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Asymptotic Properties of Model Selection

Procedures in Linear Regression

BERND DROGE
SFB 373, Humboldt Uniwversity,

Unter den Linden 6, 10099 Berlin, Germany

Summary. In regression analysis there is typically a large collection of competing mod-
els available from which we want to select an appropriate one. This paper is concerned with
asymptotic properties of procedures for selecting linear models, which are based on certain
data-dependent criteria such as Mallows’ C), cross-validation and the generalized informa-
tion criterion. We avoid the assumption of an adequate (“correct”) model and allow the
maximal model dimension to increase with the sample size. General asymptotic concepts are
introduced, covering the usual ones of consistency and asymptotic optimality. The focus is
on conditions for penalizing the model complexity which are necessary to obtain the different
optimalities. For example, the consistency of a procedure is decided by the interplay between
these penalties, the complexity of the class of model candidates, and some quantity describing
the ability to identify “wrong” (pseudo-inadequate) models. Many results known from the

literature appear as special cases or are slightly modified.

AMS 1991 subject classifications: Primary 62J05; secondary 62J99.

Key words: Model selection, prediction, asymptotic optimality, consistency.

1 Introduction

We assume to have observations yi,...,y, of a response variable (with values in }))) at
fixed values zy,...,z, of a k-dimensional vector of explanatory variables satisfying
yi:f(l'i)‘l‘fi, izl,...,n, (11)
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where f is an unknown regression function, and the errors ¢; are independent with mean
zero and variance o? > 0. The analysis of the data requires in general to estimate the
function f, for which a variety of parametric and nonparametric approaches exists.
In the parametric approach there is seldom sure evidence on the validity of a certain
model, so that one has to choose a good one from those being tentatively proposed.

The focus of this paper is on linear model selection. That is, we assume that
there are p,, p, < n, known functions of the explanatory variables, say ¢1,...,g,,,
associated with the response variable, and the aim is to approximate the regression
function by an appropriate linear combination of some of these functions. Each such
linear combination is characterized by the subset of indices of the included functions,
say m C {1,...,p,} =: my. Possibly not all linear combinations are allowed, so that
the class of competing models is characterized by a subset M, of the power set of
my. Using the least squares approach for fitting the models to the data gives, for each
m € M, the following estimator of f(z)

3(m)

where the coefficients 3, are the minimizers of

j ly; — > Bigi(z;)]?

1 1Em

J

with respect to 3; (¢ € m). Note that m = () may also be considered as model candidate,
leading to f@ = 0.

On the basis of model m, future values of the response variable at the design point
x; will usually be predicted by g;(m) = f,r(:z:z) (t = 1,...,n). Thus, given the

observations, the conditional expected squared prediction error is
o’ + L,(m), (1.2)
where
1
Lu(m) = =3 _[f(x:) = fuu(z:))” (1.3)

denotes the average squared error loss at the design points. (1.2) describes the predic-
tion performance of a model, whereas (1.3) measures the efficiency of model m when
estimation of the regression function is the objective of the analysis. Consequently, the

prediction problem is closely related to that of estimating f.
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With g = (f(z1),.., f(@ )T, fim = (fm(:zjl),,fm(;z;n))T and the Euclidean
norm ||.||, (1.3) may be rewritten as
Ln(m) =~ = fon
n\Mm) = n U= fm]l -

The risk associated with this loss is then the mean squared error for estimating f,

R,.(m) = EL,(m). Using the notation

G = ((gi(x0))JiET G = G,

i=1,...,n

and

Pr = Gn(GLG) T G = ((pij(m))ij=t,n » P =Py

the risk may be decomposed into the so-called model error (or model bias) and the

estimation error:

R,(m) = An(m) + o’n~Vml, (1.4)
where
.1 1
An(m)= min —|lp—Gubul®= |l — Pupl*,
BmeRI™I N n
and |m| = tr[P,] denotes the dimension of the model (number of elements in m).

Throughout this paper we assume that the design matrix, (G, of the largest possible
model, mq, has full rank.

If the aim of the statistical analysis is prediction (or, similarly, the estimation of
the unknown regression function), one would ideally select a model by minimizing (1.2)
or its unconditional version, the mean squared error of prediction (MSEP) defined by
MSEP(m) =c*+ R,(m), among the class M,, of model candidates. Since the MSEP
is unknown, it seems to be reasonable that many model selection procedures are based
on minimizing some criterion which may be interpreted as estimate of the MSEP or of
some transformation of it, compare e.g. Bunke and Droge (1984a). In what follows we
present some criteria which are in common use for model selection.

One of the most widely used MSEP estimates in practice is the cross-validation

(CV) criterion of Stone (1974) defined by
1< .
CV(m) = =3 [yi = §-i(m)]*, (1.5)
i=1

where g§_;(m) is the prediction at z; leaving out the i-th data point. CV works well

in many applications. However, it may fail in some nonlinear regression situations, as
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it has been illustrated in Bunke et al. (1999). To avoid these difficulties with CV in

nonlinear regression, the full cross-validation (FCV) criterion,
1 & .
FCV(m) = =3 [y = gi(m)]’, (1.6)
i=1

has been proposed, where §;(m) is the least squares prediction at x; with substituting
y; by g;(m) instead of deleting it, see Bunke et al. (1999) and Droge (1996).

Craven and Wahba (1979) have proposed generalized cross-validation (GCV) as
another useful method for selecting the smoothing parameter of linear estimates, which

may also be applied for model selection. With y = (yi,...,y,)7, let
1 \
RSS(m) = —|ly = jim|’

be the residual sum of squares under model m. Then, assuming that |m| < n, the

GCV criterion is defined by
GCV(m) = RSS(m)/(1 —n~'m|)*.

It may be seen that GCV weights the ordinary residuals (y; — ¢;(m)) by the average of
the weights used for the CV criterion. Applying this idea to FCV, Droge (1996) has

introduced the following generalized full cross-validation (GFCV) criterion
GFCV(m) = RSS(m)(1 +n~"|m|)>

The above CV, GCV, FCV and GFCV criteria do not require estimation of the
error variance. This is an advantage over other model selection criteria such as Mallows’

(1973) C,, which is given by

Cp(m) = RSS(m) + 2n‘1|m 52, (1.7)

where 62 denotes some appropriate estimate of o2. Other frequently discussed criteria

are the following:

FPE(m) = nt :m:RSS(m) (final prediction error, Akaike, 1970) ,
n—|m
2
sHm) = "M pssin)  (Shibata, 1981)
n

GIC(m) = In(RSS(m))+ a,n~"|m| (Nishii, 1984) |

where a,, > 0 is a sequence with a,, = o(n). We remark that the generalized informa-

tion criterion, GIC, covers several other well known criteria as special cases under the
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assumption of normally distributed observations. We obtain, for example, Akaike’s in-
formation criterion (AIC, Akaike, 1974) for a, = 2, the Bayesian information criterion
(BIC, Schwarz, 1978) for a,, = In(n) and the criterion ¢ of Hannan and Quinn (1979)
for a, = 2In(In(n)).

Bunke and Droge (1984a,b) and Droge (1996) have compared the different crite-
ria as estimates of the MSEP. Besides others, Bunke and Droge (1984a) have shown
that some version of the bootstrap outperforms CV, which is in accordance with the
findings of Efron (1983, 1986). Moreover, this bootstrap criterion turns out to be
equivalent to the C)-criterion in important special cases. Droge (1996) has particularly
investigated the different cross-validation criteria, concluding that FCV and GFCV
outperform their traditional counterparts. More precisely, it has been shown that the
absolute value of the biases of FCV and GFCV are smaller than those of CV and GCV,
respectively. Moreover, under the assumption of normally distributed errors in (1.1)
it holds Var(GFCV) < Var(GCV), and FCV has also a smaller variance than CV at
least in a minimax sense.

In assessing the results of analyzing experimental data we have to take into account
the fact that the obtained predictions and estimates may depend heavily on the chosen
model. As commented above, in practice this model is often selected by employing
data-driven automated methods. Although the use of most criteria may be motivated
by being estimates of the MSEP, it is thus not clear that a better MSEP estimate
provides a more appropriate model selection criterion in the sense of leading to a
model with smaller overall MSEP; compare e.g. the simulation study in Droge (1995).
However, it is hard to establish finite-sample properties of model selection procedures,
and consequently most results in this field are asymptotic in character. Therefore, the
asymptotic behaviour of such procedures is addressed in this paper; for some small
sample results within a decision-theoretic framework we refer to Droge (1993) and
Droge and Georg (1995).

In the literature there exist mainly two notions for characterizing the asymptotic
behaviour of model selection procedures: consistency and asymptotic optimality. These
notions are introduced in a general context in Section 2. There we comment also on the
relations between both notions and give an overview about the corresponding asymp-
totic properties which may be established in various situations for so-called canonical
model selection procedures. Such procedures assume a known error variance and are
characterized by nonrandom penalties for the model complexity. We elaborate on the

interplay between these penalties and other quantities, which is necessary to achieve



the different optimalities. Giving up the assumption of a known variance, the results
are then applied in Section 3 to derive asymptotic properties of a variety of data-
dependent model selection procedures which are in common use. We are particularly
concerned with all criteria introduced above. In this way, many results known from
the literature are covered and partly generalized. Finally, Section 4 provides a brief

discussion of related work. All proofs are deferred to an appendix.

2 Asymptotic properties of canonical procedures

2.1 Notions and preliminary results

In general, none of the models in M,, will be correct, that is there don’t exist coefficients

B with f =37 3%;. Interest is then in estimating the projection parameter

B = (8. L) = angmuin G5 — g | 1)

which is unique since G was assumed to be nonsingular. In this case, we can define a

pseudo-true model by
mo={i €m | B} #0} .
Obviously, both 3/ and mg may depend on n (and m,), but for the sake of simplicity we

have not indicated this in the notation. Furthermore, the full rank property of GG gives

immediately that mg is the minimizer of the model bias with the smallest dimension:

Lemma 2.1 Let mq be the pseudo-true model and 6, = mingenm, An(m). Then we

have A, (mg) = 6, and, for any minimizer m of A,(m), mg C m and Py = Ppyp.

Let My = {m € M, | A,(m) = d,} be the set of pseudo-adequate models, i.e.
of all models with minimal model bias. Note that Lemma 2.1 and its proof provide
My = {m € M, | mg C m}. In the case that there is a correct model, we have §,, = 0
and thus A,(m) = 0 for all m € My. Then mq and My will be called true model and
set of adequate models, respectively.

Let D, (m) be some (positive) functional (loss or discrepancy measure) describing
the accuracy of a given model m, i.e. of the estimator of f based on m. An appropriate
model is always selected from the class of all admitted models M,,. However, the user
may have interest only in models posessing certain properties such as pseudo-adequacy,
which form some (possibly unknown) subset M? C M,,. Ideally, one would then try

to minimize D,(m) over m € M. But this is in general impossible, since D, (m)
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depends typically on unknown quantities like f and o. Nevertheless, the aim is to
achieve the optimality at least asymptotically. Therefore, the following notions are

usually considered in the context of an asymptotic theory.

Definition. Let M} = M}(D,, M) = argmin,epo D,(m) be the set of all models
minimizing the discrepancy D, (m) over M? and d,, = d,.(D,, M?) = miny, cpro Dy (m)
denote the associated value of the discrepancy, which is assumed to be positive (almost
surely). Then a model selection procedure m : Y — M, is called M*-consistent if
P(m € M}) — 1 as n — oo. The procedure m is called asymptotically d,-optimal if
D,(m)/d, Ly lasn — oo

Note that the set of optimal models M may consist of more than one model and may
be random for random discrepancy measures. In the following we will shortly use the
notions of consistent and asymptotically optimal model selection procedures, respec-
tively, if the underlying discrepancy measure and the set M? are clear from the context.
Consequently, for a consistent model selection procedure the probability of selecting an
“optimal” model tends to one as n — co. Moreover, using an asymptotically optimal
procedure, one does asymptotically as well as if one knew the true regression function,
provided one restricts to the use of the (linear) least squares estimators frr

The following straightforward fact shows the relations between the introduced no-

tions.

Proposition 2.1 .
(i) Any consistent model selection procedure is asymptotically optimal.

(i) Conversely, an asymptotically optimal procedure m is also consistent, if, as

n — oo, P(m € M) — 1 and, with d}, = d(D,, M})) = min,epo\nz Dn(m)—d.,,
d,/d; = Op(1). (2.2)
Note that (2.2) may be seen as (asymptotic) identifiability condition for the (set of)

optimal model(s), and is not a condition on the model selection procedure.

By some examples we illustrate now the situation for different specifications of D,

and M?.
Example 1. Using D,(m) = R,(m) and M? = M, we obtain M} = {mg}
and d, = &, + n~'imo|o?. That is, minimizing the risk over all pseudo-adequate

models provides the (unique) pseudo-true model, and the consistency considerations
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correspond to the usual consistency approach in the literature (see e.g. Nishii, 1984, for
the adequate case or Muller, 1993, for the inadequate case but with an asymptotically
true model instead of a pseudo-true model depending on n), which we will refer to as
mo-consistency. Selecting the pseudo-true model is of particular interest, for example,
in pilot studies to larger experiments, where it is not of interest that the potentially
best fit (providing the minimal model bias) can be achieved with the given sample, see
e.g. Linhart & Zucchini (1986). O
Example 2. Choosing D,(m) = A,(m) and M? = M, leads to d, = 4, and
M = My, so that the class of all pseudo-adequate models would be the focus of the
investigation. The corresponding consistency approach is known as My-consistency
(Miiller, 1993). This property is useful for proving the consistency results in the context
of Example 1 (cp. Proposition 2.2). In this setting it is easy to verify that
ori=d(A,,M,)= min  A,(m)—4§,= min lH

mEMn\MO mEMn\MO n

(P=Pu)pl® . (23)

compare Proposition 2.1 for the definition of d}. Asymptotic optimality considerations
are irrelevant to this case, since the existence of an adequate (true) model would imply
0, = 0. O

Example 3. If one is interested in the behaviour of a procedure for the sample at
hand, one could consider D, (m) = L,(m) and M? = M,,. Then the minimizer of the
loss L,(m) over all admitted models is not necessarily unique. The optimal (random)
set M := M(L,, M,) corresponds to the theoretically optimal choice for the sample
at hand. In this situation, our asymptotic optimality notion corresponds to that of Li
(1987), and we will refer to it as asymptotic [,-optimality, where

l,, :=d,(L,,M,)= min L,(m) ;

meMy,

see also Shibata (1981) for a similar approach. O
Example 4. If one would like to find a model which minimizes the risk instead of
the loss, i.e. if D,(m) = R,(m) and M? = M,,, then M := M*(R,,, M,,) as well as

rp = dn(R,, M) = min R,(m)

meMy,

are nonrandom. However, R, (m) is random for any data-dependent model selec-
tion procedure m, so that the corresponding asymptotic optimality approach (shortly,
asymptotic r,-optimality) differs from the asymptotic mean efficiency approach of Shi-

bata (1983), which requires KL, ()/r, — 1 as n — oo. O
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For the sake of simplicity, in the sequel we will always assume that both the pseudo-
true and the maximal model belong to the set of admitted model candidates, i.e.

mo, My S Mn

2.2 Consistency

In practice, model selection is usually done on the basis of some criterion, Cy,(m), say.
The resulting model selection procedure is then the minimizer of this criterion over the
set M,, of competing models, that is

m € arg min C,(m) . (2.4)

meMy,

Most criteria are motivated by being a reasonably good estimator of some discrepancy
D, (m). However, it is e.g. well known that the consistency of C,(m) as estimator
of D,(m) is not enough for getting a consistent model selection procedure. Sufficient

conditions to achieve this property may be formulated as follows.

Proposition 2.2 A model selection procedure m defined by (2.4) is consistent, if
P(r € MP) — 1 and, for some m* € M},
aup Cn(m) — Cp(m*)

—1] 0 2.5
meMO\M* pn(m7 m*) ( )

asn — oo, where p,(m, m*) is some function satisfying p,(m, m*) > 0 for allm ¢ M.

In many situations, p,(m,m*) = s,[D,(m) — D,(m*)] provides a reasonable specifica-
tion with some positive sequence s, (possibly depending on m and m*). Then condition
(2.5) requires that the discrepancy difference D, (m)— D, (m*) (possibly multiplied by
some factor) is consistently estimated by the corresponding difference of the criterion
Cn(m) — C,(m*) (uniformly in m € M? \ M>).
We consider now the following general criterion which is well defined for known
variance o2
Cn(m) = RSS(m) + hnh§—|02 , h,>0. (2.6)
The case of an unknown error variance is treated in Section 3. In accordance with
Foster & George (1994), minimizers of (2.6) may be called canonical model selection
procedures.

First we apply Proposition 2.2 to give conditions under which the procedure m

minimizing (2.6) is My-consistent, i.e. the probability that it selects a model with



minimal bias tends to one as the sample size approaches infinity (cp. Example 2). Note
that none of the competing models is assumed to be adequate, so that mg denotes in

general the pseudo-true model.

Theorem 2.1 A model selection procedure m minimizing (2.6) is Mo-consistent, if

max{|M, \ Mo|, pnhon, pn}

*
nox

—0 as n— oo . (2.7)

In the special case that the covariates are given in a decreasing order of importance
such as in polynomial regression, it is quite natural to consider only the case of nested
models, i.e. M, = {{1},{1,2},...,{1,2,...,p,}} =t MY. Then the condition in the

above Theorem may be weakened.
Corollary 2.1 Let M, = MY and suppose that, as n — o,

|mo| max{h,, 1} = o(nd;) . (2.8)
Then a model selection procedure defined by (2.4) and (2.6) is Mo-consistent.

Roughly speaking, conditions (2.7) and (2.8) prevent underfitting and are only
achievable if nd — oo as n — oo. Recall that ¢} describes a measure for identifying
pseudo-inadequate models from the pseudo-adequate ones, compare (2.3). The required
growth rate of nd* depends in the general case on quantities like the complexity of the
considered class of model candidates, the maximal model dimension p,, and the penalty
hy, of the criterion (2.6). On the other hand, in the special case of a bounded number
of nested model candidates, condition (2.8) is satisfied by any diverging sequence nd
if h, is also bounded. Clearly, if the penalty A, is bounded, then conditions (2.7) and
(2.8), respectively, reduce to

max{|M, \ Mo|,p,} = o(nd;) and (2.9)
|mo| = o(nd}) , (2.10)

both as n — oco.

Sufficient conditions for the mg-consistency of a model selection procedure can be
derived in a similar way (see Example 1). Here, Theorem 2.1 is used to ensure, as
required by Proposition 2.2, that the probability of selecting a model from M? = M,

tends to one.
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Theorem 2.2 A model selection procedure m defined by (2.4) and (2.6) is mg-consistent,
if in addition to (2.7) the following condition holds:

min{|Mo|, pr — |mol|}/hn — 0 as n — oo . (2.11)

Condition (2.11) remedies the overfitting problem and is obviously fulfilled if, for
example, p, 1s bounded and h,, — oc as n — oo. In the case of nested model candidates,

the latter requirement is already sufficient under some moment condition.

Corollary 2.2 Let M,, = MY and suppose that Ec® < oco. Then a model selection
procedure defined by (2.4) and (2.6) is mg-consistent if it is My-consistent and h, — oo

asn — o0.

The literature on the consistency of model selection procedures focuses mainly on
mgo-consistency and sometimes on the related My-consistency. Nevertheless, the next
theorem presents sufficient conditions, which ensure that a mg-consistent procedure is
also M(D,,, M?)-consistent for some choices of D,, and M?. The idea is to show that

mo minimizes D, (m) over m € M? for sufficiently large n (almost surely).

Theorem 2.3 Any mg-consistent model selection procedure is M (L,, My)-consistent.

It is also M*- and M} -consistent, if condition (2.10) is satisfied.

We recall that condition (2.10) is an immediate consequence of (2.7) or (2.8) and

therefore not very restrictive for mg-consistent procedures.

2.3 Asymptotic optimality

The literature on the asymptotic optimality of model selection procedures is mainly
concerned with situations as in Examples 3 and 4. A first result follows directly from

the theorems and corollaries in the previous subsection by applying Proposition 2.2.

Corollary 2.3 A model selection procedure defined by (2.4) and (2.6) is asymplotically
ln- and r,-optimal if it fulfills the assumplions of Theorem 2.2 or Corollary 2.2.

Asymptotic optimality of a procedure is also achievable under other conditions

than above. For proving corresponding results, the following fact is especially useful.
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Proposition 2.3 .

(i) A model selection procedure i defined by (2.4) is asymptotically optimal, if for
some m* € M

$n[Cn(m) = Cu(m™)] = [Dn(m) — dy]

P
0 2.12
Dy(m) + d, - (2.12)

sup
meMy,

as n — oo, where s, is some posilive sequence possibly depending on m and m*.

(ii) Let ¢ = (e1,...,6,)T and suppose that

Zn
msgjgn Dn((nnz)) — 1‘ 50 , as n — 0o, where (2.13)
2 7 2 7 m| ,

Then a model selection procedure m defined by (2.4) and (2.6) is asymptotically

optimal.

In case of a known error variance, we apply now this proposition to derive conditions
under which a model selection procedure based on criterion (2.6) is asymptotically
optimal in the sense of Examples 3 and 4. For this we will additionally assume the

existence of higher moments for the error distribution:
Fey’ < oo for some natural number ¢ . (2.15)

Theorem 2.4 Assume thal besides (2.15) the following condilions are satisfied as
n — 0o:

> [nR.(m)]™" — 0 (2.16)

meMy,
| — 2||m]

meMn, an(m)

0. (2.17)

Then a model selection procedure defined by (2.4) and (2.6) is asymptotically optimal
with respect to both [, and r,.
Condition (2.17) is obviously implied by

h, —2|p,,
| p .
nry,

0 or |h,—2—=0 as n— oo, (2.18)

since nR,(m) > |m|a? for all m. Moreover, (2.16) follows if |M,,| = o([nr,]?), which is

e.g. fulfilled if |m*| or nd, diverge sufficiently fast to infinity compared with |M,|, i.e.
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|M,,| = o([max{|m*|,nd,}]?), where m* denotes a minimizer of R, (m) over m € M,,.
Note that, as commented by Li (1987), in nonparametric regression as well as in the
inadequate parametric case, nr, will typically be of order n” for some n > 0, so
that (2.16) is achievable if |M,]| is of polynomial order. In the case of nested model

candidates, it is again possible to weaken the assumptions.

Corollary 2.4 Let M,, = MY . Then a model selection procedure defined by (2.4) and
(2.6) is asymptotically optimal with respect to both I, and r,, if (2.15) with ¢ = 2,
(2.17) and

nr, — 00 a8 n — 00 . (2.19)

For instance, from Shibata (1981) it is known that in the problem of selecting an
appropriate order in polynomial regression, condition (2.19) will hold when the true
regression function is not a polynomial of any finite order.

Remark. The results of this subsection suggest that criteria (2.6) with penalties
h, = 2, at least approximately or in some asymptotic sense, should be the first can-
didates for providing asymptotically optimal procedures. Therefore, in Subsection 3.3
emphasis will be on such criteria. Nevertheless, condition (2.17), or (2.18), could also
be satisfied for criteria with other penalties A, if the maximal model dimension p,
increases very slowly with n. To illustrate this fact, let us consider the simple case of
nested models with algebraically decaying biases, i.e. A,(m) = C|m|™" for some con-
stants C';n > 0, and finite 8th moments of the error distribution. Then nr,, is of order
n'/(+7) 5o that any procedure based on a criterion (2.6) will be asymptotically opti-

147) = 0 holds. Hence, even diverging sequences

mal, provided that lim,_ ., hnpnn_l/(
h, are not completely excluded.

To bring this discussion to a head, let us finally assume that p, is bounded and
that all models in M, are inadequate. Then 4, = ¢ > 0, and any sequence h, with
lim,, o0 by /1 = 0 satisfies (2.18) and provides thus an asymptotically optimal proce-
dure. The reason is, of course, that in such case the estimation error is dominated by
the model bias, so that the largest model m; becomes optimal, e.g. with respect to the
risk, for sufficiently large sample sizes. Notice that this trivial case is one of the rather
rare situations where part (ii) of Proposition 2.1 is applicable, with D, (m) = R,(m)
and M? = M,,, since condition (2.2) will typically be fulfilled. That is, the asymptotic
optimality of a procedure yields its M*-consistency and consequently, on account of

M? = {m} = {mo} for sufficiently large n, its mo-consistency. Naturally, this “result”

might be obtained directly, and it is not in contrast to Subsection 2.4 where h,, — o
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will turn out to be a necessary condition for mg-consistency, provided that neither mq

nor my \ mg are empty. O

2.4 Illustration in case of orthonormal regressors

1. (Assumptions) We assume that the errors in (1.1) are normally distributed, and

that the basis functions ¢; (1 = 1,...,p,) are orthonormal in the summation sense, i.e.
1 n
— > gi(e)g;(ze) = iy (2.20)
k=1

where §;; denotes the Kronecker symbol. Then we have, for any m € M,,, GL G, = nl,

and the least squares estimates of the parameters,

A

~(m 1 & .
52'( ) = " E yrgi(zy) =: 0; (tem)
k=1

do not depend on the underlying model m. Similarly, the components of the projection
parameter 3/ defined in (2.1) are given by Bl =nt Siey f(xr)gi(xr) (¢ € my). The
orthonormality assumption (2.20) provides

Au(m)—d,= Y (37 . (2:21)

1€mi\m

Moreover, it is easily seen that the criterion (2.6) is minimized (over all m C my) by
m={iem | 77> h,}, (2.22)

where 7; = \/ﬁ@/a, cf. Droge (1993). Our assumptions ensure that these coefficients
are independent distributed with

’f‘ZNN(TZ,l) ; Ti:\/ﬁﬁif/a' .

2. (Necessary condilions for mg-consistency) The sufficient conditions for the mq-
consistency of a canonical model selection procedure in Subsection 2.2 require at least
that both h, and nd} tend to infinity as n — oo (and the divergence of h, is slower
than that of nd*). In the considered special case we will illustrate that these conditions

are necessary. Recalling the definition of mg, our assumptions lead to

(i) = P72 >h,)=1—0(\/h, — 1)+ ®(—\/h, —7;) for i € mg ,
pi(i) = P(# <hp)=1-20(—\/h,) for i €my\mo

14



where ® denotes the distribution function of the standard normal law. Therefore,

p(n) := P(=mo) = [[ po(i) I pi0)

tEmg 1€mi\mo

must converge to one for any mg-consistent procedure m. Supposing additionally that

neither mg nor my \ mg are empty (for sufficiently large n), we obtain
p(n) < min{°(0), (i)} Torany € mo  i5€mi\mo . (2.23)

Taking i € arg min;em, 77 we get nd* = o735, compare (2.21), so that the right hand

side of inequality (2.23) tends to one if and only if

h, — o0 and limsuph,/(nd;) <1 , (2.24)

n—00
which implies in particular nd* — oo as n — oc.

3. (Sufficient conditions for mg-consistency) We observe first that the necessary
conditions (2.24) are also sufficient for the mg-consistency of the procedure m if the
maximal model dimension p, is bounded.

For the general case let Fj(-; ) and My(t), respectively, denote the distribution
function and the moment generating function of a noncentral y?-distributed random
variable with &k degrees of freedom and noncentrality parameter a > 0. Using the fact

that Fi(z;«) is monotonically decreasing in «, we obtain, for ¢ € my,
p2(i) =1 — Fi(hy;77) > 1 — Fi(ho;nds) .
Together with the Bernoulli inequality, this leads to
pn) = 1= mol Fa(haind)] [1 = 2(pn = Imol)&(—/ho)]

ol . V2(pn — mal)
> |1- Ve exp(hy, — n5n/2)] ll - NI

To establish the last line we have used the Markov inequality providing

expl—hu 2)

Fie(hn;ndy) < exp(hn)Mp(—1) = 3=k/2 exp(hy,) exp(—nd;/3) (2.25)

as well as the elementary relation ®(—z) < ¢(z)/x, where ¢ denotes the density
function of the standard normal distribution. Consequently, the procedure m is mg-

consistent, that it, p(n) — 1 as n — oo, if h, — oo and

max{hmsupw ’ hmsupw} <% .
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Since mg is unknown, this provides 2In(p,) as lower bound for the dimensionality
penalty h,. We remark that h, = 2In(p,) is just the proposal of Foster and George
(1994) in the orthogonal regressor case, which was derived by a different approach
using the so-called risk inflation criterion.

4. (Case of an adequate model) We suppose now that f may be expressed as
ko
f = Eﬁzojglj >
=1

where the nonvanishing coefficients /82»0] (j =1,...,ko) do not depend on n, and that

Pn > ik, for sufficiently large n (n > ng, say). Then we obtain
p==G3 , 6,=0 and & Zmin{|ﬁg|2 cg=1,....,k} ,

providing, for example, nd* — oo as n — oo. The results of the last paragraph show
that the procedure m defined by (2.22) is mg-consistent if, as n — oo, h, — oo,
hp/n — 0 and In(p,)/h, — 0. Corollary 2.4 implies immediately that m is asymptot-
ically [,- and r,-optimal under the same assumptions. Note that p, may be bounded
or not, and we have here h,, — oo as well as, for sufficiently large n, nr, = kyo? < oco.
The last fact is shown in the Appendix, where we also establish the asymptotic mean
efficiency (cf. Example 4) of the procedure. On the other hand we will see there
that model selection procedures with any bounded penalty sequence h, can also be
asymptotically mean efficient under different assumptions, e.g. if in the inadequate

case lim, o pn/(nr,) = 0 holds.

3 Application to some criteria

3.1 A general representation of model selection criteria

In practice, the variance o* will be unknown. Therefore we consider the following

model selection criterion instead of (2.6):

C.(m) = RSS(m) + f}n(m)Ma? : (3.1)

n

A

where the (nonnegative) stochastic penalty, h,(m), may depend on m. Any minimizer
of the criterion C’n(m) over m € M, will be called mim’mum—é’n-procedure. Represen-

tations (3.1) exist for many of the popular model selection criteria, typically with

hy(m) = ho(m)62(m)/o? | (3.2)

n

16



where h,(m) > 0is a nonrandom penalty and &2(m) is some “variance estimator” under
model m. Table 3.1 contains the corresponding expressions for h,(m) and &2(m) for

all criteria introduced in Section 1. There the following notations are used:

n

&*(

RSS(m)

2
I

n — |m|
L(m) = diag[yi(m),....y(m)] , vi(m) = pi(m){2 — pi(m)H1 — pi(m)}~*
AGm) = diaglhs(m), As(m)] » Ni(m) = pi(m)2 + pis(m))

Table 3.1: Representation of model selection criteria by (3.1), (3.2)

Criterion ho(m) 52(m)
c, 2 52(m1)
FPE 2 &%(m)
SH 2(1 = n~'|ml) 52(m)
Gev 2~ (n — [m|)~m| 52 (m)
GFCV 2~ n~m| — n~?|m|? 52(m)
exp(GIC) anga(m)(1 = n="m]) . 52(m)
qn(m) = ‘exp(ff::—_ll||:;||)_l
v L fm|™ Sy pa(m)[1 = pa(m)) 1 | 2
FOV | 2= |7 Sy pam)?[1 + pus(m)] | 2

Appropriate specifications of a, in the definition of GIC give the corresponding repre-
sentations for AIC, BIC and ¢, cf. Section 1. Note that g,(m) — 1 if a,n™m| — 0.
Moreover, all estimators &2(m) in Table 3.1 are unbiased for o?, provided that the

model m is adequate (correct), i.e. A,(m) = 0. This is an immediate consequence of

the following lemma which summarizes some properties of the variance estimators.

Lemma 3.1 Let Q,, = diaglwi(m),...,w,(m)] with w;(m) > 0 for i = 1,...,n,
w(m) = max_,wi(m), T, = (I — Pp)Qu(I — Pp), tm = tr(Ty) = tr[Qn(I — Pn)]
and 62(m) = 1" ||yll7,.. Then we have, for any m € M,,

(i) B52(m) = 0% + 1}l = ealm) and,

(ii) assuming additionally (2.15), E|GZ(m) — e,(m)|** = O([t; en(m)w(m)]?) .
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The result for 62(m) follows by setting Q,, = I, so that w(m) =1, ¢,, = n — |m| and
en(m) = o? + n_LWAn(m) The “variance estimators” occuring in the CV and FCV
criteria are covered by ,, = I'(m) and Q,, = A(m), respectively.

It may intuitively be expected that a minimizer of (3.1) will share the properties of
a minimizer of (2.6) if the stochastic penalty iLn(m) behaves similarly to the penalty £,

in (2.6). The next two subsections make this precise in the context of both consistency

and asymptotic optimality.

3.2 Consistency of some procedures

Here, we restrict our investigations to My- and mg-consistency. For each of the criteria
in Table 3.1 we will first present conditions, which ensure the Mj-consistency of the
associated model selection procedure. We denote by

h, := sup h,(m) and h® := sup hy,(m) (3.3)

meMy, mCmg

the maximum nonrandom penalty terms over m € M, and m C mg, respectively,
and start with a general result on procedures minimizing (3.1), where either 6%(m) or
6%(my) serves as variance estimate.
Theorem 3.1 Let 1 be a minimizer of (3.1), where fzn(m) is given by (3.2).

(i) Assume that (2.7) holds for h, = HnE&Z(ml)/JZ. Then m is My-consistent, if

(a) 67(m) = 6%(m1) or,
(b) 5%(m) = 6%(m), and h,p,/(n — p,) — 0 as n — <.
(ii) Let M, = MY and assume that (2.8) holds for h, := h® E&%(mg)/o?. Then
is Mo-consistent, if either (a) or (b), but with |mgl|, kS instead of pp, hy, is satisfied.
In both cases (a) and (b) we have G2(m;) = 6*(my), so that condition (2.7) implies
that the bias of 6%(m;), E6*(m;) — 0? = nd,/(n — p,), is asymptotically negligible
compared with nd*/(h,p,), that is,

W—H) as n— oo . (3.4)

This property follows also from the condition in (b), if
4, =0(6)) as n— oo . (3.5)
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Usually, A, > 0 will be bounded away from zero. Then the condition in (b) requires

that the largest model dimension increases slower than the sample size,
pp=o0(n) as n— oo, (3.6)

so that the condition in (b) could be rewritten as

hnp, = o0(n) as n — oo . (3.7)

Theorem 3.1 can be applied to all criteria in Table 3.1, except for CV and FCV, and
to the so-called generalized C)-criterion, see, for example, Atkinson (1980) and Zheng
and Loh (1995). This criterion may be expressed in terms of the general criterion (3.1)
by taking fALn(m) = h, = kn,6%(my) /o, where k,, is some nonrandom positive sequence,

depending possibly on n:
_ Iml .
GCy(m) = RSS(m) + k,—0"(my) . (3.8)
n
The usual C)-criterion (1.7) corresponds to the particular choice &, = 2.

Corollary 3.1 (i) Suppose that (2.9) and (3.4) with h,, := 2 hold. Then the minimum-
Cy-procedure is My-consistent. The same property is shared by the procedures based on
the critera AIC, FPE, SH, GCV and GFCV if additionally (3.6) is assumed.

(i) Minimizing the criteria GIC and GC, provides also My-consistent procedures,
if conditions (2.7), (3.4) and, in case of GIC, (3.7) are satisfied, where both h,, and h,,
have always to be replaced by a, (for GIC) or k,, (for GC,).

(iii) In the special case of nested model candidates, M,, = MY | the resulls remain
true if condition (2.9) and (2.7) are replaced by (2.10) and (2.8), respectively, and if
|mo| is used instead of p, in (3.6) (orin (3.7) for GIC) and (3.4) (but for C, and GC,
only in the nominator of (3.4)).

We close our My-consistency considerations by dealing with the procedures based

on the cross-validation and the full cross-validation criteria. Let

cn(m) = sup pi;(m) (3.9)

=1

denote the maximum diagonal element of the hat matrix (projection) P,,.

Theorem 3.2 Suppose that (2.9) and, as n — oo,

¢n = sup ¢,(m) —0 and (3.10)
meMpy,
cn(0® 4+ 6,)/65 =0 (3.11)
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are satisfied. Then the model selection procedures minimizing CV(m) and FCV(m)
over m € M, are My-consistent. In the special case of nested model candidates, the
result remains true if in (3.10) m € M,, is replaced by m C my, and if condition (2.10)
is assumed instead of (2.9).

Notice that under (3.5) the condition (3.11) follows from (3.10), which in turn is

a consequence of (3.6) if extremely unbalanced designs are excluded by assuming, for
example,

JK >0 Vn VmeM, c,(m)< KM ) (3.12)

n

Our sufficient conditions for the mg-consistency of canonical model selection pro-

cedures in Subsection 2.2 require that the nonrandom penalty h,, diverges to infinity as

n — oo, compare (2.11) and Corollary 2.2. In case of procedures minimizing the crite-

rion (3.1) we would expect that the related substitute A, defined in Theorem 3.1 shares

this property. Among the criteria considered above, GIC and GC), appear therefore as
the most appropriate candidates to achieve mg-consistency.

To study the behaviour of the minimum-GIC-procedure, we observe first that

1 < qu(m) < go(my) =: g, for all m € M, see Table 3.1. This gives h, = h,(m;) =

angn(1 — p,/n) and hence, on account of Lemma 3.1,

h, = EiLn(ml) = 4@ E[RSS(m1)]/0% = 0qn(8,)0* +1 —pa/n) (3.13)
compare (3.3) and Theorem 3.1. Typically, the minimal model bias §,, will be bounded,
le.

4, =0(1) as n— oo, (3.14)

or it will even vanish asymptotically. Then the “minimal” requirement h,, — oo leads to
anq, — oo and thus to a, — oo, since the sequence {q, } is bounded if {a, } is bounded.
Together with the sufficient conditions for the My-consistency in Corollary 3.1, e.g.
(3.7) implying (3.6), this establishes the weak asymptotic equivalence of h,, and a,,.

Theorem 3.3 Suppose that conditions (3.14), (2.7), (2.11) and (3.7) are satisfied,
with a, instead of both h, and h,. Then the model selection procedure defined as

minimizer of the GIC eriterion is mqg-consistent.

In the special case of nested model candidates, the assumptions can be weakened

in the same way as for the canonical model selection criterion.
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Corollary 3.2 Let M, = MY, and suppose that Ec§ < oo, (3.14) and (3.7), with a,
instead of hy, hold. Then the minimum-GIC-procedure is mg-consistent if, as n — oo,

a, — oo and
an|mo|

*
no

—0 . (3.15)

We conclude this subsection by investigating the asymptotic properties of the

minimum-G'C-procedure. For GC, we have h, = K, and

. 5.
h, = Eh,(my) = /an&Z(ml)/JQ =K, (1 + (7172) , (3.16)

n—pn)o

compare (3.3) and Theorem 3.1.
Theorem 3.4 Suppose that
(n —pa)E6*(my) = (n —py)o* +né, =00 as n— oo, (3.17)

and one of the following two sets of conditions, with h,, defined by (3.16), are satisfied:
(i) (2.7), (2.11), (2.15) with g =1, or
(ii) M, = MY, (2.8), (2.15) with ¢ =2, and h, — o0 asn — oc .

Then the model selection procedure minimizing (3.8) over m € M, is mq-consistent.

Notice that condition (3.17) is fulfilled if (n — p,) diverges to infinity as n — oo,
which is fairly minimal in proving any asymptotic theory. Nevertheless, (3.17) could be

achieved even in cases where (n — p,,) is bounded, provided that nd, — oo as n — co.

3.3 Asymptotic optimality of some procedures

Similarly to Corollary 2.3, the results of the previous subsection provide the following.

Corollary 3.3 The minimum-GIC-procedure is asymptotically l,- and r,-optimal if
the conditions of Theorem 3.3 or Corollary 3.2 are satisfied. Moreover, the minimum-

GCy-procedure shares this optimality property under the assumplions of Theorem 3.4.

This result will typically be applicable in situations where nr, is bounded.
Next we are concerned with optimality conditions for the minimizer of the general

criterion C,, when nr, diverges to infinity.
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Proposition 3.1 Assume that (2.15), (2.16) and the following condition are fulfilled:

h,(m) — 2 2
[on (1) [Imlo L0 as n — oo . (3.18)

su
m@]\% nR,(m)

Then a model selection procedure m minimizing (3.1) over m € M, is asymptotically

rn- and L, -optimal.

Recalling |m|o? < nR,(m), condition (3.18) is obviously fulfilled if h,(m) converges
in propability to 2, uniformly in M,,. For example, this holds for the C}-criterion if
6%(my) is a consistent estimate of o?. However, this consistency of &%(m;) is not a
necessary condition for the optimality of the minimum-C-procedure as stated in the

next theorem.

Theorem 3.5 The minimum-C,-procedure is asymptotically r,,- and l,,-optimal if (2.15),
(2.16) and one of the following conditions are satisfied: (3.6) or

limsupp,/n <1 and 4, =o(r,) or (3.19)
n— oo
nd,
n—p, —+o0o and —0 as n—o00 . (3.20)
n— p,

Concerning (3.19) we note that &, = o(r,) is implied by &, = o(|m*|n™"), where again
m* € arg min,en, R.(m), since r, > |m*|n~'a? Condition (3.19) is fulfilled if, for
example, p, = yn for some v € (0, 1) and if the model biases are algebraically decaying
as in the Remark of Subsection 2.3. Condition (3.20) provides the consistency of 6%(m;)
and requires that §, — 0 as n — oo. This condition allows even lim, ., p,/n = 1,
but only if the minimal model bias vanishes sufficiently fast. For instance, (3.20) is
satisfied if p, = n —In(n) and &, = o(In(r)n™'). On the other hand, assuming (3.6)
the asymptotic optimality of the minimum-C'-procedure may even be achieved in cases
where §,, doesn’t converge to 0 (and hence 6%(m;) is asymptotically biased).

We study now the behaviour of a class of model selection procedures which covers

e.g. those based on the FPE and AIC criteria.

Theorem 3.6 Let m be a minimizer of (3.1), where fzn(m) is defined by (3.2) with
&2(m) = 6*(m). Assume that (2.15), (2.16) and the following condilions are satisfied:

n

limsupp,/n <1, (3.21)
n— oo
limsup sup h,(m) < oo , (3.22)

n—o00 meMn,
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|fon(m) = 2[Jm| _

lim su = lim su =0 . 3.23
Then m is asymptotically r,- and [,-optimal.
Because of nR,(m) > |m|c?, the first condition in (3.23) is fulfilled if
sup |hn(m)—2] -0 as n — oo . (3.24)
meMy,
Another sufficient condition for this is p, = o(nd,), since |h,(m) — 2| is uniformly

bounded in M, by (3.22) and |m|/(nR,(m)) < p,/(nd,).
Recalling (1.4), we obtain

) {0 p )

(n — [m[) Rn(m) n—|m|’n—|m|""

Hence, the second condition in (3.23) follows from (3.6) or if there exist a divergent
sequence {k, } with
n

kn <pn , kn=o0(n) and sup A,(m)—0 as n — oo . (3.25)
jm[2kn 70— [

Notice that the last condition in (3.25) requires the asymptotic unbiasedness of &%(m)
uniformly in {m € M,, : |m|>k,}.

Clearly, (3.24) holds always for the FPE criterion since then h,(m) = 2. Moreover,
condition (3.24) may be verified under (3.6) for the criteria AIC, GCV, GFCV and SH,
too. It cannot be expected to weaken this assumption by p, = o(nd,), since condition
(3.14) will usually hold. Finally, (3.21) and (3.22) are implied by (3.6) and (3.24),

respectively, so that we arrive at the following.

Corollary 3.4 The model selection procedures defined as minimizers of the FPFE, AIC,
GCV, GFCV and SH criteria, respectively, are asymptotically r,- and [,-optimal if
(2.15), (2.16) and (3.6) are satisfied. For the FPE criterion, the result remains true if
the assumption (3.6) is replaced by (3.21) and (3.25).

The next theorem presents sufficient conditions for the asymptotic optimality of the

model selection procedures based on cross-validation and full cross-validation.

Theorem 3.7 Both the minimum-CV- and the minimum-FCV-procedures are asymp-
totically r,- and l,-optimal if conditions (2.15), (2.16) and (3.10) are satisfied.

Finally, we remark that all results of this subsection remain true in the special case
of nested model candidates, if condition (2.15) is assumed for ¢ = 2 and if (2.16) is
replaced by (2.19). This is an immediate consequence of Corollary 2.4 and its proof.
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4 Some related work

The asymptotic properties of model selection procedures based on different criteria
have been investigated by several authors. Here we present only a short review of some
results, which are closey related to our paper.

Nishii (1984) considered the problem of selecting an appropriate submodel of some
given linear model, say m; = {1,...,p} with associated design matrix G, of fixed
dimension p, = p. Consequently, M,, = M does not depend on the sample size. He

made the following assumption:

(N) There is a true (minimal adequate) linear regression model, say mq € M. The

matrix GT (i is positive definite, and lim,_,., n~' G (7 exists and is also positive definite.

Reformulating Nishii’s results in terms of our notions, he showed that under (N) and
the assumption of normally distributed errors, procedures based on criteria CV, C), ,
FPE and AIC are My-consistent but not mg-consistent, that is, the selected models
apt to overfit. In contrast, the mg-consistency was proved for the criterion GIC under

the additional assumption
a, o0 and a,=o0(n) as n— oo . (4.1)

Note that for the result on CV, lim, ., ¢,(m1) = 0 is additionally required, which is in
this case equivalent to our condition (3.10). Moreover, Nishii’s assumptions imply that
neither My nor mg depend on n as well as that §, = 0 and liminf, ., 6 > 0. Thus,
our conditions (2.9), (3.4), (3.6) and (3.14) are always satisfied, whereas (3.7), (2.7)
and (2.11) follow from (4.1). This shows that Nishii’s results may be seen as special
cases of our Theorems 3.2, 3.3 and Corollary 3.1.

The above results have been generalized by Miiller (1993) to the case of nonnor-
mal errors and inadequate linear models, defining an asymptotically true (instead of a
true) model by m, = {i € m; | liminf,_ |3/| > 0} and assuming some additional
conditions on the design and the unknown regression function, including e.g. Nishii’s
conditions on GTG as well as ||u]|> = O(n). As remarked by Miiller (1993), the re-
sults can be generalized to cases where the dimension of model m; increases with the
sample size, i.e. for p = p, = o(n), but that of the true model m, is still fixed. Further-
more, assuming certain conditions to ensure that m, minimizes L,(m) for sufficiently
large n, which are fulfilled e.g. under (N), m,-consistent procedures turn out to be
also asymptotically [,-(r,-) optimal, which may be compared with our Corollary 3.3.

Note that, in contrast to Miiller (1993), we have tried to avoid imposing assumptions
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on quantities like the asymptotic design (or information) matrix and the asymptotic
projection parameters. Instead, our conditions are formulated in terms of quantities
which are defined for each given sample size n, such as the projection parameter 3/, the
pseudo-true model mg, the minimal model bias §,,, and §7 defined by (2.3). Moreover,
the separation between conditions on the design and the parameters is not always nec-
essary, since one is often interested in estimating the regression function itself. We do
also not assume that ||u]|?/n is asymptotically bounded. Generally, our results appear
more general than those of Miiller (1993), who focused mainly on consistency.

In the situation of Nishii (1984) but with errors as in (1.1), Shao (1993) made similar
observations concerning the asymptotic behaviour of the minimum-CV-procedure. He
found that the deficiency of the leave-one-out CV can be rectified by using a leave-
d-out CV, say CV(d). More precisely, he showed that some variants of CV(d) are
mo-consistent if d/n — 1 and n —d — oo as n — oo and if, using our notation, the

following conditions are satisfied (recall that here 4,, = 0):
lirllgglf& >0, G'G=0(m), (GTG)™=0(m™"), and (3.10) .

Zhang (1993) dealt with multifold CV in the same context. Under some assump-
tions including d/n — § > 0 as n — oo and (3.10), he established that the CV(d)
criterion is asymptotically equivalent to the generalized C,-criterion (3.8), where &, is
replaced by a = (2 —§)/(1 —4) . Obviously, it holds a > 2 if § > 0, whereas the crite-
rion with & = 2 may be recognized by the reader as the C-criterion of Mallows (1973).
Furthermore, Zhang’s results imply that under his assumptions the CV(d)-method is
My-consistent but not mg-consistent. This is in some accordance with the above result
of Shao (1993), who proved the necessity of d/n — 1 for mg-consistency, although
this condition seems rather surprising at first glance. Another interesting conclusion of
Zhang is that the probability of choosing the true model mg is an increasing function
of 6. When 6 — 0, the CV(d) criterion becomes equivalent to the CV criterion.

Model selection procedures based on minimizing the criterion (3.8) were also in-
vestigated by Zheng and Loh (1995), assuming that the “covariates” g; are either
preordered or sorted according to t-statistics. Thus, the competing models are nested
as in M. The errors in (1.1) were assumed to be sub-Gaussian and, moreover, the
maximal model dimension p, was allowed to depend on n, satisfying (3.21) (which
implies condition (3.17)), whereas the true model did again not depend on the sample
size. The authors considered some positive nondecreasing function, h,(|m|), of |m|

instead of k,|m| as the penalty term for the model complexity in (3.8). They showed
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how this term has to be chosen to achieve mg-consistency of the corresponding model
selection procedure. The imposed condition on the design matrices is fairly minimal in
proving asymptotic theory for linear models (and weaker than that of Shao, 1993, and
the other authors mentioned above). In particular they allowed that, as in our paper,
the minimal bias of an inadequate model, which is ¢ due to ,, = 0, may tend to zero,
but not faster than p, In(n)/n for some sequence p,, — co. The growth restrictions on
h,, reveal the interplay of h,, p, and &%, which is necessary for preventing both overfit-
ting and underfitting. The mg-consistency of a procedure depends clearly on the choice
of h,, which in turn is decided by p,, and the growth of nd; since, roughly speaking, h,,
has to increase faster than p, but slower than nd}. Generally, if p, — oo as n — oo,
then the penalty h,(|m|) is required to grow faster than when p, is bounded. The
results of Zheng and Loh (1995) can be compared with part (ii) of Theorem 3.4. They
use a somewhat more general penalty function A, (|m|), but a more specific restriction
on the growth of nd’. More importantly, our assumptions are weaker than theirs: Our
result doesn’t require lim,, o, p, /K, = 0, as it follows from condition A3 of Zheng and
Loh, and we assume only the existence of finite 8th moments for the error distribution
instead of sub-Gaussian errors, which have finite moments of all orders. We remark
finally that Zheng and Loh (1995) have also established an almost sure version of the
consistency result under some strenghtened conditions.

It should be pointed out that all consistency results on which we have commented
until now depend heavily on the assumed existence of a fixed finite-dimensional true (or
asymptotically true) model. In contrast, we allow that the pseudo-true model depends
on the sample size, which appears reasonable if the maximal model dimension may tend
to infinity. Nevertheless, potential applications of our consistency results cover mainly
cases where the dimension of the (pseudo-)true model is bounded. If, for example, the
regression function can be expressed as an infinite series, f = 3772, ;g;, with infinitely
many nonvanishing coefficients, then zero-coefficients are often estimated with biases
on the basis of any finite sample. These biases correspond to nonvanishing projection
parameters and are in general small, implying that nd? will not tend to infinity. The
consideration of an asymptotically true model is then no way out, since its definition
may be difficult when the coefficients decrease with the related “frequency” j.

We have seen that the story is quite different when the dimension of the true
model increases with the sample size or is infinite. Then it seems appropriate to use
the asymptotic optimality approach instead of consistency considerations. Generally, in

such situations procedures with comparatively small penalties for the model complexity
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become preferable, which is in contrast to cases where the mg-consistency approach
works.

The first result on asymptotic optimality of linear model selection procedures is
due to Shibata (1981), who established under certain conditions that procedures based
on criteria such as SH, AIC, FPE and C, are asymptotically optimal, whereas those
with larger penalties like BIC and ¢ are not. A procedure m was called asymptotically
optimal, if L, (m)/r, converges in probability to one. This concept is closely related
to the asymptotic [,-optimality, since the imposed assumptions usually imply that
L,(m)/R,(m) converges in probability to one, uniformly in m € M,, compare the
proof of Theorem 2.4. Shibata assumed normally distributed errors in (1.1) as well
as an infinite series expansion for the regression function, f(z) = 3272, B;g; (), where
both sequences (31, 3z, ...) and (g1(z), g2(2),...) are square-summable. Moreover, the
main conditions to achieve the asymptotic optimality of the procedures were (3.6) and

nlggo ,r;\/[n §*Fn(m) = for any § € (0,1) . (4.2)
Notice that (4.2) implies condition (2.19), which is a minimal prerequisite for getting
asymptotic [,-optimality in Subsections 2.3 and 3.3. In a later paper, Shibata (1983)
showed that his results remain true if the asymptotic optimality approach is replaced
by the asymptotic mean efficiency approach as introduced in Example 4.

Li (1987) proved the asymptotic optimality of the procedures based on the criteria
Cp, CV and GCV. The results of Droge (1999) on FCV as well as those in Subsec-
tions 2.3 and 3.3 are in the same spirit. More precisely, Li (1987) showed that, in
our notation, the canonical model selection procedure with h, = 2 in (2.6) (called C))
is asymptotically [,-optimal under conditions (2.15) and (2.16). In the special case of
nested model candidates, M,, = M he demonstrated that it suffices to assume (2.15),
with ¢ = 2, and (2.19). These results are just stated in Theorem 2.4 and Corollary 2.4,
with the only exception that we additionally require condition (2.17) to deal with gen-
eral canonical model selection procedures; recall that (2.17) is automatically satisfied
when h,, = 2. Thus, our proofs coincide essentially with those of Li (1987). In case of
an unknown error variance o2, Li proposed to replace ¢ by any consistent estimate.
This keeps the optimality of the procedure, and is one of the possible versions provided
by Theorem 3.5.

In Subsection 3.3 we have used the results on canonical model selection to derive the
asymptotic [,,- and r,-optimality of a variety of data-driven procedures. The proofs rely

mainly on rewriting the underlying criterion as in (3.1) and applying Proposition 3.1.
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In this way we have established the asymptotic optimality of the procedures based
not only on C),, but also on the criteria FPE, AIC, SH, GCV, CV, GFCV and FCV,
where the last result was already published in Droge (1999). The ideas of Li (1987)
in proving the asymptotic optimality of the procedures minimizing either CV or GCV
are different. To illustrate the differences in the assumptions we restrict to the case of
nested model candidates. Then Li used, instead of our condition (3.6), the following

to achive the asymptotic optimality of the minimum-GCV-procedure:

inf L,(m) L0 as n— oo (4.3)

meMN

AC Va>0 supP{lz—a<e <zxz+4a}<Ca. (4.4)
re€R

Condition (4.3) requires in particular lim, ., 4, = 0, whereas the condition (4.4) on
the error distribution is satisfied if its density is bounded. To get the asymptotic
optimality of the minimum-CV-procedure, Li (1987) replaced our assumption (3.10)
by (4.3), (3.12) and lim,, .« ¢, < 1, compare (3.10) for the definition of ¢, and note
that ¢, < 1 holds for any fixed n (Droge, 1982, Lemma 2.2). Finally, we remark that Li
(1987) treated the somewhat more general problem of selecting a good estimate from a
proposed class of linear estimates indexed by some discrete set, covering, for instance,

also the nearest-neighbour nonparametric regression case.

Appendix: Proofs

Proof of Lemma 2.1. We note first that, for any m € M,
An(m) = An(ma) + (P = Po)ul® -

Consequently, we have A, (m1) = mingen, An(m) =: d,, and A,(m) = d,, holds if and
only if
(P—P,)p=0. (A1)

Using P,,P = P,, and Py = GBY, we obtain, with G = (g1,...,G,,),

(P Puu = (I—Pu)Pp=(I— P.)GB

— (1-P)S Ble = S Bl - P .
=1 ¢m

Since the vectors g; are assumed to be linearly independent and any P,,g; is an element
of the column space of (G,,,, this shows that (A1) is equivalent to B =0 for all i ¢ m.

The statements of the lemma are then obvious. O
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Proof of Proposition 2.1. (i) Let m be an arbitrary M -consistent procedure.

D, (n Dy (n .
P{ (m)—1‘>n} - P{‘ () >n,m6M;}
dy

dy, dy,
which converges to zero because of the M*-consistency of m.

Then, given any n > 0, we obtain
D,(n
Lo {‘ﬂ .

>n,m¢MZ} < Plin ¢ M),

(i) Assume now that ri is asymptotically optimal and P(rm € M?) — 1 as n — oo.
Thus it remains to show that P(m € M2\ M}) — 0.
Condition (2.2) provides firstly that for any ¢ > 0 there exist ng and M, such that
P(d,/d: > M.) < ¢/2 for all n > nq.
Given any € > 0, let n. = 1/M,. Then the asymptotic optimality of m ensures that
there is some n* > ng such that P(|D,(m)/d, — 1] > n.) < €¢/2 for all n > n*.

Consequently, we obtain for all n > n*
P(in e M\ My) = P(in€ M)\ My, |Dy(in)/dn — 1] > 1)
+P(i € M\ My, [ Dy(iin) fdy = 1] < 11)

< 7 — i -1 <L
< PD, () /dy =1 > )+ P(_ind D, (m)/d, =1] <)

< €24 P(d,/d; > M.) < e,

which finishes the proof. a

Proof of Proposition 2.2. Because of P(m € M) — 1 it remains to verify that
P(rme MY\ M*) — 0 as n — oo.
Now, on account of p,(m,m*) > 0 for all m € M?\ M*,

Pilmhe M)\ M) < P ( inf  C,(m)—C,(m") < 0)

o meMI\ M

_ p( U {cn<m>—cn<m*>—,on<m,m*>s—pn<m,m*>})

meMO\Mx
v o)
= P( sup On(m)_cn(m)—lzl) ,
meM\M; | pn(m,m”)
which tends to zero as n — oo due to assumption (2.5). O

Proof of Theorem 2.1. Recalling the definitions in Section 1, we observe first

that

RSS(m) = el + La(m) + 2" (4 — Poy) (A2)

n

29



and

1 1
Ln(m) = —|lp = Puyll* = An(m) + —|[ Pne]* . (A3)

On account of (3.1) and y = p + € we have thus, for any m,m’ € M,

1 2
Co(m) — Cu(m') = Au(m) —A,(m') + gET(Pm/ — Pn)e+ EsT(Pm/ — P

. !
ml = |

+h, (A4)

n

As it is obvious from Example 2, the result may be shown by applying Proposition 2.2
with M? = M,,, D,(m) = A,(m), M* = My, m* = my and p,(m,m*) = A,(m) — d,.
Then, using (A4) and the fact that P — P,, is nonnegative definite, we obtain

—1
WE?\?TRMO An(m) - 571
B u el(P - Pn)e+2T(P — Py + (|m] — pn)hno?
'rrEMTRMO n(A,(m) —6,)
< FTPetpha () 42 sup '5( el (A5)
me&Mn\ Mo n

Because of assumption (2.7) we have p,h, = o(nd?), and the Markov inequality gives,

el Pe EeTPe  p,o?
P < = A
(WSZ >n) = qndy nné; (A6)

for any n > 0,

which converges again by assumption to zero as n — oo. Therefore, it remains to
verify that the last term in (A5) converges in probability to zero. To accomplish this,

we note first that
Var[e" (P — Pu)p] = ||(P = Pu)pl*o® = n[An(m) - 8,0
Consequently, given any n > 0, Chebychev’s inequality yields

P a7 ) S me%\MOP(|€<A(n<m> 55> )
()1

<2
m€ My \ Mo n nQ(An(m )
| My, \ Molo?
—_— AT
n?nd; (AT)
which converges to zero again by assumption (2.7). O
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Proof of Corollary 2.1. We proceed as in the proof of Theorem 2.1, but with
m* = mg. Because of m C my for all m € MY \ My, we obtain then, instead of (A5),

the following upper bound for the left side of (2.5):

T
T 2 * |5 (Pmo _Pm):u|
e’ Pnye + |molhno®]/(nd;)+2  su
[ ol }/(nd) meMﬂ})\Mo n(An(m) — d,)

Observing |[MY \ My| < |mo| and Var[e?(P,, — Pn)p] = n[A.(m) — &,]0?, the
Moy-consistency of m follows from (2.8) by the same arguments as in the previous
proof. a
Proof of Theorem 2.2. Because of assumption (2.7) and Theorem 2.1 it remains

to show that
P(m € Mg\ {mo}) = 0 as n — oo . (A8)

This may be done by applying Proposition 2.2 with D,(m) = R,(m), M? = M, and
hence M} = {mq} (see Example 1). Furthermore we use the specification p,(m,m*) =
hn(Ry(m) — R,(m*)) with m* = myq.

Consider now an arbitrary m € Mg \ {mo}. From Lemma 2.1 and its proof it is
obvious that A,(m) = A, (mg) = 6, and P,pu = P, p. On account of (A4) this leads
to

n[Cu(m) — Cu(mo)] = &' (Png = Pan)e + ha(lm] — mol )

and np,(m,mo) = hy(lm| — |mo|)o®.  Consequently, using |m| > |mg| and

|eT(Pry — P )el = €T(Py — Puy)e, we obtain

Cn(m) — Cy(myo)

p’ﬂ(ma mO)

sup
meMo\{mqo}

— 1‘ = sup e (P = P Je (A9)

meMo\{mo} Fn(|m| — |mol)o?
First we observe that (A9) is bounded from above by &'(P — P, )e/h, since
el(P,, — Pny,)e < el (P — P,,)e and |m| — |mg| > 1 for all m € My \ {mo}. Thus, the
Markov inequality provides, for any n > 0,

(P, — Pp,)e Pn — |Mo
N i) Rl o
On the other hand, (A9) may also be used together with the Markov inequality to
establish (2.5) as follows:
P ( sup el(P,, — P, )e - 77) < v p ( el(P,, — P, )e - 77)
m€EMo\{mo} hon(|m| — [mol)o? meMo\{mo} hy(|m] — |mol)o?

3 (Im| = Imo[)o® _ [My|
_mEMo\{mo} nhn(|m| - |7f'ﬂ‘0|)a2 = nhy

. (A11)
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Finally, in view of Proposition 2.2 the result is a consequence of (A10), (All) and
assumption (2.11). O
Proof of Corollary 2.2. In the proof of Theorem 2.2, an upper bound for (A9)
is obviously given by
€7 (P — P )e — (Im| — [mo)o?| | 1

sup +— .
meMo\{mo} ha(lm| = [mol)a? hin

It is therefore enough to show that the first term converges in probability to zero under
h, — oo as n — 00.

Given any 1 > 0, we obtain for some constant C' > 0

(P, — Pp,)e — — 2
P( [T (Pa = Puy)e = (] |mo|>a|>n)

meMo\{mo} ho([m| = [mol)o?

Ele (P = Py )e = (Im] = [mol)o?|*

<

meMo\{mo} 774hi(|m| - |m0|)408
tr(P,, — P, )?%?
S O Z [ Z( 0) ]4 , (A12)
meMo\{mo} hy(Im] — [mol)

where the Markov inequality and Theorem 2 of Whittle (1960), respectively, have been
used. For m € Mgy \ {mo} it holds mg C m and thus tr(P,, — P,,)* = tr(Pm — Pn,) =

|m| — |mgl|. In the case of nested model candidates, (A12) can therefore be rewritten
as
pn—|mol
Chyt 3. (Im[=Imo))™* = Ch* 3 i,
mEMo\{mo} =1

2

which converges to zero as n — oo, since ) j2, ¢~ is convergent and h, — oo was

assumed. O
Proof of Theorem 2.3. Let m be an arbitrary mg-consistent model selection
procedure.

For any m € My we have A, (m) = ¢, and hence, on account of (A3),
Lu(m) = 6y 407 | Prell” = 6n+ 07 (P — Prg Jell” + 17 | Prugel|* = Lu(mo) 5 (A13)

which gives mg € M(L,, My) and thus the M(L,, My)-consistency of m.

Decomposing the model bias provides

nRa(m) = nd,+ (P~ Pl + Imlo”
— nRu(mo) + 1P = Pu)ull? + (Im] = Imol)o? .
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Recalling ||(P — P.)p||* > nd: for all m & M,, assumption (2.10) establishes then
that mg is the unique minimizer of the risk R,(m) for sufficiently large n. That is, we
obtain M* = {my} for sufficiently large n, which leads to the M*-consistency of .
Finally, the M}-consistency of m will follow by showing that P(mg € M) — 1 as
n — oo. Clearly, L,(m) > 6, + & for all m € My. Invoking the Markov inequality
yields therefore, on account of (A13),
P(mo & M) = P(Ln,(mg)> min L,(m))

< P(Lp(mg) > 6, +67)
= P(||Pnell® > ndy) < |mo|o?/(ndy)
which converges to 0 by (2.10) and entails the result. O

Proof of Proposition 2.3. (i) Given any n > 0, set v = n/(2+n). Then, recalling
the definition of m, we obtain
) - oot
= P{(1 =) Dn(ri2) = (1 +7)dy > 0}
S P{(1 =) Da(rn) = (1 + 7)dn > sn[Cr(ri) = Cn(m™)]}
< P Dn () = dn = 50 [Cn(rn) = Co(m7)]] >7[DT( ) +d,]}

< P sup lCem) = Gl = Dulm) )], )

which converges to zero due to assumption (2.12).

(i) If Cy.(m) is defined by (2.6), then C,,(m)—C,,(m*) = Z,(m) — Z,(m*), compare
(A2) and (2.14). Hence, for s, = 1, the left side of (2.12) is bounded from above by
twice the left side of (2.13), completing the proof. O

Proof of Theorem 2.4. (i) Asymptotic r,-oplimality of m. In order to apply
part (ii) of Proposition 2.3 with D, (m) = R,(m), we observe first that, on account of
(1.4), (A3) and (2.14),

n[Z,(m) — R,(m)] = ZET([ — Po)p— e'P, e+ (hp —1)|m|o?

Consequently, in view of (2.13) and (2.17), it suffices to show that, as n — oo,

el Pne — Imlo?|  p
su — 0 and Al4
mE]\I;n nR,(m) ( )
Tr—rp,
sup u 0. (A15)
meM, | nR,(m)
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Both (A14) and (A15) can now be established using the Markov inequality and Theo-
rem 2 of Whittle (1960).

Given any 1 > 0, we have for some positive constants C' and C

T 2 T 2
e' Pne — |m|o e' Pne — |m|o )
Pl su > < P >
e B I o (S e Y
> E|leTPe — |m|o?|*
v n2qn2qR ( )2q

§CZ[nB 2q_C’E[nR

which tends to zero as n — oo due to assumption (2.16). Notice that the last inequality
is a consequence of |m|o? < nR,(m). The convergence (A15) follows by the same

arguments, noting that, for some positive constant C”,
BIET(1 = Pyt < O™ (1 = Pa)ul? = CAn(m)]’

and A,(m) < R,(m) for all m € M,,.
(ii) Asymplotic l,-optimalily of . Because of n[L,(m)— R,(m)] = e’ P,,e — |m|o?,

(A14) provides

Ln(m)

R, (m)

sup
meMy,

—1‘i>0asn—>oo. (A16)

Consequently, part (i) of the proof leads to

Zn(m) — Lp(m
R, (m)

sup
meMy,

‘iﬂ)asn—)oo. (A17)

Now, given any n > 0, we obtain

P ( sup | 22m)

meEMp, Ln

< p Zn 1> Ln(m) <) 4p Ln(m) (10 1
su — , su 11 < = su — -
= et | In(m) T vent. | Bo(m) 9 et | Ba(m) 9
Zn(m) — Lp(m) n L,(m) 1
< P > — P — 1| > =
= (5;1]8,1 Ro(m) o) TR R m) 3)

which tends to zero because of (A14) and (A15). Finally, the asymptotic [,,-optimality
of m follows by part (ii) of Proposition 2.3. O

Proof of Corollary 2.4. In view of Theorem 2.4 it remains to verify that (2.16)
holds with ¢ = 2.
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The assumption nr, — oo ensures first the existence of some slowly increasing
sequence {k,} of natural numbers such that k, — oo and k, = o([nr,]*) as n — oo.

Then, on account of M,, = MY R,(m) > r, and nR,(m) > |m|a?, we obtain

Pn

> [nRa(m)] 7 < ku(nrn) 070 3 m| 7
which converges to zero by the above choice of k, and the fact that 322, =% is conver-
gent. 0
Proof of results in Subsection 2.4. Under the orthonormality assumption

(2.20), we obtain

2 Pn 2

o o
RN(m) = dn + _ZTJZ—I_ _ Z(l _7]2) )
"= " jem
leading to
mr = argn?&iéll R.(m)={jem |Tj2 > 1},
0.2 Pn
r, = R,(m})=20d,+ —Z{T]-QI(T]-Q <1)+ ](Tj? > 1)} .
(et

In the adequate case we have &, = 0 and, for sufficiently large n, r, = o?ko/n, since
then j € {1,... ko} if and only if 7'22] > 1.
Similarly, we get

2 Pn

La(1h) = 6, + % SFI(32 < hy) 4 (85— )2 (72 > hy)]
7=1

providing the “overall risk”

0.2 Pn

BL(in) = 8.+ 2= 3 Blhas |31)

i=1

where, as in Droge (1993),

B(a®,7) = H{®(a—7)+®(a+7)—1}+(a+7)p(a+71)
+a—T)pla—T1)—Pla+7)—Pla—7)+2
= 1- Fg(a2; 7'2) — 7'2F5(a2; 7'2) + 27’2F3(a2; 72) )

Consequently, with reg(h,,7) = B(h,,7) — min(72, 1), we see that

2 Pn

R N a
Reg(f, i) i= ElLy(ii) = 1o = = 3 reglho, 1)
i=1
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is just the regret risk of m, cf. Droge (1993), which has to vanish compared with

the minimal risk r, as n — oo for asymptotically mean efficient procedures. In the

adequate case know that 7; = 0 unless j € {i1,..., ik}, so that for sufficiently large n
n ko
— Reg(f,m) = (pn — ko) B(hn, 0) + D Blha,|7i,[) = 1) .
o =

Observing

B(h,0) = 2[®(—hL?) + hPo(h/)] < 20(h?) (k7 + hL?)

and, on account of (2.25) for k& = 3,

ko
Z (hny |73,]) <ZZT Fy(hy; 7t )<3_3/2227 exp(hy, —72/3)

Jj=1 Jj=1

we obtain, for some constant C,
n ~ * *
EReg(f, m) < Cexp{In(p,) + In(1 + k) —In(h,)/2 + b, /2 + In(nd}) — (r67)/3}

which converges to zero if h, — oo, h,/n — 0 and In(p,)/h, — 0 (recall that
liminf, . 67 > 0) . Under these conditions the procedure m is therefore asymp-
totically mean efficient, since nr, = kgo? for sufficiently large n.

In case of a bounded penalty sequence h,, we know from Droge (1993) that the
“individual regret function” reg(h,,7) is bounded. Therefore, a simple sufficient con-
dition for achieving asymptotic mean efficiency is p,/(nr,) — 0, which requires, of
course, that all model candidates are inadequate. Roughly speaking, the decision
whether procedures with small (bounded) or large (“tending to co”) penalties are
preferable depends on the portion of standardized coefficients (7;) tending to oo and
zero, respectively, (and their rates). This is due to the fact that, for bounded h,,
limy; |00 7€g(hy, ) = 0, whereas reg(h,,0) — 0 is only possible if h, — oo, which in
turn implies sup_reg(h,,T) — oo, see Droge (1993). O

Proof of Lemma 3.1. Observing

on(m) = Ml + 5 ellg, + 2650 0" Tue (A18)

we obtain statement (i) because of Ee =0 and E||¢||7, = t,0°
Finally, statement (ii) follows by using (A18), statement (i), and Theorem 2 of
Whittle (1960); that is we have for some positive constants C'; and Cj,

Elon(m) — ea(m)[** = Elt; lell7,, — o + 265 1" T |
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< 2B el — o+ BIRe T Te )
< Gt 2T + Cot 2 [ T )

< Cutgtw(m)? + Cotzw(m)|u))3,]° = O ([t7 w(m)en(m)]?)

For the last inequality we have used the fact that w(m)T,, — T2 is nonnegative definite
and thus tr(772) < w(m)ty,. O

Proof of Theorem 3.1. (i) In view of Proposition 2.2 and the proof of Theorem
2.1, the My-consistency of a procedure minimizing (3.1) over m € M,, (general case

(a)) follows by showing that

| () || — h () pa |0
sup
meM,\Mo n(An(m) — 6,)

=op(l) as n—oo . (A19)

Therefore it suffices to establish that, as n — oo,

()| m]o?
A, = su =op(l) and A20
ety 1A () — 5, ~ P (A20)
B, % = op(1) . (A21)

In both cases (a) and (b), we have fALn(ml) = h,(my)6%(my)/o*. On account of (2.7)

and the definition of h,, we obtain therefore
EB, < h,p,/(né}) =0 as n— oo,

so that the Markov inequality provides (A21).
Under (a) it holds, for any m € M,,, iln(m)O'Q = h,(m)6*(my) < h,6*(my), so that
(A20) is obtained by the same arguments as used for (A21), recall A, (m) — 4, > &%.
Consider now case (b), where iALn(m)a2 = hp(m)&*(m) = h,(m)n(n—|m|)~'RSS(m).
Using (A2) and (A3), we obtain

RSS(m) — RSS(my) = An(m) — 6, + lesT(P — Pn)e+ g5T(P - Py,
n n

and, consequently, b, (m)|m|o? < hypan(n—p,) " {|RSS(m)— RSS(m1)|+ RSS(m1)}.
Because of the nonnegative definiteness of P — P,,, this gives

ann (1 + 5TP€ |€T(P - Pm):u|) Enpnaj(ml)

+2 sup
n— p, nox

A, <
N WSZ m€ My \ Mo n(An(m) - 5n)

) (A22)

where the last term converges in probability to zero as proved above. Finally, the first
summand on the right hand side of (A22) converges also in probability to zero due to

(A6), (A7) and the assumption made under (b).
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(ii) In the special case of nested model candidates, the proof follows the lines of
the proof of Corollary 2.1. That is, we take m* = mg instead of m* = my, and use
the fact that m C mg for all m € MY \ M,. Consequently, it remains to verify (A19),
or (A20) and (A21), where M,, m; and p, have to be replaced by M

N.omg and |mg,

respectively.

Under (a) we observe 62(mg) = ¢*(my) and thus iLn(mo) < h%5%(my), so that both
E A, and EB, are bounded from above by A |mo| E&%(m1)/(nd:) = h,|mol/(nd}). This
bound tends to zero due to (2.8), leading to the result by the Markov inequality.

Under (b) it holds iLn(mo) < h%6%(mg). Then we proceed as in the general case
(i), but with the already mentioned replacements and with P, instead of P (e.g. in
(A22)), and obtain the desired property on account of the modified assumptions. O

Proof of Corollary 3.1. For the generalized C,-criterion we have obviously
h, = k,. Table 3.1 shows furthermore that h, < 2 holds for each of the criteria
C,, FPE, SH, GCV and GFCV. Consequently, the assumptions of the corollary imply
that the assumptions of Theorem 3.1 are satisfied, so that the My-consistency of the
corresponding procedures follows.

To obtain the same for GIC (and AIC as special case), it is enough to verify that
hn/a, — 1 as n — oo, where h, := SUP,, e, \M, ftn (M), see the proof of Theorem
3.1. We note first that g,(m) < ¢,(my) =: g, for all m € M, (or, in case (iii),
qn(m) < q.(mg) =: g, for all m € MY \ My). The assumption (3.7) (or, in case (iii),
an|mo|/n — 0) ensures now that always ¢, — 1 as n — oo, and hence lim,,_,., fNLn/an =
lim,, o0 @ngn/a, = 1. O

Proof of Theorem 3.2. As in the proof of Theorem 3.1, it suffices again to
establish (A20) and (A21). We use the notation of Table 3.1 and Lemma 3.1.

Let w, :=sup,,cps, wn(m). Then we obtain, for any m € M,
hn(m)|m|o” = ||(I = Pr)yllf,, < wanRSS(m) (A23)

where Q,, = I['(m), w, = ¢.(2 —¢,)(1 —¢,)7? (for CV) or Q,, = A(m), w, = c,(2+¢,)
(for FCV). Because of (3.10) we have, for both criteria, w, = 2¢,(1 + o(1)) as n — oc.
Using additionally the obvious relation ¢, > p,/n, we get (3.6). As before, (A21) is
therefore a consequence of the Markov inequality, since

wn(n — pn)E6*(my) _ 2¢,(1 4 0(1))(n — py)(c? + n(n — p,)~14,)

noy noy

EB, <

?

which tends to zero by (3.10), (3.11) and (3.6).
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To prove (A20), we apply first inequality (A23) and proceed then as in the proof
of Theorem 3.1. This leads to (A22), but with w, instead of h,p,/(n —p,), so that the
result follows by w, — 0 as n — co.

Finally, the required modifications in the special case M,, = MY are obvious from
the proof of Theorem 3.1: the pseudo-true model mg plays now the role of the largest
model mq, and any pseudo-inadequate model is necessarily a submodel of mq. O

Proof of Theorem 3.3. In view of Corollary 3.1 (ii), the My-consistency of
the procedure follows if we can establish condition (3.4), where h,, is replaced by a,.
Because of (2.11) we have a,, — o0 as n — o0, so that (3.7) leads to (3.6). Hence, on
account of (3.14), condition (2.7) provides (3.4).

Note that the assumptions ensure the (weak) asymptotic equivalence of a,, h,, and
h,., where the last two quantities are defined by (3.13) and (3.3), respectively. This is
easily seen by the above considerations and the observation that ¢, = ¢,(m;) — 1 as
n — oo due to condition (3.7). Consequently, conditions (2.7), (2.11), (3.7) and (3.4)
are satisfied for each of the three quantities a,, h, and h,,.

To establish the mg-consistency, we proceed as in Theorem 2.2, but now with

pu(m,mo) = n~" angu[gn(m)lm| — gu(mo)|moll(0* + 6.) .

This choice fulfills the requirement of Proposition 2.2 since, for any m € Mg \ {mo},
we get |m| > |mol, 1 < ¢u(mo) < gu(m) < g, and therefore

npn(m, mo) 2 anga(m| = mol)(0* + 6n) 2 hu(|m| — |mol)o® > 0, (A24)

see (3.13) for the definition of h,. According to the proof of Theorem 2.2, the following

convergences have to be verified, as n — oc:
T Pm - Pm
sup il )¢ =op(l) and (A25)
meMo\{mo} npn(mv mo)
iLn - iln 2
N R A

meMo\{mo} npn(m,mo)

— 1 =op(1) . (A26)

Because of (A24), the left hand side of (A25) can be estimated as in (A10) and (A11),

so that the first result follows by assumption (2.11). Concerning (A26) we note that

RSS(m) — RSS(mg) = —n"'eT(P,, — P, )e for all m € My \ {mo}, which leads to
(hn(m)[m| = hn(mo)lmol)o® = —n~"angu(m)|m|e" (Pr — Py )e

+an(gn(m)|m| — gu(mo)|mo|) RSS(mo)
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On account of g,(m)|m| < ¢.p, we obtain hence, for any m € My \ {mo},
(halmlind =~ hnlmo)o® [ ongupa (P Pl | RSSOmo

npn(m,mo) N meMo\{mo} TPn(M,mo) qn(0? + 6,)

IN

- 1‘ |
The first term on the right hand side converges in probability to zero due to (A25) and

(3.7), so that it remains to show that the second term vanishes asymptotically, too. To

accomplish this, we write, using (A2) and (A3),
RSS(mo)—au(048) = (0 el —0%) 1 | P42 i (1 P )o (a0 1)(0452),

so that it suffices to prove that each of the four terms on the right hand side converges
in probability to zero, recall that g, (c?+4,) > o* . For the first term this holds due to
the law of large numbers. Invoking Markov’s and Chebychev’s inequality, respectively,

provides the result for the second and third term, since

En~ Y| Poell? = n7molo® <n'po? =0 as n— oo,
compare (3.6), and

Varln 'y (I — Pyl = Eln~ 'y (I — P,,)e)* = n'o?s, |

which tends to zero by (3.14). Finally, the last term tends to zero, since ¢, — 1 and
0, = O(1) as n — oo. This completes the proof. O

Proof of Corollary 3.2. Conditions (3.15), (3.7) and a, — oo imply those
versions of (2.8), (3.7) and (3.4), which are required in part (iii) of Corollary 3.1 to
ensure the My-consistency of the procedure in case of nested model candidates.

To establish the mg-consisteny of the procedure, we define p,(m,mg) as in the
proof of Theorem 3.3, and apply the idea of the proof of Corollary 2.2. For an arbitrary
m € My \ {mo} we obtain then

Co(m) — Co(ma) = £7(Pr = Prg )z + (hrn(m) | — b (ma)|mal)o?
— (1= 1 () )T (P — Prag )2 + n(ga(m) ] = gu(mo)lmal) RSS (ma) -

Using (A24), q,(m)|m| < g,p, and the triangular inequality, this leads to

A

C(m) = C(mo)

sup — 1| < |70 51+ S92+ S5,
meMo\{mo} Pn(m7 m0)
where

T(Py = Pog)e — (Im] — 2

N 1 1

2
g, — [ 950mo) g g T
qn(0? 4+ 6,) anqn(0? + 6,)
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Clearly, as n — oo, we have 7,, — 1 by (3.7) and thus S5 — 0, since a,, — oo. Moreover,
from the proofs of Corollary 2.2 and Theorem 3.3, respectively, we know that S; and
Sy converge in probability to zero, completing the proof. O
Proof of Theorem 3.4. (i) Clearly, condition (2.7) for h, defined by (3.16)
provides immediately conditions (2.7), with &, instead of h,, and (3.7) for h, = &,.
This shows the My-consistency of the procedure due to part (ii) of Corollary 3.1.
As in the proof of Theorem 3.3, to get the mg-consistency of the procedure it is

enough to establish (A25) and (A26), where
pu(m,mo) = 0™ ha(|m| — |mo|)o® .

The convergence (A25) follows again by (2.11). Recalling izn(m) = Kk, 0% (my)/0?, (A26)

is equivalent to
6%(m1) P

-1 —0 — A27
E62(m) as n — oo , (A27)

which is in turn an easy consequence of Chebychev’s inequality and Lemma 3.1, since
(n — pn)E6%(my) — o0 as n — oo by assumption (3.17).

(ii) Condition (2.8) for h,, defined by (3.16) leads now to (2.8), with &, instead
of hn, Knlmoldn/[(n — p, = 6] = 0 as n — oo, and thus to the My-consistency by
Corollary 3.1 (iii).

To prove the mg-consistency, we proceed as in the proof of Corollary 2.2, again
with h, defined by (3.16), and find that besides the steps made there we need only to
verify (A27). O

Proof of Proposition 3.1. First we note that C,,(m)—C,(m*) = Z,(m)—Z,(m*),
where m* is a minimizer of R,(m) and Zn(m) is defined as Z,(m) in (2.14) with izn(m)
replacing h,; compare the proof of Proposition 2.3. In view of the proof of Theorem
2.4 it suffices therefore to establish (3.18), since (A14) and (A15) are implied by the
assumptions (2.15) and (2.16). O

Proof of Theorem 3.5. For the C,-criterion we have h,(m) = h, = 26%(m,)/o?,
see (3.2) and Table 3.1. Let &, = sup,,car, #(Ln). In view of Proposition 3.1 it sufficies

then to show that, as n — oo,
|E6%(my) — o?|€, — 0 and (A28)

E

&Q(ml) — E&Q(m1)|2§i -0, (A29)
from which (3.18) follows.
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p—— 0,&, and, for some constant C' > 0,

Lemma 3.1 yields now |E&%(my) — 2|, =

0260 + bk 1
EAZ _EAZ 22<O nN—pn n<0—n
|6°(m1) — E67(mq)[7¢, < P— €n < = po? |
since £, < 072 due to nR,(m) > |m|o*. Noting that n — p, — oo holds under each of
the conditions (3.6), (3.19) and (3.20), it remains thus to verify that — 5 wEn — 0 as
n — oo. Under (3.20) this is obvious since fn is bounded. On the other hand, using
|m| < p, and R,(m) > r,(> §,), we obtain o 5 Wn < = p )5—" which tends to zero

under both (3.6) and (3.19), completing the proof. O
Proof of Theorem 3.6. Obviously, condition (3.18) and thus the result will follow

by showing that, as n — oo,

| Eh,(m) — 2||m|o?

b, = — 0 d A30

S R ) an (A30)
|h(m) — Eh,(m)||m]o?® p

BRE — 0 . A3l

ST i) Y

Lemma 3.1 gives now EiLn(m) = hp(m)[c? +

n—rimlA”(m)]/JQ, 16ading to

[n(m) = 2]|m|o? + hu(m) LZn A, (m)]

Im|

b, =
e, nR,(m)

Hence, (A30) is an immediate consequence of the triangular inequality, (3.22) and
(3.23).

To establish (A31) we apply the Markov inequality and Lemma 3.1. Given any
n > 0, this yields for some constant C' > 0

LN |2qhn<m>
< O 2 LR m)n = )

_ a?|m|+ A nAn(m)]tha(m)* ()
=0 X (R, ()] (

meMy,

q

. (A32
e
On account of (3.21) and (3.22), there exist now constants Cy > 1 and Cy > 0 such
that for all n

<Cy and  sup h,(m) < Cy .

|m| P

n—|m| = n—p, meM,
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Hence, we have

m
02|m|—|— | |

nA,(m) < CinR,(m) ,

n—|m[ "
and (A32) does not exceed C[C1C2)** S, enr, [RRn(m)] ™, which in turn tends to zero
by (2.16). This completes the proof. O

Proof of Corollary 3.4. According to the discussion before Corallary 3.4 it
remains to verify that (3.24) holds for AIC, GCV, GFCV and SH. For the criteria SH,
GCV and GFCV this is obvious, since then Table 3.1 yields that sup,,ca; |hn(m) — 2|
is given by 2p,/n, p,/(n — p,) and p,/n + p2/n*, respectively, leading to (3.24) by
(3.6).

Consider now the AIC criterion, for which we have h,(m) = 2¢,,(m)(1—|m|/n) with
a, = 2, see Table 3.1. Straightforward calculations show that A, (m) is monotonically
decreasing in |m|, with h,(m) — 2 if |m|/n — 0. Consequently, we obtain for all
meM,

ham) 2] =2 — h(m) <2 — ho(my) |

so that (3.24) follows again by (3.6). O

Proof of Theorem 3.7. Analogously to the proof of Theorem 3.6 it is enough
to establish (A30) and (A31), but for the penalties fALn(m) associated with the criteria
CV and FCV, which are given by (3.2) and Table 3.1.

Using the notations of Lemma 3.1, we get first
hn(m)|m|o® = tn&i(m) ,  Blndl(m) = tno® + |ullF, (A33)

and consequently

< oyl = 2imllo® 4 gl .
meM, nR,(m)
Because of tr(P,,) = |m| and the definition of ¢, we derive |t,, — 2|m|| < |m|p,, where
pn is given for CV and FCV, respectively, by ¢,(1—¢,)~" and ¢,(1+¢,). On account of
ez, < w(im)nA,(m), (A34) and (1.4), this leads to b, < max{pn,sup,,car, w(m)},
which tends to zero for both CV and FCV due to assumption (3.10) and thus entails
(A30).

To verify (A31) we apply (A33), the Markov inequality and Lemma 3.1. Given any
n > 0, this yields for some constant C' > 0
El65(m) — Edp(m)|*1!

n*4[n Ry (m)]?

P(v,>n) < >

meMy,
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L Ea (m)]so(m)’

<O T R
< CCy D> | an m)]_q ; (A35)

where C), = [sup,,cpr, w(m) max{2 4 p,,w(m)}]?. The last inequality in (A35) results

from
Btp52(m) = 1n0® + [llh, < (2 -+ pa)lmlo? + w(m)nAn(m) < CuRo(m) |

compare the proof of (A30). Since C), is bounded under condition (3.10) (it converges
even to zero), (A35) tends to zero as n — oo by (2.16), completing the proof. O
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