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Abstract

Researchers are often interested in the relationship between two variables, with no

single data set containing both. A common strategy is to use proxies for the dependent

variable that are common to two surveys to impute the dependent variable into the data

set containing the independent variable. We show that commonly employed regression

or matching-based imputation procedures lead to inconsistent estimates. We offer an

easily-implemented correction and correct asymptotic standard errors. We illustrate

these with Monte Carlo experiments and empirical examples using data from the US

Consumer Expenditure Survey (CE) and the Panel Study of Income Dynamics (PSID).
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1 Introduction

In empirical research we are often interested in the relationship between two variables, but

no available data set contains both variables. For example, a key question in fiscal policy

and macroeconomics is the effect of income or wealth (or changes in income or wealth)

on consumption. Traditionally, consumption has been measured in dedicated household

budget surveys which contain limited information on income or wealth. Income or wealth,

and particularly changes in income and wealth, are measured in panel surveys with limited

information on consumption.

A common strategy to overcome such problems is to use proxies for the dependent variable

that are common to both surveys and impute that dependent variable into the data set

containing the independent variable. In the first stage the dependent variable is regressed

on the proxies in the donor data set. In the second stage, the coefficients, and possibly

residuals, from the donor data set are combined with observations on the proxies in the

main data set to generate an imputed value of the missing dependent variable in the main

data set. Hereafter we refer to this as the RP procedure (for “regression prediction”).

The addition of residuals to the regression prediction seeks to give the imputed variable a

stochastic component and mimic the dispersion of the missing variable, and we refer to this

as the RP+ procedure. For example, in a well-known paper, Skinner (1987) proposed using

the U.S Consumer Expenditure Survey (CE) and the RP procedure to impute a consumption

measure into the Panel Study of Income Dynamics (PSID).1 In this paper we consider the

consequences of estimating a regression with an imputed dependent variable, and how those

1For panel data on consumption, an alternative approach is to invert the inter-temporal budget constraint
and calculate spending as income minus saving where the latter is often approximated by changes in wealth.
This was initially suggested by Ziliak (1998) for the PSID, but has more recently been adopted for adminis-
trative (tax) data on income and wealth (Browning et al., 2003). While attractive this procedure has several
drawbacks. First it identifies only total household spending, and in many applications the distinctions be-
tween consumption spending, nondurable consumption and household investment spending are important.
Second, in the case of our motivating example, this procedure results in income or wealth being on both the
right and left-hand side of the equation so that any measurement error in income or wealth can cause quite
serious problems (Browning et al., 2014). Baker et al. (2018) show that even with administrative data on
income and wealth there can be significant measurement error in implied spending.
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consequences depend on the imputation procedure adopted. We show that the RP procedure

leads to an inconsistent estimate of the regression coefficient of interest, as does the RP+

procedure. We show that under reasonable assumptions the asymptotic attenuation factor

is equal to the population R2 on the first stage regression of the variable to be imputed on

the proxy or proxies. This leads us to suggest a “rescaled-regression-prediction” (hereafter

RRP) procedure. We then show that with a single proxy, the RRP procedure is numerically

identical to a procedure developed by Blundell et al. (2004, 2008) (hereafter BPP after the

authors), also for imputing consumption, in which the first stage involves, in contrast to RP,

regressing the proxy on the variable to be imputed, and then inverting.

The issue we point to is much more general than our motivating application. In particular,

widely used “hot deck” imputation procedures are in many cases equivalent to the RP+

procedure. An important implication of our analysis for data providers is that the preferred

method of imputation may depend on the intended application. While the RRP and BPP

procedures allow for consistent estimation of a regression coefficient, they are less attractive

if the object of interest is the (unconditional) variance of the missing variable.

In the next section we layout our basic framework, and derive the main results. We

also relate our results to the prior literature, including Lusardi (1996), who combines CE

consumption data with PSID income data using the 2-sample IV approach proposed by

Klevmarken (1982) and Angrist and Krueger (1992). We clarify the relationship between

that approach and the imputation procedures we study.

Section 3 takes up the question of inference. We show that the usual OLS standard

errors from a regression of an imputed dependent variable (derived from the RRP or BPP

procedures) are too small, and provide an estimator of the correct asymptotic standards

errors of the regression coefficient of interest. Section 4 illustrates our main points with a

Monte Carlo study, and Section 5 provides two empirical examples using the CE and PSID.

Section 6 concludes.
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2 Set-up And Main Results

Consider estimating the regression

y = Xβ + ε (1)

where β is the K×1 parameter vector of interest. To make things concrete, the n×1 vector y

could be consumption (or nondurable consumption), and the n×K matrix X would include

income or wealth and other determinants of consumption. To keep the notation compact,

variables have been de-meaned so there is no constant, but the addition of constants (and

non-zero means) is not important for the analysis that follows. Assume that the usual

regression assumptions hold, so that the vector β could be consistently estimated by Ordinary

Least Squares (OLS) if we had complete data. In particular,

Assumption A1. For any representative sample j (of size nj):

a. yj = Xjβ + εj

b. plim
(

1
nj
X ′jXj

)
= ΣXX , which is of full rank (K).

c. plim
(

1
nj
X ′jεj

)
= 0

d. plim
(

1
nj
ε′jεj

)
= σ2

ε > 0

However, we have no data that allows us to calculate the empirical analogue ( 1
nj
X ′jyj)

of the population covariances ΣXy. Subscripts j = 1, 2, ... index the data set (or sample);

absence of a subscript indicates a population quantity. We do have a sample of size n1 of

data on (y1, Z1) and a second sample of size n2 of data on (X2, Z2). Zj is a L×nj matrix of

proxies (l = 1, ..., L) for y; if we have only a single proxy (a vector) we denote it by z; one of

a set of multiple proxies is denoted by zl. Both data sets are independent, random samples

from the population of interest. In our consumption example z is often food spending. Food

spending is captured in many general purpose surveys, and is thought to be well-measured.

We posit a relationship between our proxies and the dependent variable of interest. In our

motivating example with total nondurable consumption as our quantity of interest and food
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consumption as a single proxy, this relationship is an Engel Curve in the form of z = yγ+u.

This implies a reduced form relationship between z and X, such as

z = Xβγ + εγ + u. (2)

With more than one proxy we have a set of relationships between the proxies and y

Z = yγ + u. (3)

where γ is 1× L and u is n× L. This in turn implies a set of reduced form relationships:

Z = Xβγ + εγ + u. (4)

Note that Equation (4) makes clear that Z must depend on ε: Z has some information

about y that is not contained in X. This is why we refer to Z as proxy. Given Z with these

properties, one can impute y using Z. For clarity of exposition, we begin with the cross-

sectional case and abstract from additional covariates in the Engel curve. Our assumptions

regarding the proxy or proxies are collected in A2.

Assumption A2. For any representative sample j (of size nj):

a. Z = yγ + u, with γl 6= 0 ∀ l

b. plim
(

1
nj
Z ′jZj

)
= ΣZZ , which is of full rank (L).

c. plim
(

1
nj
X ′u

)
= 0

d. plim
(

1
nj
y′u
)

= 0

e. plim
(

1
nj
u′u
)

= Σuu, with diagonal elements strictly positive.

Assumption (A2d) would fail, for example, if there was measurement error in y. Below,

we take up all of: additional covariates in the Engel curve, panel data, and measurement
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error in y.

A final assumption we make in our analysis is that the ratio of the sizes of our two samples

approaches a positive constant as n1 tends to infinity.

Assumption A3. lim
n1→∞

n1

n2
= α for some α > 0.

2.1 Alternative Imputation Strategies

Skinner (1987) suggested regressing y1 on Z1 in the CE and using the resulting coefficients

to predict ŷ2 in the PSID (and then regressing ŷ2 on X). Note that with a single spending

category as the proxy, the first stage here is an “inverse” Engel curve. This RP procedure was

advocated by Browning et al. (2003) and recent applications include Attanasio and Pistaferri

(2014), Arrondel et al. (2015) and Kaplan et al. (2016).2 Alternatively, Blundell et al. (2004,

2008), again using the CE and PSID, first regress z1 (food spending) on y1 then predict

ŷ2 = z2
1
γ̂
. That is, they estimate an Engel curve and then invert it to predict consumption.

This is the BPP procedure and it has also recently been employed by Attanasio et al. (2015).

Finally, an alternative is to not impute consumption at the household level at all, but to

recover the parameter of interest (β) from a combination of moments taken from the two

surveys. This was first suggested (for a different application) by Arellano and Meghir (1992)

(hereafter AM). Here, (again with a single proxy) one could regress z1 on y1 to get γ̂, then

regress z2 on X2 to get β̂γ in Equation (4), and take ratio of the two to estimate β.

We first consider the RP procedure (with possibly multiple proxies). Regression of ŷRP2

on X does not give a consistent estimate of β.

2Kaplan et al. (2016) regress county-level consumption spending on local house prices in the US. Since
data on total nondurable consumption is not available at county level, they use county-level data on a subset
of nondurable expenditures (grocery spending) from the Kilts-Nielsen Retail Scanner Dataset (KNRS) as
their dependent variable, and then scale up their coefficients using household-level data on the relationship
between grocery and total spending from the CE Survey. This is analogous to our set-up in a case where
the regression of interest is yc = Xcβ + εc (where the subscript c denotes county), the first stage regression
is zh = γyh + uh (where h denotes a household), and where the researcher takes the additional step of
projecting zh onto a set of county dummies to obtain zc (and then proxying yc using an estimate of 1

γ zc).

Kaplan et al. (2016) additional include controls in the first stage regression (such as age) that are not used
to impute yc in their main regression. This needn’t cause a problem so long as the county-level averages of
these variables are conditionally uncorrelated with Xc.
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Proposition 1. Assuming that both samples are random samples of the same population,

and (A1a), (A1b), (A1c), (A2a), (A2c), (A2d) and (A3) hold,

plim
(
β̂RP

)
= βφy,Z (5)

where φy,Z is the population R2 from a regression of y on Z (0 < φy,Z < 1).

Proof.

plim
(
β̂RP

)
= plim

{(
X

′
2X2

n2

)−1
X

′
2Z2

n2

(
Z

′
1Z1

n1

)−1
Z

′
1y1

n1

}

= plim

{(
X

′
2X2

n2

)−1
X

′
2Z2

n2

(
Z

′
1Z1

n1

)−1
Z

′
1y1

n1

1

R2
y1,Z1

R2
y1,Z1

}

= plim


(
X

′
2X2

n2

)−1
X

′
2Z2

n2

(
Z

′
1Z1

n1

)−1
Z

′
1y1

n1

[
y

′
1Z1

n1

(
Z

′
1Z1

n1

)−1
Z

′
1y1

n1

]−1
y

′
1y1

n1

R2
y1,Z1


= βγΣ−1

ZZγ
′
Σyy

(
ΣyyγΣ−1

zz γ
′
Σyy

)−1

Σyyφy,Z

= βγΣ−1
ZZγ

′
(
γΣ−1

ZZγ
′
)−1

φy,Z = βφy,Z

where ΣZZ = plim
(
Z

′
1Z1

n1

)
, the scalar Σyy = plim

(
y
′
1y1
n1

)
, and R2

y1,Z1
is the sample R2.

It is important to note that we are working with de-meaned versions of the variables:

More generally, R2
y1,Z1

is the centered sample R2, φy,Z is the centered population R2 and the

result holds without demeaning the data.

Figure 1 gives a geometric intuition for the problem. The solid vectors y, z and X

represent data. The dashed lines illustrate orthogonal projections. The orthogonal projection

of y onto X (which would be obtained by regression with complete data) is labelled Xβ.

The RP procedure first projects the y onto z, giving ŷ = zγ, and then projects this vector

onto X giving XβRP . Note that XβRP < Xβ.

The source of the problem is that regression prediction results in a ŷ that differs from

y by a prediction error or Berkson measurement error, that is uncorrelated with z but not
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Figure 1: RP Imputation Procedure as Projections

y

z

x
Xβ

yγ

zγr

XβRP

uncorrelated with y and, in general, not uncorrelated with X. As is well known, classical

measurement in an independent variable causes bias in linear regression, but classical mea-

surement errors in the dependent variable does not. This is because classical measurement

errors in y are by assumption (and in contrast to Berkson errors) uncorrelated with y and

X. It is also widely recognized that Berkson errors in an independent variable does not

cause bias in a linear regression (Berkson, 1950; Wansbeek and Meijer, 2000). What is less

frequently recognized is that Berkson errors in a dependent variable do cause bias.

The same problem arises with the RP+ procedure. The true value of (unobserved) y2

can be decomposed into its projection onto Z and an orthogonal error

y2 = ŷ + v̂2. (6)

Consider then drawing a random residual from the first stage regression to create a stochastic

imputation

ˆ̂y2 = ŷ + v̂1 = y2 − v̂2 + v̂1. (7)

Then ˆ̂y2 differs from y2 by the error v̂1 − v̂2 which is by construction orthogonal to Z1, but
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not y2 or X2.3

Again the degree of attenuation (and hence bias) in the RP procedure depends on the

first stage population R2 (φy,Z). In our motivating example, R2s for food Engel curves are

typically between 50 and 70%, implying inflation factors of between 1.4 and 2 (or attenuation

of between 30 and 50%).

As the attenuation in the RP procedure is an estimable quantity, it can be corrected.

One can rescale ŷRP by the estimated first stage (centered) R2
y1,Z1

, or, equivalently, rescale

β̂RP by the estimated first stage (centered) R2
y1,Z1

. We refer to this procedure as “Re-scaled

Regression Prediction” (hereafter RRP), with the rescaled impute of y2 denoted ŷRRP2 and

the resulting estimate of β denoted β̂RRP .

Proposition 2. Assuming that both samples are random samples of the same population

and (A1a), (A1b), (A1c), (A2a), (A2c), (A2d) and (A3) hold,

plim
(
β̂RRP

)
= plim

(
β̂RP

R2
y1,Z1

)
= β.

Proof. Follows immediately from Proposition 1.

Finally, consider the BPP and AM procedures, with resulting estimates β̂BPP and β̂AM .

Proposition 3. If and only if there is a single proxy z (a vector) β̂RRP , β̂BPP and β̂AM are

numerically identical.

Proof. We have

β̂RRP = (X
′

2X2)−1(X
′

2z2)(z
′

1z1)−1(z
′

1y1)
[
(y

′

1z1)(z
′

1z1)−1(z
′

1y1)
]−1

y
′

1y1

= (X
′

2X2)−1X
′

2z2(y
′

1z1)−1y
′

1y1 = β̂BPP . (8)

Thus, under the assumptions listed in Proposition 2, β̂BPP is also consistent.

3Note that, because it is randomly drawn from a separate random sample, v̂1 is orthogonal to y2. The
problem with the composite error v̂1 − v̂2 lies in the prediction error v̂2.
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The AM procedure takes the ratio of β̂γ = (X
′
2X2)−1X

′
2z2 and γ̂ = (y

′
1y1)−1y

′
1z1, to give

β̂AM = β̂γ/γ̂.

β̂AM = β̂γ/γ̂ = (X
′

2X2)−1X
′

2z2

[
(y

′

1y1)−1y
′

1z1

]−1

= (X
′

2X2)−1X
′

2z2(y
′

1z1)−1y
′

1y1 = β̂RRP = β̂BPP . (9)

Consistency of β̂AM follows either directly from the Slutsky theorem or by numerical

equivalence to β̂RRP and β̂BPP .

It is useful also to think about other moments, as these imputation procedures have been

used to study dispersion as well as regression coefficients. For example, Blundell et al. (2008)

and Attanasio and Pistaferri (2014) study consumption inequality. We continue with the

case of a single proxy to allow comparison of BPP to RP and RRP, and consider the case

of a single x variable for ease of exposition (though the results extend naturally to a vector

X). AM recovers β directly, and does not generate unit level estimates of y. The imputes

ŷRP and ŷRRP are numerically different,

ŷRP = z2(z′1z1)−1z′1y1, (10)

ŷRRP = z2(z′1z1)−1z′1y1/R
2
y1,z1

(11)

Algebra analogous to the proof of Proposition 3 shows that ŷRRP and ŷBPP are numer-

ically identical for the case when all variables have been de-meaned. They will differ by an

additive constant in the event a non-zero intercept shift is present in equation (A2a).

Denote population moments by plim( 1
n

∑
y2) = σyy and plim( 1

n

∑
yx) = σyx, again

recalling that variables have been de-meaned. Denote sample moments based on ŷRP by sRPyy

9



and sRPyx ; and analogously for ŷRRP and ŷBPP ,

sRPyy =
1

n2

ŷRP
′
ŷRP =

1

n2

z′1y1(z′1z1)−1z′2z2(z′1z1)−1z′1y1, (12)

plim
(
sRPyy

)
=

(γσyy)
2

γσyy + σuu
= σyy × φy,z, (13)

where again φy,Z is the population R2 from the first stage regression. The sample variance

of ŷRP underestimates the population variance of y. A similar calculation gives:

plim
(
sRPyx

)
= σyx × φy,z. (14)

Note that with a scalar x the OLS estimate of β is just sRPyx /s
RP
yy and this gives an additional

intuition for the inconsistency of β̂RP as an estimator of β: sRPyx is not a consistent estimator

of σyx. Moreover, adding a residual to ŷRP , (the RP+ procedure) does not correct this.

For the rescaled impute ŷRRP , it follows from Equations (13) and (14) and the definition

of ŷRRP that

plim
(
sRRPyy

)
= σyy/φy,z (15)

and

plim
(
sRRPyx

)
= σyx. (16)

Continuing with the bivariate regression intuition, the RRP procedure is consistent for β

because it is consistent for σyx.

Finally, simple algebra establishes that

sRRPyy = sBPPyy (17)

and

sRRPyx = sBPPyx , (18)
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This follows from the numerical equivalence of the de-meaned values of ŷRRP and ŷBPP . Thus

plim sBPPyy = plim sRRPyy > σyy > plim sRPyy . Turning again to our motivation consumption

example, Attanasio and Pistaferri (2014) show that trends in sBPPyy and syy (where y is

observed) are similar, but that there is a level difference. The similarity in trends suggests

that the first stage R2
y1,Z1

is roughly constant across years in their data. We confirm this in

our empirical example below.

For completeness we can also consider means. Had we not de-meaned the data, then it is

straightforward to show that the sample of ŷRP gives an consistent (and unbiased) estimate

of the population mean of y. However, if the RPP procedure is implemented by rescaling

ŷRP (rather than rescaling βRP ), it then immediately follows that the mean of this rescaled

prediction of y is not a consistent estimator of the mean of y. One implication is that

a Statistical Agency aiming to add an imputed ŷ to a data release could not add a single

variable that would be appropriate both for use as a regressand and for estimating quantities

that depend on the first moment of y (poverty rates, for example).

Table 1: Summary of Imputation Methods (Consistency)

µy σyy β
Regression Prediction (RP) X × ×
Regression Prediction + ê (RP+) X X ×
Rescaled Regression Prediction (RRP) × × X
Blundell et al., 2004; 2008 (BPP) X × X
Arellano and Meghir, 1992 (AM) - - X

Notes: a Xindicates that the procedure given by the row leads to a consistent
estimate of the population parameter given by the column (µy , σyy or β). A
× indicates that the procedure leads to an inconsistent estimate of the relevant
parameter, and a dash indicates that the procedure does not provide an estimate
via the analogous sample moment. The table assumes that the RPP procedure
is implemented by rescaling ŷRP (rather than rescaling βRP ).

Table 1 summarizes these consistency results. For the case of a single proxy any of the

RRP, BPP and AM procedures give a consistent estimate of a regression coefficient β, but

for estimating unconditional moments, imputations from RP, BPP and especially RP+

are preferable.
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2.2 Hot-deck Imputation and Item-nonresponse

We have taken the imputation of total consumption expenditure to an income or wealth

survey with a continuous proxy (food expenditure) as our motivation and running example.

However, the problem we highlight with regression prediction is more general. In partic-

ular, Lillard et al. (1986) and David et al. (1986) note that commonly employed hot-deck

imputation procedures can be interpreted as regression predication plus an added residual.

Such procedures draw a matched observation, ˆ̂y1, of the missing variable from a cell defined

by categorical variables (possibly generated by grouping continuous variables). ˆ̂y1 can be

viewed as a prediction using the coefficients from a saturated first stage regression on those

categorical covariates (that is, one with a full set of interactions), plus a residual from the

first stage regression,

ˆ̂y = ŷ + v̂1. (19)

As above, the true value of (unobserved) y2 can be decomposed into its projection onto the

categorical matching variables and an orthogonal error

y2 = ŷ + v̂2. (20)

Then ˆ̂y differs from y2 by the error v̂1−v̂2 which is by construction orthogonal to the matching

variables, but not to y. Thus if the matching variables include some variables (proxies, Z)

that are not included among the independent variables (X) in the regression of interest,

the hot-deck procedure is identical to the RP+ procedure described above, and our results

apply.

We have also focused on the data combination problem: no single data set contains data

on both y and X, but we do have data on (y1, Z1) and (X2, Z2). In this case y2 must be fully

imputed. However, the case of partial imputation, typically because of item-nonresponse,

is also of interest. Suppose we have a data set (yj, Xj, Zj) with n cases but for a fraction

m of cases yj is missing at random (Rubin, 1976). For ease of exposition consider a single
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x variable. Suppose we use a regression on Zj or a hot deck procedure matching on Zj to

impute yj from the complete cases to the missing cases (within the same data set). Reorder

the data so that the cases with observed values for yj come before the cases with imputed

values for yj. Denote the now “complete” y-vector by [y : ŷ]j. The regression of [y : ŷ]j on

xj gives

β̂ =
(∑

x2
j

)−1

mnj∑
1

xjyj +

nj∑
mnj+1

xj ŷj

 . (21)

Using the results above it is easy to show that

plim
(
β̂
)

= (1−m)β +mβφy,Z = β (1 +m (φy,Z − 1)) . (22)

Partial imputation with a proxy will suffer from the attenuation that we have highlighted

for the case of full imputation, but with the bias depending on the fraction of cases with

missing data (m), as well as the first stage population R2.

2.3 Practicalities

The analysis above is trivially extended to handle additional covariates. If additional co-

variates W are added to both the first stage regression and regression of interest, then the

results above hold by straightforward application of the Frisch-Waugh-Lovell theorem (y, X

and Z can be “residualized” and then the results apply directly to the residualized variables).

There are two points to note: First, the additional covariates W must be added to both the

first stage regression and regression of interest. Second, if covariates are added, then the

relevant first stage R2 is the partial R2 associated with Z.

Often a researcher will want to estimate a panel version of Equation (1): ∆y = ∆Xβ+∆ε

where ∆y = y1 − y0 and superscripts denote time (and similarly for X and ε). As before

β is the main object of interest and could be estimated consistently by OLS if we had

complete data (that is, plim(∆X × ∆ε) = 0). Suppose we have no data from which to
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compute 1
n

∑
∆y × ∆X, but do have have some data on (y1

1, Z1), (y0
2, Z2), (∆X3, Z3). In

our running example, one often wants to estimate the effect of income or wealth changes on

consumption and the available data would be a repeated cross-sectional household budget

survey combined with a panel survey on income or wealth. Then y3 can be imputed year by

year. It is straightforward extension of the results above to show that β̂RRP is consistent in

this case, and with one proxy β̂BPP remains numerically identical to β̂RRP .

Finally, suppose that y is measured with error. This would be a natural concern in our

running example, as consumption expenditure is a difficult quantity to measure, even in a

detailed household budget survey. Even if this measurement error is classical, it is obvious

that the both the BPP and AM procedures require an instrument for y, as both involve a

regression on Z1 on y1 to get γ̂. If plim(y′1u1) 6= 0 because u1 contains the measurement error

in y1, then an instrument for y is required to obtain a consistent estimate of γ. With the RRP

procedure, y1 is the independent variable in the first stage imputation regression, so that

classical measurement error in y1 does not lead to an inconsistent estimate of the regression

slope. However, classical measurement error in y1 leads to an inconsistent estimate of the

population first stage R2 (φy,Z). With a single proxy, this can be overcome by estimating

φy,Z as the product of the Engel curve and inverse Engel curve regression slopes, where the

latter can be estimated by OLS but the former must be estimated by IV (because y1 is the

independent variable).

2.4 Related Literature

In this paper we study the use of proxies to predict a dependent variable.4 Regression pre-

diction of a dependent variable induces a prediction or Berkson measurement error. Berkson

measurement errors in a dependent variable cause bias in a linear regression, and this seems

to be much less noted than innocuous cases of Berkson measurement error in an independent

4Wooldridge (2002) contains an excellent overview of the use of proxies for independent variables and
Lubotsky and Wittenberg (2006) and Bollinger and Minier (2015) are recent papers on the optimal use of
multiple proxies for an independent variable.
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variable, or classical measurement error in a dependent variable.5 Two exceptions are Hys-

lop and Imbens (2001) and Hoderlein and Winter (2010). Hyslop and Imbens (2001) show

attenuation bias in a regression of ŷ on X where ŷ is an optimal linear prediction generated

by a survey respondent (not the econometrician). Relative to the imputation problem we

study, key differences include the fact that it is the survey respondent doing the prediction

and the assumption that the respondent’s information set includes Z, β and E(X). They

also assume (in our notation) that Z = y + u; (γ = 1). Hoderlein and Winter (2010) study

a similar problem, but in a nonparametric setting. Again, in their model it is the survey

respondent, rather than the econometrician, doing the predicting.6

Dumont et al. (2005) study corrected standard errors in a regression with a “generated

regressand”. Their work is motivated by the two-stage procedure for mandated-wage re-

gression proposed by Feenstra and Hanson (1999). In this paper, domestic prices are first

regressed on some structural determinants (trade and technology variables). The estimated

contributions of these variables to price changes are then in turn regressed on factor shares

to identify the changes in factor prices ‘mandated’ by changes in product prices.

In this context the first stage is

z = Y γ + u (23)

and the second stage is not (1) but rather

Y kγk = Xβk + εk (24)

where the k superscript denotes the kth element of a vector. Here Y kγk is not observed and

so is replaced by the first stage estimate Y kγ̂k. Of course the vector γ̂ differs from γ by an

estimation error (Y ′Y )−1Y ′û, but, given the set-up, the stochastic element û is orthogonal

to Y , and so also X, and thus causes problems for inference but not bias. Although the

5Berkson measurement error in an independent variable is also a problem in nonlinear models. See for
example Blundell et al. (2019).

6They illustrate their results using self-reported data on consumption expenditure.
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motivation and second-stage regressand are different, this procedure essentially regresses z

on Y , analogously to the BPP procedure, rather than y on Z as in the RP procedure, so

the Berkson measurement error problem does not arise.

We now relate our results to two further literatures: on item nonresponse and par-

tial imputation (Hirsch and Schumacher (2004) and Bollinger and Hirsch (2006)) and on

2-sample Instrumental Variables and 2SLS procedures (Klevmarken (1982), Angrist and

Krueger (1992)). To do so, it is useful to consider a more general set up than the one ana-

lyzed above (A1, A2, and A3). We retain assumptions (A1 and A3) and continue to treat x

as the exogenous independent variable of interest, but replace (A2a) with

Z = Xθ + ν (25)

where

plim

(
1

nj
x′jεj

)
= plim

(
1

nj
x′jνj

)
= 0 (26)

and

plim

(
1

nj
ε′jνj

)
= Σεν . (27)

Note that Σεν is L× 1 with elements σενl . If σενl 6= 0 then zl predicts variation in y that is

not predicted by X, and so zl is in that sense a proxy.

The set-up studied above (A1, A2 and A3) is a special case of this more general set-up,

with the following restrictions

θ = βγ, (28)

and

ν = εγ + u, (29)

so that

Σεν = γσεε (30)
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and

Σνν = γ
′
γσεε + Σuu (31)

This restricted set-up can be motivated by economic theory in some applications (for exam-

ple, by two-stage budgeting in the case of food consumption and total consumption, or more

generally by the idea that zl is a simple indicator for y, and affected by X only through y).

Returning to the more general set-up, the RP procedure is

β̂RP =

(
X

′
2X2

n2

)−1
X

′
2Z2

n2

(
Z

′
1Z1

n1

)−1
Z

′
1y1

n1

. (32)

Then,

plim(β̂RP ) = θ
(
θ
′
ΣXXθ + Σνν

)−1 (
θ
′
ΣXXβ + Σνε

)
(33)

In the more restricted case studied above (A1 and A2), Equation (33) reduces to Propo-

sition 1. Thus the inconsistency β̂RP arising from the Berkson measurement errors in the

regressand is quite general, but the RRP, BPP and AM solutions depend on the specific

structure assumed in equations (A1a), (A1b), (A1c), (A2a), (A2c) and (A2d).

Consider an alternative restriction on Equation (25) where Z = Xθ (so that all elements

of Σεν and Σνν are zero.) Then from Equation (33)

plim
(
β̂RP

)
= β. (34)

This special case, in which Z is linear combination of X, is ruled out above by strictly

positive asymptotic variances in (A1d) and (A2e). It is also not very interesting in data

combination problem that is our main focus. However, it is potentially more interesting in

the the case partial imputation of a y vector in response to item nonresponse. Hirsch and

Schumacher (2004) and Bollinger and Hirsch (2006) study the case of partial imputation

of a y vector using a hot-deck procedure matched on a subset of the X variables in the

17



main regression of interest. They show that this leads to biased estimates of the regression

coefficients of interest. As noted above, hot-deck procedures map onto the RP+ procedure

we describe. However, we study the case in which imputation is based (additionally) on

variables (the proxies Z) that are excluded from X. Interestingly, both analyses have an

unbiased limit case in which the proxies Z span X. Taking our results and theirs together

demonstrates that (partial) imputation of y will lead to inconsistent regression coefficient

if the variables Z either predict variation in y that is not predicted by X or fail to predict

variation in y that is explained by variation in X. Counter-intuitively, the only procedure

that is consistent for β without a correction is to predict y with the same variables that will

be used in the second stage regression (effectively, to regress a particular linear combination

of X on itself).

It is also useful to contrast the imputation procedures studied in this paper with the 2-

sample IV (2SIV) and 2-sample 2SLS approaches (Klevmarken (1982), Angrist and Krueger

(1992) and Inoue and Solon (2010)) applied to the combination of CE consumption data

and PSID income data by Lusardi (1996). In the general set-up above suppose that σεν = 0

so that Z is related to y only through X. Thus Z is not a proxy in the sense given above.

From Equation (33) the RP procedure remains inconsistent for β.

However, the 2-sample-2SLS estimator is

β̂2S2SLS = (X̂1
′
X̂1)−1X̂1

′
y1 (35)

where X̂1 = Z1(Z
′
2Z2)−1Z

′
2X2. It is straightforward to show that if a standard rank condition

holds, and under the assumption that σεν = 0, the 2-sample 2SLS estimator is consistent

for β. This approach is typically taken where Z is a grouping variable or variables (e.g.,

birth cohort, occupation, birth cohort × education). Again the key assumption is that Z

affects y only through X, which is the polar opposite to the assumption that Z is a proxy

or proxies (as noted above, a useful proxy must have information about y over and above
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the information in X). With 2-sample 2SLS, we use Z to impute X (and as the resulting

prediction or Berkson error is in an independent variable, this two-stage procedure does not

cause inconsistency).7 An additional virtue of this procedure is that inherent measurement

error in y poses no additional difficulties as long as that measurement error is uncorrelated

with Z. However, it is important to note that, as the key assumption that supports the

use of Z as an instrument contradicts the assumption required to use Z as a proxy (and

vice-versa), a variable may be a plausible instrument or a plausible proxy, or neither; but

never both.8

3 Inference and Precision

3.1 Asymptotic Standard Errors - One Proxy

The direct estimation of (1) on complete data, under the assumptions listed in (A1), would

result in an asymptotic variance for β̂ of (ΣXX)−1 σ2
ε .

9 When we impute ŷ from one data

set to another, there are two losses of precision resulting from (i) imputation and (ii) the

combination of two different samples of the underlying population. Moreover, applying the

usual OLS standard error formula the regression of ŷ on X results in standard errors that

are too small. We use the one-proxy case to illustrate these points, and then give a correct

formula for the asymptotic standard errors with possibly multiple proxies.

With a single proxy, β̂AM , β̂RRP and β̂BPP are numerically identical, so we derive the

asymptotic variance from the AM approach. The first stage (A2a) and reduced form (4)

7Inoue and Solon (2010) show that 2SIV is not in general efficient because it does not take account of
fact that Z1 and Z2 will be different in finite samples. They suggest the 2-Sample Two-Stage Least Squares
procedure is therefore preferred.

8A similar point is made with respect to proxy and IV approaches to an ”omitted variable” (a missing
independent variable) in Wooldridge (2002).

9We have assumed homoscedasticity in A1 and A2 but the inference results presented here could be
extended to the heteroscedastic case following an approach similar to that for 2-sample 2SLS presented in
Pacini and Windmeijer (2016).
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give two moments

plim

(
1

n1

∑
y′1(z1 − γy1)

)
= plim

(
1

n1

∑
y′1u1

)
= 0,

plim

(
1

n2

∑
X ′2(z2 − γβX2)

)
= plim

(
1

n2

∑
X ′2(γε2 + u2)

)
= 0

which identify the parameters γ and β.

It is informative to first consider implementing β̂AM (or equivalently β̂BPP or β̂RRP ) on

a single sample, containing all of y, z, X (of course, a researcher would have no reason to

do this, but it delivers a useful intuition). In this one-sample case, the asymptotic variance-

covariance matrix of the moments is

F =

 σ2
uΣyy βσ2

uΣXX

βσ2
uΣXX (γ2σ2

ε + σ2
u) ΣXX

 (36)

where the off-diagonal terms are not zero because the moments come from the same random

sample. The asymptotic variance covariance matrix of (β, γ) is (G′F−1G)
−1

where G is the

gradient of the moments with respect the parameters. The asymptotic variance of γ̂ is of

course (Σyy)
−1 σ2

u. The asymptotic variance of β̂ is

Asymp V ar(β̂) =
(ΣXX)−1 σ2

ε

φy,Z
. (37)

Thus the loss of asymptotic precision due to imputation (relative to the direct estimation

of (A1a)), is proportional to the first stage population R2 (φy,Z). Note the similarity of this

precision loss to the precision loss in the case of linear IV estimation (relative to OLS), which

is also proportional to a first stage R2 (Shea, 1997).

Turning now to the realistic two-sample case, the asymptotic variance-covariance matrix
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of the moments becomes

F =

 σ2
uΣyy 0

0 α (γ2σ2
ε + σ2

u) ΣXX


where note that the off-diagonal terms are now zero because the moments come from in-

dependent random samples. The asymptotic variance covariance matrix of (β, γ) is again

(G′F−1G)
−1

where G is the gradient of the moments with respect the parameters. The

asymptotic variance of γ̂ is still (Σyy)
−1 σ2

u. The asymptotic variance of β̂ is

Asymp V ar(β̂) =
(
α−1ΣXX

)−1 (
σ2
ε + γ−2σ2

u

)
+ (Σyy)

−1 α−1β2γ−2σ2
u

=
(
α−1ΣXX

)−1
σ2
ε + γ−2

(
α−1ΣXX

)−1
σ2
u + α−1β2γ−2 (Σyy)

−1 σ2
u.

This can be written as

Asymp V ar(β̂) = α−1

(
(ΣXX)−1 σ2

ε

φy,Z
+ 2β2

(
1− φy,Z
φy,Z

))
(38)

The second term inside the brackets represents the loss of asymptotic precision, due to

the use of two different samples. This loss of precision is because the covariances between

moments in equation (36) have a stabilising influence on the estimates β̂. These covariance

terms are zero in the two sample case.

Finally, the usual OLS standard errors from a regression of an imputed dependent variable

(derived from the RRP or BPP procedures) are incorrect, but can easily be corrected. The

OLS standard errors (as produced by standard software packages) are

V̂ OLS(β̂BPP ) = (X2X2)−1
(
ŷ2 −X2β̂

)′ (
ŷ2 −X2β̂

)
= (X2X2)−1 (ŷ′2ŷ2 − ŷ′2X2(X ′2X2)X ′2ŷ2)

= (X ′2X2)−1
[
y′1y1(z′1y1)−1z′2z2(z′1y1)−1y′1y1 − y′1y1(z′1y1)−1z′2X2(X ′2X2)X ′2z2(z′1y1)−1y′1y1

]
.
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With some algebra, it is straightforward to show that

plim
(
V̂ OLS(β̂)

)
=

(ΣXX)−1 σ2
ε

φy,Z
+ β2

(
1− φy,Z
φy,Z

)
= α× Asym V ar(β̂)− β2

(
1− φy,Z
φy,Z

)
. (39)

So, when α = 1, the usual OLS standard errors are too small, by the factor β2
(

1−φy,Z
φy,Z

)
. In

general, the OLS standard errors can be corrected using available consistent estimates of α,

β and φy,Z (n1

n2
, β̂ and R2

y1,Z1
).

3.2 Asymptotic Standard Errors - General Case

If there is more than one proxy β̂RRP 6= β̂AM . To derive the asymptotic variance of β̂RRP

we write the RRP procedure as a set of moment conditions. The parameters are βRRP and

g, where g is the vector of coefficients from a linear projection of y on the matrix Z.

Proposition 4. Assuming that both samples are independent, random samples of the same

population and A1a, A1b, A1c, A1d, A2a, A2c, A2d and A3 hold, the β̂RRP has asymptotic

variance

Asym V ar(β̂RRP ) = Σ−1
XX

[
αΣXXσ

2
e +

ΣXZ

φy,Z

(
σ2
δΣ
−1
ZZ

) ΣZX

φy,Z

]
Σ−1
XX .

Proof. Consider the two regressions (dropping sample subscripts for convenience) y = Zg+δ

and Zĝ/R2
y,Z = Xβ + e. The moments are:

E[Z ′(y − Zg)] = 0

E

[
X ′

(
Zĝ

R2
y,Z

−Xβ

)]
= 0
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Then we have

G =

 0 −Z ′Z

−X ′X X ′Z 1
φy,Z

 and V =

Z ′Zσ2
δ 0

0 αX ′Xσ2
e


Then

G′V −1G =

 0 −X ′X

−Z ′Z Z ′X 1
φy,Z


(Z ′Z)−1σ−2

δ 0

0 α−1(X ′X)−1σ−2
e


 0 −Z ′Z

−X ′X X ′Z 1
φy,Z


=

 α−1X ′Xσ−2
e −α−1X ′Zσ−2

e
1

φy,Z

−α−1Z ′Xσ−2
e

1
φy,Z

Z ′Zσ−2
δ + α−1Z ′X(X ′X)−1X ′Zσ−2

e
1

φy,Z

1
φy,Z


Then, the variance of β̂ is the upper left of (G′V −1G)−1 which is

= α(X ′X)−1σ2
e + (X ′X)−1X

′Z

φy,Z
(Z ′Z)−1σ2

δ

Z ′X

φy,Z
(X ′X)−1

which can be re-written as

= (X ′X)−1
[
αX ′Xσ2

e +
X ′Z

φy,Z
(Z ′Z)−1σ2

δ

Z ′X

φy,Z

]
(X ′X)−1

where Z is a matrix n× k where k is the number of proxies.

A STATA package that implements the RRP procedure and provides the correct stan-

dard errors is available from the authors at https://github.com/spoupakis/rrp.

4 Monte Carlo Experiments

To illustrate the points made above we first present a small Monte Carlo study. The baseline

data generating process is as follows. There is a single regressor x ∼ N(0, 2). The dependent

variable of interest is y = 1 + β × x + ε with σε = 1. The parameter of interest is β = 1.
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We cannot regress y2 on x2 directly, because information on these quantities is collected

in separate surveys (We only observe y1 and x2, so that we cannot calculate the empirical

covariance, 1
n

∑
y1 × x1 or 1

n

∑
y2 × x2). However, both surveys contain a potential proxies

for y. We begin with the case of a single proxy, z, which we generate as follows,

z1 = 1 + 0.5× y1 + u1 and z2 = 1 + 0.5× y2 + u2

with u1, u2 ∼ N(0, σ2
u). We consider the case where σu = 1 and a first stage R2 of 0.56.

We simulate this population multiple times, each time drawing two data sets (y1, z1) and

(x2, z2), and implementing the RP, RP+, RRP, BPP and AM procedures. Sample size

is 500 for both samples (so that n1

n2
= 1) and we perform 10,000 replications.

The results are presented in Table 2. The first column shows the case of complete data

(OLS on a data set with both y and x); the remaining columns display results for different

imputation procedures. The first row gives the mean over 10,000 replications of the estimate

of β. With complete data OLS is unbiased for β. The RP and RP+ procedures are

systematically biased and the mean attenuation factor is equal to the population first stage

R2 of 0.56. The RRP, BPP and AM procedures (which are numerically identical here) are

approximately unbiased for β.

Table 2: Monte Carlo Experiment: One proxy

FULL RP RP+ RRP BPP AM

Mean of β̂ 1.000 0.556 0.555 1.002 1.002 1.002

Std. Dev. of β̂ 0.022 0.036 0.049 0.065 0.065 0.065

Mean of SE(β̂) 0.022 0.028 0.043 0.050 0.050

Mean of Corrected SE(β̂) 0.064
Mean of 1

n

∑
ŷi 1.000 1.000 0.999 1.805 1.000

Mean of 1
n−1

∑
(ŷi − ¯̂y)2 4.999 2.784 5.000 9.048 9.048

Note: Results based on 10,000 replications, n = 500, β = 1, E(y) = 1, V (y) = 5.

Rows two through four show the standard deviation of β̂ across replications along with the

mean of the OLS standard error across replications and (in the case of the RRP procedure)
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the mean of the corrected standard error. When regressing an imputed y on x, the usual

OLS variance formula leads to a standard error that is too small, but the corrected standard

error correctly captures the variation of β̂ in repeated sampling.

Finally, rows five and six consider estimating the first two unconditional moments of y.

The mean of imputed ŷ from the RP procedure is unbiased for the population mean of

y but of course the variance of ŷ from this procedure is not unbiased for the population

variance. Adding a stochastic residual from the first stage (the RP+ procedure ) corrects

this. Because the RRP and BPP procedures amount to an upward rescaling of ŷ, the

variances of the resulting imputations are quite biased estimates of the population variance

of y. However, in the case of BPP, there is no bias in the mean.

Table 3 illustrates the case when there are two proxies available. We generate these as:

za,1 = 1 + γA × y1 + uA,1

zb,1 = 1 + γB × y1 + uB,1

and
za,2 = 1 + γA × y2 + uA,2

zb,2 = 1 + γB × y2 + uB,2

where γA = 0.4, γB = 0.3 and uA, uB ∼MVN(0,Σu) with Σu =

 1 −0.5

−0.5 1

.

Table 3: Monte Carlo Experiment: Two proxies

FULL RP RP+ RRP AM

Mean of β̂ 1.000 0.712 0.712 1.000 1.001

Std. Dev. of β̂ 0.022 0.034 0.044 0.048 0.048

Mean of SE(β̂) 0.022 0.028 0.039 0.039

Mean of Corrected SE(β̂) 0.048

Note: Based on 10,000 replications, n = 500, β = 1, E(y) = 1, V (y) = 5.

The key points are that the RRP and AM procedures remain approximately unbiased

for β, and that the additional proxy improves precision.

Table 4 repeats the study of two proxies for different values of σu,B equal to 1, 2 and 4.

and reports the standard deviation of β̂. This illustrates that in finite samples, the RRP

procedure can be more efficient than AM.
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Table 4: Monte Carlo Experiment: Two proxies, varying σu,B

Mean of β̂ FULL RP RP+ RRP AM
For σu,A = 1 and σu,B = 1 0.022 0.034 0.044 0.048 0.048
For σu,A = 1 and σu,B = 2 0.022 0.036 0.048 0.060 0.066
For σu,A = 1 and σu,B = 4 0.022 0.036 0.050 0.067 0.089

Note: Based on 10,000 replications, n = 500, β = 1, E(y) = 1, V (y) = 5.

Table 5 considers a hot-deck imputation. Here z1 and z2 are partitioned into bins, and the

missing y2 is imputed by drawing a y1 from the relevant z-bin. As demonstrated above, this is

formally equivalent to RP+. The results are in column 2 (titled “Hot-deck”). As expected,

estimates of β are significantly biased, with bias equal to the first stage R2. Estimates of the

unconditional mean and variance are unbiased. In column 3 we rescale the donated y1 by

the first stage R2, and refer to this a “rescaled hot-deck” (RHD). The result is very limited

empirical bias in estimates of β but significant bias in estimates of the unconditional mean

and variance.

Table 5: Monte Carlo Experiment: Hot-deck Imputation

FULL Hot-deck (HD) RHD

Mean of β̂ 1.000 0.532 0.986

Std. Dev. of β̂ 0.022 0.049 0.088
Mean of 1

n

∑
ŷi 1.000 1.001 1.858

Mean of 1
n−1

∑
(ŷi − ¯̂y)2 4.999 4.990 17.218

Note: Based on 10,000 replications, n = 500, β = 1, E(y) = 1, V (y) = 5.
The imputation is based on 1 proxy, partitioned into 10 bins.

5 Empirical Illustrations

In this section we illustrate the our results with two empirical examples using the PSID

(Panel Study of Income Dynamics, 2019) and the CE Interview Survey.
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5.1 Housing Wealth Effects

We begin with an exercise similar to that of Skinner (1989) (making use of the imputation

procedure set out in Skinner (1987)). This is to estimate the elasticity of consumption

spending with respect to changes in housing wealth by regressing nondurable consumption

spending on demographics, lags and leads of total family income and house values. We

do this using the 2005-2013 waves of the PSID when a more-or-less complete measure of

nondurable expenditures is available. Following the approach taken by Skinner (1989) for an

earlier period when spending data was only available for a subset of goods, we also impute

nondurable consumption spending from the CE Survey into the PSID.10 This allows us to

compare results from different imputation procedures with the complete data case (using

the PSID’s own consumption measures). In this respect our exercise is similar to that used

in Attanasio and Pistaferri (2014) who assess the accuracy of the imputed consumption

measures they use in the early years of the PSID with those available in the PSID in later

years.

Our measure of nondurable consumption is the sum of spending on food at home, food

away from home, utilities (including gas and electricity), gasoline, car insurance, car repairs,

clothing, vacations and entertainment. For proxies we use the log sum of total food spending

(whether at home or away from home), log utility spending and the number of cars owned

by the household (up to a maximum of two). Our demographics controls are the size of the

household, age, age squared, the log earnings of the household head (set to zero for those

with zero earnings), and a dummy for having zero earnings. We annualise consumption

measures and then take logs in both surveys.

Our sample selection choices in the PSID are chosen to mirror those used in Skinner

(1989). In particular we take a sample of homeowners, who are observed in all waves from

2005-2013, who do not move, are not observed with zero incomes and who are not observed

10Prior to 1999 the PSID only included food and utility spending, which was then broadened to include
health expenditures, gasoline, car maintenance, transportation, child care and education. In 2005, additional
categories for clothing and entertainment were added.
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renting over the sample period. To prevent our results being driven by extreme values, we

also exclude those with incomes or house values in the top and bottom 1% of the PSID

sample.

In the CE Interview Survey we take a sample of homeowners. The CE Interview Survey

aims to interview households over a four quarters, asking retrospective consumption ques-

tions over the previous three months in each interview. We take only those individuals who

were observed in all four interviews, and whose final interview was held a year coinciding

with the biennial PSID survey waves from 2005-2013. We then average spending over each of

the previous four quarters they were observed and keep only one observation per household.

By averaging over multiple waves we reduce measure error in consumption and get consump-

tion values which are more in the spirit of the questions households are asked in the PSID

(households in the PSID are asked about their spending over the previous year, or ‘usual’

spending in an average week or month). We run our imputation regressions separately in

each year, which would for example allow for the fact that changes in relative prices might

change the relationship between food and total spending from one period to the next.11

Table 6 shows the results from our first stage imputation regressions. We note that the

relationships between the proxy variables and total nondurable consumption and the fit of

the imputation regressions remain very stable across the different survey years.

Table 7 shows the results from regressions of consumption spending on income variables

and house values in the PSID. The first column shows results using the consumption measure

available in the PSID. This is the complete data case. The second column shows results using

the RP procedure employed by Skinner, and the third column shows results using the RRP

11Our approach differs from the approach used in Skinner (1989) in two key respects. First, Skinner (1989)
imputes the absolute level of consumption using the absolute levels of food and utilty spending before taking
logs of the imputed values in the PSID, while we use the log of nondurable consumption, food and utility
spending throughout. To avoid the need to throw out observations who do not report spending on food
away from home, we combine food at home and food away from into a food spending variable. Second, we
use a measure of nondurable consumption that is narrower than that used in Skinner (who takes the sum of
all spending, less mortgage interest, furniture and automobiles and including imputed spending on owner-
occupied housing). This allows us to compare the results we obtain without imputed spending measures
with those in the PSID.
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Table 6: Imputing nondurable consumption spending using CES

(1) (2) (3) (4) (5)

2005 2007 2009 2011 2013

log Food 0.562*** 0.545*** 0.541*** 0.549*** 0.555***

(0.012) (0.008) (0.008) (0.008) (0.008)

log Utilities 0.377*** 0.382*** 0.410*** 0.384*** 0.389***

(0.015) (0.010) (0.011) (0.010) (0.011)

Cars 0.035*** 0.036*** 0.027*** 0.042*** 0.031***

(0.005) (0.004) (0.003) (0.004) (0.004)

Partial R2 0.728 0.755 0.751 0.761 0.753

N 1,590 2,896 2,759 2,668 2,470

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors in parentheses. Additional
controls for age, age squared, family size, log of head’s earnings (set to zero if earnings are
zero), a dummy for head’s earnings being greater than zero, and year dummies. “Cars”
refers to the number of cars capped at a maximum of two. The partial R2 reported here
is obtained by regressing our dependent variables on our proxies after partialling out the
effects of other covariates in an inital regression.

approach we set out above.

The complete data results from the PSID suggests that each 10% increase in house values

is associated with a 1.14% increase in consumption spending. When we impute consumption

using the RP procedure, we underestimate the effects of housing wealth on consumption

(with the estimated effect falling to 0.83%). Using the RRP procedure, we obtain a value

of 1.11% which is very similar to that obtained using the complete data in the PSID. This

illustrates the theoretical results of Section 2. It also suggests that the assumed Engel

curve model (A2) underpinning our imputation procedure is reasonable in this context and

moreover that our demographic covariates adequately control for any sample differences

between the PSID and the CE Interview Survey.

5.2 Consumption Inequality

As a second exercise we examine the evolution of consumption inequality using actual and

imputed nondurable consumption measures. This is in the spirit of the longer-run analysis

of consumption and inequality carried out in Attanasio and Pistaferri (2014).
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Table 7: Empirical Example: Log nondurable consumption on house values

(1) (2) (3)

PSID CE (RP) CE (RRP)

log Incomet−3 0.047** 0.036* 0.048

(0.016) (0.015) (0.030)

log Incomet−2 0.064*** 0.043* 0.057

(0.018) (0.017) (0.034)

log Incomet−1 0.040* 0.024 0.032

(0.017) (0.016) (0.032)

log Incomet 0.109*** 0.080*** 0.107**

(0.020) (0.019) (0.038)

log Incomet+1 0.105*** 0.075*** 0.099**

(0.016) (0.015) (0.030)

log House value 0.114*** 0.083*** 0.111***

(0.010) (0.010) (0.020)

N 5,406 5,406 5,406

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors
in parentheses. Additional controls for age, age squared, family size,
log of head’s earnings (set to zero if earnings are zero), a dummy for
head’s earnings being greater than zero, and year dummies. Column
(1) shows results using the measures of nondurable consumption con-
tained in the PSID as the dependent variable. Column (2) uses the
unscaled regression prediction (RP) procedure to impute consumption
spending into the PSID from the CE survey. Column (3) shows results
when nondurable consumption is imputed to the PSID from the CE
using the re-scaled regression prediction (RRP) procedure.
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To do this we impute consumption measures for all households in the PSID (this time

including non-homeowners) and plot the standard deviation over time for imputed consump-

tion from the RP procedure and from the RRP procedure. We then compare this with the

standard deviation of nondurable consumption spending as measured in the PSID. To pre-

vent this measure being unduly influenced by extreme values, we also trim the top and

bottom 1% of consumption spending in the PSID. The results are shown in Figure 2.

Figure 2: Standard deviation of log consumption
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Note: Authors’ calculations using the PSID. Lines show the standard deviation of log nondurable spending in the PSID
(“Actual”), the standard deviation of imputed log consumption using regression prediction (“Imputed (RP)”), the standard
deviation of imputed log consumption using re-scaled regression prediction (“Imputed (RRP)”), and the standard deviation of
log consumption using re-scaled regression prediction corrected using the relationship in equation (15) (“Imputed and corrected
(RRP)”).

The standard deviation of consumption spending shows similar trends in all three series.

The fact that imputed and observed consumption move in similar ways over time is consis-

tent with the findings of Attanasio and Pistaferri (2014) who use the latter as a check for

the former in their analysis. The link between movements in the RP and RRP imputed

measures reflects the stability of the first stage R2 over time.

We also note that the RP measure tends to understate the level of consumption inequal-

ity, while the re-scaled (RRP) procedure tends to overstate it. This was shown analytically in

Section 2. This example reinforces the point made in Table 1 that while the RRP procedure
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does not lead to biased estimates of regression coefficients, it does lead to biased estimates of

the unconditional population mean and variance. When we apply the correction implied in

equation (15) to the RRP estimate of the standard deviation we obtain roughly the correct

standard deviation. Once again, this suggests that the linear Engel curve relationship we

assumed for our imputation procedure (ie., A2) is appropriate in this application.

6 Summary and Conclusion

Although using regression prediction to impute the dependent variable in a regression model

induces measurement errors “on the left”, it is not necessarily innocuous. We have shown

that the resulting Berkson errors in the dependent variable result in inconsistent estimates

of the regression slope. This procedure has been much used to impute consumption to

data sets with income or wealth, following a suggestion by Skinner (1987). Common hot-

deck imputation procedures have the same structure, when the matching variables include

variables beyond those in included among the independent variables in the regression. This

inconsistency can be overcome by rescaling by the first stage (imputation) R2 (the RRP

procedure) or by employing reverse regression in the first stage (the BPP procedure). Even

then, we have shown that the usual OLS standard errors are not correct, but they can be

corrected with estimable quantities.

Our analysis demonstrates that the preferred method of imputation may depend on the

intended application. This poses a challenge to data providers who may wish to include

imputed variables in a standardized data set for multiple users.

Imputation of a dependent variable from a complimentary data set is a potentially useful

part of the applied econometrician’s toolkit, but it must be done with care.
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