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How to Improve the Performances of DEA/FDH

Estimators in the Presence of Noise?1

Léopold Simar

Institute of Statistics, Université Catholique de Louvain,
20 Voie du Roman Pays, B–1348 Louvain–la–Neuve

Summary

In frontier analysis, most of the nonparametric approaches (DEA, FDH) are
based on envelopment ideas which suppose that with probability one, all the
observed units belong to the attainable set. In these “deterministic” frontier
models, statistical theory is now mostly available. In the presence of noise,
this is no more true and envelopment estimators could behave dramatically
since they are very sensitive to extreme observations that could result only
from noise. DEA/FDH techniques would provide estimators with an error of
the order of the standard deviation of the noise. In this paper we propose
to adapt some recent results on detecting change points, to improve the
performances of the classical DEA/FDH estimators in the presence of noise.
We show by simulated examples that the procedure works well when the
noise is of moderate size, in term of noise to signal ratio. It turns out that
the procedure is also robust to outliers.

Keywords: Nonparametric frontier, Stochastic DEA/FDH, Robustness to
outliers
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1 Introduction

The efficiency scores of economic producers are usually evaluated by mea-
suring the radial distance, either in the input space or in the output space,
from each producer to an estimated production frontier. The nonparametric
approaches known as Free Disposal Hull (FDH) and as Data Envelopment
Analysis (DEA) are based on the idea of enveloping the data, under various
assumptions on the technology such as free disposability, convexity or scale
restrictions, without imposing any uncertain parametric structure.

These methods have been widely applied to examine technical and al-
locative efficiency in a variety of industries; see Lovell (1993) and Seiford
(1996, 1997) for comprehensive bibliographies of these applications. Aside
from the production setting, the problem of estimating monotone concave
boundaries also naturally occurs in portfolio management. In capital asset
pricing models (CAPM), the objective is to analyze the performance of in-
vestment portfolios. Risk and average return on a portfolio are analogous
to inputs and outputs in models of production; in CAPM, the attainable set
of portfolios is naturally convex and the boundary of this set gives a bench-
mark relative to which the efficiency of a portfolio can be measured. These
models were developed by Markovitz (1959) and others; Sengupta (1991) and
Sengupta and Park (1993) provide links between CAPM and nonparametric
estimation of frontiers as in DEA.

The main drawback to these models is that they refer to so-called “deter-
ministic” frontier models, in the sense that all the observations are considered
as feasible with probability one: no noise, or errors in measurements is al-
lowed. Hall and Simar (2002) have proposed a technique which allows to
estimate a boundary point in the presence of noise. The method performs
well if the noise is not too important in terms of a noise to signal ratio. Hall-
Simar’s approach is basically univariate, even if it contains some bivariate
extensions.

In this paper, we show how to adapt the Hall-Simar methodology to a
multivariate frontier setup, providing stochastic DEA/FDH estimators which
can improve the performance of the standard DEA/FDH estimators in the
presence of noise. Numerical illustrations will show that the procedure works
well if the noise to signal ratio is not too large and that the procedure appears
also to be robust to outliers.

The paper is organized as follows. The next section introduce the basic
concepts and notations. Section 3 presents the extension of the Hall-Simar
procedure to define the stochastic DEA/FDH estimators. Section 4 illustrates
with some selected simulated samples and Section 5 concludes.
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2 Basic Concepts and Notations

2.1 The Economic Model

We begin by introducing some basic concepts of nonparametric efficiency
measurement in the spirit of Simar and Wilson (2000a). We limit the pre-
sentation in the input oriented case, the same could be done in an output
orientation. Suppose producers use input vector x ∈ IRp

+ to produce output
vector y ∈ IRq

+. The production set of the feasible input-output combinations
can be defined as:

Ψ =
{

(x, y) ∈ IRp+q
+ | x can produce y

}
. (1)

Often, various assumptions are made on the attainable set, such as free
disposability, convexity, returns to scale,. . . (see e.g. Shephard, 1970, for a
modern formulation of the problem). Free disposability of inputs and of
outputs is equivalent to: if (x, y) ∈ Ψ, then (x′, y′) ∈ Ψ, as soon as x′ ≥ x
and y′ ≤ y. Often, but not always, convexity of Ψ is also assumed. We will
not impose any returns to scale restrictions in our presentation here.

For any y ∈ IRq
+ we denote by X (y) the input requirement set, i.e. the

set of all input vectors which yield at least y :

X (y) =
{
x∈IRp

+| (x, y) ∈ Ψ
}
.

The Farrell-Debreu input efficient frontier is a subset of X (y) and is given
by:

∂X (y) =
{
x ∈ IRp

+| x ∈ X (y) , θx/∈X (y) ∀θ ∈ (0, 1)
}
.

The corresponding Farrell-Debreu input-oriented measure of technical effi-
ciency can now be defined as:

θ (x, y) = inf {θ| θx ∈ X (y)} . (2)

A value θ(x, y) = 1 means that producer (x, y) is input efficient, while a value
θ(x, y) < 1 suggests the radial reduction in all inputs that producer (x, y)
should perform in order to produce the same output being input-efficient.
For a given level of output and an input direction, the efficient level of input
is defined by:

x∂ (x, y) = θ(x, y)x. (3)

The basic definition of radial technical efficiency dates back to Debreu (1951)
and Farrell (1957).

Note that under free disposability, Daraio and Simar (2003), extending
previous results from Cazals, Florens and Simar (2002), propose a proba-
bilistic interpretation of the Farrell-Debreu efficiency score. Consider the
production process as defined by the joint probability measure of (X,Y ) on
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IRp
+ × IRq

+. The support of (X,Y ) is the attainable set Ψ, and the Farrell-
Debreu input efficiency is defined as:

θ(x, y) = inf{θ | FX(θx | y) > 0}, (4)

where FX(x | y) = Prob(X ≤ x | Y ≥ y). Note that the conditioning is
made on Y ≥ y and not on Y = y (this is linked to the freely disposable
assumption on the outputs).

Since the attainable set Ψ is unknown, so are its sections X(y), the input
frontier level for a particular point (x, y), x∂ (x, y), and the input efficiency
score θ(x, y). The best we can do is to estimate these quantities from a sample
of i.i.d. observations X = {(xi, yi) | i = 1, . . . , n}, generated according the
joint probability measure of (X,Y ).

2.2 The Non-parametric Envelopment Estimators

2.2.1 The FDH Estimator

The FDH approach was initiated by Deprins, Simar and Tulkens (1984), it
relies on the only assumption that Ψ is freely disposable for the inputs and
for the outputs. The estimator Ψ̂FDH is defined as the free disposal hull
(FDH) of X :

Ψ̂FDH =
{

(x, y) ∈ IRp+q
+ |y ≤ yi, x ≥ xi, (xi, yi) ∈ X

}
(5)

Then, for instance, the estimator of the input efficiency score for a given
point (x, y) in Ψ is given by:

θ̂FDH(x, y) = inf{θ | (θx, y) ∈ Ψ̂FDH(X )} (6)

Note that this is equivalent to the plug-in version of (4),

θ̂FDH (x, y) = inf{θ | F̂X,n(θx | y) > 0}

where F̂X,n(θx | y) is the empirical analog of FX(x|y).

F̂X,n(x | y) =

∑n
i=1 1I(xi ≤ x, yi ≥ y)∑n

i=1 1I(yi ≥ y)
,

where 1I(·) is the indicator function.
The computation of the FDH scores is very easy: let D be the set of

observed points dominating (x, y):

D = {i | (xi, yi) ∈ X , xi ≤ x, yi ≥ y}

Then,

θ̂FDH(x, y) = min
i∈D

max
j=1,...,p

(
xji
xj

)
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The estimation of efficient level of inputs for the point (x, y) is then obtained
through:

x̂∂FDH (x, y) = θ̂FDH(x, y)x.

2.3 The DEA Estimator

Based on Farrell (1957)’s ideas, Charnes, Cooper and Rhodes (1978) proposed
a linear programming model for estimating the efficiency score when based
on the assumptions of free disposability and of convexity of Ψ. It turns out
that this estimator is the convex hull of Ψ̂FDH :

Ψ̂DEA = {(x, y) ∈ IRp+q |y ≤
n∑

i=1

γiyi;x ≥
n∑

i=1

γixi for (γ1, . . . , γn)

such that

n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}. (7)

The estimation of efficiency score for a given unit (x, y) is now relative to the

boundary of Ψ̂DEA

θ̂DEA(x, y) = inf{θ | (θx, y) ∈ Ψ̂DEA(X )} (8)

It is computed through the following linear program:

θ̂DEA(x, y) = min{θ > 0|y ≤
n∑

i=1

γiyi; θx ≥
n∑

i=1

γixi for (γ1, . . . , γn)

such that

n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}. (9)

The estimation of the efficient level of inputs fro a point (x, y) is given by:

x̂∂DEA(y) = θ̂DEA(x, y)x.

2.3.1 Properties

The DEA/FDH methods are now very popular and widely used due to their
nonparametric nature which requires very few assumptions on technology.
Although labeled deterministic, statistical properties of DEA/FDH estima-
tors are now available (see Simar and Wilson, 2000a).

Banker (1993) proved the consistency of the DEA efficiency estimator,
but without giving any information on the rate of convergence. Korostelev,
Simar and Tsybakov (1995a, 1995b) proved the consistency of DEA and the
FDH estimators of the attainable set and also derived the speed of conver-
gence whereas, Kneip, Park and Simar (1998) proved the consistency of DEA
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efficiency scores in the multivariate case, providing the rates of convergence
as well. Gijbels, Mammen, Park and Simar (1999) derived an explicit asymp-
totic distribution of DEA efficiency scores in the bivariate case (one input and
one output) and Kneip, Simar and Wilson (2003) obtained the more general
result in a complete multivariate setup, but without an closed analytical for-
mula for the asymptotic law. For the FDH approach, Park, Simar and Weiner
(2000) shows that the asymptotic distribution of the FDH efficiency scores is
related to a Weibull distribution.

To summarize we have, under regularity conditions (smoothness of the
frontier and positive density f(x, y) > 0 on the efficient frontier),

• (Park, Simar and Weiner, 2000)2 under the assumption of free dispos-
ability of the inputs and of the outputs, we have for any (x, y) in the
interior of Ψ:

n1/(p+q)

(
θ̂FDH(x, y)

θ(x, y)
− 1

)
∼Weibull(·)

where the parameters of the Weibull depends mainly on the density of
(X,Y ) and on the shape of the boundary in the neighborhood of the
point (x∂(x, y), y).

• (Kneip, Simar and Wilson, 2003) under the assumption of free dispos-
ability of the inputs and of the outputs and if Ψ is convex, we have for
any (x, y) in the interior of Ψ:

n2/(p+q+1)

(
θ̂DEA(x, y)

θ(x, y)
− 1

)
∼ D+(·)

where no explicit closed analytical form is available for D+. Again, this
distribution depends on the density of (X,Y ) and on the shape of the
boundary in the neighborhood of the point (x∂(x, y), y).

In the latter case, the bootstrap seems the only sensible alternative to ap-
proximate the limiting distribution, but as known in boundary estimation,
the naive bootstrap is inconsistent. See Simar and Wilson (1998, 2000b)
and Kneip, Simar and Wilson (2003) for details: the solution is based on
smoothing and/or on subsampling techniques.

2.4 Stochastic versus Deterministic frontiers

The basic drawback of the DEA/FDH envelopment estimators is that they
rely on a deterministic frontier model which assumes that

Prob ((X,Y ) ∈ Ψ) = 1, (10)
2Park, Simar and Weiner (2000) state their results in terms of the differences

θ̂FDH(x, y) − θ(x, y), but their argument can be adapted to the ratios.
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so that all the observations (xi, yi) ∈ Ψ, i = 1, . . . , n with probability 1. In
other words, no noise or errors in measurements are allowed.

In particular, the DEA/FDH, as in any “deterministic” approaches, are
very sensitive to outliers and/or to extreme values. Cazals, Florens, Simar
(2002) have developed a robust version of DEA/FDH based on a concept
of order-m frontier and propose a “trimmed” frontier estimator which does
not envelop all the data points (m is the trimming parameter). In the same
spirit, Simar (2003) proposes to use the order-m approach to detect outliers
to clean the data before using DEA/FDH estimators. But the basic ideas of
these approaches rest mainly on the deterministic hypothesis (10).

In the presence of noise, the envelopment estimators could lead to biased
and not consistent estimators, and so the inference based on any bootstrap
algorithm would be flawed when using DEA/FDH approaches.

The econometric literature has only proposed parametric approaches to
handle the so called stochastic frontier models. Basic works dates back to
Aigner, Lovell and Schmidt (1977), and Meeusen and van den Broek (1977).
In their approaches (and all the existing variants), specific parametric an-
alytical forms are needed for the shape of the boundary of Ψ, and for the
probability structure of the noise and of the efficiency distributions. Typi-
cally, the models take the (log-)linear form3

yi = β0 + β′xi + vi − ui, i = 1, . . . , n (11)

where, for instance the random inefficiency term is ui ∼ Exp(λ) and the
noise term is vi ∼ N(0, σ2). Generally, it is supposed that v is independent
of (u, x) and that also u is independent of x. These approaches work well and
have well established properties but they are limited by all these restricted
uncertain parametric hypotheses.

Kneip and Simar (1996) propose a nonparametric stochastic frontier model
in the case of a panel of data. The model can be written as

yit = hi(xit) + εit (12)

where yit ∈ IR+ and xit ∈ IR+
p, i = 1, . . . , n and t = 1, . . . , T . The method

provides nonparametric ĥi(·), i = 1, . . . , n but it needs large values of T to
get sensible results.

So far, there are no approaches in the literature which allow to handle gen-
eral nonparametric stochastic frontier models with cross-section. We would
indeed like to obtain estimable nonparametric stochastic frontier models in
the most general setup where yi ∈ IRq

+ and xi ∈ IR+
p, i = 1, . . . , n. The

model could be written as follows: we observe noisy data (x̃i, ỹi):

(x̃i, ỹi) = (xi, yi) + (ε1i, ε2i) (13)

3Here we present the traditional production frontier model where output inefficiency ui
is relevant. The same could be done with a cost frontier model where input inefficiency
would be the quantity of interest.
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where (xi, yi) ∈ Ψ, i = 1, . . . , n with probability 1 and (ε1i, ε2i) ∈ IRp+q is
the noise. The appropriate nonparametric statistical model would rely on
an unspecified pdf f(x, y) on the unknown support Ψ with unknown pdf
f(ε1, ε2) on IRp+q .

We know from Hall and Simar (2002) that under a so general setup, the
model is not identified. However, they show, in the very particular univariate
frontier problem (q = 0 and p = 1), that if the variance of the noise is not
too big, we can improve the naive envelopment estimator. In this univariate
setup, if σ2 is the order of the variance of ε (relative to the variance of the
signal V ar(X)), then, DEA/FDH envelopment estimator makes an error of
order O(σ). Hall and Simar (2002) propose an improved estimator leading
to an error of order O(σ2) or O(σ3).

In the next section, we summarizes Hall and Simar’s basic ideas and we
propose a multivariate stochastic frontier model where these ideas can be
extended. Then we illustrates how the method is useful in practice, and in
particular we show that it provides DEA/FDH estimators more robust to
outliers.

3 Improving Envelopment Estimator in the pres-
ence of Noise

3.1 The Univariate Problem (Hall and Simar, 2002)

Consider the simplest case of a univariate frontier where the “signal” (a single
input) X is bounded by the unknown φ:

fX(·) is unknown

fX(x) = 0 for all x < φ

fX(φ) > 0

The “noise” is represented by the random variable ε with fε(·) unknown. We
only observe an i.i.d. sample {z1, . . . , zn} where zi = xi + εi for i = 1, . . . , n.

As pointed by Hall and Simar (2002), this simple model is not identified
even if we impose that fε is unimodal with mode at zero and that fε is
symmetric. Even in the latter case, there may be an infinite number of
values of φ for a given density fZ . But if we do not try to estimate fully
fX(x), and only focus on its boundary φ, the ordinary DEA/FDH estimator

of φ in this univariate setup is φ̂ = mini=1,...,n{zi}. This estimator provides
an error (bias) of order4 O(σ) where σ2 = Var(ε). How to improve this
estimator when σ is small?

Denote the density of the noise as fε(ε) and represent it as fε(ε) =
σ−1g(ε/σ). Let α = arg max |f ′Z(z)| where argmax is for |z − φ| < cσ2

4We realize here that indeed what is important is the size of the noise to signal ratio
ρnts = σε/σX , since the random variables could be scaled by the standard deviation of X.
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for any c > 0. It may be proven that if (a) fX has two continuous derivatives
to the right of φ, (b) fX(φ+) > 0, (c) g is unimodal with its mode at zero, (d)
g has two continuous derivatives in a neighborhood of zero, with g′′(0) 6= 0,
then5 for small σ we have

α = φ+
f ′X(φ+)g(0)

fX(φ+)|g′′(0)|σ
2 +O(σ3) (14)

So we obtain indeed:

α = φ+O(σ2) (15)

α = φ+ ct +O(σ3) (16)

where ct can be interpreted as a bias correction term. So this suggests a
very simple estimator of φ which behaves better than the DEA/FDH φ̂ if σ

is small. We could indeed consider a nonparametric estimator f̂Z of fZ by
using standard kernel methods

f̂Z(z) =
1

nh

n∑

i=1

K

(
z − zi
h

)
,

where K(·) is a kernel function and h is a bandwidth. Then we compute

α̂ = arg max |f̂ ′Z(z)| in the left-hand tail of Z. Optimal theoretical sizes of
the bandwidth h can be obtained and a data-driven adaptive method for
selecting h in practice is suggested. It is shown that

φ̃ = α̂ = φ+O(σ2) + op(1). (17)

where op(1) → 0 as n → ∞. The asymptotic is provided for |α̂ − α|, when

n→∞ and for |φ̃− φ|, when n→∞ and σ � n−ε for some ε > 0.
The expression (16) suggest an additional refinement if an appropriate es-

timator of ct could be obtained. As shown in Hall and Simar (2002) this could

be achieved by a quartic fitting of −f̂ ′Z in a neighborhood of α̂, obtaining

−f̂ ′Z(α̂+ u) ≈ Ĉ0 − Ĉ2u
2 + Ĉ3u

3 + Ĉ4u
4, for u ≈ 0.

Taking

ĉt = − 3Ĉ0Ĉ3

2(Ĉ2
2 − 6Ĉ0Ĉ4)

,

it may be shown that

φ̃c = α̂− ĉt = φ+O(σ3) + op(1). (18)

5It should be noted that the assumptions on the density of ε are verified, for instance,
if ε is Normally distributed with mean zero.
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So the latter estimator as an order of error O(σ3) which is still better than φ̃
when σ is small. The estimator ĉt is rather unstable, being the ratio of two
random variables, so a bagging method is used to damp the fluctuations.

Numerical performances of both estimators φ̃ and φ̃c in moderate sample
sizes are provided in Hall and Simar by Monte-Carlo simulations for n from
20 to 1000, with different scenarios for fX , and normal noise ε, with different
noise to signal ratios ρnts = σε/σX going from 0.10 to 0.20.

All these simulations show indeed that both estimators substantially im-
prove the performance of the basic envelopment estimator of φ when ρnts =
σε/σX is not too large.

3.2 A Stochastic DEA/FDH Approach

The basic idea is to introduce, by analogy with the parametric stochastic
frontier models, the noise in the input space (if input-oriented) or in the out-
put space (if output oriented). In parametric models, the response variable
(the input or the output) is univariate and, as in (11), additive inefficiency
(−ui) and noise (vi) complete the model. However, in nonparametric setups,
the inputs and/or the outputs can be multivariate and since the efficiency
measures are radial measures, we introduce the noise, as the inefficiency, in
the appropriate radial direction (input or output), by using polar coordinates.
The presentation below is for the input oriented case.

We will first define the DGP, generating points inside Ψ, as in Kneip, Park
and Simar (1998), and then we will introduce the noise. The data (xi, yi)
are iid random variables generated according the density f(x, y) having sup-
port Ψ. We can formulate the joint density in terms of the (partial-)polar
coordinates (ω, η, y), where we use polar coordinates only for the input, so
that (x, y) ⇔ (ω, η, y), where ω ∈ IR+ is the modulus and η ∈ [0, π/2](p−1)

is the amplitude (angle). Often, η is referred as the “input mix”, since it
determines the ray x. This is illustrated in Figure 1, when p = 2.

The joint density f(x, y) induce a density f(ω, η, y) on the polar coordi-
nates and we decompose this joint density as follows:

f(ω, η, y) = f(ω | η, y) f(η | y) f(y),

where we assume all the conditional densities exist. For a given (η, y) the
frontier point x∂(x, y) has a modulus which can be described through the
lower boundary of the support of the density f(ω | y, η):

ω(x∂(x, y)) = inf{ω ∈ IR+ | f(ω | y, η) > 0} (19)

Note that

0 ≤ θ(x, y) =
ω(x∂(x, y))

ω(x)
≤ 1.
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Figure 1: Polar coordinates in the input space for a particular section X(y).

From the latter expression, it can be seen that the density f(ω | y, η) with
support [ω(x∂(y)),∞] induces a density f(θ | y, η) on [0, 1]. But we will keep
the notation and the probability description in terms of the modulus ω.

In order to achieve consistency, Kneip, Park and Simar (1998) need two
regularity conditions:

1. The function θ(x, y) is differentiable in both arguments (smoothness of
the frontier);

2. For all y and η, f(ω(x∂(x, y)) | y, η) > 0 (positive density on the
efficient frontier).

All what precedes defines a DGP which generates data points inside the
“deterministic” frontier of Ψ.

Now we can introduce the noise through the univariate modulus ω, condi-
tionally of the output level y and of the input mix η (this is the multivariate
analog of the parametric stochastic model (11)). We suppose that the obser-
vations are made on noisy data in the input direction: {(x̃i, yi), i = 1, . . . , n}
are i.i.d. random variables, with polar coordinates (ω̃i, ηi, yi) where

ω̃i = ωi + εi (20)

with E(εi|ηi, yi) = 0 and ωi independent of εi.
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For a given point of interest (x, y) with polar coordinates (ω, η, y), the
problem of the estimation of the frontier, in the presence of noise is back to
an univariate boundary estimation problem: given (η, y), we search for the
univariate estimation of ω(x∂(x, y)), as defined in (19), in the presence of
noise as defined in (20).

The method for estimating ω(x∂(x, y)) is now straightforward: for any
given (η, y), we estimate ω(x∂(x, y)) as the boundary of the support of f(ω |
y, η) and we adapt the univariate method to this particular setup.

1. Transform all the data (x̃i, yi) into polar coordinates (ω̃i, ηi, yi)

2. For a given the ray (η, y), project onto the ray, those data whose co-
ordinates (ηi, yi) lies within a given bandwidth of (η, y) (this defines a
conical neighborhood of (η, y)).

3. The projected data are on a real line, so they can be used to produce
either ω̂(x∂(x, y)) or ω̂c(x

∂(x, y)) by using the univariate techniques
described above.

The curse of dimensionality is implicit here, since the number of points
in the conical-neighborhood of (η, y), decreases when p + q increases. The
Monte-Carlo experiments have shown that this number should not be less,
say, than 10. So we should use a k-nearest neighbors method (with k ≥ 10),
for defining the conical-neighborhood of (η, y).

The above method provides, for any (η, y) an estimate of the frontier in the
input direction. Of course this estimator will not show the usual properties of
DEA/FDH estimators (smoothness, monotonicity and/or convexity). So we
suggest to smooth the obtained frontier and then by using the appropriate
FDH and/or DEA program on the projection of the points (xi, yi) on the
smoothed frontier to obtain the desired frontier sharing the desired properties.
The whole procedure, providing DEA/FDH efficiency scores in a stochastic
DEA/FDH framework, may be summarized as follows.

1. Transform all the data (x̃i, yi) into polar coordinates (ω̃i, ηi, yi).

2. Compute for each data point (xi, yi), the estimates ω̂(x∂(, xi, yi)) or
ω̂c(x

∂(, xi, yi)) by the method described above.

3. Smooth the obtained values by kernel smoothing: for instance, Nadaraya-
Watson regression of ω̂(x∂(xi, yi)) on (ηi, yi) for i = 1, . . . , n, to obtain
̂̂ω(x∂(xi, yi)) (the same could be done with the bias corrected version).

4. Project the observed data points on the obtained frontier

x∗i =
̂̂ω(x∂(xi, yi))

ω̃i
xi (21)
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5. For any given fixed value (x, y), run a FDH or DEA program (input-
oriented) with reference set X ∗ = (x∗i , yi), i = 1, . . . , n to compute an
estimator θ̃(x, y). The estimate of the frontier in the input direction is
given by

x̃∂(x, y) = θ̃(x, y) x (22)

We could also compute θ̃(x̃i, yi) for i = 1, . . . , n, by running n DEA
or FDH programs for each of these points with the reference set X ∗. Of
course, due to the presence of noise in x̃i, some of the resulting values might
be larger than 1. Due to the lack of information of the noise structure,
we are unable to identify in θ̃(x̃i, yi) the part which is due to noise from
the part due to real inefficiency. This identification problem is shared by
the parametric stochastic frontier models, where some ad-hoc procedures
have been proposed to isolate an individual efficiency measure (see Jondrow,
Lovell, Materov and Schmidt, 1982). This cannot be applied here in this
completely nonparametric setup. However, a rather isolated value θ̃(x̃i, yi)
much larger than one for a particular point (x̃i, yi) could flag a potential
outlier.

4 Numerical Examples

Hall and Simar (2002) provide some Monte-Carlo evidence for the perfor-
mance of ω̃c(x

∂(x, y)) for selected values of (x, y) in a bivariate setup with a
frontier y = x1/2 and x ∈ [0, 1]. With n = 100 and ρnts = 0.20 the bias and
the MSE of the resulting estimators of the frontier levels are of the order of
10−3.

In this paper here we illustrate how the stochastic DEA/FDH estima-
tor described in the preceding section behaves in some selected simulated
situations.

• Case 1: Stochastic DEA, ρnts = σW /σV = 0.40
The first case select a concave production function y = g(x) = x1/2 and we
are willing to estimate the frontier in the output direction. The simulation
model is the following:

X ∼ U [0, 1], and Y = g(X) exp(−V ) exp(W ),

with V ∼ exp(3) and W ∼ N(0, (0.1334)2)

So that in a linear scale, the noise to signal ratio is quite important ρnts =
σW /σV = 0.40. We simulate a sample of n = 200 observations and then
estimate the frontier levels over a selected grid of 48 values for x. Since the
attainable set is convex, we use the stochastic DEA estimator derived above.
The results are displayed in Figure 2. It can be seen that our estimator is
very near the true frontier and also that the naive DEA estimator would be
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a catastrophe, in particular for values of x larger than 0.5. This is due to
the multiplicative nature of the noise in the scale adopted in the picture (the
original units of X and Y ).
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Figure 2: Stochastic DEA: one sample of size n = 200. The true frontier is
the dash dot line. The ·’s represent the observations, the +’s are the point
wise estimates of the boundary over a selected grid of 48 values for x, the
solid line is the stochastic DEA. Here ρnts = σW /σV = 0.40.

• Case 2: Stochastic FDH, ρnts = σW /σV = 0.40
This is the same scenario as in Case 1, but here the true frontier is monotone
but non concave. We have here g(x) = exp(−5 + 10x)/(1 + exp(−5 + 10x)),
so we chose the stochastic FDH estimator. The results are shown in Figure
3. We can draw here the same conclusion as in the preceding case: very good
behavior of our stochastic FDH and poor quality for the naive FDH when x
is large.

• Case 3: Stochastic DEA, no-noise, ρnts = σW /σV = 0
It is interesting to see if our procedure does not introduce too much noise
in the estimation procedure. So we simulate the same scenario as in Case 1
above but now W ≡ 0, so that σW = 0. Here we have n = 100. Figure 4
shows that the stochastic DEA behaves pretty well and is not too different
from the true frontier and to the naive DEA which would be appropriate in
this setup.
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Figure 3: Stochastic FDH: one sample of size n = 200. The true frontier is
the dash dot line. The ·’s represent the observations, the +’s are the point
wise estimates of the boundary over a selected grid of 48 values for x, the
solid line is the stochastic FDH. Here ρnts = σW /σV = 0.40.

• Case 4: Robustness to outliers, DEA case
We now illustrates that our stochastic DEA/FDH method is robust to out-
liers. We simulate a sample of size n = 100 with no noise: this is the same
sample used in case 3 above. Then we add 3 severe outliers above the true
frontier and we apply our stochastic DEA estimator of the frontier to the full
sample of n = 103 observations. The result is displayed in Figure 5. It can be
seen again that the resulting estimator is very robust to the 3 added outliers,
which would not be the case for the naive DEA that would be insensible in
this particular setup.

Of course, our method would not be so robust if the number of outliers
would increase or if the outliers would be located in the same area. But here,
we have to remind that our procedure is valid for small ρnts which in terms of
outliers means exactly, not too much outliers produced by the data generating
process. In any case, it is always better to try to identify these outliers and
the method proposed here is an alternative to the method proposed in Simar
(2003).
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Figure 4: Stochastic DEA: one sample of size n = 100, the true frontier is
the dash dot line. The ·’s represent the observations, the +’s are the point
wise estimates of the boundary over a selected grid of 48 values for x, the
solid line is the stochastic DEA. Here ρnts = σW /σV = 0.

5 Conclusions

We have presented in this paper way to improve the performances of the
DEA/FDH type estimators of frontiers in the presence of noise. General
nonparametric stochastic frontier models are not identified so there is no
miracle: we cannot handle noise in a too general setup.

However, we have seen that the Hall and Simar (2002) method can be
adapted to obtain a stochastic DEA/FDH estimator which has better per-
formances than the usual DEA/FDH if the noise is not too big (in terms of a
noise to signal ratio). In addition, the procedure does not seem to introduce
spurious noise. This has been illustrated through various simulated examples
where the procedure has also shown robustness properties to the presence of
outliers.

So, in conclusion, we would recommend to users of deterministic DEA/FDH
methods to run in parallel our stochastic version of DEA/FDH. By compar-
ing the results of both approaches, this might warns the researcher either to
the presence of outliers or to the inappropriateness of deterministic models
for the underlying DGP.
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Figure 5: Stochastic DEA: one sample of size n = 103, the true frontier is
the solid line. The ·’s represent the observations, the +’s are the point wise
estimates of the boundary over a selected grid of 48 values for x, the solid
line is the stochastic DEA. Here ρnts = σW /σV = 0. Three outliers above the
true frontier.
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