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Face Masks Considerably Reduce

Covid-19 Cases in Germany -
A Synthetic Control Method Approach

Abstract

We use the synthetic control method to analyze the effect of face masks on the spread of Covid-
19 in Germany. Our identification approach exploits regional variation in the point in time when
wearing of face masks became mandatory in public transport and sales shops. Depending on the
region we consider, we find that face masks reduced the number of newly registered SARS-
CoV-2 infections between 15% and 75% over a period of 20 days after their mandatory
introduction. Assessing the credibility of the various estimates, we conclude that face masks
reduce the daily growth rate of reported infections by around 47%.

Classification: Physical Sciences (statistics), Biological Sciences (medical sciences).
Keywords: Covid-19, public health measures, face masks, synthetic control method.

Significance Statement: Mitigating the spread of Covid-19 is the objective of most governments
of this world. It is of utmost importance to understand how effective various public health
measures are. We study the effectiveness of face masks. We employ public regional data about
reported SARS-CoV-2 infections for Germany. As face masks became mandatory at different
points in time across German regions, we can employ statistical methods to compare the rise in
infections in regions with masks and regions without masks. Weighing various estimates, we
conclude that 20 days after becoming mandatory, face masks have reduced the number of new
infections by around 45%. As economic costs are close to zero compared to other public health
measures, masks seem to be a cost-effective means to combat Covid-19.
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1 Introduction

Many countries have experimented with several public health measures to mitigate the spread
of Covid-19. One particular measure that has been introduced are face masks. It is of obvious
interest to understand the contribution made by such a measure in reducing infections.

The effect of face masks on the spread of infections has been studied for a long time. The use-
fulness in the clinical context is beyond dispute. There is also evidence that they helped in mit-
igating the spread of earlier epidemics such as SARS 2003 or influenza. The impact of face masks
worn in public on the spread of Covid-19 has to be systematically analyzed yet. This is the ob-
jective of this paper.

There is a general perception in Germany that the mandatory use of face masks in public re-
duces Covid-19 incidences considerably. This perception comes mainly from the city of Jena.
After face masks became mandatory between April 1stand April 10, 2020, the number of new
infections fell almost to zero. Jena is not the only region in Germany, however, that introduced
face masks. Six further regions made masks compulsory before the introduction at the federal
state level. Eventually, face masks became mandatory in all federal states between April 20 and
29, 2020 (see appendix A for background).

We quantify the effectiveness of face masks by employing the synthetic control method (SCM,
2-5). Our identification approach exploits this regional variation in the point in time when face
masks became mandatory. We use data for 401 regions in Germany (municipal districts) to
estimate the effect of this particular policy intervention on the development of registered in-
fections with Covid-19. We consider the timing of mandating face covering as an exogenous
event to the local population: Masks were imposed by local authorities and were not the out-
come of some process in which the population was involved. We compare the Covid-19 devel-
opment in various regions to their synthetic counterparts. The latter are constructed as
weighted average of control regions that are structurally similar to treated regions. Structural
dimensions considered include prior Covid-19 cases, the demographic composition and the lo-
cal health care system.

A detailed analysis of the timing of all public health measures in the regions we study guaran-
tees that we correctly attribute our findings to face masks (and not erroneously to other public
health measures). We also employ a standard SIR model and undertake a novel analysis of the
distribution of the lag between infection and reporting date. This allows us to provide a precise
interpretation of our empirical effectiveness measure and to pin down the point in time when
the effects of face masks should be visible in the data.

We find statistically significant and sizeable support for the general perception that the public
wearing of face masks in Jena strongly reduced the number of incidences. We obtain a synthetic
control group that closely follows the Covid-19 trend before the introduction of mandatory
masks in Jena. The difference between Jena and this group becomes significant thereafter. Our
findings indicate that the early introduction of face masks in Jena has resulted in a drop in newly
registered Covid-19-cases of around 75% after 20 days. Put simply: If the control region ob-
serves 100 new infections over a period of 20 days, the mask-region only observes 25 cases.
This drop is greatest, by more than 90%, for the age group 60 years and above. Our results are
robust to different sensitivity checks, among which placebo-in-space and placebo-in-time anal-
yses.



As a means to verify the generalizability of our findings for Jena, we move from a single to a
multiple treatment approach and estimate average treatment effects of introducing face masks
on the spread of Covid-19 for all regions that have introduced masks by April 22 (approximately
8% of all German regions). Although the estimated average treatment effect is smaller com-
pared to the one found for Jena, it still significant and sufficiently large to support our point
that wearing face masks is an effective and cost-efficient measure for fighting Covid-19. When
we summarize all of our findings in one single measure (see appendix B.5), we conclude that
the daily growth rate of Covid-19 cases in the treatment group falls by around 47% due to man-
datory mask-wearing relative to the synthetic control group.?

Our findings can be aligned with earlier evidence on face masks, public health measures and
the epidemic spread of Covid-19 although consolidated scientific knowledge is limited (see ap-
pendix D). While there is a growing consensus from clinical studies that face masks significantly
reduce the transmission risk of SARS-CoV-2 and Covid-19 (7, 8), non-clinical evidence on the
effectiveness of face masks is still largely missing. (9) survey evidence on the population impacts
of a widespread community mask use and stress that “no randomized control trials on the use
of masks <...> has been published”. The study which is “the most relevant paper” for (9) is one
that analyzed “exhaled breath and coughs of children and adults with acute respiratory illness”
(10, p. 676), i.e. used a clinical setting. Concerning the effect of masks on community transmis-
sions, the survey needs to rely on pre-Covid-19 studies.

(11) are among the first to estimate the population impact of face masks on SARS-CoV-2 infec-
tions.3 The authors track the development of Covid-19 in three pandemic epicenters Wuhan,
Italy, and New York City between January 23 and May 9, 2020 and find sizable mitigating effects
of face masks on epidemic spread. While their study offers important novel insights of the pop-
ulation effects of face masks, a methodical limitation is that estimates are only carried out in a
“before-after” manner with no use of a strict control group approach. This may limit the causal
interpretation of results. We therefore follow the spirit of (5) and provide the first causal evi-
dence identifying the population impact of mandatory face masks on the spread of Covid-19.

2 Results: The effects of face masks on the spread of Covid-19
2.1 Results for Jena

Face masks became mandatory in Jena in three steps between April 1st and 10. The most im-
portant measure (in the sense of having the largest impact measured in terms of social con-
tacts) requires face masks in public transports and shops and entered into force on April 6
(again, see appendix A for detailed information). We therefore center our discussion on this
date.

Panel A in Figure 1 shows the SCM results for the introduction of face masks in Jena on April 6.
The visual inspection of the development of cumulative Covid-19 cases shows that the trend

2 The main channel through which masks reduce transmission of SARS-CoV-2 is the limiting effect for the spread
of exhaled air, as argued by (6). (6) and (7) argue that aerosols (as opposed to larger droplets) are filtered only by
high-quality masks. Droplets are also filtered by home-made masks.

3 (8) conduct a systematic review and meta-analysis. They do not report a study (see their table 1) that analyzes
the entire population of a country.



development of the synthetic control group is very similar to Jena before the treatment indi-
cating a good fit.# The difference in the cumulated registered Covid-19 cases between Jena and
its corresponding synthetic control group after the start of the treatment on April 6 can be
interpreted as the treatment effect on the treated (see appendix B.4 for (post-)estimation de-
tails).

Panel A: Introduction of face masks on April 6 Panel B: Announcement/Start of campaign on March 30
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Figure 1: Treatment effects of mandatory face masks in Jena on April 6 and its announcement on
March 30

Panel Ain the figure clearly shows a gradually widening gap in the cumulative number of Covid-
19 cases between Jena and its synthetic control group. The size of the effect 20 days after the
start of the treatment (April 6) amounts to a decrease in the number of cumulative Covid-19
cases of 23%, which corresponds to a drop in newly registered cases of roughly 75%. Expressed
differently, the daily growth rate of the number of infections decreases by 1.28 percentage
points per day (see appendix B.5 for computational details and an overview of all measures). If
we look at the estimated differences by age groups, Table 5 in the appendix indicates that the
largest effects are due to the age group of persons aged 60 years and above. Here the reduction
in cumulative cases even exceed 50%, which corresponds to a drop in newly registered SARS-
CoV-2 infections by more than 90%. The significant drop can be explained with strict introduc-
tion of face masks  in elderly and nursing homes, which already started on April 2. For the
other two age groups the decrease in the number of cumulative cases lies between 10 and 20%.

If we consider a median time lag of 10.5 days from infection until registration (see appendix
A.3), the occurrence of a gradually widening gap between Jena and its synthetic control in the
first week after the introduction of mandatory face masks seems fast. One might conjecture
that an announcement effect has played a role. As shown in appendix B.8.1, online searches
for (purchasing) face masks peaked on April 22nd, when it was announced that face masks

4 As a measure for the quality of the fit between the treated region and its synthetic control group, the pre-treat-
ment root mean square prediction error (RMSPE) can be calculated and compared to a reference case. For Jena
the pre-treatment RMSPE is 3.145, which is considerably lower than a RMSPE of 6.669, which has been calculated
as the average RMSPE for all other 400 regions and their synthetic controls in the pre-treatment period until April
6. This points to the relatively good fit of the synthetic control group for Jena in this period.



would become compulsory in all German federal states.’ Another peak of online searches, al-
most as large (70% of the peak of April 22nd), appeared on March 31st. This marks the date of
the regulation making masks compulsory between April 1st and April 10 in Jena. The regulation
was accompanied by a campaign “Jena zeigt Maske” communicating the necessity to wear face
masks in public that started on March 30. ¢

Panel B in Figure 1 plots the estimated effect size when we set the start of the treatment period
to the start of the campaign on March 30. The visual inspection of the difference between Jena
and its synthetic control group points to the presence of a small anticipation effect. Yet, the
gap to the synthetic control significantly widens only approximately 10-12 days after the an-
nouncement and then strongly grows over time. As this temporal transmission channel appears
plausible given a median time lag between infection and registration of almost equal length,
we take this as first evidence for a face mask-effect in the reduction of SARS-CoV-2 infections.
Appendix B.6 reports SCM results by age groups.

2.2 Robustness checks

Obviously, the estimated differences in the development of Jena vis-a-vis the synthetic Jena is
only consistently estimated if our SCM approach delivers robust results. Accordingly, we have
carried out several tests to check for the sensitivity of our findings.

Cross-validation tests. One important factor is that our results are not sensitive to changes in
the choice of predictor variables. We therefore perform cross-validation checks by modifying
the length of the training and validation period before the start of the treatment. Importantly,
we do not find a systematic downward bias of our baseline specification compared to alterna-
tive specifications with longer lag structures and accordingly shorter trainings periods (see ap-
pendix B.10). Given that regional Covid-19 cases developed very dynamically and non-linearly
in this period, this is an important finding in terms of the robustness of our results.

Changing the donor pool. This may be equally important as our baseline specification includes
the region of Heinsberg in the donor pool used to construct the synthetic Jena (with a weight
of 4.6%; compare Table 11). As Heinsberg is one of the German regions that was significantly
affected by the Covid-19 pandemic during the Carnival season, one may expect that this leads
to an overestimation of the effects of face masks. Accordingly, appendix B.9 presents estimates
for alternative donor pools. Again, we do not find evidence for a significant bias in our baseline
specification. By tendency, the treatment effect becomes larger, particularly if we compare
Jena only to other regions in Thuringia (to rule out macro-regional trends) and to a subsample
of larger cities (kreisfreie Stddte), which reduces the degree of latent regional heterogeneity,
for instance, with regard to social interactions. Both subsamples exclude Heinsberg. We also
run SCM for subsamples excluding Thuringia (to rule out spatial spillover effects) and for East
and West German regions only (again to test for specific macro regional trends). Generally,
these sensitivity tests underline the robustness of the estimated treatment effect for Jena.

Placebo-in-space tests. These tests check whether other cities that did not introduce face masks
on April 6 have nonetheless experienced a similar decline in the number of registered Covid-19

> For a German-wide news report see, e.g., https://www.tagesschau.de/inland/corona-maskenpflicht-103.html.
Last accessed 14 July 2020.

6 See local newspaper reports, for instance, at: https://www.jenaer-nachrichten.de/stadtleben/13069-jena-zeigt-
maske-kampagne-f%C3%BCr-mundschutz-startet. Last accessed 18 July 2020.




cases. If this had been the case, the treatment effect may be driven by other latent factors
rather than face masks. Such latent factors may, for instance, be related to the macro-regional
dynamics of Covid-19 in Germany. Therefore, appendix B.11 reports pseudo-treatment effects
for similarly sized cities in the federal state of Thuringia assuming that they have introduced
face masks on April 6 although —in fact— they did not. As the figure shows, these cities show
either a significantly higher or similar development of registered Covid-19 compared to their
synthetic controls. This result provides further empirical support for a relevant effect in the
case of Jena.

Panel A: Placebo-in-space test (all regions) Panel B: Placebo-in-space test (larger cities)
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Figure 2: Comprehensive placebo-in-space tests for the effect of face masks on Covid-19 cases

Notes: Treatment effects in Panel A to Panel D are measured in terms of registered Covid-19 cases; subgraphs in
Panel A and B exclude the following regions with a large absolute number of registered Covid-19 cases: Hamburg
(2000), Berlin (11000), Munich (9162), Cologne (5315) and Heinsberg (5370). In line with (3, we only include pla-
cebo effects in the pool for inference if the match quality (pre-treatment RMSPE) of the specific control regions is
smaller than 20 times the match quality of the treated unit; p-values reported in Panel E and F are accordingly
adjusted for the pre-treatment match quality (see 12).

As a more comprehensive test, we run placebo-in-space tests for all other regions that did not
introduce face masks on April 6 or closely afterwards. Again, we estimate the same model on
each untreated region, assuming it was treated at the same time as Jena. The empirical results
in Figure 2 indicate that the reduction in the reported number of Covid-19 cases in Jena clearly
exceeds the trend in most other regions — both for the overall sample in Panel A and the sub-
sample of large cities (kreisfreie Stddte) in Panel B.



As outlined above, one advantage of these tests is that they allow us to conduct inference on
the significance of the estimated treatment effects for Jena. Accordingly, Panel C and Panel D
visualize the estimated treatment effects together with 90% confidence intervals, which have
been calculated on the basis of (one-sided) pre-treatment match quality adjusted p-values as
reported in Panel E and Panel F of Figure 2.7 The latter indicate the probability that the reduc-
tion in the number of Covid-19 cases was observed by chance given the distribution of pseudo-
treatment effects in the other German regions (see 12). For both sample distributions, the re-
ported confidence intervals and underlying p-values indicate that the reduction in the number
of Covid-19 cases was not a random event in Jena can be attributed to the introduction of face
masks two weeks after the start of the treatment. Again, this timing is in line with our above
argument that a sufficiently long incubation time and testing lags need to be considered in the
evaluation of treatment effects.?

Placebo-in-time tests. As for the case of placebo-in-space tests it is important for the validity of
results that we do not observe significant treatments effect for Jena prior to the introduction
of face masks on April 6 or its announcement on March 30. To rule out such anticipation effects,
we have systematically reviewed all general decrees published by the local administration in
Jena. Of particular interest are those decrees that significantly differ with respect to their timing
from those at the federal state level in Thuringia.

Looking at the figure in appendix A.2, Jena and Thuringia passed at least 40 public health
measures before end of April 2020. Jena implemented 27 of those 40 either earlier than Thu-
ringia or on its own. Examples of earlier implementation include the closing of bars, cafés and
restaurants or quarantine rules for travelers returning back home. Relevant regions included
foreign countries but also other German federal states among which Bavaria, Baden-Wurttem-
berg and North-Rhine Westphalia. Measures imposed by Jena only include the complete closing
of hotels (in contrast to closing of hotels for tourism only in Thuringia) and a curfew (which
lasted for only two weeks, though).

As these major health decrees were accompanied by smaller ones on an almost daily basis until
March 20, we run a series of SCM estimations using each day between March 14 and 20 as
(pseudo-)treatment period.’ The results for the full donor pool including all other German re-
gions and the subsample of larger cities are shown in Panel A and Panel B of Figure 3. Results
are reported until March 30 when the mandatory introduction of face masks was announced.
The visual inspection of the relative development of Covid-19 cases in Jena vis-a-vis its synthetic

7 We follow the method proposed in (13) to calculate confidence intervals from p-values. As pointed out in (14),
the interpretation of confidence intervals and p-values is restricted to the question of whether or not the esti-
mated effect of the actual treatment is large relative to the distribution of placebo effects.

& We analyze a measure that is introduced for the first time in this region. One might conjecture that our estimation
measures both the true effect of a face mask but also any other change in behavior (washing hands, limiting inter-
actions, staying more at home etc.) that was triggered by this policy. This change in behavior is known as the
Hawthorn effect. Individuals in this pioneer region might take the crisis more seriously than in the other areas.
Although German health authorities had been strongly recommending such behavioral changes in daily life since
mid-March, we cannot fully rule out this mixing of effects. Mobility data for federal states in appendix B.8.2 shows
that federal states moved in a relatively coordinated way in this respect. Unfortunately, mobility data for Jena is
not easily available.

9 Alternatively, we have also tested for pseudo-treatment effects in Jena over a period of 20 days before the in-
troduction of face masks. This period is equally split into a pre- and pseudo post-treatment period. As Panel B in
Figure 17 shows, there is no strong deviation from the path of the synthetic control group.



Jena does not indicate a clear treatment effect in terms of reducing Covid-19 cases prior to April
1st. The results are particularly clear-cut for the sample of larger cities in Panel B indicating that
earlier public health measures alone have not significantly suppressed the number of Covid-19
cases in Jena in the first two weeks after their introduction.

Panel A: All NUTS3 regions Panel B: Only larger cities [krsfr. Stadte]
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Figure 3: Placebo-in-time tests for period March 14 to March 20

Notes: All SCM estimates are based on the same predictor settings as for the baseline specification.

The reported trajectories of synthetic Jena in Panel A of Figure 3 leave us with some degree of
ambiguity, though. To explicitly test for a potential trend reversal in the development of Covid-
19 cases prior to the introduction of face masks, we further run an alternative robustness test
on the basis of incremental difference-in-difference (DiD) estimation. The DiD estimator is par-
ticularly well-suited to estimate dynamic treatment effects in the context of limited information
about the exact length of transmission lags before individual measures show measurable ef-
fects (a detail description of is given in appendix E). As the results clearly show, treatment ef-
fects from public health measures in Jena in terms of a reduction in Covid-19 cases only become
statistically significant roughly two weeks after the introduction of face masks on April 6. If we
resort to the estimated incubation and reporting lag as shown in appendix A.3, this result sup-
ports our main SCM findings that the relative reduction in the cumulative number of Covid-19
cases is mainly attributable to the timing of introducing face masks. The incremental DiD results
also support our main SCM findings in terms of the magnitude of the treatment effect.

2.3 Results for other regions

Jena may be a unique case. We therefore also study treatment effects for other regions that have
antedated the general introduction of face masks in Germany. Further single unit treatment anal-
yses are shown in appendix C. SCM estimation for multiple treated units is studied in two ways. The
first sample covers the full set of municipal districts and accordingly includes a total of 32 treated
units. The second focusses on the subsample of larger cities (kreisfreie Stédte) of which 8 are
treated units. Treated regions introduced face masks by April 22 at the latest. The donor pool of



control regions is specified in such a way that the minimum time lag in the introduction of face
masks between treated and control regions ranges between 5 and 13 days.

Panel A: Cumulative Covid-19 cases (all regions) Panel B: Cumulative Covid-19 cases (larger cities)
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Figure 4: Average treatment effects for introduction of face masks (multiple treated units)

Notes: Panel A and Panel B measure the average number of cumulative Covid-19 cases in the respective groups;
Panel C and Panel D visualize treatment effects in terms of the estimated reduction in the cumulative number of
Covid-19 cases together with 90% confidence intervals. The reported p-values in Panel E and Panel F are adjusted
for the pre-treatment match quality (see Figure 2 for details); inference has been conducted on the basis of a
random sample of 1,000,000 placebo averages.

The results, visible in Figure 4, point to a significant face mask-effect in the reduction of SARS-CoV-
2 infections over a period of 20 days after the introduction. The temporal evolution of the average
number of cumulative Covid-19 cases for treated regions and their corresponding synthetic control
groups are shown in Panel A and Panel B of Figure 4, respectively. The reported 90% confidence
intervals in Panel C and Panel D calculated on the basis of adjusted p-values shown in Panel E and
Panel F indicate that the estimated treatment effects are not random for both samples. While treat-
ment effects of face masks turn significant after roughly one week for the overall sample, the emer-
gence of a reduction in the subsample of larger cities is fast and points to early anticipation effects
of face masks in urban areas, particularly during the period when local economies were gradually
reopened after April 20.

Importantly, however, the trend development for larger cities as shown in Figure 4 not only indi-
cates a drop in the number of newly registered Covid-19 cases around the immediate timing of the
introduction of face masks, but also points to the presence of dynamic treatment effects as the



average gap between treated regions and their synthetic control groups widens over time. This
hints at the role played by mandatory face masks in avoiding a new wave of new infections once
the economy and labor market is re-opened. As Panel B in Figure 4 highlights, such an avoidance
effect may be particularly important in larger cities with higher population density and accordingly
higher intensity of social interaction.®

Taken together, over a period of 20 days, we observe an average reduction of 28.4 cases be-
tween treated and control regions in the context of urban areas. Relative to the average num-
ber of cumulative Covid-19 cases on May 11 in control regions (317.9), this amounts to a re-
duction of 8.9% in the cumulative number of Covid-19 cases and a reduction of 51.2% in newly
registered case. The difference in the daily growth rate of the number of infections correspond-
ingly amounts to 0.46 percentage points. For the full sample, this difference is estimated to be
0.13 percentage points (see again appendix B.5 for an overview of all measures and section 4
for theoretical background). This smaller magnitude in the latter sample including all municipal
districts has to be evaluated against the background of a considerable degree of structural het-
erogeneity, for instance, related to the composition of the local population but also the local
Covid-19 spread. We argue that the latter should thus be interpreted as a lower bound for the
true treatment effects.

3 Discussion

We set out by analyzing the effect of face masks on the spread of Covid-19 for a comparative
case study of the city of Jena. Our quasi-experimental control group approach using SCM shows
that the introduction of face masks on April 6 reduced the number of newly registered Covid-
19 cases over the next 20 days by 75% relative to the synthetic control group. Comparing the
daily growth rate in the synthetic control group with the observed daily growth rate in Jena,
the latter shrinks by around 70% due to the introduction of face masks. This is a sizeable effect.
The introduction of mandatory face masks and the associated signal to the local population to
take the risk of person-to-person transmissions seriously apparently helped considerably in re-
ducing the spread of Covid-19. Looking at average treatment effects for all other regions puts
this result in some perspective. The reduction in the daily growth rate of infections amounts to
14% only. By contrast, when we focus on larger cities, we find a reduction in the daily growth
rate of infections by roughly 47%.

What would we reply if we were asked what the effect of introducing face masks would have
been if they had been made mandatory all over Germany? The answer depends, first, on which
of the percentage measures we found above is the most convincing and, second, on the point
in time when face masks are made compulsory. The second aspect is definitely not only of ac-
ademic interest but would play a major role in the case of a second wave.

We believe that the reduction in the daily growth rates of infections between 47% and 70% is
our best estimate of the effects of face masks. Arguments in favor of the high 70% stress that
Jena introduced face masks before any other region did so. It announced face masks as the first
region in Germany while in our post-treatment period hardly any other public health measures
were introduced or eased. Hence, it provides the most clear-cut quasi-experimental setting for
studying its effects. Second, as described below in section 4, Jena is a fairly representative re-
gion of Germany in terms of Covid-19 cases. Third, the smaller treatment effects observed in

10 This is perfectly in line with (7) given the reduction in aerosols and droplets via using masks.
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the multiple treatment analysis may also result from the fact that —by the time that other re-
gions followed the example of Jena— behavioral adjustments in Germany’s population had al-
ready taken place. Wearing face masks gradually became more common and more and more
people started to adopt their usage even when it was not yet required. The results for the sub-
sample of larger cities are, however, quantitatively similar to Jena.

Arguments for the lower 47% state that the stronger impact of face masks on the infectious in
Jena may thereby partly be driven by a Hawthorn effect. The population in this pioneer region
might have reacted very strongly to the mandatory introduction of face masks by taking the
other imposed public health measures and hygiene rules (washing hands, limiting interactions,
staying more at home etc.) more seriously.

Concerning the point in time (or better, the point of the epidemic cycle) when face masks be-
come mandatory, all of our estimates might actually be modest. The daily growth rates in the
number of infections when face masks were introduced in Jena was around 2-3%. These are
low growth rates compared to the early days of the epidemic in Germany, where daily growth
rates lay above 50% (15). One might therefore conjecture that the effects might have been
even greater if masks had been introduced earlier.

This timing effect might also explain the difference between Jena estimates and lower esti-
mates for other regions. By the time Jena introduced face masks on April 6, the general trend
development of Covid-19 cases was still relatively dynamic across German regions. In mid-April,
when other regions followed the example of Jena and introduced face masks before the general
introduction at the federal state level, overall daily growth rates were already lower.

We simultaneously stress the need for further complementary analyses. First, Germany is only
one specific country. Different regulations, norms or climatic conditions might change the em-
pirical picture for other countries. Second, we ignored the impact of the number of tests on
reported infections. While we do not believe that this matters for Germany as rules for testing
are homogenous across regions, this might play a bigger role for international comparisons.
Third, we have ignored spatial dependencies in the epidemic diffusion of Covid-19. This might
also matter. Finally, there are various types of face masks. We cannot identify differential ef-
fects since mask regulations in German regions do not require a certain type. In any case, given
the low economic costs of face masks compared to other public health measures, a cost-benefit
view clearly speaks in favor of face masks.

4 Method and data

Method. Six regions in Germany (municipal districts, equivalent to the EU nomenclature of ter-
ritorial units for statistics, NUTS, level 3 categorization) made face masks mandatory before
their respective federal states. They are displayed in Figure 5. The figure also shows differences
across federal states in the timing of introducing mandatory face masks.

To identify treatment effects from introducing face masks, we apply the synthetic control
method (SCM) for single and multiple treated units (see appendix B.1 for more background).
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April 27
Saarland, Baden Wiirttemberg, Rheinland-Palatine, Bavaria, Lower

April 22 Saxony, Brandenburg, Bremen, Hamburg, Hessia, Mecklenburg-Western
Saxony-Anhalt Pomerania, Northrhine-Westphalia, Berlin (public transport)
April 20 April 24 April 29
Saxony Thuringia Schleswig-Holstein, Berlin (sales shops)
April 6 April 13 April| 20 April| 27 May 4
| |
I ‘ ‘ I >
April 6 April 14 April 17 20.04. April 25
Jena Nordhausen Rottweil Main-Kinzig-Kreis, Braunschweig
Wolfsburg

Figure 5: The timing of mandatory mask wearing in federal states (top) and individual regions (below)

Data. We use the official German statistics on reported Covid-19 cases from the Robert Koch
Institute (16). We build a balanced panel for 401 NUTS level 3 regions and 105 days spanning
the period from January 28 to May 11, 2020 (42,105 observations). We use the cumulative
number of registered Covid-19 cases in each district and the number of cumulative Covid-19
cases per 100,000 inhabitants as main outcome variable. We estimate overall effects for this
variable together with disaggregated effects by age groups (persons aged 15-34 years, 35-59
years and 60+ years). We also employ regional data to inter alia identify control regions. The
table in appendix B.2 shows summary statistics.

Face masks are clearly not the only public health measures to mitigate the spread of Covid 19.
Identification of the face mask effect therefore need to take the timing of other public health
measures into account. To this end, we built a database for all public health measures in Jena
and Thuringia and for face masks in all other federal states. See appendix A.1 and A.2 for details.

Conceptional background. To facilitate the interpretation of our findings, we employ a standard
SIR model with three states: Susceptible, infectious and removed. (See appendix A.4 for more
details.) Imagine we study a region where face masks are not mandatory. The time path /(t) of
infections individuals in this (synthetic) control group is displayed in Figure 6 below as lcontrol(t).
The time path for /#**'(t) in the control group is denoted by Iy e, ,:(t). Now consider the intro-
duction of mandatory face masks at T (set to 29.5 in our figure below). ! Mandatory masks
reduce the infection rate (via a parameter r in the SIR model). Given a (median) delay of D™
between infection and reporting to authorities (estimated at 10.5 days in appendix A.3), we
model this delay by effectively reducing r at T+D™. Hence, as of T+D™, the number of infectious
individuals falls faster, see “face masks Imask(t)”, and the number of individuals ever infected
rises less quickly, as visible when looking at I/°7. (t). Note the qualitative similarity between
the yellow and pink curve here and the corresponding curves in panel A of Figure 1 and panels

A and B of Figure 4 in the main text.

1 We chose T=29.5 as this yields a date when masks show an effect in the data on T+D™=40 where the epidemic
is already beyond its peak in our simple model. This is consistent with Jena where the incidence has already been
declining when face masks became mandatory.
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Figure 6: Theoretical effects of face masks on the number of infectious individuals /(t) and on the accumulated
number of infectious individuals /¢¢'(t)

Now imagine we want to quantify the effect of face masks. The model suggests that the effect
of face masks can be described by the reduction in the total number of individuals ever infected.
As an example, consider time T+D™+9, i.e. o days after face masks became effective. The differ-

ence between the control region and the face-mask region is given by IS251. ., (T+D™+0)-

e (T+D™+6). Hence, the introduction of face-masks reduced the number of Covid-19 cases

by

Icontrot(T+D™ +8)— Iyag, (T+D™+8)

ever ever
Icontrol(T+Dm+5)_ Icontrol(T+Dm)

reduction over § days = * 100%. (1)
This equation produces the numbers we report to quantify the effects of face masks. Appendix
B.5 describes our measures based on daily growth rates.
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A Timing of public health measures and visibility in data

A.1 Timing of the introduction of mandatory face masks

Face mask were introduced in two ways in federal states. One measure relates to public trans-
ports and shops, the other to services for which a distance of 1.5 meters cannot be guaranteed.
The points in time differ, however. An overview is in the next figure.

Schleswig-Holstein
Schleswig-Holstein
Hamburg

Hamburg

Lower Saxony

Lower Saxony

Bremen

Bremen

North Rhine-Westphalia
North Rhine-Westphalia
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Hesse
Rhineland-Palatinate
Rhineland-Palatinate
Baden-Wurttemberg
Baden-Wurttemberg
Bavaria

Bavaria

Saarland

Saarland

Berlin

Berlin

Brandenburg
Brandenburg
Mecklenburg-West Pomer.
Mecklenburg-West Pomer.
Saxony

Saxony

Saxony-Anhalt

Saxony-Anhalt
Thuringia
Thuringia
T T T T T T T T
30/Mar 06/Apr 13/Apr 20/Apr 27/Apr 04/May 11/May 18/May
23, Mandatory face mask for 24, Mandatory face mask for
public transport and shops services without social distancing

Figure 7: Time line of making face masks mandatory across federal states

We found two exceptions to this general principle of two measures. Thuringia only introduced
face masks for public transports and shops. Bavaria introduced face masks for public transports
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and shops first as a recommendation (“should be worn”) on April 20. This was corrected by
making face masks mandatory (“have to be worn”) on April 27. We display the latter in the
figure. We do not believe that adding Bavaria to the treatment group (by assuming that “should
be” was already understood by the public as “have to be”) would considerably change our find-
ings.

For clarity, we present the dates for federal states in the following table. This table also displays
regions such as Jena that introduced face masks earlier than the federal state to which they
belong.

Table 1: When face masks became compulsory in federal states and municipal districts

manda- difference
public services w/o individual tory face indaysto
federal state transport distancing NUTS3 region masks fed. state
Landkreis Rott-
Baden-Wurttemberg 27.04.2020 04.05.2020  weil 17.04.2020 10
Bavaria 27.04.2020 04.05.2020
Berlin 27.04.2020 04.05.2020
Brandenburg 27.04.2020 04.05.2020
Bremen 27.04.2020 04.05.2020
Hamburg 27.04.2020 04.05.2020
Hesse 27.04.2020 04.05.2020 Main-Kinzig-Kreis 20.04.2020 7
Mecklenburg-West Pomer.  27.04.2020 04.05.2020
Lower Saxony 27.04.2020 04.05.2020 Wolfsburg 20.04.2020
Braunschweig 25.04.2020
North Rhine-Westphalia 27.04.2020 27.04.2020
Rhineland-Palatinate 27.04.2020 03.05.2020
Saarland 27.04.2020 18.05.2020
Saxony 20.04.2020 04.05.2020
Saxony-Anhalt 22.04.2020 04.05.2020
Schleswig-Holstein 29.04.2020 29.04.2020
Thuringia 24.04.2020 - Jena 06.04.2020 18
Nordhausen 14.04.2020 10

A.2 The timing of other public health measures

As it is not enough to take only dates into account when face masks became mandatory, we
provide an overview of the timing of other public health measures. This will show that our re-
sults capture the effects of face masks and not of other public health measures. Figure 8 shows
the points in time when measures entered into force in Jena. All measures for Thuringia are
also binding for Jena.'? As Jena introduced three regulations concerning face masks, they be-
came mandatory in three steps. April 15t saw the introduction of face masks for services where

12 We are grateful to Jan Franke for many explanations related to public health measures in Jena and Thuringia.
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a distance of 1.5 meters cannot be kept. On April 6, masks became mandatory for public trans-
ports, shops, food deliveries stores and offices of craftsmen and service providers. As of April
10, masks also became mandatory at work and in public buildings, as long distance of 1.5 m
cannot be kept. (See also the box on the next page.) Measures of April 1st and 6 are measures
also employed by federal states subsequently (see section A.1). The measure of 10 April was
employed only by Jena (at least in this wording).

1, community facilities (excluding schools)

1.1, community facilities (excluding schools) (partial)

2, schools

30, schools (partial)

31, Kindergartens

3, public and non-public educational institutions
4, leisure facilities

4.9, cafés, bars, pubs etc.

5, cance venues, night clubs etc.

|

6, hotels and other accomodation

6.1, service for overnight-guests in hotels etc.

6.2, hotels and other accomodation closed for tourism
7, non-essential shops

35, Non-essential shops larger than 800m?

33, parcs, zoos, outdoor playgrounds

8, restaurants, bars, etc. normal in-house service

9, Events with more than 2 people

44, Events with more than 5 people

12, Events with more than 100 people

13, Events with more than 500 people

14, public festivities, institutionally supported theatres & orchestras

15, limitation of visits to medical facilities

17, Events organised by faith groups

18, Open-air gatherings/events

36, Take away service for restaurants; with distance and hygiene rules
37, Public opening of canteens and cafeterias

46, Firm canteens and cafeterias

48, take-out is forbidden for canteens

19, 14-day quarantine after returning from abroad

21, Regulation of funeral services and weddings

22, Distance and protective measures in shops

23, face mask for public transport and shops

24, face mask for services without social distancing

25, face mask at work with more than one person in room

26, hygiene regulations and restrictions for permitted gatherings

28, contact restriction to one person outside one's own household

38, Campaign "Jena zeigt Maske"

|

39, Legal enforcement by police and fines
40, clinical training measures respirators

41, Exit lock/ curfew

“Ii

T T T T T T T T
09/Mar 16/Mar 23/Mar 30/Mar 06/Apr 13/Apr 20/Apr 27/Apr
B Closures B Bans B Contact rules B Other measures

Figure 8: Time line of public health measures in Jena. Light bars indicated measures in force only in Jena,
dark bars indicate measures in force in Thuringia (and thereby also in Jena)

Most importantly for our strategy to quantify the effect of face masks, we note that the regu-
lation closest in time, apart from the campaign “Jena zeigt Maske”, entered into force on March
25 (number 28, contact restriction). After face masks became mandatory, only exit strategies
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were implemented. Measure 6.1 that restricts service for over-night guests in hotels is part of
an exit strategies that allows hotels to reopen (measure 6) provided hotels do not provide ser-
vice to over-night guests.3

This picture proves that there are no measures relevant for public health implemented in Jena
that could affect the spread of Covid-19 around the time when face masks where introduced.
We therefore conclude that it is face masks itself whose effect we measure in the main text.

Due to the enormous interest in our study, both within Germany and worldwide, we reproduce
here the regulation that makes face masks mandatory in Jena. The regulation is dated March
31st, 2020 and enters in force on April 1st, 2020.

Box 1: The regulation concerning face masks in Jena (source: Offentliche Bekanntmachung der Stadt Jena, 31. 03. 2020, Voll-
zug des Gesetzes zur Verhiitung und Bekampfung von Infektionskrankheiten beim Menschen)

13. Jedermann hat bei Vorliegen der nachfolgend genannten Voraussetzungen einen Mund-Nasen-Schutz zu tragen.
Anerkannt ist jeder Schutz, der aufgrund seiner Beschaffenheit geeignet ist, eine Ausbreitung von Ubertragungsfahigen
Tropfchenpartikeln durch Husten, Niesen, Aussprache zu verringern, unabhangig von einer Kennzeichnung oder zerti-
fizierten Schutzkategorie (ausreichend sind daher auch aus Baumwolle selbstgeschneiderte Masken, Schals, Ticher,
Buffs etc.)

a) Diese Verpflichtung gilt ab sofort fiir folgende Bereiche:

e Die Inanspruchnahme und Erbringung von Dienstleistungen, bei denen sich der Mindestabstand von 1,5 m
nicht durchgangig einhalten lasst.

b) Weiterhin gilt diese Verpflichtung ab dem 06.04.2020 fiir folgende Bereiche:

e die Nutzung des o6ffentlichen Personennahverkehrs im Stadtgebiet Jenas,

e das Betreten von gedffneten Verkaufsstellen,

e das Betreten von Orten zur Abgabe von Speisen und Getranken zum Mitnehmen bzw. Ausliefern,

e  das Betreten der Dienstraume von Handwerkern und Dienstleistern.

c) SchlieRlich gilt diese Verpflichtung ab dem 10.04.2020 fur folgende Bereiche:

e der Aufenthalt in geschlossenen Raumen mit mindestens einer anderen Person (insbesondere auch die
Arbeitsstatte), ausgenommen hiervon ist der private Wohnbereich oder wenn im Raum pro Person min-
destens 20 gm zur Verfligung stehen und der Mindestabstand von 1,5 m sichergestellt ist,

e  generell im 6ffentlichen Raum, wo eine Unterschreitung des Mindestabstands von 1,5 m nicht dauerhaft
sichergestellt ist (dies gilt nicht bei Bewegung unter freiem Himmel, insbesondere Spazierengehen und
Sport).

A.3  When are effects of public health measures visible in the data?

Imagine a public health measure is implemented on a certain day and that it is effective. When
should we see the effects in the data? This delay between measure and statistical visibility de-
pends on the usual incubation period and on the reporting delay. The incubation period is well-
studied and has a median of 5.2 days and 95% of all delays lie in the range of around 2 to 12
days. They seem to be approximately log-normally distributed (1, 2). The reporting delay is not
as well-studied. It consists of a delay due to diagnosis, testing and reporting of the test: A per-
son with symptoms needs to decide to go to a GP in order to obtain a diagnosis. With typical
symptoms, a test is undertaken, and the result needs to be reported to authorities. Formally,
let D; denote a random variable that describes the incubation period. Let Dz denote a second
random variable that describes the delay between perceptible symptoms and reporting to au-
thorities of a positive SARS-CoV2 test. We are interested in the distributional properties of the

13 Note that measures 6 and 6.1 were implemented in Jena only (hence the light color). The corresponding meas-
ure 6.2 in Thuringia (dark red) closed hotels for tourism only.
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overall delay defined as D = Di+Dr. We will take the median of D as our measure for how long
it takes before effects of public health measures are visible in the data.

Luckily, 3 provides information on the date of reporting and on the day of first symptoms (for
around 80% of all reported Covid-19 cases). The difference between these two dates gives a
vector of realizations of the random variable Dk. In total, we have 103,171 observations.

Findings for incubation. 2 and 1 describe the delay between infection and symptoms, i.e. the
incubation period, by a lognormal distribution. To be precise about parameters in what follows,
a lognormal distribution of a random variable X has the density f(x)=
1 (—(l"x_zmz) . : :

Tomox € 20 for x > 0, where o is the dispersion parameter and u the scale parameter.

The mean, median and variance are given by

2
- 2 2
EX=e""Z,m=et VarX = [e7 —1]e?*".

(2) report m=5.1 and that 95% of all cases lie between 2.2 and 11.5 days. The latter reads, more
formally f21;'5f(x)dx = .95. We numerically compute the parameters o from this equation
and obtain 6=0.4149. The scale parameter is given by pu=In 5.1= 1.63.

Relative frequency
.05
1

o T T T T T T

0 10 20 30 40 50
Dr (in days)
Notes: 0 < Dr < 50, Reporting day(Meldedatum)< 6.5.2020

Figure 9: Histogram of delay between first symptoms and reporting

Findings for reporting. For illustration purposes, we plot a histogram of realizations of Dr in
Figure 9. The mean, median (50% percentile), variance and standard deviation of Dg are re-
ported in the next table.

Table 2: Descriptive statistics for the reporting delay Dg

Mean Median Variance Standard deviation
6.80 6 30.92 5.56

Note: In the RKI data set, there are 119,917 observations with in-
formation on day of infection (until reporting day May 6, 2020). We
focus on 118,618 with Dz>0.
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Merging the two. We consider the duration between infection and reporting as one random
variable. We call it total delay D and it consists of the sum of incubation and reporting delay, D
= Dy + Dg. Obviously, the mean is ED = ED; + EDr and the variance reads VarD = VarD, + VarDg if
we are willing to assume independence between the two random variables. As we do not be-
lieve that diagnosis or reporting lags are influenced by the length of the incubation period, we
believe that this is a weak assumption.

As we need more information than the first two moments for our analysis, we now derive the
distribution of D, i.e. the distribution of a sum of two random variables. We denote it by Fp(d),
i.e. Fp(d)=Prob(D<d). We ask what the probability is that D<é where Jis some constant. We
continue to assume that D; and Dk are independent random variables. The corresponding den-
sities are (&) and g(or), respectively. This probability is given by

Prob(D; + Dy < 8) = [ [ "' F(6)9(82)d6z | d,

having the usual interpretation: when we are interested in values below or equal to 6, we let
run from 0 to 6 and g from 0 to - § such that the sum of the two is always smaller or equal to
. Integrating over the joint density (which is a product given independence) gives the desired
probability. This integral gives us the distribution Fp(d) we were looking for.
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Figure 10: Density of the total delay D

If we needed a density fj, (§), we could compute the derivative of this expression with respect
to d. This would give the usual convolution expression,
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fo(8) =D = L (B[00 £(5,)g(8p)d8r| 4, = [ ° £(8)g(6p)d6r +

Iy [0 F(8)9(8r)d8R| d6; = [ f(6)g(5 — 6)d8;.

Keeping in mind that we work with the assumption that f(3)) is the density of the exponential
distribution and that g(dr) is the density corresponding to the histogram in Figure 9 above, we
can easily compute the density numerically. Figure 10 provides a visual impression.

Our data imply a mean of 11.7 days and a median of 10.5 days. This provides a basis for studies
(e.g. 4) that need to assume a certain delay between infection and visibility in the data. * Our
findings show that a delay of two to three weeks is too large. The percentiles of the total delay
are in the following table.

Table 3: Percentiles of total delay D

1 2.5 5 10 25 50 75 80 20 95 97,5 929
342 4.09 4.78 5.70 7.65 10.52 1430 15.41 18.74 22.22 26.29 34.23

A.4  Visibility in data Il = Conceptual background

Conceptional background. We now present a standard SIR model. Let the (expected) number
of individuals in the state of being susceptible at a point in time t be denoted by S(t), the num-
ber of infectious individuals is /(t) and the number of removed is R(t).!> The number of suscep-
tible falls according to S(t) = —rI(t)S(t), where r is a constant and rI(t) can be called the
individual infection rate. Denoting the sum of individual recovery and death rate by a constant
a, the number of infectious individuals changes according to I(t) = r1(t)S(t) — al(t). Finally,
the number of removed (recovered or death) individuals rises over time according to R(t) =
al (t). The number of individuals that have ever been infectious between the beginning of the

epidemic in 0 and some point in time t amounts to [¢V¢" () = fot rI(x)S(x)dx. This number

is the theoretical counterpart to the number of Covid-19 cases reported by health authorities
worldwide. This model is used for our conceptional discussion in the main part of the paper.

We could also wish to inquire into the long-run effects of face masks. In this case, we would
have to solve the underlying SIR model for the long-run, i.e. for when the epidemic is over.
There are two issues. First, the future course of the epidemic is unknown given uncertainty
about the availability of pharmaceutical solutions. Second, the long-run number of susceptible
individuals depends on model parameters and can be larger than zero (8, 9). The SIR model
therefore does not automatically end with herd immunity.%® If the outflow from I(t) is larger
than the inflow, the epidemic ends. To judge these long-run effects of face masks one would
have to ignore potential pharmaceutical solutions and structurally estimate parameters of a
much more elaborated SIR model. We therefore present the effects of masks by the measure
proposed above in equation (1).

14 We are grateful to Christof Kuhbandner for discussions of this point.

15 More elaborate models designed for Covid-19 exist (e.g. 5-7). The simple model employed here is, however,
sufficient for our interpretation purposes.

16 In this case, any public health intervention would only delay the epidemic but not reduce the long-run total
number of infections. See e.g. (5, 6) for a discussion.
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B Background and additional estimates for SCM application to Jena

B.1 The synthetic control method

General background. Our methodical choice is motivated as follows: First, the design of SCM to
“estimate the effects of <...> interventions that are implemented at an aggregate level affecting
a small number of large units (such as cities, regions, or countries)” (10, p. 3) clearly matches
with our empirical setup. Compared to standard regression analyses, SCM is particularly well
suited for comparative case studies with only one treated unit or a very small number thereof
(11, 12). Second, the method is flexible, transparent and has become a widely utilized tool in
the policy evaluation literature (13) and for causal analyses in related disciplines (see, e.g., 14,
for an overview of SCM in health economics, 15, for a biomedical application).t’

SCM identifies synthetic control groups for the treated unit(s) to build a counterfactual. In our
case, we need to find a group of structurally similar regions that has followed the same Covid-
19 trend as treated unit(s) before mandatory masks have been introduced in the latter. This
control group would then most likely have had the same behavior as treated unit(s) in the ab-
sence of the mask obligation. We can then use this group to ‘synthesize’ the treated unit and
conduct causal inference.

The synthetic control group is thereby constructed as an estimated weighted average of all
regions in which masks did not become compulsory earlier on. Historical realizations of the
outcome variable and several other predictor variables that are relevant in determining out-
come levels allow us to generate the associated weights, which result from minimizing a pre-
treatment prediction error function (see 10, 11, 17 for methodical details).

Implementation. The implementation of the SCM is organized as follows. As baseline analysis,
we focus on the single treatment case for the city of Jena for three reasons. First, as shown in
Figure 1, Jena was the pioneer region for mandatory face masks in public transport and sales
shops on April 6. This results in a lead time of 18 days relative to mandatory face masks in the
surrounding federal state Thuringia on April 24. By April 29, all German regions had introduced
face masks. A sufficiently long lag between mandatory face masks in the treated unit vis-a-vis
control regions is important for effect identification.

Second, the timing of the introduction of face masks in Jena is not affected by other overlapping
public health measures related to the Covid-19 spread. To support this claim, we looked at all
regulations (totaling almost 50) that were implemented in Jena between the beginning of
March 2020 and end of April.1® We also looked at all regulations in Thuringia as they are binding
for Jena. A graphical illustration of the timing of the various measures and related discussion is
in appendix A.1. As all other measures are more than 10 days away from masks becoming man-
datory, we can be certain that we measure the effects of face masks.

1716 employ the SCM to estimate the effect of the shelter-in-place order for California in the development of
Covid-19. The authors find inter alia that around 1600 deaths from Covid-19 were avoided by this measure during
the first four weeks.

18 The first public health measure in Germany to mitigate the spread of Covid-19 dates from March 10 in North-
Rhine Westphalia and prohibited meetings with more than 1000 participants. This measure was also implemented
by many other federal states, including Thuringia one day after. See 18 for more background.
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Third, Jena is in various ways a representative German city suitable for studying the Covid-19
development: On April 5, which is one day before face masks became compulsory in Jena, the
cumulative number of registered Covid-19 cases in Jena was 144. This is very close to the me-
dian of 155 registered cases per region in Germany. Similarly, the cumulative number of Covid-
19 incidences per 100,000 inhabitants was 126.9 in Jena compared to a mean value of 119.3 in
Germany (compare Figure 11 in appendix B.3).

In our baseline configuration of the SCM, we construct the synthetic Jena by including the num-
ber of cumulative Covid-19 cases (measured one and seven days before the start of the treat-
ment) and the number of newly registered Covid-19 cases (in the last seven days prior to the
start of the treatment) as autoregressive predictor variables. The chosen lag structure shall en-
sure that the highly dynamic Covid-19 development is properly captured. We use cross-valida-
tion tests to check the sensitivity of the SCM results when we impose a longer lag structure.
The autoregressive predictors are complemented by cross-sectional data on the region’s de-
mographic and basic health care structure to control for confounding factors at the regional
level.

Although the case study of Jena can be framed in a clear identification strategy, the Covid-19
spread in a single municipality may still be driven by certain particularities and random events
that may prevent a generalization of estimated effects. We therefore also test for treatment
effect in regions that introduced face masks after Jena but still before they became compulsory
all across Germany. Importantly, here we extend the single treatment approach to the analysis
of multiple treated units by considering all regions in the treated group that introduced face
masks by April 22. This results in a total of 32 regions out of which 8 are larger cities (kreisfreie
Stddte).

All other regions apart those located in Thuringia (April 24) and Schleswig-Holstein (April 29)
introduced face masks on April 27. We employ this staggered introduction to study the effects
of mandatory masks up to May 11, which gives us a time window of 20 days to measure treat-
ment effects. We end our analysis on May 11 to avoid a potential underestimation of treatment
effects since by that day all control regions had face masks in use for 14 days. This cut-off date
is important as we expect that differences in the epidemic spread between treated and control
regions would disappear afterwards if we assume a median incubation period of 5.2 days (see
1, 2) and a similar reporting lag. This overall time lag between the infection and registration in
the data is also crucial for the interpretation of our results and we discuss it in detail in appendix
A3.

Although SCM appears to be a natural choice for our empirical identification strategy, we are
aware that its validity depends on important practical requirements including the availability
of a proper comparison group, the absence of early anticipation effects or interference from
other events (10, 19, 20). In the implementation of the single and multiple treatment SCM we
check for these pitfalls through different sensitivity checks and placebo tests. In our baseline
case study for Jena (and similarly of the multiple treatment approach), we deal with these is-
sues in as follows:

1. We make sure that regions used to create the synthetic control, i.e. the donor pool, are not
affected by the treatment. We eliminate the immediate geographical neighbors of Jena
from the donor pool to rule out spatial spillover effects. We also exclude those regions for
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which anticipation effects may have taken place because face masks became compulsory
in quick succession to Jena.

2. We account for early anticipation effects in Jena. Specifically, we take the announcement
that face masks will become compulsory one week before their de facto introduction as an
alternative start of the treatment period.*

3. We have screened the introduction and easing of other public health measures to account
for all potential interferences taking place during our period of study. Significant public
health measures that have been introduced in Jena but not (or only temporally delayed) in
the federal state of Thuringia or other German regions will be tested for their intervening
effect on the introduction of face masks by means of placebo-in-time test and auxiliary dif-
ference-in-difference regressions.

4. We apply cross-validation tests to check for sensitivities related to changes in historical val-
ues in the outcome variables used as predictors. We also test for the sensitivity of the re-
sults when changing the composition of regions in the donor pool for computing the syn-
thetic control group.

5. As a mode of inference in the SCM framework, we run comprehensive placebo-in-space
tests, which are based on the estimation of placebo treatment effects for each control re-
gion in which masks did not become compulsory early on.

Hence, our mode of inference relies on permutation tests and follows the procedures sug-
gested by (19) and applied, for example, by (21 or (22. Estimated placebo treatments for control
regions should be small, relative to the treated region(s). We calculate significance levels for
the test of the hypothesis that mandatory face masks did not significantly reduce the number
of reported Covid-19 cases. This provides us with a set of (one-sided) p-values for each day,
which capture the estimated treatment effect on reported Covid-19 cases from placebo re-
gions. The p-values are derived from a ranking of the actual treatment effect within the distri-
bution of placebo treatment effects for each day after the start of the treatment (i.e., introduc-
tion of face masks). We follow the suggestion in (23 and compute adjusted p-values taking the
pre-treatment match quality of the placebo treatments into account.?’ We also use the set of
p-values to compute confidence intervals for treatment effects to visualize the significance and
precision of the estimated effects (25).

B.2 Summary statistics

The RKI collects data from local health authorities and provides updates on a daily basis (avail-
able via API). We use the cumulative number of registered Covid-19 cases in each district as
main outcome variable.?' As an alternative outcome variable, we also use the cumulative inci-
dence rate, i.e. the number of cumulative Covid-19 cases per 100,000 inhabitants.

1% We use March 30 as the day of the announcement when several local media reports covered the introduction
of face masks on April 6. The general decree of the local administration in Jena has been published on March 31.

20 We conduct all estimations in STATA using “Synth” and “Synth Runner” packages (23, 24). Data and estimation
files can be obtained from the authors upon request.

21 We are aware of the existence of hidden infections. As it appears plausible to assume that they are proportional
to observed infections across regions, we do not believe that they affect our results. We chose the date of report-
ing (as opposed to date of infections) because not all reported infections include information about the date of
infection.
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Table 4: Summary Statistics of Covid-19 indicators (outcome variables) and predictors characterizing the
regional demographic structure and basic health care system

Mean S.D. Min. Max.
PANEL A: Data on registered Covid-19 cases
[1] Newly registered cases per day 3.91 1024 O 310
[2] Cumulative number of cases 147.70 32712 0 6066
[3] Cum. cases [2] per 100,000 inhabitants 73.50 12038 O 1542.69
PANEL B: Regional demographic structure and local health care system
Population density (inhabitants/km?) 534.79 702.40 36.13 4,686.17
Population share of highly educated* individuals (in %) 13.07 6.20 5.59 42.93
Share of females in population (in %) 50.59 0.64 48.39 52.74
Average age of females in population (in years) 45.86 2.11 40.70 52.12
Average age of males in population (in years) 43.17 1.83 38.80 48.20

Old-age dependency ratio (persons aged 65 years and 34.34 5.46 22.40 53.98
above per 100 of population age 15-64)

Young-age dependency ratio (persons aged 14 years 20.54 1.44 15.08  24.68
and below per 100 of population age 15-64)

Physicians per 10,000 of population 14.58 4.41 7.33 30.48
Pharmacies per 100,000 of population 27.01 4.90 18.15 51.68
Settlement type (categorial variable®) 2.59 1.04 1 4

Notes: * = International Standard Classification of Education (ISCED) Level 6 and higher; $ = included categories
are 1) larger cities (kreisfreie GrofSstddte), 2) urban districts (stddtische Kreise), 3) rural districts (ldndliche Kreise
mit Verdichtungsansdtzen), 4) sparsely populated rural districts (diinn besiedelte Idndliche Kreise).

Table 1 also presents summary statistics of our other predictor variables. We focus on factors
that are likely to describe the regional number and dynamics of reported Covid-19 cases. Obvi-
ously, past values of (newly) registered Covid-19 cases are important to predict regional trajec-
tories of Covid-19 cases over time in an autoregressive manner. In addition, we argue that a
region’s demographic structure, such as the overall population density and age structure, and
its basic health care system, such as the regional endowment with physicians and pharmacies
per population, are important factors for characterizing the local context of Covid-19. Predictor
variables are obtained from the INKAR online database of the Federal Institute for Research on
Building, Urban Affairs and Spatial Development. We use the latest year available in the data-
base (2017). We consider it likely that regional demographic structures only gradually vary over
time such that they can be used to measure regional differences during the spread of Covid-19
in early 2020.
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B.3 Covid-19 cases and cumulative incidence rate in Jena and Germany on April 5

Panel A: Cumulative number Covid-19 cases (April 5) Panel B: Cumulative Incidence Rate (April 5)
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Figure 11: Box plots for distribution of cumulative Covid-19 cases for all 401 German regions on April 5

B.4 Prediction error (RMSPE) and control regions

This appendix shows the balancing properties of the SCM approach together with the root
mean square percentage error (RMSPE) as a measure for the quality of the pre-treatment pre-
diction. Weights of control regions are in the subsequent table.

Table 5: Pre-treatment predictor balance and RMSPE for SCM in Figure 1

Introduction of Announcement/
Treatment: .
face masks start of campaign
Jena Synthetic Jena Synthetic
control group control group

Cumulative number of registered Covid-19
cases (one and seven days before start of 129.5 129.2 93 92.7
treatment, average)

Number of newly registered Covid-19

cases (last seven days before the start of 3.7 3.8 5 5.2
the treatment, average)

Population density (Population/km?) 38.4 22.8 38.4 26.3
Share of highly educated population (in %) 968.1 1074.3 968.1 947.9
Share of female in population (in %) 50.1 50.1 50.1 50.1
é;/aerrsa)ge age of female population (in 435 43.7 435 43.9
Average age of male population (in years) 40.5 40.6 40.5 40.8
Old-age dependency ratio (in %) 32.1 29.3 32.1 29.8
Young-age dependency ratio (in %) 20.3 19.6 20.3 19.5
Physicians per 10,000 of population 20.5 19.8 20.5 20.8
Pharmacies per 100,000 of population 28.8 28.7 28.8 28.6
Settlement type (categorial variable) 1 1.3 1 1.9
RMSPE (pre-treatment) 3.145 4.796

Donor pool includes all other German NUTS3 regions except the two immediate neighboring
regions of Jena (Weimarer Land, Saale-Holzland-Kreis) as well as the regions Nordhausen and
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Rottweil which introduced face masks in rapid succession to Jena on April 14 and April 17, re-
spectively.

Table 6: Sample weights for regions in synthetic control group

Introduction of face masks (Panel A in Figure 2)

ID NUTS 3 region Weight
13003 Rostock 0.326
6411 Darmstadt 0.311
3453 Cloppenburg 0.118
7211 Trier 0.117
6611 Kassel 0.082
5370 Heinsberg 0.046

Note: Donor pools corresponds to SCM estimation in Panel A
of Figure 2. Sample weights are chosen to minimize the
RMSPE ten days prior to the start of the treatment.

B.5 Growth rates

Jena has 142 registered cases on April 6 compared to an estimated number of 143 cases in the
synthetic control group. On April 26 Jena counts 158 cases and the synthetic control group re-
ports 205 (again estimated) cases. The daily growth rate in Jena is denoted by Axjena and can be
computed from 142 [1+Axjena]?° = 158. The daily growth rate in the control group is denoted by
Xcontrol and can be computed from 143 [1+AXcontrol]?° = 205. Hence, the introduction of the face
mask is associated with a decrease in the number of infections of (AXcontrol — AXjena) percentage
points per day. Analogously, we also calculate differences in the daily growth rates for our SCM
analysis including multiple treated units. The results are summarized in the following table.

Table 7: Summary of treatment effects of face mask introduction in Germany

Single Multiple Multiple
Treatment treatments treatments
(Jena) (all districts) (larger cities)

Difference between treated region(s) and
synthetic control group(s)

Absolute change in cumulative number of

Covid-19 cases over 20 days -46.9 7.0 -28.4
Percentage change in cumulative number of 0 0 0
Covid-19 cases over 20 days 22.9% 2.6% 8.9%
Percentage change in newly registered o 0 o
Covid-19 cases over 20 days 75.6% 15.7% >1.2%
lefer?nce in daily growth rates of Covid-19 1.28% 0.13% -0.46%
cases in percentage points

Reduction in daily growth rates of Covid-19 70.6% 14.0% 47 3%

cases (in percent)

All indicators in this table are compiled in an Excel-file available online. See e.g.
https://www.macro.economics.uni-mainz.de/klaus-waelde/ongoing-work-and-publications/
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B.6 SCM results by age groups

Panel A: 15-34 yrs. / Introduction

13
s o
8§ @
23
2
§ =
5
£
2 8-
2
B
3
g u'07 h |
&) T T T T
April 27 April 6 April 16 April 26
Jena — — - synthetic control unit
Panel C: 35-59 yrs. / Introduction
§ o ‘
8 ~ ! ~
o | —
- (=g 1 -
: @ s
3 I
o
5 ©
.g |
S |
s Y |
2z I
8 o I
g @ I
3 1
(&) T T T T
March 27 April 6 April 16 April 26
Jena — — - synthetic control unit
” Panel E: 60+ yrs. / Introduction
[
8 3 | S
> | /
by I [
.g g i | /
(&) |
o | —
2 o —
S 52 | — —
=] |
e ol L =
2 « T
3 /
E o | !
=1 -~ Il
o T T T T
March 27 April 6 April 16 April 26

Jena — — - synthetic control unit

Cumulative number Covid-19 cases Cumulative number Covid-19 cases

Cumulative number Covid-19 cases

Panel B: 15-34 yrs. / Announcement

< |
o
[*)
o
©
o
<
o
N
T T T T T
March 17 March 30 70 April 16 April 26
Jena — — - synthetic control unit
Panel D: 35-59 yrs. / Announcement
81 |
1 - -
o I ——
© , —
|
o | |
<
7
o | |
N |
Z |
|
© T % T T T
March 17 March 30 April 6 April 16 April 26
Jena — — - synthetic control unit
Panel F: 60+ yrs. / Announcement
o | —
™ 7 | p—
| e
| e
o |
N |
|
|
o | |
- |
|
|
|
e T % T T T
March 17 March 30 April 6 April 16 90
Jena — — - synthetic control unit

Figure 12: Treatment effects for introduction and announcement of face masks in Jena

Notes: Predictor variables are chosen as for the baseline specification shown in Figure 2; see main text.

Table 8: Sample weights in donor pool for synthetic Jena (cumulative Covid-19 cases; by age groups)

Age Group 15-34 years

Age Group 35-59 years

Age Group 60 years and above

ID NUTS 3 region Weight ID NUTS 3 region Weight ID NUTS 3 region Weight
1001  Flensburg 0.323 6411 Darmstadt 0.528 6411 Darmstadt 0.522
7211 Trier 0.207 16055 Weimar 0.16 16055 Weimar 0.244
13003 Rostock 0.184 14511 Chemnitz 015 7316 Neustadtad. g
WeinstraRe
5370 Heinsberg 0.142 8221 Baden-Baden 0.07 9562 Erlangen 0.06
3453  Cloppenburg 0.107 6434 E:’eci?taunus' 0.062 3356 Osterholz 0.056
6413 S/z?n”bad‘ M 0.038 8435 Bodenseekreis 0.029 5515 Miinster 0.027
5370 Heinsberg 0.001 9188 Starnberg 0.022

Note: Donor pools corresponds to SCM estimations in Figure 12. Sample weights are chosen to minimize the
RMSPE ten days prior to the start of the treatment.
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B.7 Effects on cumulative number of infections per 100,000 inhabitants

Panel A: Overall sample Panel B: Persons aged 15-34 years
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Figure 13: Treatment effects for introduction of face masks on cumulative incidence rate

Notes: See Table 1 for a definition of the incidence rate. Predictor variables are chosen as for baseline specification
shown in Figure 2; see main text.

Table 9: Sample weights in donor pool for synthetic Jena (cumulative incidence rate)

ID NUTS 3 region Weight
6411 Darmstadt 0.46
15003 Magdeburg 0.171
5370 Heinsberg 0.133
13003 Rostock 0.093
5515 Mdinster 0.066
11000 Berlin 0.035
12052 Cottbus 0.032
6611 Kassel 0.011

Note: Donor pools corresponds to SCM estimation in Figure 13. Sample
weights are chosen to minimize the RMSPE ten days prior to the start of
the treatment.
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Table 10: Sample weights in donor pool for synthetic Jena (cumulative incidence rate; by age groups)

Age Group 15-34 years Age Group 35-59 years Age Group 60 years and above
ID NUTS 3 region Weight ID NUTS 3 region Weight ID NUTS 3 region Weight
5370 Heinsberg 0.377 6411 Darmstadt 0.419 6411 Darmstadt 0.448
13003 Rostock 0.288 14511 Chemnitz 0.184 14612 Dresden 0.313
1001  Flensburg 0.14 14612 Dresden 0.154 9188 Starnberg 0.071
6611  Kassel 0.138 8221 Heidelberg 0.138 16054 Suhl 0.069
11000 Berlin 0.058 9188 Starnberg 0.088 5515 Minster 0.06
5370 Heinsberg 0.016 8221 Heidelberg 0.039

Note: Donor pools corresponds to SCM estimations in Figure 13. Sample weights are chosen to minimize the
RMSPE ten days prior to the start of the treatment.

B.8 Announcement and mobility

B.8.1 Google trends and announcement effects
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Figure 14: Online search for face masks and purchase options according to Google Trends

Note: Online search for keywords (in German) as shown in the legend as Face Mask (“Mund.-Nasen-Schutz”),
Buy Face Mask (“Mundschutz kaufen”) and Buy mask (“Maske kaufen”); alternative keywords show similar peaks
but with a lower number of hits; based on data from Google Trends (2020).

B.8.2 Mobility trends across German federal states

Figure 15 shows the trend development in overall mobility patterns across German federal
states between Feb 17 and May 18, 2020. Data source are the “Covid-19 Community Mobility
reports” published by Google LLC (2020). The data track the frequency of visits to different
places covered in Google maps on a daily basis compared to a baseline. The latter is set as
median value for the corresponding weekday during Jan 3 and Feb 6, 2020. To arrive at a com-
pact measure of regional mobility, we have aggregated data over the different place categories:
retail and recreation, groceries and pharmacies, parks, transit stations and workplaces. Given
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the high volatility of daily data, Figure 13 displays weekly averages. The mobility trends show a
clear common pattern: With public health measures taken across all federal states to restrict
professional and social contacts (RSC), mobility sharply declined in mid-March. It stayed low for
most of the following weeks and only gradually increased from mid-April onwards when first
actions to lift RSC and to re-open the economy have been taken (see 18 for details). Im-
portantly, during the timing of the mandatory introduction of face masks in Jena on April 6, no
significant change in mobility patterns across federal states can be observed, which potentially
confounds our empirical estimates. Although mobility data are increasingly used to study the
effects of public health measures, the inspection of the Google data urges to use such data only
very carefully in comparative studies at the countries/regional level given a the generally high
volatility and significant outliers. This is also recognized by Google LLC (2020).%?
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Figure 15: Overall trend in mobility patterns across German federal states (Feb 17 to May 18,
2020)

Source: Google LLC (2020). https://www.google.com/covid19/mobility/ Accessed: 04.06.2020

22 For details see: https://www.google.com/covid19/mobility/data documentation.html?hl=en.
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B.9 Changes in donor pool for synthetic Jena
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Figure 16: Treatment effects for changes in donor pool used to construct synthetic Jena

Notes: See main text for a detailed definition of the respective donor pools. Predictor variables are chosen as for
baseline specification shown in Figure 2; see main text.

Table 11: Sample weights for alternative donor pools used to construct synthetic Jena

Only Thuringia
ID NUTS 3 region Weight ID

Excluding Thuringia Only larger cities
NUTS 3 region Weight ID NUTS 3 region Weight

16076 Greiz 0.533 13003 Rostock 0.318 6411 Darmstadt 0.504
16051 Erfurt 0.467 6411  Darmstadt 0.302 13003 Rostock 0.304
7211 Trier 0.129 5113 Essen 0.192
3453 Cloppenburg 0.122
6611  Kassel 0.083
5370  Heinsberg 0.046

Only East Germany
ID NUTS 3 region Weight ID

Only West Germany
NUTS 3 region Weight

16051 Erfurt 0.865 6411
14612 Dresden 0.124 3402
11000 Berlin 0.011 6611
7211
4012
5370

Darmstadt 0.242

Emden 0.198
Kassel 0.169
Trier 0.168
Bremerhaven 0.167
Heinsberg 0.057

Note: Donor pools corresponds to SCM estimations in Figure 16. Sample weights are chosen to minimize the
RMSPE ten days prior to the start of the treatment.
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B.10 Cross validation and additional placebo-in-time test

Panel A: Cross-validation for changes in predictors Panel B: Placebo-in-time test (20 days in advance)
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Figure 17: Cross-validation for changes in predictor variables and placebo-in-time test

Notes: In Panel A the baseline specification for the synthetic control group uses historical values of the outcome
variable in the following way: i) number of cumulative Covid-19 cases (measured one and seven days before the
start of the treatment), ii) the number of newly registered Covid-19 cases (in the last seven days prior to the start
of the treatment); the alternative specifications lag these values by 1, 3 and 7 days. In Panel B pseudo-treatment
effects for Jena are calculated over a period of 20 days before the introduction of face masks. This period is equally
split into a pre- and pseudo post-treatment period.
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B.11 Place-in-space tests for other major cities in Thuringia

For the placebo tests in the other cities in Thuringia the same set of predictors as for Jena (Fig-
ure 2) has been applied. The reported regions cover all kreisfreie Stédte plus Gotha (Landkreis).
The cities Weimar, Suhl and Eisenach have been aggregated since the number of reported
Covid-19 is low in these cities.
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Figure 18: Placebo tests for the effect of face masks in other cities in Thuringia on April 6.

Table 12: Sample weights in donor pool for synthetic control groups (other cities in Thuringia)

Erfurt Gera
ID NUTS 3 region Weight ID NUTS 3 region Weight
13003 Rostock 0.28 15001 Dessau-RoRlau 0.501
16055 Weimar 0.244 16054 Suhl 0.222
3356 Osterholz 0.212 7318 Speyer 0.162
7313 Landauinder Pfalz 0.154 8231 Pforzheim 0.061
6413 Offenbach am Main 0.078 7311 Frankenthal (Pfalz) 0.046
5370 Heinsberg 0.029 8211 Baden-Baden 0.005
5515 Miinster 0.004 9662 Schweinfurt 0.003

14521 Erzgebirgskreis 0.001

Note: Donor pools corresponds to SCM estimations in Figure 18. Sample weights are
chosen to minimize the RMSPE ten days prior to the start of the treatment.
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Table 13 (cont’d): Sample weights in donor pool for synthetic control groups (other cities in Thuringia)

Weimar/Suhl/Eisenach Gotha
ID NUTS 3 region Weight ID NUTS 3 region Weight
15001 Dessau-Roflau 0.263 15081 Altmarkkreis 0.23
12052 Cottbus 0.236 16077 Altenburger Land 0.164
13004 Schwerin 0.202 15086 Jerichower 0.161
9361 Amberg 0.177 3402 Emden 0.111
14626 Gorlitz 0.069 16071 Weimarer Land 0.108
9363 Weideni.d. Opf. 0.036 16074 Saale-Holzland-Kreis 0.063
14521 Erzgebirgskreis 0.008 16061 Eichsfeld 0.058
9184 Miinchen 0.005 16070 Illm-Kreis 0.055
6411 Darmstadt 0.005 3453 Cloppenburg 0.027
15003 Magdeburg 0.017
4012 Bremerhaven 0.007

Note: Donor pools corresponds to SCM estimations in Figure 18. Sample weights are
chosen to minimize the RMSPE ten days prior to the start of the treatment.

C Single treatment analysis in other German cities and regions

In addition to Jena, we estimated treatment effects in Nordhausen (Thuringia, April 14), Rott-
weil (Baden Wiirttemberg, April 17), Main-Kinzig-Kreis (Hessia, April 20), and Wolfsburg (Lower
Saxony, April 20).
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Figure 19: Treatment effects for introduction of face masks in other cities
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We ignore Braunschweig here as the introduction of face masks became effective only two days
in advance of its federal state. Predictor variables are chosen as for overall specification shown
in Figure 1. As the figure shows, the result is 2:1:1. Rottweil and Wolfsburg display a positive
effect of mandatory mask wearing, just as Jena. The results in Nordhausen are very small or
unclear. In the region of Main-Kinzig, it even seems to be the case that masks increased the
number of cases relative to the synthetic control group. As all of these regions introduced
masks after Jena, the time period available to identify effects is smaller than for Jena. The ef-
fects of mandatory face masks could also be underestimated as announcement effects and
learning from Jena might have induced individuals to wear masks already before they became
mandatory. Finally, the average pre-treatment RMSPE for these four regions (7.150) is larger
than for the case of Jena (3.145). For instance, in the case of the region of Main-Kinzig it is more
than three times as high (9.719), which indicates a lower pre-treatment fit. The obtained treat-
ment effects should then be interpreted with some care as the pre-treatment estimation error
could also translate into the treatment period. In order to minimize the influence of a poor pre-
treatment fit for some individual regions, in the main text, we therefore compare the results
for Jena with SCM estimates for multiple treated units.

Table 14: Sample weights in donor pool for synthetic controls (other treated NUTS3 regions)

Nordhausen Rottweil
ID NUTS 3 region Weight ID NUTS 3 region Weight
16069 Hildburghausen 0.228 8327  Tuttlingen 0.324
6636 Werra-MeilRner-Kreis 0.209 5966 Olpe 0.216
16064 Unstrut-Hainich-Kreis 0.168 8136  Ostalbkreis 0.2
16054 Suhl 0.109 16071 Weimarer Land 0.063
3402 Emden 0.093 14521 Erzgebirgskreis 0.06
12073 Uckermark 0.071 3102  Salzgitter 0.043
12053 Frankfurt (Oder) 0.07 16061 Eichsfeld 0.035
3354 Lichow-Dannenberg 0.051 9187  Rosenheim 0.031
9279  Dingolfing-Landau 0.025
3455  Friesland 0.003
Main-Kinzig-Kreis Wolfsburg
ID NUTS 3 region Weight ID NUTS 3 region Weight
8136 Ostalbkreis 0.193 8212  Karlsruhe 0.357
1062 Stormarn 0.168 8221  Heidelberg 0.189
5966 Olpe 0.113 8211 Baden-Baden 0.158
6433 GroR-Gerau 0.105 10046 St. Wendel 0.128
9473 Coburg 0.092 14511 Chemnitz 0.071
5562 Recklinghausen 0.063 5117  Milheim an der Ruhr 0.059
7313 Landau in der Pfalz 0.059 5315 Koéln 0.028
9171 Altrotting 0.056 15003 Magdeburg 0.007
7338 Rhein-Pfalz-Kreis 0.047 9663  Wiirzburg 0.004
6437 Odenwaldkreis 0.041
8236 Enzkreis 0.041
3159 Gottingen 0.023

Note: Donor pools corresponds to SCM estimations in Figure 19. Sample weights are chosen to min-
imize the RMSPE ten days prior to the start of the treatment.
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D A brief survey of research on public health measures against Covid-
19

D.1 General overview

Consolidated scientific knowledge on Covid-19 and public health measures taken to fight its
epidemic spread, though rapidly evolving, is still limited. Our approach goes in line with various
studies that have already tried to better understand the effect of public health measures on
the spread of Covid-19 (5, 6, 26—32). However, these earlier studies all take an aggregate ap-
proach in the sense that they look at implementation dates for a certain measure and search
for subsequent changes in the national incidence. There are some prior analyses that take a
regional focus (7) but no attention is paid to the effect of policy measures.?

There are also many cross-country analyses, both in a structural SIR (susceptible, infectious and
removed) sense (34) and with an econometric focus on forecasting the future development of
the Covid-19 pandemic (35). Others draw parallels between earlier pandemics and Covid-19
(36). These studies do not explicitly take public health measures into account. Some studies
discuss potential effects of public health measures and survey general findings (37-39) but do
not provide direct statistical evidence on specific measures.

The synthetic control method (SCM) has been applied by (16) to estimate the effect of the shel-
ter-in-place order for California, USA, in the development of Covid-19. The authors find inter
alia that around 1600 deaths from Covid-19 have been avoided by this measure during the first
four weeks. (40) use SCM to study the case of Sweden as one of the few countries without a
lock down. The results indicate that the infection dynamics in the synthetic control group (con-
structed from a donor pool of other European countries) does not systematically differ from
the actual dynamics in Sweden. Bases on Google mobility data, the authors further find that
Swedes adjusted their activities in similar ways as in the synthetic control group even without
a mandated lock down.

D.2 Evidence for face masks

At present, more and more clinical evidence is presented indicating that face masks catch in-
fectious particles that occur when speaking, coughing, or sneezing. This reduces the risk of in-
fecting another person (41, 42). The effects of face masks have been systematically surveyed
by (43) and (44). (44) mainly present evidence on the effect of face masks during non-Covid
epidemics (influenza and SARS). (45) reports that they “did not find any studies that investi-
gated the effectiveness of face mask use in limiting the spread of COVID-19 among those who
are not medically diagnosed with COVID-19 to support current public health recommendations”.

In addition to medical aspects (like transmission characteristics of Covid-19 and filtering capa-
bilities of masks), (43 survey evidence on mask efficiency and on the effect of a population.
They first stress that “no randomized control trials on the use of masks <...> has been published”.
The study which is “the most relevant paper” for (43 is one that analyzed “exhaled breath and

3 In a short note, (33) apply panel methods based on time dummies to understand the relative importance of
various public health measures. They employ data at the federal state level and not at the regional level. As a
detailed model description is not available, an appreciation of results is difficult at this point.
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coughs of children and adults with acute respiratory illness” (46, p. 676), i.e. used a clinical set-
ting. Concerning the effect of masks on community transmissions, the survey needs to rely on
pre-Covid-19 studies.

Only very recently, first non-clinical observational studies on the effectiveness of face masks
have been published. The work that is most closely related to our approach is (47), who esti-
mate the effects of public health measures on the spread of Covid-19 in the three pandemic
epicenters Wuhan, Italy, and New York City over the period January 23 to May 9, 2020. The
authors find sizable effects for the introduction of face masks indicating that this public health
measure alone reduced the number of infections by over 78,000 in Italy from April 6 to May 9
and by over 66,000 in New York City from April 17 to May 9.

The authors adopt an empirical identification strategy that utilizes the successive implementa-
tion of individual public health measures and estimate linear time trends for the period before
the introduction of face masks in Italy and New York City. The difference between these trends
and actual Covid-19 cases is interpreted as the mitigating effect of mandated face covering.
Although the authors argue that their trend projections are reasonable considering the excel-
lent linear correlation for the data prior to the onset of mandated face covering, a limitation is
that their study does not employ a strict control group approach and conducts inference on in
a “before-after” comparison, which may not suffice to rule out all confounding factors.?

(48) use household data for 335 families in Beijing with at least one confirmed Covid-19 case to
study factors that influence disease transmission within families. The authors track the rate of
secondary transmissions over the two weeks of follow-up from onset of the primary case within
the family. Findings suggest that transmission was significantly reduced by frequent use of chlo-
rine or ethanol-based disinfectant in households and family members (including the primary
case) wearing a face mask at home before the primary case developed the illness. The authors
motivate their findings for wearing face masks early one by the fact that the viral load is highest
in the 2 days before symptom onset and on the first day of symptoms, and up to 44% of trans-
mission is during the pre-symptomatic period.

Finally, (49) use a simulation study to assess the role of face masks on the epidemic spread with
or without other public health measures being simultaneously in place. Their findings indicate
that that face masks can effectively mitigate the epidemic spread if they are used by the public
all the time (not just from when symptoms first appear). The simulated effects are the greatest
when the adoption rate of wearing face masks in the public is 100 percent and when it is com-
bined with an early lock-down situation. When interpreting their simulation results, the authors
stress that accurate experimental evidence for potential control interventions would be needed
to fully evaluate the effect of face masks.

24 Although the authors compare their findings for Italy and New York City with global Covid-19 trends in the world
and in the United States, the lack of a suitable comparison groups cannot rule out that some unobserved factors
in Italy and New York City other than the introduction of face masks have driven the estimated trend reversal.
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E Incremental difference-in-difference estimates for the timing of
treatment effects

One difficulty in the empirical identification of treatment effects of face masks relates to the
fact that Jena has introduced several public health measures to fight the local spread of Covid-
19 in rapid procession over time. An overview is in Figure 8 above. We emphasized that some
of these measures in Jena (light colors) deviate from their general introduction at the federal
state level (dark colors). These anticipated measures may be taken as a signal for the severity
of the pandemic and may, accordingly, have induced behavioral changes of the local population
even before face masks became compulsory. To test for the strength of such dynamic treat-
ment effects over time, we complement our SCM approach by conducting incremental differ-
ence-in-difference (IDiD) estimation (50; see 51, for a general discussion of the use of differ-
ence-in-difference estimation to identify causal effects of Covid-19 policies).

We discuss significant additional measures taken by the local health authorities in Jena to sup-
press the spread of Covid-19 in the main text. These additional measures started on March 11
with the leading closure of restaurants, sport and fitness centers etc. We use this date to define
a baseline treatment dummy, which takes a value of one for Jena from March 14 onwards and
is zero before that day. We include this treatment dummy in a fixed effect (FE) regression
model, which uses the (log-transformed) cumulative number of Covid-19 cases as outcome var-
iable. Starting from this baseline treatment specification, we run a series of regressions, which
add a second treatment dummy to the model. The latter takes a value of one for Jena from day
m onwards and is zero before that day. We allow m to vary between March 15 and April 25.
The overall sample length is set to May 6.

The main idea of the proposed IDiD approach is to see whether we observe a general treatment
effect with the start of public health measures on March 14. On top, we see since when we
potentially observe an additional effect, which relates to specific public measures introduced
during the time interval. Again, as outlined in appendix A.3, we need to account for the time
lag resulting from an incubation period and a reporting lag to health authorities. Formally the
m-th equation for the set of m=(1,...,M) regressions thereby takes the following form

covid; = B X Acovid;,_; +y X base;; + 0 X add]t + Dyeeraay + i + Prer) + €1t

where covid; ; denotes the (log-transformed) cumulative number of registered Covid-19 cases
in municipal districtiatday twithi = 1,..., Nandt = 1, ..., T. Acovid; ; is the number of newly
registered Covid-19 cases at day t-1. base; ; refers to the baseline treatment dummy and add{";
is the additional treatment dummy from day m onwards. Further, u; are municipal district-fixed
effects, Dyeekaay is @ set of binary dummies for the different days of the week and Wy ;) are
time-fixed effects for each with k=1,...,K calendar week in the sample period. e; , denotes the
model’s i.i.d. error term. We are mostly interested in estimating y and §,,,, which sum up to the
overall treatment effect of public health measures in Jena taken from March 14 onwards.

We estimated the FE-based IDiD model by means of weighted least square (WLS), where
weights are generated from a first step Probit regression with base; ; as the outcome variable.
We estimate the Probit model as a cross-sectional specification for March 14 and includes val-
ues of newly registered Covid-19 cases before March 14 as well as the set of structural regional
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characteristics as shown in Table 1 in appendix B.2. Hence, in analogy to our SCM approach,
the main idea for our two-step approach is to give those control regions a larger sample weight,
which have similar characteristics as Jena before the baseline treatment starts (51). This may
overcome the problem of heteroscedasticity associated with difference-in-difference estima-
tion if there are very few (or even only one) treatment group (see 52 for a general discussion
of inference in DiD models with few treated groups and heteroscedasticity). The resulting two-
step estimator is also known as conditional difference-in-difference estimator (53).
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Figure 20: Estimated effects from incremental difference-in-difference (IDiD) model

Notes: We calculate point estimates and standard errors for the total treatment effect (y + 6,,) on the basis of
the Delta method. In Panel A and Panel B solid lined indicate 95% confidence intervals for reported point estimates.
Standard errors in the FE-model are clustered at the municipal district level. In Panel C markers indicate the start
of a specific public health measures; bars indicate the range of expected effects taking an incubation period and
reporting delay into account.

Figure 20 shows the second-step IDiD regression results for the total treatment effect (y + ,,,)
in Panel A and the add-on treatment effect (§,,,) in Panel B. Panel C shows the expected timing
of effects for different public health measures if we consider a total delay D of 19 days for the
incubation period and an associated reporting lag. Estimations are based on a sample of 20
regions (19 controls with positive sample weights plus Jena) during the sample period January
28 until May 6 (with a total number of 1,980 observations). We find that the total treatment
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effect for public health measures in Jena relative to the control group only becomes significant
roughly two weeks after the introduction of face masks on April 6. This strongly overlaps with
expected effects stemming from the announcement and introduction of compulsory face
masks in Jena (as shown in Panel C). In terms of the magnitude of the effect, we find a reduction
in the cumulative number of Covid-19 cases by roughly 20%. Both findings are in line with our
baseline SCM approach.

While Panel B of Figure 20 shows that we find marginally significant add-on effects from early
April on, their magnitude is not sufficient to translate into a significant reduction in the number
of Covid-19 cases vis-a-vis the set of control regions. Only from April 13 onwards, thus roughly
one week after the introduction of face masks, the add-on treatment effect becomes gradually
stronger in magnitude and statistically significant. If we resort to the total delay D as estimated
in appendix A.3, this result further supports our SCM findings that the relative reduction in the
cumulative Covid-19 cases is mainly attributable to the announcement/introducing face masks.

Table 15: Control regions included in the IDiD estimation

ID NUTS3 region
2000 Hamburg
3101 Braunschweig
3102 Salzgitter
3103 Wolfsburg
5315 KoIn

5515 Mdanster
6411 Darmstadt
6412 Frankfurt am Main
7315 Mainz

8111 Stuttgart
8212 Karlsruhe
8221 Heidelberg
8222 Mannheim
9161 Ingolstadt
9562 Erlangen
14511 Chemnitz
14612 Dresden
14713 Leipzig

16051 Erfurt

Notes: Selection of regions is based on Probit regression with the
baseline treatment dummy in Jena on March 14 as outcome varia-
ble (see text in this appendix for details). In the FE-specification re-
ported in Figure 20, we have set sample weights for selected con-
trol regions equal to one; alternative specifications with changing
weights deliver very similar results and are not explicitly reported
here (regression outputs can be obtained from the authors).
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