi, Y
∗
i )}ni=1 and we reject the null hypothesis H0 when Tn is greater than the upper-α

point of the conditional distribution of T ∗n given {(Xi, Yi)}ni=1. Finally, the p-value of the test is

simply evaluated based on the relative frequency of the event {T ∗n ≥ Tn} in the replications of the

bootstrap sampling.
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For the sake of simplicity, we use the same bandwidth in calculating T ∗n as that in Tn. Note

that we bootstrap the centralized residuals from the nonparametric fit instead of the parametric

fit, because the nonparametric estimate of residuals is always consistent, no matter whether the

null or the alternative hypothesis is correct. The method should provide a consistent estimator

of the null distribution even when the null hypothesis does not hold. Kreiss, Neumann, and Yao

(1998) considered nonparametric bootstrap tests in a general nonparametric regression setting and

proved that the conditional distribution of the bootstrap test statistic is indeed asymptotically the

distribution of the test statistic under the null hypothesis. It may be proven that the similar result

holds here as long as γ̂ converges to γ at the rate n−1/2.

4 Monte Carlo Experiments

Throughout this section, we use the Epanechnikov kernel and the bandwidth selector proposed in

Section 2.2. We illustrate the finite sample performances of the local linear estimator and test with

a simulated example of the time-varying coefficient time series model. For this simulated example,

the performance of the estimators is evaluated by the mean absolute deviation error (MADE):

Ej = n−1
0

n0∑

k=1

∣∣∣β̂j(uk)− βj(uk)
∣∣∣

for βj(·), where {uk, k = 1, . . . , n0} are the grid points from (0, 1].

In this simulated example, we consider the following time-varying coefficient time series model:

Yi = β0(i/n) + β1(i/n)Xi + ui, i = 1, . . . , n,

where β0(x) = 0.2 exp(−0.7+3.5x), β1(x) = 2x+exp(−16 (x−0.5)2)−1, Xi is simulated from the

AR(1) model Xi = ρxXi−1 + ε1i with ε1i generated from N(0, 2−2) independently, the error ui is

generated from the AR(1) model ui = ρu ui−1+ε2i with ε2i generated fromN(0, 4−2) independently,

and {Xi} and {ui} are independent. The simulation is repeated 500 times for each of the sample

sizes n = 200, 400, and 700. For the sample size n = 400, Figure 1(a) presents the time series plot

for the time series {Yi} with the true trend function β0(·) (solid line) for a typical example. The

typical sample is selected in such a way that its total MADE value (= E + E0 + E1) equals to the

median in the 500 replications. We choose the optimal bandwidth hn = 0.27 based on the criterion

described in Section 2.2. We can compute easily Σβ for this model, which is given by

Σβ =

( σ2
u

(1−ρu)2
0

0 σ2
u

1−ρ2
u

1−ρ2
x

σ2
x

1+ρu ρx

1−ρu ρx

)
and Σβ =

(
1.5626 0

0 0.8105

)

for ρu = 0.8 and ρx = 0.9. Therefore, for ρu = 0.8 and ρx = 0.9, we compute the true standard

errors for β0(·) and β1(·) which are 0.0932 and 0.0883, respectively. Figures 1(b) and 1(c) display,

respectively, the estimated β0(·) and β1(·) (dotted line) from the typical example, together with

their true values (solid line) and the 95% confidence interval with the bias ignored (dashed lines)
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and they show that the estimated values are very close to the true values and all the estimated

values are within the 95% confidence interval. The median and standard deviation (in parentheses)

of the 500 MADE values are summarized in Table 1, which shows that all the MADE values decrease

Table 1: The median and standard deviation of the 500 MADE values.

ρx = 0 and ρu = 0.8 ρx = 0.9 and ρu = 0.8

n E0 E1 E0 E1

200 0.122(0.047) 0.089(0.032) 0.142(0.054) 0.108(0.035)

400 0.098(0.036) 0.073(0.024) 0.102(0.039) 0.085(0.025)

700 0.081(0.027) 0.058(0.019) 0.085(0.027) 0.070(0.020)

as n increases and the values for the case that {Xi} are iid (ρx = 0) are slightly smaller than those

for the dependent case (ρx = 0.9), as one would have expected. This makes the asymptotic theory

more relevant. Overall, the proposed estimation procedure performs fairly well.

To demonstrate the power of the proposed misspecification test, we consider the null hypothesis

H0 : βj(u) = θj for j = 0, 1, namely a stationary linear time series model, versus the alternative

Ha : βj(u) 6= θj for at least one j. The power function is evaluated under a family of the alternative

models indexed by α, Ha : βj(u) = θj + α (β∗j (u) − θj) for j = 0, 1 and 0 ≤ α ≤ 1, where {β∗j (u)}
are the solid curves given in Figures 1(b) and 1(c) and θj is the average height of β∗j (u) (indeed,

θ0 = 0.991 and θ1 = 0.441). The other type of tests can be considered in a same way. For the

sample size n = 400, we apply the misspecification test described in Section 3.3 in a simulation with

500 replications and we repeat the bootstrap sampling 1000 times for each realization. Figure 1(d)

plots the simulated power function against α. When α = 0, the specified alternative hypothesis

collapses into the null hypothesis. The power is 0.048, which is close to the significance level of 5%.

This demonstrates that the bootstrap estimate of the null distribution is approximately correct.

The power function shows that our test is indeed powerful. To appreciate why, consider the specific

alternative with α = 0.175. The functions {βj(u)} under Ha are shown in Figure 2 (solid lines).

The null hypothesis is essentially the constant curves (dotted lines) in Figure 2. Even with such

a small difference under our noise level, we can correctly detect the alternative over 81.4% among

the 500 simulations. The power increases rapidly to 1 when α = 0.325. When α = 1, we test the

constant functions in Figure 2 against the coefficient functions in Figures 1(b) and 1(c).

5 Discussions

In this paper we developed a useful class of time series models, the time-varying coefficient time

series models with time trend and serially correlated errors, for modeling nonlinear, nonstationary

and trending time series. We developed nonparametric methods for estimating the trend function

and coefficient functions and studied their asymptotic properties at both the interior and boundary

points. We obtained some insights about the modeling methods and we demonstrated that the

local linear estimator is superior than the Nadaraya-Watson estimator. Also, the usefulness of
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the models was demonstrated by a simulated example. To make the model practically useful,

we proposed an easily implemented bandwidth selector and a new testing procedure to test the

misspecification and stationarity, based on the comparison of the residual sum of squares and

suggested using a wild bootstrap to estimate the p-value. However, the models considered here did

not allow the Xi to contain lagged Yi, a major drawback in view of some econometric applications.

It is not difficult to see that although the proposed modeling procedures can be used when there

are lagged variables, the difficulty is to establish the asymptotic theory under reasonably attractive

and primitive conditions. Also, in some applications, it is likely that a semi-time-varying coefficient

time series model might be suitable. For these models, a local linear modeling technique might

still be applicable. See Zhang, Lee and Song (2002) for the detailed discussions. Extensions to

other models in the regression family are apparent. Indeed, many of the modeling techniques and

asymptotic theory developed in this paper are relevant to a similar analysis of more general models,

that are not necessarily of regression type (say, instrument variable type). Finally, the predictive

utility of using the time-varying coefficient time series models studied in this paper needs definitely

a further investigation due to its importance in various applications in economics and finance.

APPENDIX: PROOFS

Throughout this appendix, we use the same notation as used in Sections 2 and 3 and we denote

by C a generic constant, which may take different values at different appearances.

Lemma 1. Let rjm(i) denote the (j,m)-th element of Ri. If Assumption A2 is satisfied, then,∑∞
i=−∞ |rjm(i)| <∞ so that Σ0 exists.

Proof: By the Davydov’s inequality (see, e.g., Corollary A.2 in Hall and Heyde 1980),

rjm(k) = cov(cov(ui X̃ij , ui+k X̃(i+k)m) ≤ C αδ/(2+δ)(k)
{
E|ui X̃ij |2+δ

}2/(2+δ)
≤ C αδ/(2+δ(k)

so that
∑

k |rjm(k)| <∞.

To prove the theorems, we first defineM(ti) = β(ti)−
{
β(t) + (ti − t)β′(t) + 1

2 (ti − t)2 β′′(t)
}
,

T∗n,k(t) = n−1 ∑n
i=1 X̃i (ti− t)kKh(ti− t) ui, Rn,k(t) = n−1 ∑n

i=1 X̃i X̃
T
i (ti− t)kKh(ti− t)M(ti),

and Bn,k(t) =
1
2 Sn,k+2(t) β

′′(t). Then,

Tn,k(t) = Sn,k(t)β(t) + Sn,k+1(t)β
′(t) +T∗n,k(t) +Bn,k(t) +Rn,k(t).

In conjunction with (4) and (6), we have

θ̂(t)− θ(t)− S−1
n (t)Bn(t)− S−1

n (t)Rn(t) = S
−1
n (t)T∗n(t) (A.1)

and

β̃(t)− β(t)− S−1
n,0(t)

{
Bn,0(t) + Sn,1(t)β

′(t)
}
− S−1

n,0(t)Rn,0(t) = S
−1
n,0(t)T

∗
n,0(t). (A.2)
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Lemma 2. Under Assumptions A1 and A2, for t ∈ (0, 1), we have

h−k Sn,k(t) = µkΩ0 {1 + op(1)}, and h−k Sn(c h) = µk,cΩ0 {1 + op(1)}.

Also, for either t ∈ (0, 1) or t = c h, h−kRn,k(t) = op(h
2).

Proof: It follows by the Riemann sum approximation of an integral that for 0 ≤ k ≤ 2,

h−k E(Sn,k(t)) = n−1
n∑

i=1

E
{
X̃iX̃

T
i

} ( ti − t
h

)k

Kh(ti − t)

= Ω0 n
−1

n∑

i=1

(
ti − t
h

)k

Kh(ti − t)

≈ Ω0

∫ 1

0

(
u− t
h

)k

Kh(u− t) du

= Ω0

∫ (1−t)/h

−t/h
uk K(u) du

≈
{
Ω0 µk if t ∈ (0, 1),

Ω0 µk,c if t = c h.

Let ηjm denote the (j,m)-th element of h−k Sn,k(t) for either t ∈ (0, 1) or t = c h. That is,

ηjm = n−1
n∑

i=1

X̃ij X̃im

(
ti − t
h

)k

Kh(ti − t).

Then, consider the variance of ηjm

var(ηjm) = n−2
n∑

i=1

var
{
X̃ij X̃im

} ( ti − t
h

)2k

K2
h(ti − t)

+2n−2
∑

1≤i<l≤n

cov(X̃ijX̃im, X̃ljX̃lm)

(
ti − t
h

)k

Kh(ti − t)
(
tnl − t
h

)k

Kh(tnl − t)

≡ I1 + I2.

Obviously,

I1 ≈ (nh)−1 var
{
X̃ij X̃im

} ∫ (1−t)/h

−t/h
u2kK2(u)du ≤ C (nh)−1 = o(1).

Since u2K(u) is bounded, then, for any 0 ≤ k ≤ 2, |u/h|kKh(u) ≤ C/h and n−1∑n
i=1 |(ti −

t)/h|kKh(ti − t) ≤ C by the Riemann sum approximation of an integral. In conjunction with the

Davydov’s inequality (see, e.g., Corollary A.2 in Hall and Heyde 1980), we have,

|I2| ≤ C n−2
∑

1≤i<l≤n

|cov(X̃ijX̃im, X̃ljX̃lm)|
∣∣∣∣
ti − t
h

∣∣∣∣
k

Kh(ti − t)
∣∣∣∣
tnl − t
h

∣∣∣∣
k

Kh(tnl − t)
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≤ C n−2
∑

1≤i<l≤n

αδ/(2+δ)(l − i)
∣∣∣∣
ti − t
h

∣∣∣∣
k

Kh(ti − t)
∣∣∣∣
tnl − t
h

∣∣∣∣
k

Kh(tnl − t)

≤ C (nh)−1 n−1
n∑

i=1

∣∣∣∣
ti − t
h

∣∣∣∣
k

Kh(ti − t)
∑

l>1

αδ/(2+δ)(l)

≤ C (nh)−1
∑

l>1

αδ/(2+δ)(l) ≤ C (nh)−1 → 0

by Assumption A2. Similarly,

E
{
h−(2+k)Rn,k(t)

}
≈ Ω0

∫ (1−t)/h

−t/h
ukK(u)h−2M(t+ hu)du→ 0

by the fact that h−2M(t+ hu)→ 0 for any u and

var
{
h−(2+k)Rn,k(t)

}
→ 0.

This proves the lemma.

Lemma 3. Under Assumptions A1 and A2, for t ∈ (0, 1), we have

nh var
(
H−1T∗n(t)

)
=∆+ o(1) and nh var

(
H−1T∗n(c h)

)
=∆c + o(1)

Proof: By the stationarity of {ui X̃i},

nh var(T∗n,0(t)) = n−1 h
∑

1≤k, l≤n

Rk−lKh(tnk − t)Kh(tnl − t)

= n−1 hR0

n∑

k=1

K2
h(tnk − t) + 2n−1 h

∑

1≤l<k≤n

Rk−lKh(tnk − t)Kh(tnl − t)

≡ I3 + I4.

Clearly, by the Riemann sum approximation of an integral,

I3 ≈ R0 h

∫ 1

0
K2

h(u− t)du = R0

∫ (1−t)/h

−t/h
K2(u)du ≈

{
ν0R0 if t ∈ (0, 1),

ν0,cR0 if t = c h.

Since nh → ∞, there exists dn → ∞ such that dn/(nh) → 0. Let S1 = {(k, l) : 1 ≤ k − l ≤
dn; 1 ≤ l < k ≤ n} and S2 = {(k, l) : 1 ≤ l < k ≤ n} − S1. Then, I4 is split into two terms as
∑

S1
(· · ·), denoted by I41, and

∑
S2
(· · ·), denoted by I42. Since K(·) is bounded, then, Kh(·) ≤ C/h

and n−1∑n
k=1Kh(tnk − t) ≤ C. In conjunction with the Davydov’s inequality (see, e.g., Corollary

A.2 in Hall and Heyde 1980), we have, for the (j,m)-th element of I42,

|I42(jm)| ≤ C n−1h
∑

S2

|rjm(k − l)|Kh(tnk − t)Kh(tnl − t)

≤ C n−1 h
∑

S2

αδ/(2+δ)(k − l)Kh(tnk − t)Kh(tnl − t)
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≤ C n−1
n∑

k=1

Kh(tnk − t)
∑

k1>dn

αδ/(2+δ)(k1)

≤ C
∑

k1>dn

αδ/(2+δ)(k1)

≤ C c−δ
n → 0

by Assumption A2 and the fact that dn →∞. For any (k, l) ∈ S1, by Assumption A1

|Kh(tnk − t)−Kh(tnl − t)| ≤ C h−1 (tnk − tnl)/h ≤ C cn/(nh
2),

which implies that

|I412(jm)| ≡

∣∣∣∣∣∣
2n−1 h

n−1∑

l=1

∑

1≤k−l≤cn

rjm(k − l) {Kh(tnk − t)−Kh(tnl − t)}Kh(tnl − t)

∣∣∣∣∣∣

≤ C dn n
−2 h−1

n−1∑

l=1

∑

1≤k−l≤dn

|rjm(k − l)|Kh(tnl − t)

≤ C dn n
−2 h−1

n−1∑

l=1

Kh(tnl − t)
∑

k≥1

|rjm(k)|

≤ C dn/(nh)→ 0

by Lemma 1 and the fact that dn/(nh)→ 0. Therefore,

I41(jm) = 2n−1 h
n−1∑

l=1

∑

1≤k−l≤dn

rjm(k − l)Kh(tnk − t)Kh(tnl − t)

= 2n−1 h
n−1∑

l=1

K2
h(tnl − t)

∑

1≤k−l≤dn

rjm(k − l) + I412(jm)

→ 2
∞∑

k=1

rjm(k)

{
ν0 if t ∈ (0, 1),

ν0,c if t = c h.

Thus,

nh var(T∗n,0(t))→
(
R0 + 2

∞∑

k=1

Rk

) {
ν0 if t ∈ (0, 1),

ν0,c if t = c h.

Similarly

nh var
(
h−1T∗n,1(t)

)
= n−1 h

∑

1≤k, l≤n

Rk−l

(
tnk − t
h

)(
tnl − t
h

)
Kh(tnk − t)Kh(tnl − t)

→ Σ0

{
ν2 if t ∈ (0, 1),

ν2,c if t = c h.

and

nh cov
(
T∗n,0(t), h

−1T∗n,1(t)
)

= n−1 h
∑

1≤k, l≤n

Rk−l

(
tnl − t
h

)
Kh(tnk − t)Kh(tnl − t)

→ Σ0

{
ν1 if t ∈ (0, 1),

ν1,c if t = c h.
.
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This proves the lemma.

Proofs of Theorems 1 - 4: First, it is easy to see from Lemma 2 that

H−1Bn(t) =
h2

2

(
µ2Ω0

0

)
⊗ β′′(t) + op(h

2)

for any t ∈ (0, 1), and

H−1Bn(c h) =
h2

2

(
µ2,cΩ0

µ3,cΩ0

)
⊗ β′′(0+) + op(h

2).

Therefore, it follows from (A.1) and Lemmas 2 and 3 that

√
nh

{
H
(
θ̂(t)− θ(t)

)
− h2

2

(
µ2

0

)
⊗ β′′(t) + op(h

2)

}

=
(
H−1 Sn(t)H

−1
)−1 √

nh H−1T∗n(t)

= S−1
√
nh H−1T∗n(t){1 + op(1)} (A.3)

= Op(1),

for any t ∈ (0, 1), and

√
nh

{
H
(
θ̂(c h)− θ(c h)

)
− h2

2
µ−1

c

(
µ2,c

µ3,c

)
⊗ β′′(0+) + op(h

2)

}

=
(
H−1 Sn(c h)H

−1
)−1 √

nh H−1T∗n(c h)

= S−1
c

√
nh H−1T∗n(c h){1 + op(1)} (A.4)

= Op(1),

which establish the consistency with a convergence rate for θ̂(t) at both interior and boundary

points, which is the first part of Theorems 1 and 3. Next,

S−1
n,0(t)

{
Bn,0(t) + Sn,1(t)β

′(t)
}
=
h2

2
µ2Ω0 β

′′(t){1 + op(1)}

for any t ∈ (0, 1), and

S−1
n,0(c h)

{
Bn,0(c h) + Sn,1(c h)β

′(c h)
}
= µ−1

0,c

{
h2

2
µ2,c β

′′(0+) + hµ1,c β
′(0+)

}
{1 + op(1)}.

Then, by (A.2) and Lemmas 2 and 3, we have,

√
nh

{
β̃(t)− β(t)− h2

2
µ2 β

′′(t) + op(h
2)

}
= S−1

n,0(t)
√
nh T∗n,0(t)

= Ω−1
0

√
nh T∗n,0(t){1 + op(1)} (A.5)

= Op(1)
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for any t ∈ (0, 1), and

√
nh

{
β̃(c h)− β(c h)− µ−1

0,c

(
h2

2
µ2,c β

′′(0+) + hµ1,c β
′(0+)

)
+ op(h

2)

}

= S−1
n,0(c h)

√
nh T∗n,0(c h) = µ−1

0,c Ω
−1
0

√
nh T∗n,0(c h){1 + op(1)} (A.6)

= Op(1).

Therefore, this provides the consistency with a convergence rate for β̃(c h) at both interior and

boundary points, which is the second part of Theorems 1 and 3.

To establish the asymptotic normality for θ̂(t) and β̃(t) at both the interior and boundary

points, it suffices to show that

√
nh H−1T∗n(t) −→ N(0, ∆) and

√
nh H−1T∗n(c h) −→ N(0, ∆c) (A.7)

from (A.4) and (A.5), and that

√
nh T∗n,0(t) −→ N(0, ν0Σ0) and

√
nh T∗n,0(c h) −→ N(0, a∗c Σ0) (A.8)

from (A.6) and (A.7). Since the proof of (A.8) is simpler than that for (A.7), next we will present

only the proof of the first result in (A.7).

To prove (A.7), we use the Cramér-Wold device. That is to show that for any unit vector d in

<2(d+1), √
nh dT H−1T∗n(t) −→ N(0, dT ∆d).

To this end, let Zn,i = n−1/2 h1/2 dT H−1 Zi uiKh(ti − t). Then,
√
nh dT H−1T∗n(t) =

∑n
i=1 Zn,i

and by Lemma 3,

var

(
n∑

i=1

Zn,i

)
= dT ∆d {1 + o(1)} ≡ θ2

d {1 + o(1)}.

Next we use the Doob’s small-block and large-block technique. Namely, partition {1, . . . , n} into

2 qn+1 subsets with large-block of size rn =
⌊
(nh)1/2

⌋
and small-block of size sn =

⌊
(nh)1/2/ log n

⌋
,

where qn = bn/(rn + sn)c. Let r∗j = j (rn+ sn) and define the random variables, for 0 ≤ j ≤ qn−1,

ηj =

r∗
j
+rn∑

i=r∗
j
+1

Zn,i, ζj =

r∗
j+1∑

i=r∗
j
+rn+1

Zn,i, and Qn,3 =
n∑

i=r∗qn
+1

Zn,i.

Then,
√
nh dT H−1T∗n(t) = Qn,1 + Qn,2 + Qn,3, where Qn,1 =

∑qn−1
j=0 ηj and Qn,2 =

∑qn−1
j=0 ζj .

Next we prove the followings: as n→∞,

E(Qn,2)
2 → 0, E(Qn,3)

2 → 0, (A.9)

∣∣∣∣∣∣
E [exp(i sQn,1)]−

qn−1∏

j=0

E [exp(i s ηj)]

∣∣∣∣∣∣
→ 0 (A.10)
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for any s and

var(Qn,1)→ θ2
d and

qn−1∑

j=0

E|ηj |2+δ → 0. (A.11)

(A.9) implies that Qn,2 and Qn,3 are asymptotically negligible in probability. (A.10) shows that the

summands {ηj} inQn,1 are asymptotically independent, and (A.11) is the standard Lindeberg-Feller

and Lyapounov conditions for asymptotic normality of Qn,1 for the independent setup.

Next, we verify the above four equations (A.9) - (A.11). First, to establish (A.10), we make

use of Lemma 1.1 in Volkonskii and Rozanov (1959) (see also Ibragimov and Linnik 1971, p.338)

to obtain
∣∣∣∣∣∣
E [exp (i sQn,1)]−

qn−1∏

j=0

E [exp(i s ηj)]

∣∣∣∣∣∣
≤ 16 qn α(sn) ≤ C n−(τ−1)/2 h−(τ+1)/2 logτ n→ 0

by Assumption A3. To prove (A.9), we observe that

E(Qn,2)
2 =

∑

0≤i,j≤qn−1

∑

1≤k1,k2≤sn

cov(Zn,r∗
i
+rn+k1

, Zn,r∗
j
+rn+k2

) ≡ F1 + F2 + F3 + F4,

where with dT = (dT
1 ,d

T
2 ) and S = {((i, j, k1, k2) : 0 ≤ i, j ≤ qn − 1, 1 ≤ k1, k2 ≤ sn},

F1 = n−1 h
∑

S

dT
1 Rr∗

i
+k1−r∗

j
−k2
d1Kh(tn,r∗

i
+rn+k1

− t)Kh(tn,r∗
j
+rn+k2

− t),

F2 = n−1 h
∑

S

dT
1 Rr∗

i
+k1−r∗

j
−k2
d2

(
tn,r∗

j
+rn+k2

− t
h

)
Kh(tn,r∗

i
+rn+k1

− t)Kh(tn,r∗
j
+rn+k2

− t),

F3 = n−1 h
∑

S

dT
1 Rr∗

i
+k1−r∗

j
−k2
d2

(
tn,r∗

i
+rn+k1

− t
h

)
Kh(tn,r∗

i
+rn+k1

− t)Kh(tn,r∗
j
+rn+k2

− t),

and

F4 = n−1 h
∑

S

dT2 Rr∗
i
+k1−r∗

j
−k2
d2

(
tn,r∗

i
+rn+k1

− t
h

)( tn,r∗
j
+rn+k2

− t
h

)

×Kh(tn,r∗
i
+rn+k1

− t)Kh(tn,r∗
j
+rn+k2

− t).

By Assumption A1,

|F1| ≤ C (nh)−1
∑

0≤i,j≤qn−1

∑

1≤k1,k2≤sn

|dT
1 Rr∗

i
+k1−r∗

j
−k2
d1| ≤ C qs sn (nh)−1 → 0.

Similarly, one can show that Fk → 0 for 2 ≤ k ≤ 4, so that E(Qn,2)
2 → 0. By the same arguments,

we have

var(Qn,3) =
∑

r∗q+1≤j1,j2≤n

cov(Zn,j1 , Zn,j2) ≤ C (n− r∗qn
) (nh)−1 ≤ C rn (nh)

−1 → 0.
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This proves (A.9). An application of (A.9) gives the first assertion in (A.11). It remains to establish

the second assertion in (A.11). To this end, it follows from Theorem 4.1 of Shao and Yu (1996)

that

E|ηj |2+δ ≤ C (n−1 h rn)
(2+δ)/2 max

i

(
E
∣∣∣dT H−1 Zi uiKh(ti − t)

∣∣∣
2(1+δ)

)(2+δ)/2(1+δ)

≤ C (nh)−(2+δ)/4.

Then,
qn−1∑

j=0

E|ηj |2+δ ≤ C qn (nh)
−(2+δ)/4 ≤ C (nh1+4/δ)−δ/4 → 0

by Assumption A3. This proves (A.7).
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Figure 1: Simulation Results for Example 1. (a) The time series plot of the time series {yi} with
the true trend function β0(·); (b) the local linear estimator (dotted line) of the trend function β0(·)
(solid line) with the 95% confidence interval with the bias ignored (dashed lines); (c) the local linear
estimator (dotted line) of the coefficient function β1(·) (solid line) with the 95% confidence interval
with the bias ignored (dashed lines); (d) the plot of the power curve against α for the misspecification
test.
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Figure 2: Simulation Results for Example 1. The trend function β0(·) in (a) and the coefficient
function β1(·) in (b). The solid curves are under Ha with α = 0.175 and the dotted lines under H0.
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