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Abstract

We propose a procedure for estimating the critical values of the extended Kolmogorov-

Smirnov tests of First and Second Order Stochastic Dominance in the general K-prospect case.

We allow for the observations to be serially dependent and, for the …rst time, we can accom-

modate general dependence amongst the prospects which are to be ranked. Also, the prospects

may be the residuals from certain conditional models, opening the way for conditional ranking.

We also propose a test of Prospect Stochastic Dominance. Our method is subsampling; we show

that the resulting tests are consistent and powerful against some N¡1=2 local alternatives even

when computed with a data-based subsample size. We also propose some heuristic methods

for selecting subsample size and demonstrate in simulations that they perform reasonably. We

show that our test is asymptotically similar on the entire boundary of the null hypothesis, and
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is unbiased. In comparison, any method based on resampling or simulating from the least favor-

able distribution does not have these properties and consequently will have less power against

some alternatives.

1 Introduction

There is considerable interest in uniform weak ordering of investment strategies, welfare outcomes
(income distributions, poverty levels), and in program evaluation exercises. Partial strong orders
are commonly used on the basis of speci…c utility (loss) functions. This is the predominant form of

evaluation and is done when one employs indices of inequality or poverty in welfare, mean-variance
analysis in …nance, or performance indices in program evaluation. By their very nature, strong orders
do not command consensus. The most popular uniform order relations are the Stochastic Dominance

(SD) relations of various orders, based on the expected utility paradigm and its mathematical reg-
ularity conditions. These relations are de…ned over relatively large classes of utility functions and
represent “majority” preferences.

In this paper we propose an alternative procedure for estimating the critical values of a suitably
extended Kolmogorov-Smirnov test for …rst and second order stochastic dominance in the general
K-prospect case. Alternative implementations of this test have been examined by several authors
including McFadden (1989), Klecan, McFadden, and McFadden (1991), and Barrett and Donald

(2002). Our method is based on subsampling. We prove that the resulting test is consistent against
all (nonparametric) alternatives. Our sampling scheme is quite general: for the …rst time in this
literature, we allow for general dependence amongst the prospects, and for the observations to be

autocorrelated over time. Accommodating generic dependence between the variables which are to
be ranked is especially necessary in substantive empirical settings where income distributions, say,
are compared before and after taxes (or some other policy decision), or returns on di¤erent funds

are compared in the same or interconnected markets. We are not aware of any evidence suggesting
either that such prospects are independent or exchangeable. Indeed such assumptions appear to be
patently false in most empirical settings of consequence to policy analysis.

We also allow the prospects themselves to be residuals from some estimated model. This latter

generality is very important for policy makers where one wishes to control for certain characteristics
before comparing outcomes. For instance, one may wish to “purge” incomes from the in‡uence of age
and/or education, thereby isolating both their in‡uence and the separate contribution of other factors

(collectively) on the income distribution. For example, in a recent study, Maasoumi and Millimet
(2002) control for the in‡uence of ‘growth’ on the distribution of several pollutants in the US. This
is done by comparing the results of unconditional dominance tests with tests of dominance amongst
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the residual distributions.1 Based on their SD tests, they are able to infer that incomes contribute
positively while other factors collectively have a negative in‡uence on environmental quality. See also
Abadie (2001) for comments about the desirability of controlling for observables before applying such
tests. Style analysis [Sharpe (1992)] is currently a popular method amongst practitioners for ranking

the performance of investment funds after taking account of their ‘style’, e.g., value or growth funds.
This involves a comparison of features of the residuals from a linear regression. Finally, given the
recent credible challenges to the standard risk aversion and expected utility paradigm, we propose a

‘new’ test of Prospect Stochastic Dominance and propose consistent critical values using subsampling.
The …nite sample performance of our method is investigated on simulated data and found to

be quite good provided the sample sizes are appropriately large for distributional rankings. Our

simulation designs include the Burr distributions examined by Tse and Zhang (2000), the lognormal
distribution recently employed by Barrett and Donald (2000), and the multivariate normal with
exchangeable and correlated prospects as in Klecan et al. (1991). Suggestive results on subsample
size are provided, and some power comparisons with other methods are given. In addition, we describe

an empirical application to Dow Jones and S&P daily returns which demonstrates the potential of
these tests and concludes the paper. The following brief de…nitions will be useful:

Let X1 and X2 be two variables (incomes, returns/prospects) at either two di¤erent points in

time, or for di¤erent regions or countries, or with or without a program (treatment). Let Xki,
i = 1; : : : ; N ; k = 1; 2 denote the not necessarily i.i.d. observations. Let U1 denote the class of all von
Neumann-Morgenstern type utility functions, u, such that u0 ¸ 0, (increasing). Also, let U2 denote

the class of all utility functions in U1 for which u00 · 0 (strict concavity), and U3 denote a subset of
U2 for which u000 ¸ 0. Let X(1p) and X(2p) denote the p-th quantiles, and F1(x) and F2(x) denote the
cumulative distribution functions, respectively.

De…nition 1 X1 First Order Stochastic Dominates X2, denoted X1 ºFSD X2, if and only if:
(1) E[u(X1)] ¸ E[u(X2)] for all u 2 U1; with strict inequality for some u; Or

(2) F1(x) · F2(x) for all x with strict inequality for some x; Or
(3) X(1p) ¸ X(2p) for all 0 · p · 1, with strict inequality for some p.

De…nition 2 X1 Second Order Stochastic Dominates X2, denoted X1 ºSSD X2, if and only if one
of the following equivalent conditions holds:

(1) E[u(X1)] ¸ E[u(X2)] for all u 2 U2, with strict inequality for some u; Or:
1The regression method for purging of the dependent variable from certain conditioning variables is well understood.

If these conditioning variables are the only ones relevant to the ‘true’ data generating process, the residuals will have
zero means. The residuals will normally be orthogonal to the conditioning variables by construction. Neither this fact,
nor the possibly zero means for the residuals precludes the existence of dominance relations between their distributions.
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(2)
R x
¡1 F1(t)dt ·

R x
¡1 F2(t)dt for all x with strict inequality for some x;Or:

(3) ©1(p) =
R p
0 X(1t)dt ¸ ©2(p) =

R p
0 X(2t)dt for all 0 · p · 1, with strict inequality for some

value(s) p.

Weak orders of SD obtain by eliminating the requirement of strict inequality at some point.
When these conditions are not met, as when either Lorenz or Generalized Lorenz Curves of two

distributions cross, unambiguous First and Second order SD is not possible. Any partial ordering by
speci…c indices that correspond to the utility functions in U1 and U2 classes, will not enjoy general
consensus. Whitmore introduced the concept of third order stochastic dominance (TSD) in …nance,

see (e.g.) Whitmore and Findley (1978). Shorrocks and Foster (1987) showed that the addition of a
“transfer sensitivity” requirement leads to TSD ranking of income distributions. This requirement is
stronger than the Pigou-Dalton principle of transfers since it makes regressive transfers less desirable
at lower income levels. Higher order SD relations correspond to increasingly smaller subsets of U2:

Davidson and Duclos (2000) o¤er a very useful characterization of these relations and their tests.
See Post (2002) for a recent application of stochastic dominance in …nance.

In this paper we shall also consider the concept of prospect stochastic dominance. Kahneman

and Tversky (1979) mounted a critique of expected utility theory and introduced an alternative
theory, called prospect theory. They argued that their model provided a better rationalization of the
many observations of actual individual behavior taken in laboratory experiments. Speci…cally, they

proposed an alternative model of decision making under uncertainty in which: (a) gains and losses
are treated di¤erently; (b) individuals act as if they had applied monotonic transformations to the
underlying probabilities before making payo¤ comparisons.2 Taking only part (a), individuals would
rank prospects according to the expected value of S-shaped utility functions u 2 UP µ U1 for which

u00(x) · 0 for all x > 0 but u00(x) ¸ 0 for all x < 0: These properties represent risk seeking for losses
but risk aversion for gains. This leads naturally to the concept of Prospect Stochastic Dominance.

De…nition 3 X1 Prospect Stochastic Dominates X2, denoted X1 ºPSD X2, if and only if one of the
following equivalent conditions holds:

(1) E[u(X1)] ¸ E[u(X2)] for all u 2 UP , with strict inequality for some u; Or:
(2)

R x
y F1(t)dt ·

R x
y F2(t)dt for all pairs (x; y) with x > 0 and y < 0 with strict inequality for

some (x;y); Or:
(3)

R p2
p1
X(1t)dt ¸

R p2
p1
X(2t)dt for all 0 · p1 · F1(0) · F2(0) · p2 · 1, with strict inequality for

some value(s) p.
2 In Tversky and Kahneman (1992) this idea is re…ned to make the cumulative distribution function of payo¤s the

subject of the transformation. Thus, individuals would compare the distributions F¤
k = T (Fk); where T is a monotonic

decreasing transformation that can be interpreted as a subjective revision of probabilities that varies across investors.
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Now consider the second component of prospect theory, (b), the transformation of probabilities.
One question is whether stochastic dominance [of …rst, second, or higher order] is preserved under
transformation, or rather what is the set of transformations under which an ordering is preserved.
Levy and Wiener (1998) show that the PSD property is preserved under the class of monotonic

transformations that are concave for gains and convex for losses. Therefore, if one can verify that a
prospect is dominated according to (2), this implies that it will be dominated even after transforming
the probabilities for a range of such transformations.

Econometric tests for the existence of SD orders involve composite hypotheses on inequality
restrictions. These restrictions may be equivalently formulated in terms of distribution functions,
their quantiles, or other conditional moments. Di¤erent test procedures may also di¤er in terms of

their accommodation of the inequality nature (information) of the SD hypotheses. The literature also
divides according to whether the tests are designed to be consistent against all alternatives or whether
the class of alternatives against which the test has power is essentially …nite dimensional. Most of
the large literature works with tests that have the more limited objective. Even in that case the

statistical problems discussed in the opening of this paragraph are quite formidable. See for example
Anderson (1996), Davidson and Duclos (2000), Kaur et al. (1994), Dardanoni and Forcina (2000),
Bishop et al. (1998), and Xu, Fisher, and Wilson (1995), and Crawford (1999). Maasoumi (2001)

contains an extensive discussion of these alternative approaches. Tse and Zhang (2000) provide some
Monte Carlo evidence on the power of some of these alternative tests. There are just a handful of
papers that have pursued the more general objective of consistency against all alternatives, which

we next discuss.
McFadden (1989) proposed a generalization of the Kolmogorov-Smirnov test of First and Second

order SD among K (¸ 1) prospects (distributions) based on i.i.d. observations and independent
prospects. Klecan, McFadden, and McFadden (1991) extended these tests allowing for dependence

in observations, and replacing independence with a general exchangeability amongst the competing
prospects. Since the asymptotic null distribution of these tests depends on the unknown distributions,
they proposed a Monte Carlo permutation procedure for the computation of critical values that relies

on an exchangeability property. In fact, although they derived the asymptotic distribution of the test
statistics allowing for time series dependence the proof that their critical values were consistent is
only valid in the i.i.d. over time case. Barrett and Donald (1999) propose an alternative simulation

method based on an idea of Hansen (1996b) for deriving critical values in the case where the prospects
are mutually independent, and the data are i.i.d. We note that the methods relying on standard
bootstrap or simulation typically try to mimic the asymptotic null distributions in the least favorable
case of the equal distribution functions for the prospects. However, the null hypothesis of stochastic

dominance is a composite hypothesis and hence the tests based on the approximation of the least
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favorable case are not asymptotically similar on the boundary of the null hypothesis. On the other
hand, our test based on a subsampling procedure which approximates the true sampling distribution
under the composite null hypothesis is asymptotically similar on the boundary. Consequently, our
test might be asymptotically more powerful than the bootstrap (or simulation)-based tests for some

local alternatives, see Section 4 for details.

2 The Test Statistics

We shall suppose that there are K prospects X1; : : : ; Xk and let A = fXk : k = 1; : : : ; Kg: Let
fXki : i = 1; : : : ; Ng be realizations of Xk for k = 1; : : : ;K: To subsume the empirically important

case of “conditional” dominance, we suppose that fXki : i = 1; : : : ;Ng might depend on an unknown
…nite dimensional parameter µk0 2 £k ½ RLk :

Xki = Yki ¡ Z0kiµk0; (1)

where the random variables Yki 2 R and Zki 2 RLk satisfy the linear regression relationship

Yki = ¹k0 + Z
0
kiµk0 + "ki; E("kijZki) = 0 a.s. (2)

for ¹k0 2 R; i = 1; : : : ;N and k = 1; : : : ; K: Therefore, Xki can be viewed as an “intercept-
adjusted” regression error with mean ¹k0: We allow for serial dependence of the realizations and for
mutual correlation across prospects. Let Xki(µ) = Yki ¡ Z 0kiµ; Xki = Xki(µk0); and bXki = Xki(bµk);
where bµk is some sensible estimator of µk0 whose properties we detail below, i.e., the prospects
can be estimated from the data. (When the prospects do not depend on estimated parameters,
i.e., Xki(µ) = Xki, results analogous to those given below can be established using a substantially

simpler arguments than ours.) Since we have a linear regression model, there are many possible
ways of obtaining consistent estimates of the unknown parameters. The motivation for considering
estimated prospects is that when data is limited one may want to use a model to adjust for systematic
di¤erences. Common practice is to group the data into subsets, say of families with di¤erent sizes, or

by educational attainment, or subgroups of funds by investment goals, and then make comparisons
across homogenous populations. When data are limited this can be di¢cult. In addition, the
preliminary regressions may identify “causes” of di¤erent outcomes which may be of substantive

interest and useful to control for.
For k = 1; : : : ;K; de…ne

Fk(x; µ) = P (Xki(µ) · x) and

F kN(x; µ) =
1
N

NX

i=1

1 (Xki(µ) · x) :
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We denote Fk(x) = Fk(x;µk0) and F kN(x) = F kN(x;µk0); and let F (x1; : : : ; xk) be the joint c.d.f. of
(X1; : : : ; Xk)0: Now de…ne the following functionals of the joint distribution

d¤ = min
k 6=l

sup
x2X

[Fk(x) ¡ Fl(x)] (3)

s¤ = min
k 6=l

sup
x2X

Z x

¡1
[Fk(t) ¡ Fl(t)] dt (4)

p¤ = min
k 6=l

sup
x;¡y2X+

Z x

y
[Fk(t) ¡ Fl(t)]dt; (5)

where X denotes a given set contained in the union of the supports of Xki for k = 1; : : : ; K and

X+ = fx 2 X ; x > 0g: Without loss of generality we assume that the supports are bounded, as do
Klecan et al. (1991). The hypotheses of interest can now be stated as:

Hd0 : d¤ · 0 vs: Hd1 : d¤ > 0 (6)

Hs0 : s¤ · 0 vs: Hs1 : s¤ > 0 (7)

Hp0 : p¤ · 0 vs: Hp1 : p¤ > 0: (8)

The null hypothesis Hd0 implies that the prospects in A are not …rst-degree stochastically maximal,
i.e., there exists at least one prospect in A which …rst-degree dominates the others. Likewise for the
second order and prospect stochastic dominance test.

The test statistics we consider are based on the empirical analogues of (3)-(5). They are de…ned
to be:

DN = min
k 6=l

sup
x2X

p
N

h
F kN (x;bµk) ¡ F lN(x;bµl)

i

SN = min
k 6=l

sup
x2X

p
N

Z x

¡1

h
F kN(t;bµk) ¡ F lN (t;bµl)

i
dt

PN = min
k 6=l

sup
x;¡y2X+

p
N

Z x

y

h
F kN(t;bµk) ¡ F lN(t;bµl)

i
dt:

The …rst two are the same as the Klecan et al. (1991) test statistics except that we have allowed the

prospects to have been estimated from the data.
We next discuss the issue of how to compute the supremum inDN ;SN and PN ; and the integrals in

SN and PN : There have been a number of suggestions in the literature that exploit the step-function

nature of F kN (t; µ): The supremum in DN can be (exactly) replaced by a maximum taken over all
the distinct points in the combined sample. Regarding the computation of SN ; Klecan et al. (1991)
propose a recursive algorithm for exact computation of SN ; see also Barratt and Donald (1999) for

an extension to third order dominance statistics. Integrating by parts we have
Z x

¡1
Fk(t)dt = E[maxf0; x¡Xkg];
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which holds for all x provided E kXkk < 1: Motivated by this, Davidson and Duclos (1999) have
proposed computing the empirical analogue

1
N

NX

i=1

(x ¡Xki(µ))1 (Xki(µ) · x) :

The computation of PN can be based on the fact that
Z x

y
F kN(t; µ)dt =

Z x

¡1
F kN(t; µ)dt¡

Z y

¡1
F kN(t; µ)dt

for all x;y:
To reduce the computation time, it may be preferable to compute approximations to the suprema

in DN ; SN ; PN based on taking maxima over some smaller grid of points XJ = fx1; : : : ; xJg; where
J < n: This is especially true of PN ; which requires a grid on R+ £ R¡: Thus, we might compute

P JN = min
k 6=l

max
0<x;0>y2XJ

1p
N

NX

i=1

f(x¡Xki(bµk))1(Xki(bµk) · x) ¡ (y ¡Xli(bµl))1(Xli(bµl) · y)g:

Theoretically, provided the set of evaluation points becomes dense in the joint support, the distrib-
ution theory is una¤ected by using this approximation.

3 Asymptotic Null Distributions

3.1 Regularity Conditions

We need the following assumptions to analyze the asymptotic behavior of our test statistics:

Assumption 1: (i) f(Yki ; Zki) : i = 1; : : : ; Ng is a strictly stationary and ®- mixing sequence
with ®(m) = O(m¡A) for some A > maxf(q¡1)(q+1); 1+2=±g for k = 1; : : : ; K; where q is an even
integer that satis…es q > 3(Lmax + 1)=2 , Lmax = maxfL1; : : : ; LKg and ± is a positive constant that

also appears in Assumption 2(ii) below. (ii) E kZkik2 <1 for all k = 1; : : : ; K; for all i ¸ 1: (iii) The
conditional distribution Hk(¢jZki) of Xki given Zki has bounded density with respect to Lebesgue
measure a.s. for k = 1; : : : ; K; for all i ¸ 1:

Assumption 2: (i) The parameter estimator satis…es
p
N (bµk ¡ µk0) =

(1=
p
N )

PN
i=1 ¡k0Ãk(Yki; Zki; µk0) + op(1); where ¡k0 is a non-stochastic matrix for k = 1; : : : ;K; (ii)

The function Ãk(y; z; µ) : R £ RLk £ £k ! RLk is measurable and satis…es (a) EÃk(Yki; Zki; µk0) = 0
and (b) E kÃk(Yki; Zki; µk0)k2+± <1 for some ± > 0 and for k = 1; : : : ;K; for all i ¸ 1:

Assumption 3: (i) The function Fk(x;µ) is di¤erentiable in µ on a neighborhood £k0 of µk0
for k = 1; : : : ; K; (ii) For all sequence of positive constants f»N : N ¸ 1g such that »N ! 0;
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supx2X supµ:kµ¡µk0k·»N k@Fk(x;µ)=@µ ¡ ¢k0(x)k ! 0 for k = 1; : : : ; K; where ¢k0(x) = @Fk(x;µk0)=@µ;
(iii) supx2X k¢k0(x)k <1 for k = 1; : : : ; K:

For the tests SN and PN we need the following modi…cation of Assumptions 1 and 3:
Assumption 1¤: (i) f(Yki ; Zki) : i = 1; : : : ; ng is a strictly stationary and ®- mixing sequence

with ®(m) = O(m¡A) for some A >maxfrq=(r¡ q); 1 + 2=±g for k = 1; : : : ; K and some r > q ¸ 2;
where q satis…es q > Lmax and ± is a positive constant that also appears in Assumption 2(ii). (ii)
E kZkikr <1 for k = 1; : : : ; K; for all i ¸ 1:

Assumption 3¤ : (i) Assumption 3(i) holds; (ii) For k = 1; : : : ; K and for all sequence of positive
constants f»N : N ¸ 1g such that »N ! 0; supx2X supµ:kµ¡µk0k·»N

°°°(@=@µ)
R x
¡1 Fk(t; µ)dt¡ ¤k0(x)

°°° !
0; where ¤k0(x) = (@=@µ)

R
Fk(y; µk0)dy; (iii) supx2X k¤k0(x)k <1 for k = 1; : : : ; K:

Assumption 3¤¤ : (i) Assumption 3(i) holds; (ii) For k = 1; : : : ; K and for all sequence of positive
constants f»N : N ¸ 1g such that »N ! 0; supx;¡y2X+ supµ:kµ¡µk0k·»N

°°°(@=@µ)
R x
y Fk(t; µ)dt ¡ ¥k0(x; y)

°°° !
0; where ¥k0(x; y) = (@=@µ)

R x
y Fk(t; µk0)dt; (iii) supx;¡y2X+

k¥k0(x; y)k <1 for k = 1; : : : ;K:
Remarks.

1. The mixing condition in Assumption 1 is stronger than the condition used in Klecan et. al.
(1991, Theorem 6). This assumption, however, is needed to verify the stochastic equicontinuity
of the empirical process (for a class of bounded functions) indexed by estimated parameters, see

proof of Lemma 1(a). Assumption 1¤ introduces a trade-o¤ between mixing and moment conditions.
This assumption is used to verify the stochastic equicontinuity result for the (possibly) unbounded
functions that appear in the test SN (or PN); see proof of Lemma 1(b)(or (c)). Without the estimated

parameters, weaker conditions on the dependence can be assumed.
2. Assumptions 3 and 3¤ (or 3¤¤) di¤er in the amount of smoothness required. For second order

(or prospect) stochastic dominance, less smoothness is required.
3. When there are no estimated parameters: we do not need any moment conditions for DN and

only a …rst moment for SN ;PN , and the smoothness conditions on F are redundant.

3.2 The Null Distributions

In this section, we derive the asymptotic distributions of our test statistics under the null hypothesis.
To help understanding of the reader, we …rst introduce a heuristic argument for the test DN in

the simple setting where there are no estimated parameters and K = 2. Suppose that F1(x) · F2(x)
for all x 2 X but F1(x) = F2(x) for x 2 B (½ X ): Assume that B is nonempty, which implies d¤ = 0.
Let AN (x) =

p
N [F 1N (x) ¡ F 2N (x)]; AN(x) =

p
N [F1(x) ¡ F2(x)]; and eAN (x) = AN (x) ¡ AN(x):

By an empirical process CLT, the “centered” process eAN(¢) will converge weakly to a mean zero
Gaussian process, say v(¢); under suitable regularity conditions. Since AN(x) = 0 for x 2 B but
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AN (x) ! ¡1 for x =2 B , it is easy to see that the supremum of the uncentered process AN (x) (=
eAN (x)+AN(x)) over x 2 X is approximately equal to the supremum of the centered process eAN (x)
over x 2 B for N su¢ciently large. On the other hand, supx2X [¡AN(x)] will diverge to in…nity.
Therefore, it follows that the asymptotic distribution of DN = minfsupx2X [AN (x)]; supx2X [¡AN (x)]g
will be determined by supx2X [AN(x)]; and the latter will converge weakly to supx2B [v(x)] as discussed
above. Clearly, if F1(x) < F2(x) for all x 2 X and hence B is empty, then DN will diverge to minus
in…nity.

We now turn to our general setting and make the above heuristic statement more rigorous. De…ne
the empirical processes in x; µ

ºdkN(x; µ) =
1p
N

NX

i=1

[1 (Xki(µ) · x) ¡ Fk(x; µ)]

ºskN(x; µ) =
1p
N

NX

i=1

·Z x

¡1
1 (Xki(µ) · t) dt ¡

Z x

¡1
Fk(t; µ)dt

¸

ºpkN(x; y; µ) =
1p
N

NX

i=1

·Z x

y
1 (Xki(µ) · t) dt ¡

Z x

y
Fk(t; µ)dt

¸
: (9)

Let ( edkl(¢) º 0k0 º 0l0 )0 be a mean zero Gaussian process with covariance functions given by

Cd(x1; x2) = lim
N!1

E

0
BB@
ºdkN (x1; µk0) ¡ ºdlN(x1; µl0)p
NÃkN (µk0)p
NÃ lN(µl0)

1
CCA

0
BB@
ºdkN (x2; µk0) ¡ ºdlN (x2; µl0)p
NÃkN (µk0)p
NÃlN(µl0)

1
CCA

0

; (10)

where ÃkN(µk0) = (1=N )
PN
i=1 Ãk(Yki; Zki; µk0) for all k: We analogously de…ne ( eskl(¢) º 0k0 º 0l0 )0

and ( epkl(¢; ¢) º 0k0 º 0l0 )0 to be mean zero Gaussian processes with covariance functions given by
Cs(x1; x2) and Cp(x1; y1; x2; y2) respectively. The limiting null distributions of our test statistics are
given in the following theorem.

Theorem 1. (a) Suppose Assumptions 1-3 hold. Then, under the null Hd0 ; we have

DN )

8
<
:

min(k;l)2Id supx2Bdkl

h
edkl(x) + ¢k0(x)0¡k0ºk0 ¡ ¢l0(x)0¡l0º l0

i
if d¤ = 0

¡1 if d¤ < 0;

where Id = f(i; j)ji 6= j; supx2X [Fi(x) ¡ Fj(x)] = 0g and Bdkl = fx 2 X : Fk(x) = Fl(x)g:
(b) Suppose Assumptions 1 ¤, 2 and 3 ¤ hold. Then, under the null Hs0 ; we have

SN )
(

min(k;l)2Is supx2Bskl [eskl(x) + ¤k0(x)0¡k0ºk0 ¡ ¤l0(x)0¡l0º l0] if s¤ = 0
¡1 if s¤ < 0;

10



where I s = f(i; j)ji 6= j; supx2X
R x
¡1 [Fi(t) ¡ Fj (t)] dt = 0g and Bskl = fx 2 X :

R x
¡1 Fk(t)dt =R x

¡1 Fl(t)dtg:
(c) Suppose Assumptions 1 ¤, 2 and 3 ¤¤ hold. Then, under the null Hp0 ; we have

PN )
(

min(k;l)2Ip supx2Bpkl [epkl(x; y) + ¥k0(x)0¡k0ºk0 ¡ ¥l0(x)0¡l0º l0] if p¤ = 0

¡1 if p¤ < 0;

where Ip = f(i; j)ji 6= j; supx;¡y2X+

R x
y [Fi(t) ¡ Fj (t)] dt = 0g and Bpkl = f(x; y) : x 2 X+;¡y 2

X+ and
R x
y Fk(t)dt =

R x
y Fl(t)dtg:

The asymptotic null distributions of DN ; SN and PN depend on the “true” parameters fµk0 :

k = 1; : : : ; Kg and distribution functions fFk(¢) : k = 1; : : : ;Kg. This implies that the asymptotic
critical values for DN ; SN ; PN can not be tabulated once and for all. However, we de…ne below
various procedures to estimate them from the data.

4 Critical Values

We next describe our main method for obtaining critical values, the subsampling approach. We
derive its asymptotic properties and propose various practical methods for selecting subsample size.
We then discuss an alternative approach based on the bootstrap and a recentered test statistic.

4.1 Subsampling

In this section, we consider the use of subsampling to approximate the asymptotic null distributions

of our test statistics. As was pointed out by Klecan et. al. (1991), even when the data are i.i.d.
the standard bootstrap does not work because one needs to impose the null hypothesis in that case,
which is di¢cult because it is de…ned by a complicated system of inequalities, see below for more

discussion. The mutual dependence of the prospects and the time series dependence in the data also
complicate the issue considerably. The subsampling method is very simple to de…ne and yet provides
consistent critical values in a very general setting. In contrast to the simulation approach of Klecan

et. al. (1991), our procedure does not require the assumption of generalized exchangeability of the
underlying random variables. Indeed, we require no additional assumptions beyond those that have
already been made.

We now discuss the asymptotic validity of the subsampling procedure for the test DN (The

argument for the tests SN and PN is similar and hence is omitted). Let Wi = f(Yki;Zki) : k =
1; : : : ; Kg for i = 1; : : : ; N: With some abuse of notation, the test statistic DN can be re-written as
a function of the data fWi : i = 1; : : : ; Ng :

DN =
p
NdN (W1; : : : ;WN);

11



where
dN (W1; : : : ;WN) = min

k6=l
sup
x2X

h
F kN(x;bµk) ¡ F lN(x;bµl)

i
: (11)

Let
GN(w) = P

³p
NdN (W1; : : : ;WN) · w

´
(12)

denote the distribution function of DN : Let dN;b;i be equal to the statistic db evaluated at the sub-
sample fWi; : : : ;Wi+b¡1g of size b; i.e.,

dN;b;i = db(Wi;Wi+1; : : : ;Wi+b¡1) for i = 1; : : : ;N ¡ b + 1:

This means that we have to recompute bµl(Wi;Wi+1; : : : ;Wi+b¡1) using just the subsample as well.

We note that each subsample of size b (taken without replacement from the original data) is indeed a
sample of size b from the true sampling distribution of the original data. Hence, it is clear that one can
approximate the sampling distribution of DN using the distribution of the values of dN;b;i computed
over N ¡ b + 1 di¤erent subsamples of size b: That is, we approximate the sampling distribution

GN of DN by

bGN;b(w) =
1

N ¡ b + 1

N¡b+1X

i=1

1
³p
bdN;b;i · w

´
:

Let gN;b(1 ¡ ®) denote the (1 ¡ ®)-th sample quantile of bGN;b(¢); i.e.,

gN;b(1 ¡ ®) = inffw : bGN;b(w) ¸ 1 ¡®g:

We call it the subsample critical value of signi…cance level ®: Thus, we reject the null hypothesis at
the signi…cance level ® if DN > gN;b(1¡®): The computation of this critical value is not particularly
onerous, although it depends on how big b is. The subsampling method has been proposed in Politis

and Romano (1994) and is thoroughly reviewed in Politis, Romano, and Wolf (1999). It works in
many cases where the standard bootstrap fails: in heavy tailed distributions, in unit root cases, in
cases where the parameter is on the boundary of its space, etc.

We now show that our subsampling procedure works under a very weak condition on b. In many
practical situations, the choice of b will be data-dependent; see the next section for some methodology
for choosing b. To accommodate such possibilities, we assume that b = bbN is a data-dependent

sequence satisfying
Assumption 4: P [lN · bbN · uN ] ! 1 where lN and uN are integers satisfying 1 · lN · uN ·

N; lN ! 1 and uN =N ! 0 as N ! 1:
The following theorem shows that our test based on the subsample critical value has asymptoti-

cally correct size.

12



Theorem 2. Suppose Assumptions 1-4 hold. Then, under the null hypothesis Hd0 ; we have when
d¤ = 0 that

(a) gN;bbN (1 ¡ ®) p! g(1 ¡ ®)

(b) P [DN > gN;bbN (1 ¡ ®)] ! ®

as N ! 1; where g(1¡®) denotes the (1¡®)-th quantile of the asymptotic null distribution of DN
which is given in Theorem 1(a).

Remarks.

1. Results analogous to Theorems 2 hold for the test SN (PN) under Assumptions 1¤, 2, 3¤(3¤¤)
and 4. The proof is similar to that of Theorem 2.

4.1.1 Asymptotic Power Properties

In this section, we investigate power properties of our tests. We …rst establish that the test DN is
consistent against the …xed alternative hypothesis Hd1 : Analogous results can be established for the

tests SN and PN using similar arguments as below. For brevity, we do not provide the details.
Theorem 3. Suppose Assumptions 1-4 hold. Then, under the alternative hypothesis Hd1 ; we

have

P
h
DN > gN;bbN (1 ¡ ®)

i
! 1 as N ! 1:

Next, we determine the power of the DN test against a sequence of contiguous alternatives con-
verging to the null at the rate N¡1=2: Consider the following sequence of local alternative distribution

functions:

FkN (x) = Fk(x) +
±k(x)p
N

for k = 1; : : : ; N;N = 1;2; : : : ; (13)

where ±k(¢) are real functions and the distribution functions Fk(¢) satisfy

d¤ = min
k 6=l

sup
x2X

[Fk(x) ¡ Fl(x)] · 0:

To analyze the asymptotic behavior of the test under local alternatives; we need to modify Assump-
tions 1-3. That is, we assume:

Assumption 1-lc: (i) f(YNki;ZNki) =: (Yki ; Zki) : i ¸ 1; N ¸ 1g is an ®- mixing array with
®(m) = O(m¡A) for some A > maxf(q ¡ 1)(q + 1); 1 + 2=±g for k = 1; : : : ; K; where q is an even
integer that satis…es q > 3(Lmax + 1)=2 , Lmax = maxfL1; : : : ; LKg and ± is a positive constant that

also appears in Assumption 2-lc (ii) below. (ii) supN¸1E kZkik2 < 1 for all k = 1; : : : ;K; for all
i ¸ 1: (iii) The conditional distribution Hk(¢jZki) of Xki given Zki has a density with respect to
Lebesgue measure a.s. for all k = 1; : : : ;K; for all i ¸ 1 which is bounded uniformly over N ¸ 1:

13



Assumption 2-lc : (i) The parameter estimator satis…es
p
N (bµk ¡ µk0) =

(1=
p
N )

PN
i=1 ¡k0Ãk(Yki; Zki; µk0) + op(1); where ¡k0 is a non-stochastic matrix for k = 1; : : : ;K; (ii)

The function Ãk(y; z; µ) : R£RLk££k ! RLk is measurable and satis…es (a)
p
NEÃk(Yki;Zki; µk0) !

mk0 and (b) supN¸1 E kÃk(Yki;Zki; µk0)k2+± <1 for some ± > 0 and for k = 1; : : : ; K; for all i ¸ 1:

Assumption 3-lc: (i) The function FkN (x; µ) is di¤erentiable in µ on a neighborhood £k0
of µk0 for k = 1; : : : ;K; (ii) For all sequence of positive constants f»N : N ¸ 1g such that
»N ! 0; supx2X supµ:kµ¡µk0k·»N k@FkN (x; µ)=@µ ¡ ¢k0(x)k ! 0 for k = 1; : : : ; K; where ¢k0(x) =

@FkN (x;µk0)=@µ; (iii) supN¸1 supx2X k¢k0(x)k <1 for k = 1; : : : ; K:
Note that Assumption 2-lc implies that the asymptotic distribution of

p
N(bµk ¡ µk0) has mean

mk0 which might be non-zero under local alternatives Then, the asymptotic distribution of DN under

the local alternatives is given in the following theorem:
Theorem 4. Suppose Assumptions 1-lc, 2-lc and 3-lc hold. Then, under the local alternatives,

we have

DN )
(
LD if d¤ = 0
¡1 if d¤ < 0;

where

LD = min
(k;l)2Id

sup
x2Bdkl

h
edkl(x) +¢k0(x)0¡k0ºk0 ¡ ¢l0(x)0¡l0º l0 + ¹kl(x)

i
;

¹kl(x) = ¢k0(x)0¡k0mk0 ¡ ¢l0(x)0¡l0ml0 + ±k(x) ¡ ±l(x);

Id and Bdkl are de…ned as in Theorem 1 and ( edkl(¢) º 0k0 º0l0 )0 is the Gaussian process de…ned in
Section 3.2.

This result implies that asymptotic local power of the DN test based on the subsample critical

value is given by the following Corollary:
Corollary 5. Suppose Assumptions 1-lc, 2-lc;3-lc and 4 hold. Then, under the local alternatives,

we have when d¤ = 0 that

P
h
DN > gN;bbN (1 ¡ ®)

i
! P [LD > g(1 ¡ ®)]

as N ! 1; where gN;bbN (1 ¡ ®) and g(1 ¡ ®) are de…ned in Section 4.
Remarks.

1. Theorem 4 implies that our DN test is asymptotically locally unbiased, i.e.

lim
N!1

P [DN > gN;bbN (1 ¡ ®)] ¸ ® (14)

when d¤ = 0 under the local alternatives. This follows because, by Anderson’s lemma (e.g., see Bickel
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et al. (1993, p.466), we can show that

P

"
min
k 6=l

sup
x2Bdkl

h
edkl(x) + ¢k0(x)0¡k0ºk0 ¡ ¢l0(x)0¡l0º l0 + ¹kl(x)

i
> g(1 ¡ ®)

#
(15)

¸ P

"
min
k 6=l

sup
x2Bdkl

h
edkl(x) + ¢k0(x)0¡k0ºk0 ¡ ¢l0(x)0¡l0º l0

i
> g(1 ¡ ®)

#
= ®

and the left-hand-sides of (14) and (15) are equal by Theorem 4.
2. Corollary 5 shows that the asymptotic local power of the DN test against the local alternatives

(13) is P [LD > g(1 ¡ ®)] :

4.1.2 Choice of Subsample Size

In practice, the choice of b is important and rather di¢cult. It is rather akin to choosing bandwidth
in tests of parametric against nonparametric hypotheses, an issue that has been notoriously di¢cult

to resolve. Politis, Romano, and Wolf (1999) discuss various methods for selecting subsample size.
Delgado, Rodriguez-Poo, and Wolf (2001) propose a method for selecting b to minimize size distortion
in the context of hypothesis testing within the maximum score estimator, although no optimality
properties of this method were proven. The main problem with this general approach is that usually

the b that is good for size distortion is not good for power and vice a versa. In any case, their
approach can only be implemented in situations where there is enough structure that a standard
bootstrap could be applied.

We propose a number of criteria for choosing b and investigate below how well they do in practice.
We suppose that there is a set BN = fbN1 < bN2 < ¢ ¢ ¢ < bNrNg of candidate subsample sizes, where
bN1 !p 1 and bNrN =N !p 0; while rN is allowed to increase with N and that our methods will

select a sequence of subsample values from BN [hence the conditions of our theorems 2-4 are satis…ed
by such a sequence]: For each signi…cance level ® we obtain the sample of estimated critical values
fgN;bNj(1 ¡ ®); j = 1; : : : ; rN g:

Politis, Romano, and Wolf (1999) suggest the ‘minimum volatility’ method. This involves com-

puting the local (in b) standard deviation of gN;b and then taking the subsample bbMV that minimizes
this volatility measure. The idea is that when b is in the right range the critical values should be
relatively stable.

A second approach is to use the mean or median critical value:

gN(1 ¡ ®) = 1
rN

rNX

j=1

gN;bNj(1 ¡ ®) (16)

gMedN (1 ¡ ®) = medfgN;bNj (1 ¡ ®) : j = 1; : : : ; rNg (17)
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and reject when DN > gN(1 ¡ ®) in the …rst case and reject when DN > gMedN (1 ¡ ®) in the second
case.3 The idea in the median case is that each critical value re‡ects a standard of evidence from a
di¤erent ‘court of opinion’. Taking the median critical value is like taking the majority outcome of
a vote by all critical values on accept or reject.

In applications, we favor computing a plot of p-values against subsamples for a range of subsam-
ples. If the p-value is insensitive to subsample sizes within a ‘reasonable’ range, then inferences are
likely to be robust, and whatever automatic method is chosen will yield similar results. We illustrate

this method below.

4.2 Alternative Approaches

We next discuss alternative approaches to obtaining critical values such as bootstrap or multiplier
simulation procedures. In contrast to subsampling, one now has to impose the null hypothesis either
explicitly or implicitly in the resampling schemes. In practice, one has to impose the least favorable
case

LF = fF : F1(x) = ¢ ¢ ¢ = FK (x) for all x 2 Xg; (18)

which is a strict subset of the (boundary of the) null hypothesis. When the prospects are mutually
independent and independent over time and there are no estimated parameters it is easy to resample
imposing that the data come from LF - you just pool the data into a common distribution and

draw from that empirical distribution with standard replacement bootstrap. In an innovative paper,
Klecan et al. showed that with suitable modi…cation this idea can be applied to the case where the
prospects are mutually dependent as long as the dependence is of a speci…c variety called generalized

exchangeable.4 More generally though it has not been possible to simultaneously impose (18) and
correctly account for the mutual dependence in the outcomes. There is an alternative: instead of
imposing (18) in the resample one should resample in a way appropriate to capture the mutual

and temporal dependence and then ‘recentre’ the test statistic, as has recently been suggested in
Chernozhukov (2002). It should be noted that this approach also imposes (18) implicitly. We next
describe one such method for the case where the data are mutually dependent but are independent
over time.

Let b"ki = Yki ¡ b¹k0 ¡ Z 0kibµk denote the residual computed using the original sample fWi : i =
1; : : : ; Ng;where Wi = f(Yki;Zki) : k = 1; : : : ; Kg: Let f"¤i = ("¤1i; : : : ; "¤Ki) : i = 1; : : : ;Ng be the

3This corresponds to some implicit subsample size. Instead of doing a formal test we can equivalently report the
mean or median p-value across the sample of tests with di¤erent b 2 Bn:

4This structure is necessary to their method. It is also clear that they require time series independence in the
proofs of their Theorem 7.

16



bootstrap residual drawn with replacement from the centered residual fb"ci = (b"1i¡b"1; : : : ;b"Ki¡b"K ) :
i = 1; : : : ; Ng; where b"k =

P N
i=1b"ki=N.5 Then compute Y ¤ki = b¹k0 +Z 0kibµk + "¤ki: Using the bootstrap

sample fW ¤
i : i = 1; : : : ; Ng where W ¤

i = f(Y ¤ki;Zki) : k = 1; : : : ; Kg; compute bµ¤k : These steps
will take care of the e¤ect of the parameter estimation error in the bootstrap distribution described

below.6 De…ne X¤
ki(µ) = Y ¤ki ¡Z 0kiµ and the empirical distributions

F
¤
kN(x;µ) =

1
N

NX

i=1

1 (X¤
ki(µ) · x)

for k = 1; : : : ;K: De…ne the recentred empirical F
¤c
kN (x) = F

¤
kN(x;bµ

¤
k) ¡ F kN (x;bµk) and the centred

bootstrap test statistic

D¤
N = min

k6=l
sup
x2X

p
N

h
F
¤c
kN (x) ¡F ¤clN (x)

i
:

We then compute the distribution of D¤
N conditional on the original sample and take the critical

value from this distribution. That is, we approximate the sampling distribution HN of DN by

bHN (w) =
1
M

MX

i=1

1
¡
D¤
N;i · w

¢

where M is the number of bootstrap samples. Let hN (1 ¡ ®) denote the (1 ¡ ®)-th sample quantile

of bHN;b(¢); i.e.,
hN(1 ¡ ®) = inffw : bHN(w) ¸ 1 ¡ ®g:

We call it the bootstrap critical value of signi…cance level ®: Thus, we reject the null hypothesis at the
signi…cance level ® if DN > hN(1¡®): It can be shown that this test is consistent; we investigate the

…nite sample behaviour below. The recentering in D¤
N is crucial and is used to impose the restriction

(18). The idea of recentering has also been suggested in other contexts by Hall and Horowitz (1999)
and Whang (2001) and in this context in a recent paper by Chernozhukov (2002).7

In the time series case, the resampling should be modi…ed to account for the dependence, see

Horowitz (2000) or Härdle, Horowitz and Kreiss (2001) for a survey of bootstrap methods for time
series. We brie‡y describe the non-overlapping (viz., Carlstein (1986)) and overlapping (viz., Kün-
sch (1989)) block bootstrap procedures that can be used in our context. The observations to be

5The centering is redundant of course when the model includes a constant term and the parameters are estimated
by OLS.

6When there are no estimated parameters, i.e., when Xki(µ) = Xki; the bootstrap sample f(X¤
1i; : : : ; X¤

Ki) :
i = 1; : : : ; Ng are de…ned to be a random draw (with replacement) from the empirical (joint) distribution of
f(X1i; : : : ;XKi) : i = 1; : : : ; Ng:

7Chernozhukov (2002) actually combines recentering with subsampling in his application.
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bootstrapped are the centered residuals fb"ci : i = 1; : : : ; Ng: Let L denote the length of the blocks
satisfying L _ N ° for some 0 · ° · 1.8 With non-overlapping blocks, block 1 is observations fb"cj :
j = 1; : : : ;Lg; block 2 is observations fb"cL+j : j = 1; : : : ;Lg; and so forth. There are B di¤erent
blocks, where BL = N: With overlapping blocks, block 1 is observations fb"cj : j = 1; : : : ; Lg; block 2

is observations fb"c1+j : j = 1; : : : ; Lg; and so forth. There areN¡L+1 di¤erent blocks. The bootstrap
residuals f"¤i : i = 1; : : : ; Ng are obtained by sampling B blocks randomly with replacement from
either the B non-overlapping blocks or the N ¡L+1 overlapping blocks and laying them end-to-end

in the order sampled. The remaining steps are the same as the independent case described above.9

We now compare the alternative approaches with our subsampling approach. Under the least
favorable case (18), it is not di¢cult to show that the asymptotic distribution of DN ; say, is given by

LB =: mink 6=l supx2X [edkl(x) + ¢k0(x)0¡k0ºk0 ¡ ¢l0(x)0¡l0º l0] using an argument similar to the proof
of Theorem 1. Any valid bootstrap (or simulation)-based test hence would try to approximate LB.
However, our test statistic DN has a non-degenerate limit distribution on the boundary “d¤ = 0” of
our null hypothesis Hd0 : Note that “d¤ = 0” is in fact a composite hypothesis and includes the least

favorable case (18) as a special case. Therefore, when (18) fails to hold but d¤ = 0 is true10, then the
test based on the bootstrap (or simulation) critical value would not have asymptotic size ®. This
implies that the latter test is not asymptotically similar on the boundary, which in turn implies that

the test is biased, i.e., there exist alternatives under which acceptance of the hypothesis is more likely
than in some cases in which the hypothesis is true, see Lehmann (1986, Chapter 4) for the concept
of similarity and unbiasedness. On the other hand, our test based on the subsample critical value is

unbiased and asymptotically similar on the boundary since the subsampling distribution mimics the
true sampling distribution everywhere on the boundary. Note that, in general, an asymptotically
similar test is more powerful than an asymptotically non-similar test for some local alternatives near
the boundary, see, e.g., Hansen (2001).

8 It is also possible to sample L randomly from the geometric distribution and use the overlapping blocks. This
procedure amounts to the stationary bootstrap of Politis and Romans (1993) and it guarantees that the resulting
bootstrap data series is stationary.

9When there are no estimated parameters, the observations to be bootstrapped are f(X1i; :::;XKi) : i = 1; :::; Ng
and we can apply the block bootstrap methods directly to them to get the bootstrap sample f(X¤

1i; :::; X¤
Ki) : i =

1; :::; Ng:
10For example, if K = 3; this happens if F1(x) = F2(x) for all x 2 X but F3(x) crosses with F1 (and F2): More

generally, this happens if Fk(x) · Fl(x) with equality holding for x 2 Bkl(½ X) for some pair (k; l) but there are
crossings of the distributions (i.e., no FSD relationship) for the other pairs.
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5 Numerical Results

5.1 Simulations

We examined three sets of designs: the Burr distributions most recently examined by Tse and Zhang

(2000), the lognormal distributions most recently studied by Barrett and Donald (1999), and the
exchangeable normal processes of Klecan et al. (1991). The …rst two sets have mutually independent
and temporally independent prospects, while the third designs are both mutually and temporally

dependent. By choosing already published designs we are able to compare our procedures with those
of the authors’ in regard to size and power. We do not recompute their tests, but refer the reader to
their tables to make comparison. We have also carried out simulations in the case where there are
upto 10 prospects; full details of this are available from the authors.

We …rst give some general details common to the simulations. In computing the suprema in
DN ; SN ; we took a maximum over an equally spaced grid of size n on the range of the pooled empirical
distribution. We experimented with a variety of such grids [this is quite important in practice], but

found our approach worked adequately. We chose a total of twenty di¤erent subsamples for each
sample size n 2 f50; 500; 1000g: In earlier work we tried …xed rules of the form b(n) = cjnaj ; but
found it did not work as well. Instead, we took an equally spaced grid of subsample sizes: for n = 50,

the subsample sizes are {20; 21; : : : ; 40g; for n = 500 the subsample sizes are {50;65; : : : ; 350g; for
n = 1000 the subsample sizes are {100; 120; : : : ; 500g: This grid of subsamples are then used to
implement the automatic methods of sections 7.11 We report the results of the automatic methods
here and comment also on the results for …xed subsamples [which are available from the authors].

In computing the suprema in each dN;b;i we took the same grid of points as was used in the original
test statistic. In addition to the subsampling method we also computed the ‘recentered bootstrap’
method; we used a total of 200 bootstrap repetitions in each case. In each experiment we did 1; 000

replications.
The overall impression is that the (automatic) subsample methods and the recentered full sample

bootstrap method work reasonably well in samples above 500. The full sample method works slightly
better under the null hypothesis, while the subsample method works better under the alternative.

In the cases where the full sample method works better, this advantage e¤ectively disappears in the
larger sample sizes, but in cases [1c,1d,1e, and 2d below] where the subsample method is superior,
that superiority can be quite substantial even in the larger sample. This is consistent with our

theory.12 Also, we note that in the smallest sample size, the recentred bootstrap does better for all
11The subsample grid is quite crude in its coverage, and perhaps better results would be obtained by considering

more subsamples.
12We have also obtained results for the uncentered bootstrap and the recentred subsample method but do not report
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designs. It is worth reminding the reader that these designs, especially the …rst two settings, favor
the alternative methods which are designed for iid observations on independent or exchangeable
prospects.

5.1.1 Tse and Zhang (2000): Burr Type Distributions

In the context of independent prospects and i.i.d. observations, Tse and Zhang (2000) have provided
some Monte Carlo evidence on the power of the alternative tests proposed by Davidson and Duclos

(2000), the “DD test”, and Anderson (1996). They also shed light on the convergence to the Gaussian
limiting distribution of these tests. The evidence on the latter issue is not very encouraging except
for very large sample sizes, and they conclude that the DD test has better power than the Anderson

test for the cases they considered.
Tse and Zhang (2000) investigated the Burr Type XII distribution, B(®; ¯); which is often an

empirically plausible candidate in the income distribution …eld. This is a two parameter family

de…ned by:

F (x) = 1 ¡ (1 + x®)¡¯; x ¸ 0

where E(X) <1 if ¯ > 1=® > 0. This distribution has a convenient inverse: F ¡1(v) = [(1¡ v)¡ 1
¯ ¡

1] 1® ; 0 · v < 1:We investigated the …ve di¤erent Burr designs of Tse and Zhang (2000), which are

given below along with the population values of d¤; s¤ :

Design X1 X2 d¤ s¤

1a B(4:7; 0:55) B(4:7; 0:55) 0:000(FSD) 0:0000(SSD)

1b B(2:0; 0:65) B(2:0; 0:65) 0:0000(FSD) 0:0000(SSD)
1c B(4:7; 0:55) B(2:0; 0:65) 0:1395 0:0784
1d B(4:6; 0:55) B(2:0; 0:65) 0:1368 0:0773
1e B(4:5; 0:55) B(2:0; 0:65) 0:1340 0:0761

The …rst two designs are in the null hypothesis, while the remaining three are in our alternative.
Note that Tse and Zhang (2000) actually report results for the complementary hypotheses, so that
only their …rst two tables are directly comparable with ours. We report our results in Tables 1F and

1S, for cases 1a-e below.
The …rst two designs are useful for an evaluation of the size characteristics of our tests, but only

in the the “least favorable” case of equality of the two distributions. The estimated CDFs “kiss” at
them here. The uncentered bootstrap is inconsistent and the simulations strongly support this - the rejection frequen-
cies are zero or close to zero for all designs. The recentred subsample method although consistent was considerably
inferior to both the approaches we do report.
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many more points than do the integrated CDFs. As a result, large sample sizes will be needed for
accurate size of FSD, as well as relatively large subsamples. For SSD, however, the accuracy is quite
good for moderate sample sizes. Given the nature of the testing problem, sample sizes less than 100
are very small indeed. In such cases the tests will over-reject at conventional levels. Even in this

demanding case, however, one is led to the correct decision that the two (equal) prospects here do
not dominate each other. The accuracy of size estimation for SSD is rather impressive. Regarding
the automatic subsample methods, the Mean and Median methods seem to work similarly and better

than the MinVol method, especially for n = 50: MinVol overestimates size with very small sample
sizes.

In the last three designs (Tables 1F and 1S, cases 1c-1e), the power of our tests are forcefully

demonstrated. This is so even at relatively small samples sizes. Even with a sample of size 50
there is appreciable power, especially for the recentred bootstrap method. There is not much to
choose between the performance of the three automatic methods. Regarding the …xed subsample
size methods (available from the authors): the power declines as the number of subsamples declines

(the subsample size increases). This seems to indicate that larger number of subsamples are needed
for more accurate estimation especially when moderate size samples are available. The performance
of the …xed subsample tests in these cases is quite satisfactory.

5.1.2 Barrett and Donald (1999): Lognormal Distributions

The lognormal distribution is a long celebrated case in both …nance and income and wealth distrib-
ution …elds. It was most recently investigated in Barrett and Donald (1999) in a Monte Carlo study

of the Klecan et al. tests along with some of its competitors. Let,

Xj = exp(¹j + ¾jZj);

where Zj are standard normal and mutually independent.

Design X1 X2 d¤ s¤

2a LN (0:85; 0:62) LN (0:85; 0:62) 0:0000(FSD) 0:0000(SSD)
2b LN (0:85; 0:62) LN (0:7; 0:52) 0:0000(FSD) 0:0000(SSD)
2c LN (0:85; 0:62) LN (1:2; 0:22) 0:0834 0:0000(SSD)

2d LN (0:85; 0:62) LN (0:2; 0:12) 0:0609 0:0122

These designs are clearly favorable to the independent samples assumption in Barret and Donald

(1999). The results shown in Tables 2F and 2S, cases a-d correspond exactly to cases 1,2,3, and 4
of Barrett and Donald (1999). We note that the comparison of the automatic selection methods is
similar to the previous example.

21



The …rst two designs are in the null and the next two (2c-2d) are in the alternative for FSD,
borderline null for SSD in design 2c, and in the alternative for SSD in design 2d. The …rst design
is a “least favorable” case and, at least for the FSD test, it demonstrates the demand for higher
sample sizes as well as subsample sizes. The tendency is toward moderate over-rejection for very

small samples. Accuracy improves quite rapidly with sample size for SSD tests and is impressive for
most subsample sizes and moderate sample sizes. Bootstrap method does quite well in this ‘friendly’
least favorable case.

The second design is quite instructive. While the overall results are similar to the previous case,
the di¤erences re‡ect the fact that there is no FSD ranking, (or equality) and only a mild degree
of Second Order Dominance. For moderate to reasonable sample sizes the tendency is to slightly

under-reject FSD. This tendency is reduced by increasing the size of the subsamples. The results for
SSD, con…rm the theoretical consistency properties of our tests. The theoretical power properties of
the subsampling test are evidenced.

Results for design 2c are quite conclusive. For moderate to large sample sizes, FSD is powerfully

rejected, while SSD is not. Very small samples are seen to be dangerous in cases where CDFs cross
(no FSD) and the degree of SSD is moderate. A comparison with the last design (case 2d) is quite
instructive. Here there is no FSD or SSD and the test is quite capable of producing the correct

inference.
In terms of a comparison with the tests investigated in Barrett and Donald (1999), we seem to

do better in some cases and worse in others. Generally speaking their performance is better under

the null hypothesis and ours is better under the alternatives. There is evidence that the subsampling
tests are more powerful for SSD hypotheses than the bootstrap

5.1.3 Klecan, McFadden, and McFadden (1991): Multivariate Normal Processes

The previous designs had independent prospects and i.i.d observations. In this section we investigate
the three di¤erent exchangeable multinormal processes of Klecan et al. (1991),

Xjt = (1 ¡ ¸)
h
®j + ¯j

³p
½Z0t +

p
1 ¡ ½Zjt

´i
+ ¸Xj;t¡1; (19)

where (Z0t;Z1t;Z2t) are i.i.d. standard normal random variables, mutually independent. The pa-
rameters ¸ = ½ = 0:1 determine the mutual correlation of X1t and X2t and their autocorrelation.

The parameters ®j ; ¯ j are actually the mean and standard deviation of the marginal distributions
of X1t and X2t. This scheme produces autocorrelated and mutually dependent prospects consistent
with the assumptions of Klecan et al., but only as far as the cross-sectional dependence. Again, these
designs slightly favor their test assumptions. The marginals and the true values of the statistics are:
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Design X1 X2 d¤ s¤

3a N (0; 1) N (¡1; 16) 0:1981 0:0000(SSD)
3b N(0;16) N (1; 16) 0:0000(FSD) 0:0000(SSD)
3c N (0; 1) N (1; 16) 0:1981 0:5967

The results are given in Tables 3F and S, cases a-c. Design 3a is in the alternative for FSD, and

in the null for SSD. Again we note that we need large samples and subsample sizes to infer this low
degree of SSD, but have very good power in rejecting FSD (especially for large number of subsamples
even in very small samples of 50). Design 3b is rather strongly in the null. These designs correspond

exactly to experiments 1,2, and 3 in Table 2 of Klecan et al (1991).
Small sample sizes lead to over estimation of size but, again, the larger number of subsamples

do better in these situations. Interestingly, the number and size of subsamples do not appear conse-

quential for moderate to large samples. Otherwise the theoretical power and consistency properties
are strongly con…rmed. The …nal design 3c is clearly in the alternative for both FSD and SSD. Our
procedures show their expected power in rejecting dominance. For very small samples (50), again
larger number of subsamples do uniformly much better than otherwise (the subsample size seems

not as important), but minvol method is inferior for size calculations. The subsampling tests are
generally more powerful than the bootstrap for SSD than FSD cases.

5.1.4 Style Analysis

As a brief example of the residual-based testing, here we investigate a test of stochastic dominance of

di¤erent residuals from a style regression based on the Klecan et al. designs of the previous section.
Return-based style analysis [originally proposed in Sharpe (1992)] is a popular practitioner tool to
study fund managers’ performance. The style regression for the returns Rt of a given fund is

Rt = ®+
KX

k=1

¯kFkt + "t; (20)

where Fkt is the (observed) return of the some asset class, for k = 1; : : : ;K; the ¯0ks are the factor
loadings, while "t is an idiosyncratic disturbance term that contains the part of the fund’s performance

not explained by the factors. The disturbance term ut = ®+ "t represents the own choice of the fund
manager and is called the selectivity of the fund. It is of interest to compare the ut from di¤erent
funds and to rank them according to some criterion. For example it is common practice to interpret

the ® of each fund as a measure of its success in selection. Given the considerable evidence on non-
normality of stock returns, relying purely on a location measure to evaluate performance may not be
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appropriate, see Ho (2003) for a discussion. One could also compare the marginal distributions in a
test of the stochastic dominance of one fund over another.

We let Ft = Z0t=(1¡¸L); where L is the lag operator, be a single observed factor and letRjt = Xjt
be the return on asset j; where Xjt are those generated in designs 3a-c. We have

Rjt = ®j + °jFt + "jt; where °j = ¯j
p
½ and "jt =

¯j (1 ¡ ¸)p1 ¡ ½
1 ¡ ¸L Zjt:

The simulations compute a test of whether u1t = ®1 + "1t dominates u2t = ®2 + "2t based on the
dataset fR1t; R2t; Ft; t = 1; : : : ; T g: This involves estimating the parameters (®j; °j) by least squares

and obtaining the residuals and applying our subsampling method. The marginals of ujt and the
true values of the statistics are given below

Design u1 u2 d¤ s¤

3d N (0; 0:7364) N (¡1; 11:7818) 0:1936 0:0000(SSD)

3e N (0; 11:7818) N (1; 11:7818) 0:0000(FSD) 0:0000(SSD)
3f N (0; 0:7364)) N (1; 11:7818) 0:1930 0:6024

The results are given in Tables 3RS and 3RF. There is a slight deterioration in performance due
to estimating the parameters, but otherwise all methods work well as before.

5.2 Application: Daily Stock Index Returns

Finally, we applied our tests to a dataset of daily returns on the Dow Jones Industrials and the
S&P500 stock returns from 8/24/88 to 8/22/00, a total of 3131 observations. The means are 0:00055

and 0:00068 respectively, while the standard deviations are 0:00908 and 0:0223 respectively; the series
are certainly mutually dependent and dependent over time. Figure 1 plots the c.d.f.’s and integrated
c.d.f. [denoted s.d.f.] of the two series. This shows that the two c.d.f.’s cross, but the integrated

c.d.f. of the Dow Jones index dominates that of the S&P500 index over this time period. Thus we
expect to have only SSD or higher ranking.
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In Figure 2 we plot the surface
R x
y [F1N(t) ¡ F2N (t)] dt against x;y on a grid of x > 0; y < 0: This

surface is also everywhere positive, consistent with the hypothesis that the S&P500 index prospect
dominates the Dow Jones index.

In Figure 3 we plot the p-value of our tests of the null hypotheses d¤ · 0; s¤ · 0; and p¤ · 0

against subsample size: The results suggest strongly that the evidence is against d¤ · 0 but in
favour of s¤ · 0 and p¤ · 0:13 Any of the automatic methods described in 4.1.2 would yield the

13 In the test of prospect dominance we subtracted o¤ the risk free rate measured by one month t-bill rates.
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same conclusion. For comparison, the recentered bootstrap p-values are 0.1448, 0.9999, and 0.9999
respectively.

This is a rather striking result. The ranking of these return series depends on whether the prospect
theory or the usual risk measures are favoured. The S&P500 index apparently o¤ers investors better
lottery opportunities on the upside, but better insurance features on the downside.

6 Concluding Remarks

We have obtained the asymptotic distribution of well known tests for FSD and SSD and demonstrated
their consistency in a very general setting that allows generic dependence of prospects and non i.i.d
observations. The availability of this technique for empirical situations in which ranking is done

conditional on desirable controls is of consequence for widespread use of uniform ranking in empirical
…nance and welfare.
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The performance of the subsampling technique is rather good in the cases we considered when
the sample size is at least 500. We also …nd that the subsample method has both theoretically and
empirically better power than a recentred bootstrap [except when sample sizes are very small, in
which case the comparison seems to go the other way].

A Appendix

Below we sketch the proof of Theorems in the main text only for the test DN : The corresponding proofs

for the other tests SN and DN are omitted for brevity and are available in our working paper version. We

let Cj for some integer j ¸ 1 denote a generic constant. (It is not meant to be equal in any two places it

appears.) Let kZkq denote the Lq norm (E jZjq)1=q for a random variable Z: The following lemma holds

for all k = 1; :::;K :

Lemma 1 Suppose Assumption 1 holds. Then, for each " > 0 there exists ± > 0 such that

lim
N!1

°°°°° sup
½¤d((x1;µ1);(x2;µ2))<±

¯̄
ºdkN(x1; µ1) ¡ ºdkN (x2; µ2)

¯̄
°°°°°
q

< "; (A.1)

where

½¤d ((x1; µ1) ; (x2; µ2)) =
©
E [1(Xki(µ1) · x1) ¡ 1(Xki(µ2) · x2)]2

ª1=2
: (A.2)

Proof of Lemma 1. The result follows from Theorem 2.2 of Andrews and Pollard (1994) with

Q = q and ° = 1 if we verify the mixing and bracketing conditions in the theorem. The mixing condition

is implied by Assumption 1(i). The bracketing condition also holds by the following argument: Let F kd =

f1 (Xki(µ) · x) : (x; µ) 2 X £ £kg : Then, F kd is a class of uniformly bounded functions satisfying the

L2-continuity condition, because we have

sup
i¸1
E sup

(x0 ;µ0)2X££k:

jx0¡xj·r1;kµ0¡µk·r2;
p
r21+r

2
2·r

j1 (Xki(µ0) · x0) ¡ 1 (Xki(µ) · x)j2

= E sup
(x0 ;µ0)2X££k :

jx0¡xj·r1;kµ0¡µk·r2;
p
r21+r22·r

j1 (Xki · Z 0ki(µ0 ¡ µ0) + x0) ¡ 1 (Xki · Z 0ki(µ ¡ µ0) + x)j2

· E1 (jXki ¡ Z 0ki(µ ¡ µ0) ¡ xj · kZkik r1 + r2)
· C1 (E kZkik r1 + r2) · C2r;

where the second inequality holds by Assumption 1(iii) and C2 =
p
2C1 (E kZkik _ 1) is …nite by Assump-

tion 1(ii). Now the desired bracketing condition holds because the L2-continuity condition implies that the

bracketing number satis…es N (";Fkd ) · C3 (1=")Lk+1 ;see Andrews and Pollard (1994, p.121).
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Lemma 2 Suppose Assumptions 1-3 hold. Then; we have 8k = 1; : : : ; K;

sup
x2X

¯̄
¯ºdkN(x;bµk) ¡ ºdkN (x;µk0)

¯̄
¯ p! 0: (A.3)

Proof of Lemma 2. We …rst verify part (a). Consider the pseudometric (A.2). We have

sup
x2X
½¤d

³³
x;bµk

´
; (x; µk0)

´2

= sup
x2X

ZZ h
1
³
ex · x+ z0(bµk ¡ µk0)

´
¡ 1 (ex · x)

i2
dHk(exjz)dPk(z) (A.4)

· sup
x2X

ZZ
1
³
x ¡

¯̄
¯z0(bµk ¡ µk0)

¯̄
¯ · ex · x+

¯̄
¯z0(bµk ¡ µk0)

¯̄
¯
´
dHk(exjz)dPk(z)

· C1

°°°bµk ¡ µk0
°°°E kZkik p! 0;

where Pk(¢) denotes the distribution function of Zki and the second inequality holds by Assumption 1(iii)

and a one-term Taylor expansion, and the last convergence to zero holds by Assumptions 1(ii) and 2. Now,

this result and the stochastic equicontinuity result (A.1) yield the desired result (A.3) using a standard

argument. ¥

Lemma 3 Suppose Assumptions 1-3 hold. Then, we have 8k = 1; : : : ; K;

p
N sup
x2X

°°°Fk(x;bµk) ¡ Fk(x; µk0) ¡ ¢0
k0(x)¡k0ÃkN(µk0)

°°° = op(1):

Proof of Lemma 3. The proof is standard and follows from a mean value expansion and several

applications of triangle inequality. See our website for details. ¥

Lemma 4 Suppose Assumptions 1-3 hold. Then, we have

³
ºdkN(¢; µk0) ¡ ºdlN(¢; µl0)

p
NÃ 0kN (µk0)

p
NÃ 0lN(µl0)

´0
)

³
edkl(¢) º 0k0 º 0l0

´0

8 k; l = 1; : : : ; K and the sample paths of edkl(¢) are uniformly continuous with respect to pseudometric ½d
on X with probability one, where

½d (x1; x2) =
©
E [(1(Xki · x1) ¡ 1(Xli · x1)) ¡ (1(Xki · x2) ¡ 1(Xli · x2))]2

ª1=2
:

Proof of Lemma 4. By Theorem 10.2 of Pollard (1990), the result of Lemma 4 holds if we have (i)

total boundedness of pseudometric space (X; ½d) (ii) stochastic equicontinuity of fºdkN(¢; µk0)¡ºdlN (¢; µl0) :
N ¸ 1g and (iii) …nite dimensional (…di) convergence. Conditions (i) and (ii) follow from Lemma 1. We now

verify condition (iii). We need to show that (ºdkN(x1; µk0) ¡ ºdlN(x1; µl0); : : : ; ºdkN (xJ ; µk0) ¡ ºdlN (xJ ; µl0);p
NÃkN (µk0)0;

p
NÃlN(µl0)0)0 converges in distribution to

³
edkl(x1); : : : ; edkl(xJ ); º 0k0; º 0l0

´0
8xj 2 X;
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8j · J; 8J ¸ 1:This result holds by the Cramer-Wold device and a CLT for bounded random variables (e.g.,

Hall and Heyde (1980, Corollary 5.1, p.132)) because the underlying random sequencefXki : i = 1; : : : ; ng is

strictly stationary and ®- mixing with the mixing coe¢cients satisfying
P1
m=1 ®(m) <1 by Assumption

1 and we have j1(Xki · x) ¡ 1(Xli · x)j · 2 <1: ¥

Proof of Theorem 1. Suppose that d¤ = 0. Then, there exists a pair (k; l) that satis…es

supx2X [Fk(x) ¡ Fl(x)] = 0: For such pair, we have Fk(x) · Fl(x) for all x 2 X but Fk(x) = Fl(x)

for x 2 Bdkl(½ X ). We …rst verify that

bDkl ´ sup
x2X

p
N

h
F kN(x;bµk) ¡ F lN(x;bµl)

i

) sup
x2Bdkl

h
edkl(¢) +¢k0(¢)0¡k0ºk0 ¡ ¢l0(¢)0¡l0º l0

i
(A.5)

= sup
x2Bdkl

dkl(x); say.

Note that Lemmas 2 and 3 imply

bDkl(x) ´
p
N

h
F kN(x;bµk) ¡ F lN (x; bµl)

i

= ºdkN(x;bµk) ¡ ºdlN (x;bµl) +
p
N

h
Fk(x;bµk) ¡ Fl(x;bµl)

i

=Dkl(x) + op(1) uniformly in x 2 X ;

where

Dkl(x) =D0
kl(x) +D

1
kl(x) (A.6)

D0
kl(x) = º

d
kN (x; µk0) ¡ ºdlN (x; µl0)

+¢k0(x)¡k0
p
NÃkN(µk0) ¡ ¢l0(x)¡l0

p
NÃ lN (µl0)

D1
kl(x) =

p
N [Fk(x) ¡ Fl(x)] : (A.7)

To show (A.5), we need to verify

sup
x2X
Dkl(x) ) sup

x2Bdkl
dkl(x): (A.8)

Note that

sup
x2Bdkl

D0
kl(x) ) sup

x2Bdkl
dkl(x) (A.9)

by Lemma 4 and continuous mapping theorem. Note also that Dkl(x) = D0
kl(x) for x 2 Bdkl. Given " > 0;

this implies that

P
µ
sup
x2X
Dkl(x) · "

¶
· P

Ã
sup
x2Bdkl

D0
kl(x) · "

!
: (A.10)
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On the other hand, Lemma 4 and Assumptions 1(i), 2(ii) and 3(iii) imply that given ¸ and ° > 0; there

exists ± > 0 such that

P

0
B@ sup
½(x;y)<±
y2Bdkl

¯̄
D0
kl(x) ¡D0

kl(y)
¯̄
> ¸

1
CA < ° (A.11)

and

sup
x2X

¯̄
D0
kl(x)

¯̄
= Op(1): (A.12)

Using the results (A.11) and (A.12) and arguments similar to those in the proof of Theorem 6 of Klecan et.

al. (1991, p.15), we can verify that

P

Ã
sup
x2Bdkl

D0
kl(x) · "

!
· P

µ
sup
x2X
Dkl(x) · "+ ¸

¶
+ 2° (A.13)

for N su¢ciently large. Taking ¸ and ° small and using (A.9), (A.10) and (A.13) now establish the desired

result (A.8) and hence (A.5). Now the desired result of Theorem 1 follows by continous mapping theorem

because the terms bDij with (i; j) satifying supx2X [Fk(x) ¡ Fl(x)] > 0 will diverge to in…nity and hence

will not a¤ect the limit distribution of DN :
Next suppose d¤ < 0: In this case, the set Bdkl is an empty set and hence Fk(x) < Fl(x) 8x 2 X for

some (k; l): Then, supx2X Dkl(x) de…ned in (A.6) will be dominated by the term D1
kl(x) which diverges to

minus in…nity for any x 2 X as required. Therefore, in this case DN will also diverge to minus in…nity. ¥

Proof of Theorem 2. Let the asymptotic null distribution of DN be given by G(w). This distrib-

ution is absolutely continuous because it is a functional of a Gaussian process whose covariance function is

nonsingular, see Lifshits (1982). Therefore, Theorem 2 holds if we establish

bGN;bbN (w)
p! G(w) 8w 2 R: (A.14)

Let Gb(w) = P
³p
bdN;b;i · w

´
= P

³p
bdb(W1; : : : ;Wb) · w

´
: Note that suplN·b·uN jGb(w) ¡G(w)j !

0;since b ¸ lN ! 1: Therefore, to establish (A.14), it su¢ces to verify

sup
lN·b·uN

¯̄
¯ bGN;b(w) ¡Gb(w)

¯̄
¯ p! 0 8w 2 R; (A.15)

since then we have P
³¯̄
¯ bGN;bbN (w) ¡G(w)

¯̄
¯ > "

´
! 0 8" > 0 by triangle inequality and Assumption 4.
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We now verify (A.15). For any " > 0 and integer q 2 (1; (N ¡ uN + 1) =2) ; we have

P
µ

sup
lN·b·uN

¯̄
¯ bGN;b(w) ¡G(w)

¯̄
¯ > "

¶

·
uNX

b=lN

P
³¯̄
¯ bGN;b(w) ¡G(w)

¯̄
¯ > "

´

· uN sup
lN·b·uN

P
³¯̄
¯ bGN;b(w) ¡G(w)

¯̄
¯ > "

´

· uN

(
4 exp

µ
¡"

2

8
q
¶
+ 22

µ
1 +

4
"

¶1=2

q®
µ·
N ¡ uN + 1

2q

¸¶)
; (A.16)

where the last inequality follows from Bosq (1998, Theorem 1.3). Take q = [((N ¡ uN + 1) =2)° ] ; where

° = (A¡ 1)=(A+1) with A satisfying Assumption 1(i). Then, the right hand side of (A.16) is bounded by

uN
©
O (exp (¡(N ¡ uN + 1))) + O

¡
(N ¡ uN + 1)¡1¢ª which converges to zero by Assumption 4. This

proves (A.15) and hence part (a) of Theorem 2. Given this result, part (b) of Theorem 2 holds since we

have

P
³
DN > gN;bbN (1 ¡ ®)

´
= P (DN > g(1 ¡ ®) + op(1)) ! ® as N ! 1:

¥

Proof of Theorem 3. The proof is similar to the proof of Theorem 2.6.1 of Politis et.al. (1999).¥
Proof of Theorem 4. The proof is similar to that of Theorem 1. Consider Lemmas 1-4 with

ºdkN (x; µ) now de…ned by

ºdkN(x; µ) =
1p
N

NX

i=1

[1 (Xki(µ) · x) ¡ FkN (x;µ)] for k = 1; :::; K: (A.17)

Then, by contiguity, the results of Lemmas 2 and 3 hold under the local alternatives. This result and

Assumption 2-lc imply that

p
N

h
F kN (x;bµk) ¡ F lN(x;bµl)

i

= ºdkN(x; µk0) ¡ ºdlN (x; µl0)
+¢k0(x)¡k0

p
N

¡
ÃkN(µk0) ¡ EÃkN(µk0)

¢
¡ ¢l0(x)¡l0

p
N

¡
Ã lN(µl0) ¡ EÃ lN (µl0)

¢

+ ¹kl(x) + op(1) uniformly in x 2 X ;

Therefore, it su¢ces to show that Lemma 4 holds under the local alternatives. This follows by a slight

modi…cation of the proof of Lemma 4 and using the CLT of Herrndorf (1984) for ®-mixing arrays to verify

the condition (iii) (…di convergence) of Theorem 10.2. of Pollard (1990). ¥
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Proof of Corollary 5. We know that gN;bbN (1 ¡ ®) p! g(1 ¡ ®) under the null hypothesis: By

contiguity, we have gN;bbN (1 ¡ ®) p! g(1 ¡ ®) under the local alternatives. The results of Corollary 5 now

follows immediately from Theorem 4. ¥
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B Table Information

The numbers are rejection frequencies for the test of First Order Stochastic Dominance (FSD) and
Second Order Stochastic Dominance (SSD) with critical values computed by the automatic methods
described in section 4.1.2 for the 5%, 10%, and 20% null rejection probabilities. The rejection
frequencies are computed from 1,000 replications.

The design parameters (column 1) are given in the tables in the text. Below, Table jF/S corre-
sponds to design j=1,2,3: Table ‘jF’ corresponds to the test of FSD, while Table ‘jS’ corresponds to
the test of SSD. Table 3RF corresponds to the test of FSD on residuals from designs 3, while Table

3RS corresponds to the test of SSD on residuals from designs 3.
The automatic subsample method is implemented on a grid of 20 subsample sizes: for n = 50,

the subsample sizes are {20; 21; : : : ; 40g; for n = 500 the subsample sizes are {50;65; : : : ; 350g; for

n = 1000 the subsample sizes are {100; 120; : : : ; 500g:
Mean and median refer to the critical values de…ned in (16) and (17); minvol is the minimum

volatility method described in that section. The columns labelled Boot refer to the recentered full
sample bootstrap described in 4.2 with 200 repetitions.
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Mean Median MinVol Boot
Design n 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

50 0.1140 0.1630 0.2610 0.137 0 0.1790 0.27 00 0.1850 0.2000 0.2990 0.063 0 0.1060 0.19 90

1a 500 0.0590 0.1080 0.1990 0.057 0 0.1070 0.19 80 0.1100 0.1610 0.2630 0.056 0 0.1040 0.18 00

d¤ = 0 1000 0.0460 0.0950 0.1850 0.050 0 0.0930 0.18 60 0.0710 0.1280 0.2060 0.049 0 0.1010 0.20 70

50 0.1030 0.1390 0.2470 0.118 0 0.1520 0.24 70 0.1600 0.1840 0.2740 0.055 0 0.0860 0.18 50

1b 500 0.0540 0.1010 0.2150 0.062 0 0.1070 0.21 70 0.1010 0.1620 0.2690 0.051 0 0.0830 0.19 00

d¤ = 0 1000 0.0480 0.0830 0.1690 0.048 0 0.0840 0.17 10 0.0720 0.1200 0.2090 0.059 0 0.0960 0.19 00

50 0.3610 0.4410 0.5760 0.364 0 0.4450 0.56 50 0.4120 0.4270 0.5740 0.685 0 0.7440 0.81 60

1c 500 0.9500 0.9530 0.9590 0.942 0 0.9500 0.95 70 0.8980 0.9150 0.9450 0.983 0 0.9830 0.98 30

d¤ > 0 1000 0.9600 0.9610 0.9700 0.960 0 0.9620 0.97 00 0.9580 0.9620 0.9860 0.995 0 0.9950 0.99 50

50 0.3730 0.4350 0.5430 0.368 0 0.4270 0.54 10 0.4100 0.4290 0.5600 0.684 0 0.7660 0.83 40

1d 500 0.9650 0.9680 0.9720 0.959 0 0.9640 0.97 20 0.8860 0.9130 0.9490 0.984 0 0.9840 0.98 70

d¤ > 0 1000 0.9580 0.9590 0.9680 0.957 0 0.9590 0.97 00 0.9520 0.9600 0.9850 0.994 0 0.9940 0.99 40

50 0.3790 0.4560 0.5890 0.380 0 0.4520 0.58 10 0.4180 0.4340 0.5880 0.656 0 0.7230 0.80 00

1e 500 0.9640 0.9720 0.9810 0.959 0 0.9660 0.97 70 0.8880 0.9150 0.9500 0.992 0 0.9920 0.99 20

d¤ > 0 1000 0.9530 0.9560 0.9660 0.953 0 0.9560 0.96 50 0.9480 0.9560 0.9770 0.992 0 0.9920 0.99 20

Table1F: Test of FSD
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Mean Median MinVol Boot
Design n 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

50 0.1010 0.1500 0.2440 0.128 0 0.1850 0.28 10 0.2110 0.2640 0.3510 0.066 0 0.1160 0.23 50

1a 500 0.0490 0.0920 0.1830 0.054 0 0.0990 0.18 50 0.1020 0.1560 0.2780 0.055 0 0.1210 0.22 70

s¤ = 0 1000 0.0540 0.0980 0.1760 0.058 0 0.1010 0.17 90 0.0660 0.1130 0.2180 0.050 0 0.1000 0.20 50

50 0.0760 0.1150 0.2150 0.105 0 0.1430 0.24 80 0.1710 0.2020 0.3090 0.061 0 0.1040 0.19 80

1b 500 0.0660 0.1270 0.2160 0.069 0 0.1280 0.22 10 0.1020 0.1630 0.2960 0.060 0 0.1220 0.21 30

s¤ = 0 1000 0.0680 0.1230 0.2300 0.069 0 0.1260 0.23 60 0.0960 0.1600 0.2770 0.050 0 0.0950 0.19 10

50 0.2390 0.3320 0.4960 0.247 0 0.3380 0.49 70 0.3240 0.3620 0.5300 0.336 0 0.4850 0.69 80

1c 500 0.9060 0.9420 0.9580 0.893 0 0.9250 0.95 00 0.8290 0.8550 0.9150 0.451 0 0.6530 0.91 20

s¤ > 0 1000 0.9570 0.9610 0.9700 0.956 0 0.9610 0.97 00 0.9510 0.9570 0.9880 0.545 0 0.7910 0.96 10

50 0.2230 0.3000 0.4400 0.234 0 0.3100 0.42 80 0.3120 0.3460 0.4820 0.329 0 0.4860 0.71 00

1d 500 0.9070 0.9360 0.9700 0.885 0 0.9160 0.95 50 0.8290 0.8630 0.9160 0.423 0 0.6610 0.90 50

s¤ > 0 1000 0.9570 0.9580 0.9680 0.955 0 0.9580 0.97 00 0.9390 0.9560 0.9820 0.524 0 0.7700 0.94 50

50 0.2090 0.3060 0.4510 0.229 0 0.3090 0.44 90 0.3070 0.3460 0.5050 0.299 0 0.4410 0.66 60

1e 500 0.8970 0.9410 0.9740 0.876 0 0.9230 0.96 20 0.8210 0.8660 0.9060 0.424 0 0.6520 0.89 70

s¤ > 0 1000 0.9490 0.9520 0.9650 0.949 0 0.9510 0.96 50 0.9380 0.9500 0.9770 0.484 0 0.7440 0.93 90

Table1S: Test of SSD
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Mean Median MinVol Boot
Design n 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

50 0.1110 0.1520 0.2500 0.133 0 0.1630 0.26 10 0.1720 0.1900 0.2890 0.054 0 0.0940 0.18 60

2a 500 0.0470 0.0860 0.1850 0.049 0 0.0880 0.18 90 0.0940 0.1450 0.2440 0.055 0 0.1040 0.20 30

d¤ = 0 1000 0.0680 0.1150 0.2020 0.071 0 0.1160 0.20 30 0.0890 0.1360 0.2310 0.044 0 0.1020 0.21 20

50 0.0790 0.1090 0.1880 0.086 0 0.1200 0.19 50 0.1220 0.1310 0.2210 0.072 0 0.1160 0.18 40

2b 500 0.0120 0.0390 0.1080 0.017 0 0.0490 0.12 00 0.0750 0.1570 0.2630 0.026 0 0.0490 0.08 20

d¤ = 0 1000 0.0210 0.0440 0.1350 0.028 0 0.0540 0.15 10 0.0710 0.1210 0.2570 0.018 0 0.0330 0.07 30

50 0.2960 0.3640 0.4970 0.299 0 0.3650 0.50 10 0.3800 0.3880 0.5230 0.453 0 0.5210 0.64 20

2c 500 0.9650 0.9860 0.9960 0.946 0 0.9740 0.99 10 0.8990 0.9400 0.9640 1.000 0 1.0000 1.00 00

d¤ > 0 1000 1.0000 1.0000 1.0000 0.999 0 1.0000 1.00 00 0.9940 0.9950 1.0000 1.000 0 1.0000 1.00 00

50 0.2640 0.3280 0.4400 0.273 0 0.3330 0.44 90 0.2550 0.2860 0.4250 0.173 0 0.2330 0.38 50

2d 500 0.9550 0.9800 0.9960 0.936 0 0.9640 0.98 80 0.9220 0.9280 0.9130 0.988 0 0.9950 1.00 00

d¤ > 0 1000 1.0000 1.0000 1.0000 0.998 0 1.0000 1.00 00 0.9970 0.9980 0.9990 1.000 0 1.0000 1.00 00

Table2F: Test of FSD
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Mean Median MinVol Boot
Design n 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

50 0.0680 0.1130 0.2070 0.098 0 0.1490 0.24 40 0.1980 0.2330 0.3410 0.056 0 0.1050 0.21 00

2a 500 0.0560 0.1040 0.1850 0.062 0 0.1080 0.20 10 0.1190 0.1700 0.3070 0.046 0 0.1010 0.20 90

s¤ = 0 1000 0.0620 0.1070 0.1950 0.066 0 0.1100 0.20 00 0.0840 0.1410 0.2320 0.065 0 0.1260 0.22 10

50 0.0580 0.0960 0.2000 0.094 0 0.1340 0.24 50 0.1600 0.2000 0.2850 0.078 0 0.1320 0.22 10

2b 500 0.0010 0.0120 0.0800 0.007 0 0.0230 0.11 00 0.0860 0.1430 0.2260 0.006 0 0.0200 0.08 20

s¤ = 0 1000 0.0040 0.0230 0.1120 0.010 0 0.0380 0.13 50 0.0500 0.0920 0.2100 0.001 0 0.0070 0.06 20

50 0.0010 0.0550 0.1320 0.165 0 0.2060 0.29 30 0.0410 0.0360 0.0290 0.006 0 0.0070 0.00 90

2c 500 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00

s¤ = 0 1000 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00

50 0.1680 0.2480 0.3880 0.187 0 0.2540 0.38 60 0.2300 0.2570 0.4090 0.027 0 0.0960 0.34 80

2d 500 0.9100 0.9580 0.9930 0.889 0 0.9360 0.97 20 0.8350 0.8780 0.9210 0.332 0 0.7180 0.97 90

s¤ > 0 1000 0.9990 1.0000 1.0000 0.998 0 1.0000 1.00 00 0.9920 0.9920 0.9990 0.860 0 0.9910 1.00 00

Table2S: Test of SSD
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Mean Median MinVol Boot
Design n 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

50 0.6120 0.6830 0.7860 0.604 0 0.6690 0.76 80 0.5640 0.5720 0.6900 0.959 0 0.9750 0.98 70

3a 500 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 0.9930 0.9950 1.0000 1.000 0 1.0000 1.00 00

d¤ > 0 1000 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00

50 0.0580 0.0830 0.1540 0.065 0 0.0910 0.16 00 0.1040 0.1110 0.1800 0.025 0 0.0490 0.08 60

3b 500 0.0000 0.0000 0.0040 0.002 0 0.0030 0.01 60 0.0440 0.0680 0.0950 0.000 0 0.0000 0.00 00

d¤ < 0 1000 0.0000 0.0000 0.0020 0.001 0 0.0040 0.01 30 0.0190 0.0300 0.0640 0.000 0 0.0000 0.00 00

50 0.6010 0.6510 0.7770 0.586 0 0.6460 0.76 60 0.5480 0.5560 0.6800 0.949 0 0.9830 0.98 90

3c 500 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 0.9960 0.9970 1.0000 1.000 0 1.0000 1.00 00

d¤ > 0 1000 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00

Table3F: Test of FSD

Mean Median MinVol Boot

Design n 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

50 0.0010 0.0530 0.1250 0.160 0 0.1970 0.28 20 0.0710 0.0530 0.0460 0.021 0 0.0260 0.03 20

3a 500 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00

s¤ = 0 1000 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00

50 0.0430 0.0870 0.1710 0.121 0 0.1750 0.27 50 0.1990 0.2060 0.2480 0.044 0 0.0760 0.15 10

3b 500 0.0000 0.0010 0.0240 0.006 0 0.0150 0.05 00 0.1180 0.1380 0.1560 0.000 0 0.0010 0.00 70

s¤ = 0 1000 0.0000 0.0030 0.0180 0.003 0 0.0090 0.02 30 0.0110 0.0220 0.0660 0.000 0 0.0000 0.00 00

50 0.5250 0.5850 0.6990 0.518 0 0.5730 0.69 80 0.5330 0.5790 0.6810 0.934 0 0.9380 0.94 90

3c 500 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 0.9890 0.9900 0.9960 1.000 0 1.0000 1.00 00

s¤ > 0 1000 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00

Table3S: Test of SSD
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Mean Median MinVol Boot
Design n 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

50 0.5220 0.5880 0.7220 0.516 0 0.5780 0.69 80 0.5060 0.5200 0.6380 0.927 0 0.9540 0.97 50

3d 500 1.0000 1.0000 1.0000 0.998 0 1.0000 1.00 00 0.9940 0.9960 1.0000 1.000 0 1.0000 1.00 00

d¤ > 0 1000 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00

50 0.0860 0.1220 0.2000 0.098 0 0.1260 0.20 00 0.1580 0.1800 0.2480 0.010 0 0.0280 0.06 70

3e 500 0.0000 0.0000 0.0040 0.000 0 0.0020 0.01 80 0.0280 0.0380 0.0840 0.000 0 0.0000 0.00 00

d¤ = 0 1000 0.0000 0.0000 0.0000 0.002 0 0.0020 0.00 80 0.0060 0.0160 0.0560 0.000 0 0.0000 0.00 00

50 0.5320 0.6240 0.7320 0.536 0 0.6220 0.71 80 0.5320 0.5400 0.6780 0.944 0 0.9690 0.98 50

3f 500 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 0.9880 0.9920 0.9960 1.000 0 1.0000 1.00 00

d¤ > 0 1000 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00

Table3RF: Test of FSD on residuals

Mean Median MinVol Boot

Design n 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

50 0.0060 0.0080 0.0120 0.006 0 0.0140 0.03 20 0.0120 0.0140 0.0120 0.025 0 0.0270 0.02 80

3d 500 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00

s¤ = 0 1000 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00 0.0000 0.0000 0.0000 0.000 0 0.0000 0.00 00

50 0.0680 0.0880 0.1620 0.070 0 0.1060 0.17 60 0.1280 0.1540 0.2100 0.031 0 0.0620 0.14 00

3e 500 0.0000 0.0040 0.0420 0.006 0 0.0180 0.05 00 0.0240 0.0400 0.1000 0.001 0 0.0010 0.00 40

s¤ = 0 1000 0.0000 0.0000 0.0100 0.002 0 0.0060 0.03 20 0.0120 0.0180 0.0600 0.000 0 0.0000 0.00 00

50 0.5320 0.5960 0.6960 0.522 0 0.5920 0.68 80 0.5340 0.5640 0.6540 0.919 0 0.9260 0.93 30

3f 500 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 0.9860 0.9920 0.9980 1.000 0 1.0000 1.00 00

s¤ > 0 1000 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00 1.0000 1.0000 1.0000 1.000 0 1.0000 1.00 00

Table3RS: Test of SSD on residuals
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C Some Supporting Material

C.1 Design

We show the cdf’s and integrated cdf’s for the various designs used in our simulations.
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C.2 Fixed Subsample Size Results

We show some results from the subsample based test when a …xed subsample is used. The …gure
below shows the rejection frequencies of the FSD test on designs 1a-1e [row 1 is design 1a, etc] as a
function of subsample size.
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C.2.1 Multivariate Simulations

In this simulation we generate data from N (0; Ik); where the dimensionality k = 2;3; : : : ; 10: We use
the automatic subsample rules applied in the bivariate case and sample sizes n = 50; 500; 1000: Note
that the Monte Carlo standard errors are approximately 0.013 when the target is 0.20. The null

hypothesis is true throughout here. The results are shown in Tables 4a,b. The results suggest that
the performance does not deteriorate too rapidly with dimensionality. In fact, in many cases size is
better with larger dimension.
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Mean Median MinVol
n k 5% 10% 20% 5% 10% 20% 5% 10% 20%

2 0.2180 0.27 43 0.3603 0.2221 0.2702 0.3726 0.22 21 0.2 835 0.35 52

3 0.2006 0.24 56 0.2979 0.2057 0.2508 0.3050 0.20 16 0.2 385 0.30 40

4 0.2170 0.27 64 0.3582 0.2139 0.2764 0.3327 0.22 82 0.2 794 0.35 52

5 0.2037 0.22 42 0.2958 0.1883 0.2016 0.2170 0.20 06 0.2 098 0.25 18

50 6 0.2190 0.27 33 0.4094 0.1474 0.1607 0.2518 0.17 30 0.2 006 0.28 15

7 0.2221 0.31 73 0.3910 0.0952 0.1484 0.2805 0.18 94 0.2 416 0.31 63

8 0.2825 0.30 09 0.3183 0.1433 0.2190 0.2897 0.21 80 0.2 702 0.30 71

9 0.2405 0.24 67 0.2477 0.1627 0.2047 0.2436 0.20 16 0.2 242 0.24 05

10 0.1914 0.19 14 0.1986 0.1627 0.1760 0.1883 0.17 91 0.1 863 0.19 14

2 0.1218 0.19 14 0.3009 0.1157 0.1924 0.2948 0.11 57 0.1 965 0.31 42

3 0.1484 0.19 45 0.2784 0.1505 0.2027 0.2774 0.20 27 0.2 702 0.33 06

4 0.1157 0.16 07 0.2528 0.1146 0.1576 0.2569 0.12 28 0.1 627 0.28 56

5 0.1290 0.18 01 0.2866 0.1320 0.1740 0.2835 0.20 78 0.2 671 0.34 29

500 6 0.1290 0.19 45 0.2661 0.1402 0.1965 0.2651 0.15 76 0.2 006 0.28 56

7 0.0952 0.13 92 0.2313 0.0880 0.1412 0.2375 0.09 62 0.1 576 0.29 58

8 0.0962 0.14 23 0.2395 0.0921 0.1464 0.2426 0.13 51 0.1 842 0.28 86

9 0.0890 0.15 86 0.2467 0.0942 0.1668 0.2733 0.12 28 0.1 965 0.29 68

10 0.1085 0.17 71 0.2907 0.1116 0.1863 0.3009 0.18 53 0.2 242 0.31 63

2 0.1116 0.14 84 0.2446 0.1085 0.1484 0.2497 0.12 49 0.1 996 0.29 17

3 0.0850 0.12 49 0.2272 0.0942 0.1228 0.2068 0.09 21 0.1 341 0.21 70

4 0.0880 0.11 87 0.2272 0.0942 0.1218 0.2293 0.13 10 0.1 760 0.27 02

5 0.1024 0.14 23 0.2282 0.0993 0.1412 0.2293 0.13 31 0.1 853 0.26 61

1000 6 0.1003 0.13 92 0.2323 0.1013 0.1361 0.2344 0.09 72 0.1 453 0.24 46

7 0.0686 0.12 90 0.1996 0.0676 0.1259 0.2160 0.07 16 0.1 136 0.23 13

8 0.0993 0.16 58 0.2487 0.1075 0.1750 0.2538 0.10 44 0.1 924 0.27 43

9 0.0819 0.12 38 0.2344 0.0870 0.1331 0.2303 0.09 21 0.1 720 0.27 33

10 0.0890 0.14 64 0.2764 0.0860 0.1535 0.2641 0.16 38 0.2 119 0.30 40

Table4a: Test of FSD
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Mean Median MinVol
n k 5% 10% 20% 5% 10% 20% 5% 10% 20%

2 0.1648 0.21 19 0.2979 0.1955 0.2446 0.3347 0.23 95 0.2 692 0.34 60

3 0.1238 0.15 46 0.1975 0.1730 0.1996 0.2712 0.26 61 0.2 497 0.24 26

4 0.1024 0.12 08 0.1679 0.1024 0.1208 0.2047 0.09 11 0.0 798 0.07 37

5 0.0962 0.11 67 0.1525 0.0635 0.1024 0.2027 0.02 35 0.0 235 0.02 56

50 6 0.0942 0.10 75 0.1494 0.0747 0.1177 0.2252 0.00 51 0.0 051 0.00 51

7 0.0757 0.09 21 0.1310 0.0798 0.1341 0.2477 0.00 31 0.0 031 0.00 31

8 0.0645 0.07 68 0.1249 0.1075 0.1597 0.2753 0.00 00 0.0 000 0.00 00

9 0.0522 0.06 14 0.1167 0.1269 0.1812 0.3019 0.00 00 0.0 000 0.00 00

10 0.0450 0.07 37 0.1290 0.1228 0.1720 0.2989 0.00 00 0.0 000 0.00 00

2 0.1249 0.16 68 0.2569 0.1208 0.1658 0.2631 0.11 57 0.1 801 0.26 51

3 0.0890 0.14 53 0.2426 0.1249 0.1668 0.2651 0.22 72 0.2 764 0.34 49

4 0.0481 0.08 90 0.1617 0.0768 0.1341 0.1883 0.17 20 0.1 873 0.19 55

5 0.0665 0.10 75 0.1464 0.0768 0.0901 0.0962 0.09 01 0.0 993 0.09 93

500 6 0.0665 0.08 90 0.1290 0.0389 0.0399 0.0399 0.03 99 0.0 399 0.03 99

7 0.0450 0.07 06 0.1054 0.0113 0.0113 0.0113 0.01 13 0.0 113 0.01 13

8 0.0706 0.08 80 0.1075 0.0092 0.0092 0.0092 0.00 92 0.0 092 0.00 92

9 0.0829 0.08 50 0.1044 0.0061 0.0061 0.0061 0.00 61 0.0 061 0.00 61

10 0.0522 0.06 45 0.0809 0.0000 0.0000 0.0000 0.00 00 0.0 000 0.00 00

2 0.1095 0.14 43 0.2190 0.1126 0.1515 0.2272 0.13 41 0.1 801 0.25 28

3 0.0665 0.10 03 0.1791 0.0645 0.1136 0.2139 0.08 19 0.1 341 0.25 90

4 0.0553 0.11 05 0.1812 0.0706 0.1259 0.1934 0.11 98 0.1 668 0.21 70

5 0.0645 0.09 62 0.1249 0.0706 0.1013 0.1198 0.10 13 0.1 198 0.11 98

1000 6 0.0420 0.05 53 0.0645 0.0563 0.0563 0.0563 0.05 63 0.0 563 0.05 63

7 0.0174 0.02 15 0.0307 0.0184 0.0184 0.0184 0.01 84 0.0 184 0.01 84

8 0.0041 0.01 02 0.0246 0.0041 0.0041 0.0041 0.00 41 0.0 041 0.00 41

9 0.0031 0.00 82 0.0307 0.0031 0.0031 0.0031 0.00 31 0.0 031 0.00 31

10 0.0031 0.00 61 0.0205 0.0031 0.0031 0.0031 0.00 31 0.0 031 0.00 31

Table 4b: Test of SSD
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