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Abstract 
 
Economic theory provides ambiguous and conflicting predictions about the association between 
algorithmic pricing and competition. In this paper we provide the first empirical analysis of this 
relationship. We study Germany’s retail gasoline market where algorithmic-pricing software 
became widely available by mid-2017, and for which we have access to comprehensive, high-
frequency price data. Because adoption dates are unknown, we identify gas stations that adopt 
algorithmic-pricing software by testing for structural breaks in markers associated with algo-
rithmic pricing. We find a large number of station-level structural breaks around the suspected 
time of large-scale adoption. Using this information we investigate the impact of adoption on 
outcomes linked to competition. Because station-level adoption is endogenous, we use brand 
headquarter-level adoption decisions as instruments. Our IV results show that adoption in-
creases margins by 9%, but only in non-monopoly markets. Restricting attention to duopoly 
markets, we find that market-level margins do not change when only one of the two stations 
adopts, but increase by 28% in markets where both do. These results suggest that AI adoption 
has a significant effect on competition. 

JEL-Codes: L410, L130, D430, D830, L710. 
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1 Introduction

Pricing-algorithm technology has become increasingly sophisticated in recent years. Although firms

have made use of pricing software for decades, technological advancements have created a shift from

mechanically-set prices to AI-powered algorithms that can handle vast quantities of data and in-

teract, learn, and make decisions with unprecedented speed and sophistication. The evolution of

algorithmic-pricing software has raised concerns regarding the potential impact on firm behaviour

and competition. In particular, the potential for the use of algorithms as a means to facilitate

collusion, either tacit or explicit, has been a popular discussion-point among antitrust authorities,

economic organizations, and competition-law experts in recent years (OECD 2017; Competition Bu-

reau 2018; Autorité de la Concurrence and Bundeskartellamt 2019; UK Digital Competition Expert

Panel 2019; Ezrachi and Stucke 2015, 2016, 2017; Varian 2018; Goldfarb et al 2019). Since the goal

of reinforcement learning-based algorithms is to converge to an optimal policy, the concern arises

that AI agents will learn to play a collusive strategy to achieve a joint-profit maximizing outcome.

Whether these strategies are learned or programmed-in explicitly by users, the employment of algo-

rithmic software can facilitate collusion through increased ease of monitoring and speed of detection

and punishment of possible deviations.

The literature on algorithmic collusion is expanding, with contributions from the fields of eco-

nomics, law, and computer science. Despite this growing attention, there is no theoretical consensus

as to whether algorithms facilitate tacit collusion (Calvano et al 2019; Miklós-Thal and Tucker 2019;

Brown and MacKay 2020). There are also questions about whether algorithmic collusion can arise

in practice since there is no empirical evidence linking the adoption and use of pricing algorithms

to market outcomes related to competition. The objective of this paper is to supplement existing

theoretical literature by conducting the first empirical analysis of the impact of wide-scale adoption

of algorithmic pricing software. We focus on the German retail gasoline market, where mass adoption

allegedly occurred beginning in 2017 according to trade publications, and for which we have access

to a high-frequency database of prices and characteristics for every retail gas station in the country.1

We investigate the impact of algorithmic-pricing software adoption on competition by comparing

the retail margins of adopting and non-adopting stations. There are many channels, other than

through competition, that adoption of algorithmic-pricing software can change margins: an algorithm

1Legal disclaimer: This paper analyses the impact of adoption of algorithmic pricing on competition strictly
from an economic point of view. We base our understanding of the facts on publicly-available data on prices from
the German Market Transparency Unit for Fuels. To our knowledge, there is no direct evidence of anticompetitive
behavior on the part of any algorithmic-software firms or gasoline brands mentioned in this paper.
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can better detect underlying fluctuations in wholesale prices or better predict demand. To isolate

the effects of adoption on competition we focus on the role of market structure, comparing adoption

effects in monopoly (one station) markets and non-monopoly markets.2 If adoption does not change

competition, effects should be similar for monopolists and non-monopolists. We also perform a more

direct test of theoretical predictions by focusing on isolated duopoly (two station) markets. We

compare market-level average margins in markets where no stations adopted, markets where one

station adopted and markets where both stations adopted. In the first market type, competition is

between human price setters. In the second it is between a human price setter and an algorithm,

while in the last it is between two algorithms. By comparing all three market types we are able to

identify the effect of algorithmic pricing on competition.

The decision to adopt algorithmic-pricing software is not directly observed in the data. To

overcome this challenge we test for structural breaks in pricing behaviours that are thought to be

related to the use of sophisticated pricing software: (i) the number of price changes made in a

day, (ii) the average size of price changes, and (iii) the response time of a station’s price update

given a rival’s price change. We focus on these measures since they capture the promised impacts

of algorithmic software in the retail gasoline market.3 As described on the website of a leading

algorithmic pricing software provider, their pricing software collects data and performs high frequency

analysis to “rapidly, continuously and intelligently” react to market conditions. Since we do not have

exact adoption dates, we use a Quandt-Likelihood Ratio (QLR) test (Quandt 1960) to test for the

best candidate break date when the break date is unknown. We test for structural breaks at each

station for each week in a large window around the time of supposed adoption. The best candidate

structural break for a given station is the week with the highest resulting F-statistic of each of

these tests. To minimize false positives, we classify a station as an algorithmic-pricing adopter if it

experiences a structural break in at least two out of three measures within a short time period, which

we take to be eight weeks, but is robust to alternative specifications. We find that approximately

30% of stations in our data set structurally break in multiple measures of pricing behaviour within

an eight week window. The majority of these breaks occur in mid-2017, just after algorithmic pricing

software becomes widely available.

After identifying adopters, we compare outcomes linked to competition between adopters and

2We use two geographic definitions for markets: drawing 1KM radii around stations, or using 5-digit ZIP codes.
3Using rival responsiveness as a marker may over-state AI adoption if non-adopters who react to their AI-using

competitors’ frequent price changes are automatically labelled as adopters. This does not appear to be the case in our
data. When examining duopoly (two station) markets, we find asymmetric adoption (where one duopolist adopts and
the other does not) in a large share of markets. More details are in Section 6.1.
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non-adopters. We focus on the impact of adoption on mean monthly margins (above regional whole-

sale prices). In the gasoline retail market, margins are a clear indictor of profitability and market

power: the ability of stations to mark-up retail prices above wholesale prices. Previous studies on

coordination and collusion in this market use margins to evaluate competition (Clark and Houde

2013, 2014; Byrne and De Roos 2019). Theory papers on algorithmic competition also make clear

predictions related to margins (Calvano et al 2019; Brown and MacKay 2020). We look at the effects

of adoption on mean monthly margins and on the distribution of monthly margins (25th and 75th

percentiles).4

Although we control for time and station-specific effects, as well as time-varying market level de-

mographics, adoption is endogenous. Individual station adoption decisions are likely correlated with

station/time specific unobservables (managerial skills, changing local market conditions, etc). OLS

estimates are likely attenuated. We address this challenge by instrumenting for a station’s adoption

decision. Our main IV is the adoption decision by the station’s brand (i.e., by brand headquarters).

As demonstrated by previous technology-adoption episodes in the gasoline retail market, brands

can facilitate adoption by their stations. “Adopting” brands provide support/subsidies/training to

individual stations, reducing adoption costs.5 Brand-level decisions should not be correlated with

individual station-specific unobservables, making this instrument valid. Since brand adoption deci-

sions are also unobserved we use a proxy as our instrument: the fraction of a brand’s stations that

adopt AI pricing. If only a very small fraction of a brand’s stations adopts AI, it is unlikely that

the brand itself decided to adopt. If a large fraction adopts, it is likely that the brand itself adopted

and facilitated adoption by the stations. As a robustness check, we also use an alternative set of

instruments: annual measures of broadband internet availability and quality in the local area around

each station. Most algorithmic pricing software are “cloud” based and require constant downloading

and uploading of information. Without high speed internet, adoption will not be particularly useful.

Conditional on local demographic characteristics broadband quality should not depend on station-

specific unobservables, but stations should be more likely to adopt algorithmic pricing software once

their local area has access to reliable high speed internet.6

Using brand-adoption as an IV we find that mean station-level margins increase by 0.7 cents

per litre, or roughly 9%, after adoption.7 We observe heterogeneity in outcomes based on market

4We take the monthly average, 25th and 75th of daily margins above regional wholesale prices after subtracting
German VAT.

5See Appendix B for an example from the adoption of electronic payments by gas stations in the 1990s.
6See Section 7.3.4 for additional discussion.
7Estimates using alternative broadband availability IVs are qualitatively similar to the main estimates and quan-
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structure. Adopting monopolist stations with no competitors in their ZIP code see no statistically

significant change in their margins. Adopting stations with competitors in their ZIP code see a

statistically significant mean margin increase of 0.8 cents per litre and the distribution of their

margins shifts right. These results suggest that algorithmic pricing software adoption raises margins

only through its effects on competition.

To further investigate whether algorithmic pricing affects competition and to test predictions

from the theoretical literature, we look at market-level adoption in duopoly (two station) markets.

IV estimates suggest that relative to markets where no stations adopt, markets where both stations

adopt see a mean margin increase of 2.2 cents per litre, or roughly 28%. Markets where only one

of the two stations adopts see no change in mean margins. These results show that market-wide

algorithmic-pricing adoption raises margins, suggesting that algorithms reduce competition. The

magnitudes of margin increases are consistent with previous estimates of the effects of coordination

in the retail gasoline market (Clark and Houde 2013, 2014; Byrne and De Roos 2019).

Finally, we explore the mechanism underlying algorithmic pricing and competition: are algorithms

unable to learn how to compete effectively, or do they actively learn how not to compete (i.e., how

to tacitly collude). To do so, we test whether margin changes happen immediately after adoption

or arise gradually. If it is the former, we should see immediate increases in margins. If it is the

latter, algorithms should take longer to train and converge to tacitly-collusive strategies (Calvano et

al 2019). We find evidence that margins do not start to increase until about year after market-wide

adoption, suggesting that algorithms in this market learn tacitly-collusive strategies. These findings

are in line with simulation results in Calvano et al (2019).

The remainder of this paper is laid out as follows. The next section discusses relevant literature.

Section 3 provides a background discussion and an overview of the relevant players in the German

market. Sections 4 and 5, respectively, discuss the data and methodology we use in our analysis.

Sections 6 and 7 discuss, respectively, our results regarding (i) identifying adoption and (ii) the

impacts of AI adoption on station and market outcomes. We also conduct a number of robustness

checks. In Section 8 we provide evidence to support the idea that outcome results are driven by

algorithms learning to tacitly collude. In Section 9, we discuss algorithmic pricing as a means to

facilitate collusion, antitrust concerns over algorithmic collusion, and how these relate to German

and European competition law. We also present policy recommendations drawing on our results. We

conclude in Section 10.

titatively five times larger. See Section 7.3.4 for additional discussion of these results.
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2 Related Literature

This paper most closely relates to the recent literature concerning the potential link between algo-

rithmic pricing and collusion. Theoretical results remain ambiguous. Several papers have shown that

when algorithmic-pricing competition is modelled in a repeated game framework collusive outcomes

are inevitable under certain conditions (Salcedo 2015; Calvano et al 2019; Klein 2019); however,

others argue that improved price response to demand fluctuations may provide increased incentives

for firm deviation from a collusive price (Miklós-Thal and Tucker 2019; O’Connor and Wilson 2019).

Klein (2019) and Calvano et al. (2019) use computational experiments to study the effect of Q-

learning algorithms on strategic behaviour of competing firms. Both studies find that these repeated

games will converge to collusive outcomes including supra-competitive pricing and profits, as well

as punishment of competitor deviation. While Miklós-Thal and Tucker (2019) find that improved

demand prediction may lead to the possibility of collusion in markets where it is previously unsus-

tainable, in other markets it may create incentives for deviation that were absent with less prediction

capabilities. O’Connor and Wilson (2019) come to similar conclusions. Brown and MacKay (2020)

develop a model where firms compete in pricing algorithms (rather than prices) and show that prices

may increase even without collusion. Overall, there is little certainty as to whether algorithmic

competition will lead to collusive outcomes in reality. There is, as far as we are aware, no empirical

research regarding this question in the economics literature.8

The question as to whether algorithm usage may result in coordinated behaviour is of widespread

interest and has been studied in fields outside of economics such as law and computer science. There

are several papers in the computer science literature studying coordination of algorithms in repeated

games. A number of these papers, including Kaymak and Waltman (2006, 2008) and Moriyama (2007,

2008) have indicated that reinforcement learning algorithms can result in cooperative outcomes;

however, these outcomes are not always the most likely and are dependent on various specifications

of the algorithm. Legal scholars generally express more certainty that the use of algorithmic pricing

can lead to collusive behaviour. Authors including Ezrachi and Stucke (2015, 2016, 2017) and Mehra

(2015) have expressed concern over this issue and its implications for competition policy.

8Decarolis and Rovigatti (2019) find that common bidding intermediaries in online advertising markets lead to anti-
competitive effects, reducing prices for bidders at the expense of the platform. Bidding in this market is done through
algorithms, which leads to parallels with the algorithmic pricing literature and regulatory concerns about multiple
competitors in a market adopting the same pricing algorithm. Unlike this paper, the primary focus of Decarolis and
Rovigatti (2019) is on increasing intermediary concentration rather than on algorithmic pricing software behaviour
and the mechanism through which bidding decisions are made.
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We also relate to an extensive literature on the retail gasoline market.9 There have been a

small number of papers looking specifically at the German market. See in particular Dewenter and

Schwalbe (2016), Boehnke (2017), and Cabral et al (2018). There is also a literature on collusion in

gasoline markets. Earlier work includes Borenstein and Shepard (1996), as well as Slade (1987, 1992).

More recently Wang (2008, 2009), Erutku and Hildebrand (2010), Clark and Houde (2013, 2014),

and Byrne and de Roos (2019) have all studied anti-competitive behaviour in the retail gasoline

industry.

A related area of literature studies the impact of technological advancements on price discrimina-

tion. A consequence of the rapid expansion of Big data and AI driven market analysis by firms is that

personalized pricing strategies may become increasingly feasible and sophisticated. As technology

advances, it can be better used to learn more about consumer tastes as well as to more accurately

price products as a function of these tastes. In particular, authors have noted that Big data may

facilitate first-degree price discrimination, which has generally been seen as challenging to implement

in many markets (Ezrachi and Stucke (2016)). It is possible that more accurate determination of

optimal personalized pricing can increase firm revenues (Shiller and Waldfogel 2011; Shiller 2014).

Kehoe, Larsen, and Pastorino (2018) find that firm profit, as well as consumer surplus, may increase

or decrease under personalized pricing depending on consumers certainty regarding their product

tastes. They also find that in every case, total welfare is higher under discriminatory pricing in

comparison to uniform pricing.

3 Background

3.1 Algorithmic Pricing in the German Retail Gas Industry

The December 2017 issue of Tankstop, a trade publication for Germany’s retail gasoline sector, notes

that a2i systems, a Danish artificial intelligence company, had begun to offer services to petrol

station operators within Germany (see Figure A1). a2i systems creates industry specific technology

for retail gas markets, including an AI pricing technology software, Pricecast Fuel. The promise

of Pricecast Fuel is to use BDI (belief-desire-intention) and Neural Network based algorithms to

determine optimal pricing strategies for retail gas stations (Derakhshan et al 2016). Figure A2,

reprinted from The Wall Street Journal, intuitively explains how such price algorithms work. For a

given station the algorithm takes in historical data on transactions, competitors’ information (i.e.,

9See Gelman et al (2016) among many others.
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competitors’ prices) and other market conditions (i.e., weather) as inputs. Outputs are prices that

maximize station profits.10 Initial training for the algorithm is done on historical data, but the

algorithm can also take in additional “real-time” information such as current weather and traffic

patterns. The algorithm uses these inputs and sets prices. Transactions resulting from these prices

are fed back into the system and are used to re-optimize the algorithm.

a2i began offering Pricecast Fuel to Danish retail fuel companies in 2011, noting on their website

that they have established long-term partnerships with other European retail fuel stations since 2012

(a2i Systems 2020). Tankstop’s December 2017 issue further notes that a2i’s services are supported

by WEAT Electronic Data Service GmbH, a provider of cash-free payment systems and technical

and logistical support for a number of petrol brands within Germany (WEAT.de). a2i also has a

strategic partnership with Wincor Nixdorf, a retail technology company providing services such as

Point of Sale (PoS) terminals and self-checkout solutions (DieboldNixdorf.com).

a2i’s Pricecast Fuel software has many of the characteristics over which legal experts and an-

titrust authorities express concern in regards to the possibility of algorithmic collusion. For one,

the software involves large-scale and high-frequency collection of, interaction with, and response to

competitor data (a2i systems 2020). This high-frequency interaction between competitors can make

collusion easier to sustain due to increased ease of monitoring and quicker detection and punishment

of deviations (Ezrachi and Stucke 2015; Mehra 2015). Additionally, although we do not know the

exact specifications of the algorithms implemented by Pricecast Fuel, a2i’s website states it is based

on “learning algorithms”. Such learning algorithms have been the focus of many antitrust discussions

and economic theory papers regarding algorithmic pricing and collusion (Calvano et al 2019), due

to the potential for such algorithms to learn and converge to a collusive strategy. Finally, according

to their advertisements a2i offers their software to multiple stations and brands within the German

retail gas market (Tankstop 2017). The adoption of the same software by numerous brands may

lead to a concern for a hub-and-spoke scenario or a parallel use of individual algorithms scenario,

depending on how individualized a2i’s algorithms are for each customer.11

We focus our discussion on a2i since they have been public about the contents of their algorithm

and since we have direct anecdotal evidence of their availability and adoption in the German context.

There are, however, several similar products available in the market. For example, Kalibrate, a UK

10Individual station owners can set other goals, such as market share maintenance, or constraints such as minimum
price.

11Decarolis and Rovigatti (2019) find that the adoption of common bidding intermediaries by multiple competitors
(who then presumably use the same bidding software) generates anti-competitive effects in online advertising markets.
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company, also offers an AI-powered pricing software for gasoline retail (Kalibrate.com). Their list of

clients includes Nordic gasoline retail chains ST1 and Preem, as well as the Polish chain Orlen, which

is also active in Germany (Kalibrate.com). Based on a limited description of their algorithm on the

provider’s website, this competing algorithm works similarly to a2i’s algorithm. Our discussion above

is representative of the general type of algorithms that are available in the retail gasoline market.12

4 Data

The data we use come from the German Market Transparency Unit for Fuels. The data set contains

price data for the most commonly used fuel types, Super E5, Super E10, and Diesel for every German

petrol station in 1 minute intervals from 2014 to the end of 2019.13 We also have characteristic

information on each station, including their exact address (street address, 5 digit ZIP code), latitude

and longitude coordinates, station name, and associated brand. In total, there is information on

16,027 stations.14

We combine retail price data with additional data sources. We obtain daily regional wholesale

prices from Oil Market Report (OMR), a private independent German gasoline information provider.

Regional wholesale prices are average daily ex-terminal prices in eight major German refinery and

storage areas. We calculate the distance between each gas station and all refinery and storage areas

and use wholesale prices from the nearest refinery.15 Prior to subtracting wholesale price, we also

subtract German VAT (19%) from retail price. We compute station-level daily margins and take the

monthly average, 25th percentile and 75th percentile for our station-month level analysis.

We merge in annual regional demographics from Eurostat. We include data on total population,

population density, median age, employment (as a share of total population) and regional GDP.

These data are at the “Nomenclature of Territorial Units for Statistics 3” (NUTS3) level which is

frequently used by EU surveys. A NUTS3 region is roughly equivalent to a county, but is larger than

12It is possible that providers sold algorithmic pricing software in Germany before 2016 (the start of our sample).
We should not be observing any structural breaks for stations that adopted before the start of our sample. This means
that we would be labelling some adopters as non-adopters. If adopters have higher average margins than non-adopters,
this would bias our station-level estimates towards zero.

13Super E10 is an ethanol based fuel with 10% ethanol and 90% unleaded petrol. Super E5 is an ethanol based fuel
with 5% ethanol and 95% unleaded petrol. E10 and E5 are similar to 95 and 98 octane rating fuels commonly used
in North America.

14We drop 634 of these stations are missing location data. See Data Appendix for more details about our sample
construction and data cleaning.

15This is a standard approach in the gasoline retail literature. We may be understating retail margins if stations
belong to vertically integrated retailers.
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a 5-digit ZIP code.

We merge in daily weather information from the German Meteorological Service (DWD). These

data are collected daily from thousands of local weather stations. We compute the average distance

between each gas station and all local weather stations and use weather data from the nearest weather

station. We include monthly means and standard deviations of temperature (in degrees Celsius) and

precipitation (in mm).

Finally, we collect data on local fixed-line broadband internet from the EU Commission’s netBravo

initiative (netBravo): whether the local area around the gas-station has widespread availability of

10 Mb/s, 15 Mb/s, 30 Mb/s internet in a given year,16 and the reliability of broadband signals in

the area in that year. Reliability is computed by average signal strength (in dB) and the variance of

signal strength.17

More details about data construction can be found in the Data Appendix.

4.1 Station-Level Descriptive Statistics

Gas stations in our data set belong to brands. The data set does not specify whether the stations are

vertically integrated and directly owned by the brands, or whether they are owned by independent

franchisees who entered into a licensing agreement in exchange for the brand name and some technical

support. Both are common in retail gasoline markets (Convenience.org).

There are 2,058 brands in our data. 87 per cent of these brands are single-operating stations,

239 brands have between 2 and 100 stations and 19 brands have more than 100 stations. Although

the majority of brands are single-station, they only represent a small share of stations. Out of the

16,661 stations in our data set, single-operating stations account for approximately 11 per cent of all

stations, and about 18 per cent of stations belong to brands of size 2 to 100 stations (3,109 stations

belong to brands of this size). The top 5 brands account for 43 percent of stations and the 19 largest

brands (those with more than 100 stations) account for 71 per cent of total stations (11,752 stations

total). ARAL and Shell are the dominant brands in the German retail gas market, with the largest

number of stations, 2,417 and 1,852 respectively, together making up over 25 per cent of stations in

16We define speed X to be widely available in an area if average speed-tests in that area in that year exceed that
speed. As well, we assume that if an area has speed X widely available in a year, it also has the same speed widely
available in every subsequent year. More details on the construction of these variables are in the Data Appendix.

17Raw data is available at the monthly frequency. We choose to aggregate to the annual level since the number of
speed-test/quality observations at the monthly level is small. It is also more likely that stations make decisions based
on larger average trends rather than monthly fluctuations.
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the German retail gas market. There are a number of other large brands with over 350 stations each:

Esso, Total, Avia, Jet, Star, BFT, Agip, Raiffeisen, and Hem.18 In terms of market shares, ARAL,

Shell, Jet, BFT, Total and Esso together account for 84 per cent of fuel sales in the German retail

gas market.19

There are 5,781 5-digit ZIP codes in our data. 2,094 ZIPs have a single station (are monopoly

markets). 1,307 ZIPs have two stations (are duopolies). The mean number of stations per ZIP code

is around 3 and the median is 2. Only 81 ZIP codes have more than 10 stations.20 The majority of

stations are within 5KM of their closest competitors (about 94 per cent) and the average distance of

a station to its closest competitor is 1.4KM.

Table 1: Station Summary Statistics

Variable Observations Mean Std. Dev. Min 25% 75% Max

Stations per Brand 2,058 8.10 82.40 1 1 1 2417

Stations per ZIP Code 5,781 2.77 2.15 1 1 4 17

Distance to nearest station (KM) 16,027 1.40 1.77 0 0.30 1.69 17.19

# of other stations within 1KM 16,027 1.09 1.34 0 0 2 17

# of other stations within 3KM 16,027 5.14 5.07 0 2 8 36

# of other stations within 5KM 16,027 10.91 10.96 0 3 17 64

4.2 Station/Month-Level Descriptive Statistics

The average price that a station charges per litre of E10 fuel is 1.34 Euros, but the mean monthly

margin that the average station earns over wholesale regional price (after taking away VAT) is 7.9

cents per litre. The 75th percentile daily margin a station earns on average in a month is 8.3 cents,

and the 25th percentile daily margin a station earns on average in a month is 6.6 cents.

The average station is located in a fairly dense NUTS3 region, with population density of 780

persons per square-km. The median age of the population around a station is 46 years and 53 percent

of the population is employed. Over 85% of gas stations are located in areas with widely available

10Mb/s internet access, but less than 8% of stations are located in areas with widely available 30Mb/s

18These brands operate 1,091, 933, 804, 689, 563, 430, 450, 440, and 387 stations respectively
19As of 2019, taken from https://www.bft.de/daten-und-fakten/kraftstoffmarktanteile. Fuel market sales for each

brand are 21 per cent for ARAL, 20 per cent for Shell, 16 per cent for BFT, 10.5 per cent for Jet, 9.5 per cent for
Total, and 7 per cent for Esso.

20ZIP codes reflect population patterns, so urban ZIP codes are much smaller in terms of area than rural ZIP codes.
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internet access.

Table 2: Station/Month Summary statistics

Variable Observations Mean Std. Dev.

Prices and Margins

Mean Monthly E10 Price (EUR/litre) 430,357 1.34 .084
Mean Monthly E10 Margin (EUR/litre) 430,357 .079 .031
25th Percentile Monthly E10 Margin (EUR/litre) 430,357 .066 .026
75th Percentile Monthly E10 Margin (EUR/litre) 430,357 .083 .027

Regional Demographics and Weather Controls

ln(Total Regional Population) 430,357 12.433 .821
Regional Population Density (pop/km2) 430,357 777.427 1031.227
Regional Median Population Age 430,357 45.989 3.136
ln(Regional GDP) 430,357 9.1 .981
Regional Employment Share (employed/pop) 430,357 .529 .135
Mean Temperature (degrees Celsius) 430,357 10.357 6.781
Std. Dev. Temperature (degrees Celsius) 430,357 3.145 .734
Mean Precipitation (mm) 430,357 1.923 1.227
Std. Dev. Precipitation (mm) 430,357 3.747 2.315

Broadband Availability

10 Mb/s Internet Available Dummy 314,798 .861 .345
15 Mb/s Internet Available Dummy 314,798 .493 .5
30 Mb/s Internet Available Dummy 314,798 .079 .27
Average Internet Signal Strength (dBm) 314,798 -83.478 3.984
Average Internet Signal Variance (dBm) 314,798 3.524 2.042

5 Methodology

Our empirical analysis of the effect of algorithmic pricing on competition in the German retail gas

market proceeds as follows. First, we identify AI-adopting stations by performing Quant Likelihood

Ratio (QLR) tests to establish structural breaks in the time series of pricing strategies of gas stations

in our sample period. Second, we investigate the impact of AI adoption on market outcomes related

12



to competition such as margins over wholesale prices. We compare outcomes for adopting and non-

adopting stations. Selection bias coming from the differences between adopters and non-adopters, as

well as endogeneity due to the timing of adoption would attenuate OLS estimates down from true

effect of adoption. We use a rich set of controls for observables, station and time fixed effects and

a brand-level instrument to deal with endogeneity concerns. As a robustness check, we also use an

alternative set of instruments related to the availability and quality of broadband internet in the local

area around a gas station.21 We allow for heterogeneity of effects across different market structures

(monopoly stations vs. non-monopolists) to test whether effects from the adoption of algorithmic

pricing software on market outcomes are driven by competition. We also perform a more direct

test of theoretical predictions by focusing on isolated duopoly markets (geographic markets with two

stations). We compare market-level outcomes in markets where no stations adopted, markets where

one station adopted and markets where both stations adopted. In the first market type, competition

is between human price setters. In the second it is between a human price setter and an algorithm. In

the last market type, competition is between two algorithms. This comparison allows us to capture

the effect of algorithmic pricing on market competition.

5.1 Identifying Adoption Decisions

We assume that there are two levels of decision-making when it comes to adoption of AI technology:

at the brand HQ (headquarters) level and at the individual station level. We address each in turn.

There is substantial evidence that brands have entered into long-term strategic partnerships with AI

pricing and analytics providers, either directly or indirectly. In Denmark, a2i directly entered into

a partnership the large Danish retail fuel company OK Benzin (a2isystems.com). On its website,

a2i also claims that by 2012 it had “established long-term partnerships with a number of European

Retail Fuel companies” (a2isystems.com). Preem, a Swedish gasoline retailer, entered into a strategic

partnership with Kalibrate, a provider of AI-based pricing software similar to a2i (Kalibrate.com).

More indirectly, AI-pricing software providers enter into partnerships with IT companies that

provide integrated services to brands. a2i has a strategic partnership with Wincor Nixdorf, a re-

tail technology company providing services such as Point of Sale (PoS) terminals and self-checkout

solutions (DieboldNixdorf.com). Wincor Nixdorf then enters into partnerships with brands. Also,

as mentioned in Section 3, in Germany a2i’s software was at least partially implemented through

WEAT - a technology company working with brands and providing technical and logistical support

21Estimates with these IVs are qualitatively similar to our main estimates. See Section 7.3.4 for additional discussion.
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(WEAT.de).

However, as in other cases of corporate technology adoption (i.e., Tucker 2008), if a brand decides

to “adopt,” or enter into a partnership with an AI pricing software provider, this does not necessarily

mean that all of its stations automatically and instantaneously adopt. Rather it implies simply that

the technology exists for mass-adoption. There are many reasons why not every station in a brand

will adopt right away. One possibility is that the brand does not want to immediately change its

pricing strategy across all of its stations, which sometimes can number in the hundreds or thousands.

Brands may wish to perform some experimental tests to make sure that the pricing software works

or delivers the desired outcomes, or release the software gradually. This has been the case with the

very public adoption of a2i’s software by Denmark’s OK Benzin (a2isystems.com).

Even if a brand wanted all of its stations to adopt immediately, not all of them could or would.

Cloud-based AI-pricing software potentially requires substantial infrastructure investments. For ex-

ample, high-speed internet and high-speed internet enabled Point of Sale (PoS) terminals and pumps

are likely required for the software to work.22 Similarly, station operators also may require substan-

tial training with the software to set its parameters and deal with potential errors. Brands may

under-write or subsidise investments and training, but ultimately such costs fall on individual sta-

tion owners. Not all station owners are in a position to incur these costs right when the technology

becomes available, or possibly ever. This was the case for previous waves of gasoline retail technol-

ogy adoption. For example, in the 1990s, Exxon Mobil (Esso’s parent company) had a brand-wide

roll-out for the Mobil Speedpass, a contactless electronic payment system. BusinessWeek reported

that to actually adopt the technology individual station owners “have to install new pumps cost-

ing up to $17,000–minus a $1,000 rebate from Mobil for each pump” (BusinessWeek). In other

words, individual station owners have discretion as to whether (and when) to invest in adopting AI

software.23

It is important to note that in our dataset we do not have information on either brand-level or

station-level adoption. Our approach is to take advantage of the high-frequency price data to identify

these decisions.

22Other upgrading decisions by gas station owners include allowing for chip cards or automated payment at the
pump (Chicago Tribune).

23We provide supporting evidence for staggered technology adoption in the gasoline market in Appendix B. We
look at the adoption of electronic payments from 1991 to 2001 by Canadian gasoline retail stations. This is another
technology that clearly benefits brands and that brands would want stations to adopt. However, some stations may
not want to adopt. Other stations are incapable of adopting since adoption of this technology requires a stable phone
connection. We show that it took years after the first appearance of this technology for a substantial fraction of a
brand’s stations to adopt.

14

https://www.weat.de/unternehmen/kunden
https://www.a2isystems.com/wp-content/uploads/2018/11/PriceCast-Fuel-Case-Story-15.pdf
https://web.archive.org/web/20070409104123/http://www.businessweek.com/1997/10/b3517110.htm
https://www.chicagotribune.com/business/ct-gas-station-chip-card-upgrade-20161031-story.html


5.1.1 Identifying Station-Level Adoption

We currently focus on three measures of pricing behaviour (aggregated to a weekly level) to identify

the adoption of algorithmic pricing at the station level: (i) number of price changes, (ii) average size

of price changes, and (iii) rival response time. We focus on these measures as a means to capture the

promised impacts of a2i’s pricing software, as well as to be consistent with the theoretical literature.

As described on a2i’s website, their pricing software, PriceCast Fuel, uses the collection and high-

frequency analysis of large quantities of data on consumers, competitors, and market dynamics to

learn how previous pricing strategies have impacted consumer and competitor behaviour, and in

turn station performance. The software is advertised to use these learned strategies to “rapidly,

continuously, and intelligently react” to market conditions; automatically setting optimal prices in

reaction to changes in demand or competitor behaviour or to maximize margins without eliciting a

change in behaviour by consumers or competitors. We expect that after AI-adoption, stations may

make more frequent and smaller updates of their prices, due to quicker and more precise detection of

demand fluctuations or changes in competitor behaviour, as well as detection of small changes that

could be made without impacting consumer or competitor behaviour. Along these same lines, with

quicker detection of, and response to, competitor behaviour, we expect to see stations reacting more

quickly to changes in competitors’ prices.

These measures of pricing behaviour line up with what is described in the economic and legal

literature discussing algorithmic adoption. Ezrachi & Stucke (2015) point out the ability for algo-

rithmic software to increase the capacity to monitor consumer activities and the speed of reaction

to market fluctuations. Mehra (2015) points out the ability of AI pricing agents to more accurately

detect changes in competitor behaviour and more quickly update prices accordingly. Brown and

MacKay (2020) note that two significant features of pricing algorithms are their ability to (i) lower

the cost of more frequent price updates and (ii) react quickly to price changes of other firms in the

market. Our measure of rival response time follows a similar intuition to the approach taken by

Chen et al. (2016) who identify algorithmic pricing users in Amazon Marketplace by measuring the

correlation of user pricing with certain target prices, such as the lowest price of that given product

in the Marketplace.24

Structural breaks in pricing strategies are detected using Quandt-Likelihood Ratio (QLR) tests.

24There are potential concerns that by looking at rival responses we may over-state adoption in the market if non-
adopting firms will be automatically labelled as adopters if they react to the more frequent price changes of adopters.
This does not appear to be the case in our data. When examining duopoly markets, we find asymmetric adoption in
many markets where one duopolist adopts and the other does not. More details are in Section 6.1.
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Developed by Quandt (1960), with distributional properties established by Andrews (1993), the

QLR tests for a structural break in a time-series measure for each period in some interval of time

and takes the largest resulting test statistic. It is useful when an exact break date is unknown and

has been suggested and used in previous work involving collusive behaviour (Harrington 2008; Clark

and Houde 2014; Boswijk et al 2018; Crede 2019). We conduct a QLR test for each station in our

data set and for each variable of interest (number of price changes, average size of price changes, and

rival response time) we run the following regression over a range of eligible break periods τ0 ≤ τ ≤ τ1

(eligible break periods are measured by week):

yit = αi + βiDt(τ) +Xtγi + εit, (1)

where yit is the variable of interest for station i in time t, Dt(τ) is a dummy variable equal to 0 if

t < τ and 1 if t ≥ τ , and Xt is the crude oil price in time period t, which we use as a control variable.

For each regression we test the null hypothesis H0 : βi = 0 and compute the F-statistic Fi(τ). The

QLR statistic is the largest of these F-statistics over the range of eligible break dates:

QLRi = max[Fi(τ0), Fi(τ0 + 1), ..., Fi(τ1)]. (2)

The best candidate structural break period for station i is identified as the week τ ∗ that satisfies

QLRi = Fi(τ
∗).25 Structural breaks are identified as significant if they exceed a certain critical

value.26 For this analysis, we drop all stations from our data set that do not operate in every week

in 2017 (i.e. we keep stations that have 52 observations of a given measure in 2017). We also drop

all dates before 2016 and after 2018, leaving us with a 3 year sample period.27 We use 30% trimming

for our test period, which is standard for QLR testing.28

25We refer to the QLR statistic as identifying the “best candidate” structural break period because if we look at a
test for each time period τ individually, there may be multiple periods in which a structural break would be identified
(i.e. has an F-statistic exceeding a certain critical value). The QLR statistic identifies the best candidate break period
as it identifies the period with the most significant associated F-statistic.

26The distribution of the QLR statistic is non-standard so we cannot use the usual critical values for F-statistics
to determine significance. Critical values for QLR statistics are taken from Andrews (2003). Using these values we
measure a structural break as significant at the 10% level if QLRi ≥ 7.12, at 5% level if QLRi ≥ 8.68, and at the 1%
level if QLRi ≥ 12.16.

27We drop 2015 to avoid confounding effects from Shell’s price matching program that was introduced in Germany
in that year. Dewenter and Schwalbe (2016) and Cabral et al (2018) have shown that this price matching policy had
an effect on pricing strategies of stations in the German market, which we do not want to capture in our analysis.

28We use as our first eligible break date the 15th percentile week in our sample period and as our last eligible break
date the 85th percentile week in our sample period.
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5.1.2 Identifying Brand-Level Adoption

We do not observe an indicator for whether a brand HQ decided to enter into a strategic partnership

with an AI-pricing software provider. However, we can make use of the findings from the station-level

classification to identify brand-level adoption. Using this approach, there are several possible ways

to identify brand adoption. One possibility is to assume that stations cannot adopt if their brands do

not adopt. We would then label a brand as an adopter as soon as any one of its stations is classified

as an adopter (has structural breaks in two out of three possible measures). The problem with this

approach is that it is likely not necessary for the brand to make an adoption decision for a station to

adopt the software. There are many providers of algorithmic pricing software that offer their products

to small or medium enterprises.29 a2i’s 2017 advertisements are clearly targeted at individual station

owners and emphasize that all stations can adopt their technology. It is also possible that a brand

would run an experimental trial on a small set of stations without fully adopting the software. This

way of identifying brand adoption would also be sensitive to outliers and would amplify any noise

from our station-level adoption measure. For these reasons, we choose not to use this approach to

measure brand level adoption.

The opposite would be to identify a brand as an adopter only if all of its stations are classified

as adopters. This would reduce any false-positive identification of adopting brands. However, it

would not be consistent with the history of technology adoption in gasoline retail markets. There are

substantial underlying differences between gas stations in terms of their infrastructure, ownership

and their contractual relationships with brands (i.e., whether they are directly owned by the brand or

under a licensing agreement for the brand name). Since the adoption of any new technology is costly,

it is very unlikely that every single station belonging to a sizeable brand would adopt simultaneously.

Historical data on past retail gasoline technology adoption supports this statement. In Appendix B

we provide data on the adoption of electronic payment systems in Canadian gasoline retail stations

in the 1990s. We show that up to 10 years after the first appearance of this technology, less than

50% of stations belonging to leading brands had adopted.

A third and intermediate approach is a probabilistic one. We could compute the probability that

a brand adopted by using our classification of station-level adoption decisions. This approach would

still capture the effects of the underlying brand-level decisions. As mentioned in Section 5.1, brand-

level decisions should facilitate the adoption by individual stations. According to this approach, a

brand for which a small percentage of stations adopted by time t is unlikely to be an adopter at time

29See Prisync.com or Comptera.net.
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t, while a brand for which a large percentage of stations adopted is more likely to be an adopter.

This is the approach we take in this paper.

5.2 Evaluating the Impact of Adoption

5.2.1 Evaluating the Impact of Adoption on Station Outcomes

We want to capture the effects of station i adopting algorithmic pricing on the distribution of daily

margins (above regional wholesale prices) in month t. We use three points in the margin distribution:

(i) mean daily margin in month t, (ii) 25th percentile of daily margins in month t and (iii) 75th

percentile of daily margins in month t. Our OLS specification is as follows:

yit = αi + αt + βDit + γXit + εit, (3)

where yit is the outcome variable for station i in time t, αi and αt are, respectively, station and time

fixed-effects, Dit is a dummy variable equal to 1 if station i has adopted algorithmic pricing in time

t and 0 otherwise. Xit are time-varying station specific controls. Most importantly, Xit includes the

number of other gas stations that are in the same postal code as station i. The key coefficient in this

regression is β which captures the effect of AI adoption on yit.

The OLS specification assumes that adoption is exogenous and as-good-as-random (conditional on

observables). This is not necessarily the case. Algorithmic adoption could very much be endogenous

and correlated with unobservable time-varying station characteristics. Stations with “high” unob-

servables (for example, better managed stations) could be more likely to adopt algorithmic pricing

software and use it effectively.30 These stations could also have very different market outcomes. This

would attenuate the adoption effect towards zero. Stations could also choose to adopt in response to

unobservable station-specific shocks - once again, these would also affect both the adoption decision

(Dit) and outcomes (yit).

To address this issue we include station and time fixed effects and control for a rich set of

station-level observable characteristics (i.e., local weather, regional demographics). We also use an

instrument for Dit. We need a variable that is correlated with an individual station’s adoption

decision but is not affected by station-specific unobservable shocks. We propose brand-HQ level

30In Table A4 in Appendix A we show that adopting and non-adopting stations vary along a wide range of observable
characteristics. See additional discussion in Section 6.1.
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adoption as an instrument.31 As explained in the previous section, we can measure brand-level

adoption by computing the share of stations belonging to each brand that have been identified as

AI adopters by month t. For station i at time t our IV is the share of stations in brand i’s brand

that adopted AI by time t. We exclude station i from this share. As discussed in Section 5.1,

brand level decisions likely influence the adoption decisions of individual stations. Brands provide

individual stations with employee training, technical support and maintenance (Convenience.org).

This happens for both chain-operated stations as well as for more independent lessees. For previous

waves of technology adoption (such as electronic payments) brands also directly subsidized some

costs associated with required station upgrades. Such support is important for drastic technical

changes such as AI adoption. At the same time, brand level decisions should not be influenced by

station-level specific conditions.32

Finally, we test whether any observed changes in prices and/or margins come from a reduction in

competition and increased market power or from a better understanding of underlying fluctuations

in wholesale prices and consumers’ demand elasticity. We look separately at stations that are mo-

nopolists in their ZIP code and stations that are not monopolists.33 If the adoption of algorithmic

pricing software does not change competition but benefits station operations in other ways, we should

expect to see effects for monopolist adopters. If adoption also affects competition we should expect

to see additional non-zero effects for non-monopolist adopters on top of the effects for monopolist

adopters. If adoption only affects competition, we should expect to see zero effects for monopolist

stations and non-zero effects for non-monopolists.

5.2.2 Evaluating the Impact of Adoption on Market-Level Outcomes

In a more direct test of theoretical predictions about the effects of AI on competition, we compare

outcomes between adopting and non-adopting markets. We focus on duopoly station markets since

most theoretical analysis is done for two firms (i.e., Calvano et al 2019, Miklós-Thal and Tucker

31As a robustness check, we propose an alternative set of instruments: the availability and quality of broadband
internet in the local area around a gas station. As with brand-HQ level adoption, the availability of broadband internet
should have an effect on a station’s decision to adopt algorithmic pricing software. Most algorithmic pricing software
are “cloud” based and require constant downloading and uploading of information. Without high speed internet,
adoption of such software will not be particularly useful for a station. However, the availability of broadband internet
in the region should be uncorrelated with station unobservables after conditioning on observable local characteristics.
Our estimates with these IVs are qualitatively similar to our main estimates. See Section 7.3.4 for additional discussion.

32We provide evidence for this in Table A5, showing that conditional on brand size, brand adoption shares are
uncorrelated with market characteristics. See additional discussion in Section 6.5.

33We also experiment with alternative market definitions based on a 1km radius circle drawn around each station.
See Section 7.3.2 for additional discussion.
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2019). In the main text of the paper, we define markets based on 5 digit German ZIP codes. A

duopoly market is a ZIP code where there are only two stations.34 For market m in month t, we use

the following OLS specification:

ymt = αm + αt + β1T
1
mt + β2T

2
mt + εmt, (4)

where ymt is the outcome variable for market m at time t, αm and αt are, respectively, market and

time fixed-effects. T 1
mt is a variable equal to 1 if only one of the two stations in market m is labelled

as an adopter.35 T 2
mt is a variable equal to 1 if both stations in market m are labelled as adopters.36

The two key coefficients in this regression are β1 and β2. β1 captures the effects of AI adoption by

one of the two firms in a duopoly market and β2 captures the effects of AI adoption by both firms

in a duopoly market.

As in the station-level regression, endogenous AI adoption by stations in response to market/time

varying unobservables is a concern. Following the logic of our main station-level instruments, we

construct market-level IVs using brand-level adoption decisions.37 The instruments for T 1
mt and T 2

mt

are functions of the brand-level adoption decisions for the brands in market m:

IV 1
mt = B1mt(1 −B2mt) +B2t(1 −B1mt) (5)

IV 2
mt = B1mtB2mt,

where B1mt is the share of other stations belonging to market m first station’s brand that have been

identified as AI adopters in month t. B2mt is share of other stations belonging to market m second

station’s brand that have been identified as AI adopters in month t.

34As a robustness check, we use an alternative market definition based on 1km radius circles drawn around each
station. Stations are in the same market if their circles overlap. A duopoly market has only two stations within 1KM
of one another. These two definitions do not necessarily capture the same stations. There may be two stations in
different ZIP codes within 1KM of one another. There may also be two stations that are located more than 1KM
apart but are in the same ZIP code. See Section 7.3.2 for additional discussion.

35T 1
mt = D1mt(1 −D2mt) +D2mt(1 −D1mt), where 1 and 2 are the stations in market m.

36T 2
mt = D1mtD2mt, where 1 and 2 are the stations in market m.

37As a robustness check for station-level estimates, we propose an alternative set of instruments: the availability
and quality of broadband internet in the local area around a gas station. These instruments would only work for
market level data if the two duopolists are in the same ZIP code but also have different broadband access/quality
conditions. Our broadband access/quality data is calculated at a coarser geographical level than 5 digit ZIP codes, so
we are unable to use these instruments for market level data. See additional discussion in Section 7.3.4.
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6 Results – AI Adoption

In this section we present results regarding the identification of adopters. In the first subsection we

discuss station-level adoption before then describing brand-level adoption in the second subsection.

With these results in hand, in the Section 7 we will study the effect of adoption on outcomes related

to competition.

6.1 Station-level adoption

As outlined in Section 5, we calculate QLR statistics for each station and each of the three adoption

markers: (i) number of price changes, (ii) average size of price changes, and (iii) rival response time.

We find that a large number of stations experience structural breaks in each of the three markers.

Out of 13,426 candidate stations, 12,402 experience a significant structural break in the number of

price changes at the 5% confidence level.38 Out of the stations that experience significant breaks, over

50% of the breaks occur in the spring and summer of 2017 (see Appendix A and Figure A3 for the full

distribution and additional discussion).39 We test stations for structural breaks in rival response time,

excluding all stations without rivals within 1km as well as stations that do not operate in each week

of 2017. Out of 5,908 stations satisfying these conditions, 5,449 experience significant structural

breaks. Out of stations with significant breaks (at at least the 5% level), over 25% break in the

summer of 2017 (see Appendix A and Figure A4 for the full distribution and additional discussion).

For the average size of price changes, we find that out of over 13,426 candidate stations, 11,264

experience a statistically significant structural break. Once again, over 25% of the best candidate

breaks occur in the summer of 2017 (see Appendix A and Figure A5 for the full distribution and

additional discussion).

We also find that that the changes in pricing strategies captured by these breaks are substantial.

For the number of price changes, on average, a station that experienced a structural break changes

their prices 5 times a day before the break and 9 after the break. Rival response time decreases from

80 minutes to 50 minutes on average after a structural break, a drop of about 35%. Similarly, the

average size of price changes falls from 4.1 cents to 3.4 cents. Additional summary statistics and

discussion are in Appendix A and Tables A1, A2 and A3.

38The QLR statistic for these stations are greater than or equal to the 5% critical value 8.68
39We take the structural break as the date with the highest associated F-statistic. There may be some concern

that other structural breaks may occur at significantly different dates if we considered F-statistics that are not the
maximum, but close to it. We investigate the distribution of F-statistics for stations in the appendix and find that
generally stations do not have significantly different dates that may be identified as a structural break.
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Classification: Since there are many factors that may influence a single adoption measure on

its own, to confidently identify a station’s decision to adopt algorithmic-pricing software, we look for

stations that experienced structural breaks for at least two measures of pricing behaviour within a

short period of time. In our main specification, we label a station as an adopter if it experiences a

structural break in at least two of the three measures within 8 weeks.40 Currently, our analysis of

adoption is based on data for Super E10 gasoline.41 Our results are robust to alternative stricter

definitions of adoption.42

We observe 3,104 stations break in both number of price changes and average size of price change

within 8 weeks. Of the stations that break in rival response time, there are 1,062 that break in the

number of price changes within 8 weeks and 812 that break in average size of price change within 8

weeks. There are also 250 stations that break in all 3 measures within an 8 week period. Together,

we classify 4,441 stations as adopters as some stations break in more than one pair of measures. This

constitutes approximately 30% of stations in our final estimating sample.

40Any combination of two measures will result in a station being classified as an adopter.
41As a robustness check, we look at structural breaks in each measure for Diesel gas and find the resulting break

period distributions are similar for those using E10 gas, see Figure A11. Additionally, we find that the majority of
stations that experience structural breaks, experience breaks in both E10 and Diesel gas (between 80-95% of stations
experience a structural break in either gas type, experience structural breaks in both types). The timing of structural
breaks for each gas type is similar, with the median time difference for E10 and Diesel gas structural breaks being 1
(number of price changes), 2 (rival response time), and 3 (average price change size) weeks.

42In Section 7.3.3 we change the definition of“a short period of time,” requiring stations to experience structural
breaks in at least two of the three measures within 4 or 2 weeks. We also include an additional definition that only
labels stations as adopters if they experience multiple structural breaks in both E10 and Diesel. See Section 7.3.3 for
more.
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(a) Number of Price Changes and Average

Size of Price Change (3,104 stations)

(b) Number of Price Changes and Rival

Response Time (1,062 stations)

(c) Average Price Change Size and Rival

Response Time (812 stations)

(d) All 3 Measures (250 stations)

Figure 1: Frequency of Average Break Date for Measures Breaking Within 8 Weeks

Figure 1 shows the distribution of the average break date for each combination of measures,

where the average break date is the average year-week between each measure’s break date. For each

measure pair, the largest frequency of average break dates occur in mid-2017. We do see a number

of stations that break in both average price change size and rival response time in mid-2016, however

about 45% of these stations belong to ARAL and Shell, so it is likely that these breaks may be related

to prevailing effects of Shell’s 2015 price matching policy. Overall, the fact that we see the largest

frequency of multiple measure breaks in mid-2017, the suspected period of large scale adoption,

provides some confidence that these measures accurately represent changes related to adoption of

algorithmic pricing.

In addition to station-level, our main empirical analysis considers the effects of market-level

adoption in isolated duopoly markets. These markets can have zero adopters, one adopter or two
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adopters. Out of over 1,300 duopoly ZIP markets in our sample, approximately 700 markets had no

adopters at any point in our sample. 450 markets have only at most one adopter station throughout

the sample period. Approximately 120 of the duopoly markets had one adopter station followed

by subsequent adoption by the second duopolist. A concern with our definition of adoption and

our adoption measures is that non-adopters may mistakenly be labelled as adopters because their

optimal responses to an adopter’s pricing makes them appear as though they also adopted. Given

the large number of duopoly markets where we observe one station adopting without its competitor

also adopting, this is not a substantial problem.43

Adopter and non-adopter stations are different. In Table A4 we compare market characteristics

for adopter and non-adopter stations before any adoption takes place (in 2016). We find statistically

significant differences between the two. Adopter stations are located in denser areas with different

demographic profiles. Adopter stations also face more competition. This suggests that the adoption

decision is likely endogeneous, with stations deciding to adopt in response to market conditions.

Although we control for observable characteristics and include station and time fixed effects, if

adopters and non-adopters are dissimilar in their observables they are also likely dissimilar in time-

varying unobservable characteristics (e.g., managerial quality, demand and cost shocks). These

findings confirm the need to use an IV strategy to address the endogeneity.

6.2 Brand-Level Adoption

In this section we display the distribution of adoption dates for different brands and the evolution

of the share of adopting stations by leading brands over time. Table 3 present summary statistics

regarding the share of a brand’s stations that adopt by the end of each calendar year. We separately

show statistics for the largest 5 brands and smaller brands (those with two stations or more).

This table confirms that AI adoption does not happen instantaneously across stations belonging

to a given brand. Although we find evidence of station-level adoption as early as 2016 and brand-level

adopter shares grow over time, by the end of 2018 only slightly more than 33% of stations belonging

to the 5 largest brands in Germany are classified as AI adopters. Summary statistics also capture

heterogeneity in adoption based on brand size. On average, a smaller share of non top-5 brand

43There are approximately 40 ZIP codes where both duopolists are labelled as adopters in the same month. This
could potentially reflect such concerns about mis-labelled adoption. Practically, this is a small number of markets and
they are not driving our main results. We replicated our analysis from Section 7.2 and 8 without these markets and
results remain qualitatively and quantitatively the same.
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Table 3: Share of Stations Classified as Adopters

Mean Std. Dev. Median

December 2016

Top 5 Brands 0.053 0.034 0.040
Other Brands 0.037 0.082 0

December 2017

Top 5 Brands 0.264 0.098 0.250
Other Brands 0.197 0.207 0.180

December 2018

Top 5 Brands 0.337 0.110 0.350
Other Brands 0.246 0.231 0.250

stations adopts than of the top 5 brands.44 The mean adopter share in 2018 for non top-5 brands is

25%. This likely reflects the better support that larger brands can provide to their stations, which

would reduce their cost of adoption. Within non-top 5 brands, there is substantial heterogeneity in

adoption shares. By the end of 2018, 20% of non-top 5 brands have adoption rates of over 40%,

which is higher than adoption rates for top 5 brands. At the same time, there are 25% of non-top 5

brands with zero AI adoption. This is especially the case for very small brands. The median brand

with less than 10 stations has zero AI adoption in 2018.

In addition to heterogeneity across large and small brands in terms of their adoption speed, there

is also heterogeneity within the large brands. Figure 2 shows the evolution of the share of adopting

stations for the Top 5 brands in our data throughout our sample period. Notably, none of these

brands have adoption rates over 50% by the end of the sample period. Adoption clearly happens at

a staggered rate that is different across brands. All brands experience spikes in adoption patterns

that happen around early/mid 2017. This likely reflects the increased availability of the technology.

However, some adoption happens beforehand or afterwards. Total overtakes the relatively early

adopter Aral in 2017 and 2018. Esso’s adoption rate increases at a steadier (albeit slower) pace as

compared to other brands. The heterogeneity in adoption rates across brands suggests that there

44We find similar patterns in the distribution of structural breaks for individual adoption measures (i.e., number of
price changes) in Figure A8 in Appendix A.
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Figure 2: Share of AI Adopters Among Top 5 Brands

is a brand-specific component to AI adoption. As mentioned in Section 5.1, it is likely that some

brands were more likely to support the new technology (or adopt at the “HQ” level).

The pattern in Figure 2 is similar to previous patterns of technology adoption in gasoline markets.

In Appendix B, we use data from Ontario (Canada) to look at the adoption of electronic payments

by retail gasoline stations in the 1990s. Figure B1 shows the share of adopting stations from 1991

to 2001 for the Top 5 brands in Ontario. Despite the differences in time, geography and technology,

the patterns are remarkably similar. In that setting we also find a staggered pattern of technology

adoption that appears to be highly brand specific. This suggests that our AI adoption measures do

indeed capture technology adoption.

A reasonable question is whether the heterogeneity in brand-level adoption probability can be

explained by observable brand characteristics. We find that unlike for station-level adoption, brand

level adoption is not correlated with brand-level observables after controlling for brand size (the

number of stations in the brand). Table A5 shows that conditional on the number of stations in the

brand, the share of brand adopters is uncorrelated with the average demographic characteristics of

a brand’s stations. It is also uncorrelated with a brand’s stations competitors. This makes intuitive

sense. Brands with more than a few stations will also be spread out across different local markets.
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Local characteristics will inevitably average out. Brands also make broad strategic decisions that

should not be influenced by local market conditions. The only statistically significant correlate of

adoption probability at the brand level seems to be brand size. Because of this, we control for brand

size in our IV estimates presented below.

7 Results – Effects of AI Adoption

7.1 Impact of Adoption on Station Outcomes

We use OLS and 2SLS regressions to measure the impact of algorithmic-pricing adoption on mean,

25th and 75th percentiles of daily station margins. For each station and day in our sample we compute

an average station/day price and subtract an average regional wholesale price, German gasoline taxes

and VAT. This provides us with daily station-level margins. We define mean station-level margins

by taking an average of these daily station-level margins for each station for each month. We define

the 25th percentile of margins by finding the 25th percentile of daily margins for each station within

a month. We define the 75th percentile of margins by finding the 75th percentile of daily margins

for each station within a month. We label a station as an adopting station if (1) it experiences a

structural break in at least two out of three of (i) number of price changes, (ii) average size of price

change, and (iii) rival response time, and if (2) these breaks occur within a period of 8 weeks. To

identify the time period of adoption, we use the average year-week between the break weeks for each

measure. Non-adopters break in zero or one of the three measures.45

Station-level estimates are presented in Table 4. In each regression we control for the number

of competitors in the station’s ZIP code, as well as region/year demographics and the number of

stations in station i’s brand. Columns (1)-(3) display OLS regression results. Column (4) shows the

first stage of the IV regression, and Columns (5)-(7) show the 2SLS estimates. Results from the OLS

specification suggest that adoption has a negligible impact on margins.

The endogeneity of adoption decisions likely biases OLS estimates and attenuates estimated

coefficients down.46 To correct for this endogeneity problem, we turn to our IV/2SLS estimates. The

45This is a conservative approach. We may be “missing” some adopters, either due to measurement errors in our
measures or due to other signals of adoption that we did not consider. In practice, this means that some of the
adopters are labelled as non-adopters. This would bias our station-level estimates towards zero and under-states the
true effects of adoption.

46As discussed in Section 6.4 and shown in Table A4, adopter and non-adopter stations are very different in their local
market demographics and in their competitive environment. They are also likely to be different in their unobservable
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Table 4: Station-Level Results

(1) (2) (3) (4) (5) (6) (7)
Outcome: Mean Margin 25th Percentile Margin 75th Percentile Margin Adopter Mean Margin 25th Percentile Margin 75th Percentile Margin

OLS OLS OLS 1st Stage 2SLS 2SLS 2SLS

Adopter -0.000 -0.000 0.000 0.007*** 0.009*** 0.006***
(0.000) (0.000) (0.000) (0.002) (0.002) (0.002)

Share Brand Adopters 0.648***
(0.033)

N Competitors in ZIP -0.002*** -0.002*** -0.002*** 0.013** -0.003*** -0.003*** -0.002***
(0.000) (0.000) (0.000) (0.006) (0.000) (0.000) (0.000)

Non-Adopter Mean Outcome 0.079 0.065 0.083 0.079 0.065 0.083
Station FE YES YES YES YES YES YES YES
Year-Month FE YES YES YES YES YES YES YES
Annual Regional Demographics YES YES YES YES YES YES YES
N Brand Stations Control YES YES YES YES YES YES YES
Weather Controls YES YES YES YES YES YES YES
Observations 451,457 451,457 451,457 430,357 430,357 430,357 430,357

Notes: Sample is gas station/month observations from January 2016 until January 2019. Margins are computed above wholesale gasoline
prices at a regional terminal nearest to station j. Mean Margin is the monthly average of daily differences of pump price for station j in
month t and wholesale gasoline prices. 25th Percentile Margin is the 25th percentile of the daily difference of pump price and wholesale
gasoline prices for station j in month t. 75th Percentile Margin is the 75th percentile of the daily difference of pump price and wholesale
gasoline price for station j in month t. “Adopter” is a dummy equal to 1 in month t if the gas station experienced a structural break
in any 2 of 3 relevant measures in any previous month {1, ..., t − 1}. “Share Brand Adopters” is the excluded instrument used in the
2SLS regression. It is equal to the share of stations that belong to the brand of station j that adopted in period t. “N Competitors in
ZIP” is equal to the number of other stations present in postal code of station j. Regional demographics include GDP, total population,
population density, share of population employed and median age a the NUTS3/year level. We also control for the number of stations
belonging to station i’s brand in month t. Weather controls include the mean and standard deviation of monthly temperature and
precipitation near station j in month t. Standard errors clustered at gas station level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

first stage of the 2SLS regression (in Column 4) is very strong (the F-statistic is 36.6). A 10% increase

in the number of other stations affiliated with station i’s brand that adopt by period t increases the

probability that i adopts by period t by 65%. This is consistent with our intuition that adoption of

algorithmic pricing is at least in part a brand-level decision.

2SLS estimates show considerable differences relative to OLS estimates. Column (5) shows that

mean margins increase by 0.7 cents on average after AI adoption. This is an increase of about 9%

relative to the average non-adopter margin of 7.9 cents.47 Column (6) shows that the 25th percentile

of margins increases by 0.9 cents after algorithmic adoption. Column (7) shows that the 75th

percentile of margins remains the same for adopters and non-adopters. Results suggest substantial

endogeneity concerns with OLS estimates that are at least partially solved by IVs.

Algorithmic pricing can increase station margins through a reduction in competition and in-

creased market power. But there can also be other reasons for such changes. An algorithm could

better understand underlying fluctuations in wholesale prices, or identify how price elasticity of de-

characteristics.
472SLS regressions using alternative instruments based on broadband availability and quality also show that mean

margins and mean prices increase after adoption (see Table A16 in Appendix A). See Section 7.3.4 for additional
discussion of these instruments and results.
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mand changes over the day or the week and adjust prices accordingly. We test for these different

explanations by allowing for heterogeneous effects across different market structures. We separate

our sample into two: one sub-sample of stations that are monopolists in their ZIP code, and one

sub-sample of stations that are not.

Results of our 2SLS regression for the two subsamples are presented in Table 5.48 We find that

non-monopolist stations are driving the increase in margins, with mean margins increasing for non-

monopolist adopters by 0.8 cents post-adoption (10%), in comparison to a small and non-statistically

significant increase for monopolist adopters. Non-monopolist adopters also experience an increase

in both 25th and 75th percentile of margins, with increases of 0.9 and 0.7 cents respectively post-

adoption. The entire distribution of non-monopolist adopters’ margins shifts right. In Table A6 in

the Appendix we also show that price effects are similar to margins. Average monthly retail gasoline

prices for non-monopolist adopters increase after adoption. Average prices of monopolist adopter

stations do not change. The statistically null effects on monopolist outcomes and positive effects

on non-monopolist outcomes imply that adoption of algorithmic pricing software increases margins

as a result of changes in competition rather than other changes such as better understanding of

underlying wholesale price fluctuations and consumers’ demand elasticity.

7.2 Impact of Adoption on Market-Level Outcomes

Table 6 presents estimates of regressions at the ZIP market-level, looking at all duopoly (two-station)

ZIP codes.49 Column (1) shows OLS estimates of Equation (4), using mean market-level margins as

the outcome. Market-level margins are calculated as the monthly average of daily differences between

pump prices for stations in market m in month t and wholesale price. Columns (2)-(4) show 2SLS

estimates of Equation (4) using the instruments defined in Equation (5). First-stage estimates of the

2SLS are in Table A9 in Appendix A. As was the case with the station-level instruments, the partial

correlation between market-level instruments and the endogenous variables is strong.

2SLS estimates suggest that AI adoption by one station in a duopoly market does not change

the distribution of market-level margins relative to a duopoly market where no stations adopted.

However, AI adoption by both stations in a duopoly market changes the distribution of market level

margins relative to a duopoly market where no stations adopted. The entire distribution of margins

48Results using the alternative 1KM radius market definition are in Table A7 in the Appendix. See additional
discussion of alternative market definitions in Section 7.3.2.

49Results at the 1km radius market-level are in Table A8 in Appendix A. See Section 7.3.2 for additional discussion
of alternative market definitions.
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Table 5: Station-Level Results by ZIP Market Structure

(1) (2) (3)
Outcome: Mean Margin 25th Percentile Margin 75th Percentile Margin

2LSL 2SLS 2SLS

Sample: Monopoly ZIP Stations

Adopter 0.004 0.004 -0.002
(0.005) (0.004) (0.004)

Non-Adopter Mean Outcome 0.079 0.066 0.084
Station FE YES YES YES
Year-Month FE YES YES YES
Annual Regional Demographics YES YES YES
N Brand Stations Control YES YES YES
Weather Controls YES YES YES
Observations 65,543 65,543 65,543

Sample: Non-Monopoly ZIP Stations

Adopter 0.008*** 0.009*** 0.007***
(0.002) (0.002) (0.002)

N Competitors in ZIP -0.003*** -0.003*** -0.002***
(0.000) (0.000) (0.000)

Non-Adopter Mean Outcome 0.079 0.065 0.083
Station FE YES YES YES
Year-Month FE YES YES YES
Annual Regional Demographics YES YES YES
N Brand Stations Control YES YES YES
Weather Controls YES YES YES
Observations 364,735 364,735 364,735

Notes: Sample is gas station/month observations from January 2016 until January 2019, split up into two subsamples: one subsample only
includes stations that have no competitors in their ZIP code. The other subsample includes only stations that have one or more competitors
in their ZIP code. Margins are computed above wholesale gasoline prices at a regional terminal nearest to station j. Mean Margin is the
monthly average of daily differences of pump price for station j in month t and wholesale gasoline price. 25th Percentile Margin is the 25th
percentile of the daily difference of pump price and wholesale gasoline prices for station j in month t. 75th Percentile Margin is the 75th
percentile of the daily difference of pump price and wholesale gasoline price for station j in month t. “Adopter” is a dummy equal to 1 in
month t if the gas station experienced a structural break in any 2 of 3 relevant measures in any previous month {1, ..., t−1}. “Share Brand
Adopters” is the excluded instrument used in the 2SLS regression. It is equal to the share of stations that belong to the brand of station
j that adopted in period t. “N Competitors in ZIP” is equal to the number of other stations present in postal code of station j. Regional
demographics include GDP, total population, population density, share of population employed and median age a the NUTS3/year level.
We also control for the number of stations belonging to station i’s brand in month t. Weather controls include the mean and standard
deviation of monthly temperature and precipitation near station j in month t. Standard errors clustered at gas station level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

shifts to the right (increases).50 Mean market-level margins increase by 2.2 cents after market-wide AI

adoption. This is a substantial increase of 29% relative to the baseline. The 25th and 75th percentiles

50We similarly find that mean prices increase in two-adopter markets relative to no-adopter markets. Table A10 in
the Appendix shows estimates of the price (rather than margin) effects of AI adoption in duopoly markets.
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of market-level average margins also shift up. The 25th percentile of daily margins increases by nearly

3 cents and the 75th percentile increases by 2 cents.

A possible reason for not seeing changes in mean market-level margins after asymmetric adoption

(when one station adopts and the other does not) could be because the adopter’s margins increase

and the non-adopter’s margins fall, cancelling out on average. We test this hypothesis by looking

at non-adopter stations in duopoly markets and comparing their monthly mean, 25th and 75th

percentiles of margins before and after their rival adopts (as before, we instrument for the rival’s

adoption with the rival brand’s adoption decision). Results from these regressions are in Table A11

in the Appendix. We do not see a decrease in margins following a rival’s AI adoption. This suggests

that asymmetric adoption appears to have no statistically significant effects on margin distributions

in duopoly markets.

These results serve as a direct test of theoretical hypotheses about the effects of AI adoption

on market outcomes. In Calvano et al (2019), algorithms set prices directly and learn collusive

strategies. In Miklós-Thal and Tucker (2019), algorithms do not set prices directly but provide

better demand predictions for price-setting human agents. Their results suggest that, in most cases,

improving demand prediction allows duopolists to maintain higher collusive prices.51 We cannot be

sure exactly which algorithms station-owners are using in Germany and whether they fully turn over

pricing decisions to algorithms.52 We also do not observe the “counterfactual” competitive or purely

collusive prices for a given market. Nonetheless, lack of margin changes from partial/asymmetric

adoption and substantial increases in margins after complete adoption is suggestive of algorithms

facilitating tacit-collusion. The magnitude of margin increases in duopoly markets is consistent with

previous findings on coordination in retail gasoline markets (Clark and Houde 2013, 2014; Byrne and

De Roos 2019). We present additional evidence on the mechanism through which algorithms affect

margins in Section 8.

7.3 Robustness

7.3.1 Alternative Estimation Samples

We perform a number of estimation-sample based robustness checks in Table A13. The first two

robustness checks deal with concerns about the impact of Shell’s 2015 price matching guarantees.

51The exception is moving from very good prediction to excellent/perfect prediction.
52If multiple stations in a market turn over their pricing decisions to a common algorithmic software provider, our

results are in line with the findings of Decarolis and Rovigatti (2019).
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Table 6: ZIP Duopoly Market Results

(1) (2) (3) (4)
Outcome: Mean Mkt Margin Mean Mkt Margin 25th Percentile Mkt Margin 75th Percentile Mkt Margin

OLS 2SLS 2SLS 2SLS

Market Definition: ZIP Code

One Station Adopted -0.001 -0.003 0.005 -0.007
(0.001) (0.007) (0.008) (0.007)

Both Stations Adopted 0.001 0.022** 0.029*** 0.020**
(0.001) (0.009) (0.010) (0.009)

Zero-Adopter Mean Outcome 0.079 0.079 0.066 0.084
IVs NO YES YES YES
ZIP FE YES YES YES YES
Year-Month FE YES YES YES YES
Annual Regional Demographics YES YES YES YES
N Brand Stations Controls YES YES YES YES
Weather Controls YES YES YES YES
Observations 43,372 38,656 38,656 38,656

Notes: The sample includes duopoly market/month observations from January 2016 until January 2019. A duopoly market is defined as a
ZIP code with two gas stations. Outcome variable Mean Market Margin is the monthly average of mean market daily differences of pump
prices for stations in market m in month t from wholesale price. 25th Percentile Market Margin is the 25th percentile of observed mean
market daily difference of pump prices for stations in market m in month t from wholesale gasoline price. 75th Percentile Market Margin
is the 75th percentile of observed mean market daily difference of pump prices for stations in market m in month t from wholesale gasoline
price. “One Station Adopted ” is a dummy equal to 1 in month t if one of the two stations in the market experienced a structural break
in any 2 of 3 relevant measures in any previous month {1, ..., t − 1}. “Both Stations Adopted” is a dummy equal to 1 in month t if both
stations in the market experienced a structural break in any 2 of 3 relevant measures in any previous month {1, ..., t − 1}. Regressions
in Columns (2)-(4) instrument for adoption using the “share of brand adopters” of the two stations in the market. 1st stage regression
results are in Table A9 in the Appendix. Regional demographics include GDP, total population, population density, share of population
employed and median age a the NUTS3/year level. We also control for the sizes of the brands of the two stations at time t. Standard
errors clustered at market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

The introduction of price matching in 2015 appears to have changed pricing strategies (Cabral et al

2018). These changes in strategies may still be ongoing in 2016. This would confound our results.

Shell stations may be mistakenly labelled as algorithmic pricing software adopters. Section A.2.3

in Appendix A shows some evidence that Shell stations have a different distribution of structural

breaks for one of our measures (average size of price changes) than other brands, with a large number

of stations experiencing breaks in early 2016.53 Shell stations and their competitors may also set

higher prices due to the the price matching guarantee rather than due to the adoption of algorithmic

pricing software.

Column (1) in Table A13 deals with this concern by dropping all observations belonging to ZIP

53See Figure A6 and Section A.2.3 for additional discussion about structural breaks in the average size of price
changes. Our other two structural break measures (average number of price changes and rival response time) do not
have the same differences between Shell and other brands.
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codes where the price matching guarantees would be relevant. This includes all Shell stations and

stations that are in the same ZIP codes as Shell stations. Results from this sample are slightly

smaller but still highly statistically significant and qualitatively similar to the main estimates. Even

without including any markets where Shell price matching guarantees would have an effect, we find

that adoption of algorithmic pricing software increases average margins above wholesale prices by

0.5 cents (6%). Column (2) drops all observations from 2016 (where the Shell effects would be most

prominent). Results here are qualitatively similar to the main results but larger in magnitude. This

is because it takes time for stations to increase their margins after adoption (see discussion in Section

8).

We perform additional robustness checks to address concerns that our main results are driven by

entry and exit of stations from the sample - either through the entry of high-quality and high-margin

adopters, or through the exit of weak non-adopting stations. In Column (3) we look at a balanced

sample of stations. We only include stations that are present in every month of the three year sample

period. Results are qualitatively and quantitatively similar to our main estimates. But even these

stations can be affected by entry and exit of other stations in their market. In Column (4), we look

at a balanced sample of stations and markets that do not change over time. We only include stations

that are present in every month of the three year sample period and we drop every market where

the number of stations changes over time. Results from this subsample are also qualitatively and

quantitatively similar to our main results.

7.3.2 Alternative Market Definitions

There are many possible geographic definitions of “markets.” A commonly used definition takes

advantage of existing geographic designations such as Census tracts, DMAs, or ZIP codes. This is

the approach we use in our main results. defining markets based on ZIP code (Tables 5 and 6).

Another commonly used definition in the literature looks at the direct distance between stations.

Table A7 replicates the analysis in Table 5 (as well as looking at average prices) but using the

following definition of a monopoly: a station that has no competitors within a 1KM radius. Non-

monopoly stations then are those that have one ore more competitors within a 1KM radius. Using this

alternative definition yields results that are qualitatively similar to the results in Table 5: monopoly

station’s margins change less than non-monopoly station margins.54 We also find that only non-

monopolist stations increase their prices after adoption. The biggest difference between results using

54Non-monopolist stations have increases of over 10% in all three of mean, the 25th percentile and the 75th percentile
of station margins. Monopolist stations do not.
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different market definitions is that under the 1KM definition, monopoly stations increase their mean

margins after adopting AI (although the average non-monopoly station increase is 25% bigger).

Differences in estimates are caused by the fact that the two market definitions label different

stations as “monopolists.” While a 1KM definition does not vary across different regions, rural area

ZIPs are larger than urban area ZIPs. The ZIP definition is more conservative. In rural areas,

there are many stations that do not have a competitor within 1KM (on the same intersection, or

an intersection away), but that do have a competitor somewhere nearby (in the ZIP code). Table

A12 shows a comparison of the number of stations that are labelled monopolists. Using the 1KM

definition over 6,000 stations are classified as monopolists, whereas only 2,300 stations are when

using the ZIP definition. Only 1,800 of those stations overlap, meaning that many of the stations

the 1KM definition classifies as “monopolists” have some competitors nearby (perhaps 1.5 or 2KM

away). If there is some competition at ranges beyond 1KM, this definition is too lax and would

over-state effects for 1KM monopolist stations.

To a lesser extent, this is also the case for duopoly markets. Approximately 3,000 stations are

classified as belonging to a duopoly market based on their ZIP codes. The alternative definition based

on a 1KM radius around each station defines a duopoly market as two stations that are within 1KM

of one another and that have no other stations within 1KM. 3,800 stations are labelled as belonging

to a 1KM-radius duopoly market. Only 1,100 stations belong to a duopoly market according to both

definitions.

Table A8 in the Appendix replicates the analysis in Table 6 using this definition of duopoly mar-

kets. Mean margin results are qualitatively and quantitatively similar to the ZIP code definition.55

This is likely because gasoline stations compete closely with their nearest rivals. Our results in Sec-

tion 8 suggest that algorithmic adoption by both stations in a duopoly market increases margins by

reducing competition. This would also be the case in markets where there are two stations within

1KM of one another and other stations further away.56 The two nearby stations compete more with

one another than with stations that are further away. If both nearby competitors adopt, they will be

able to compete less aggressively and increase margins. In that sense, even though the 1km duopoly

market definition may be too lax for many (particularly rural) markets, it confirms our baseline

results suggesting that what we find is an effect of AI adoption on competition.

5575th and 25th margin percentile results are statistically zero for the 1KM radius market definition.
56For example, consider a ZIP code with two stations within 500m of each other, and two other stations 3-5KM

away. This is not a duopoly ZIP market, but the two stations within 500m of each other would constitute a 1KM
duopoly market.
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7.3.3 Alternative Adoption Definitions

Tables A14 and A15 replicate Column (1) from Table 5 and Column (2) from Table 6 using alter-

native definitions of AI adoption. We consider three alternative definitions. Recall that our baseline

definition classifies a station as an adopter if, within a period of 8 weeks, it experienced a structural

break in at least two out of three measures - number of price changes per day, average size of price

changes per day and the speed of response to a rival’s price change. Our first two alternative defini-

tions are stricter: we label a station as an adopter if they experienced a structural break in any two

out of three measures but within a period of (i) 4 weeks or (ii) 2 weeks. Results for these definitions

are qualitatively and quantitatively similar to baseline results.

We also consider a stricter alternative adoption measure that relates to a station experiencing

multiple structural breaks in different fuel types. Under this definition, a station has to experience

structural breaks in at least two out of our three adoption measures in both E10 and Diesel within a

period of 8 weeks. As market structure and demand for E10 and Diesel are fundamentally different,

if a station experiences changes in pricing strategy in both fuel types at the same time, it is highly

likely to be driven by the adoption of new pricing software. We take the adoption date to be the

average between the adoption date of E10 and the Diesel adoption date. Column (6) in each of

Tables A14 and A15 present results using this definition of adoption. We find that the results are

qualitatively and quantitatively the same as the baseline results at the station level. At the market

level, the results are qualitatively and quantitatively very close, but standard errors are larger. We

have a much smaller sample at the duopoly-market level than at the station level and with stricter

definitions of adopters we lose power.57

7.3.4 Alternative Instruments

We propose an alternative set of instruments that correct for endogeneity in station adoption deci-

sions without relying on unobservable brand HQ decisions. The instruments capture the quality of

broadband access in station j’s region. There is well documented heterogeneity in broadband access

and quality in Germany, with some areas and regions receiving sub-par services and speeds that

are compared to the “old dial-up days” (NPR.org). In 2017, the second year of our sample, 29% of

German users reported internet speeds less than half of those promised by providers (dw.com). A

fast and reliable internet connection is a key requirement for the effective use of algorithmic pricing

57Only 61 of 1,300 markets in our sample have both stations adopting algorithmic pricing under the “E10 and
Diesel” definition, as compared to 179 markets under our baseline definition.
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software. Computation is done in “the cloud,” so gas stations need fast internet connections to

access necessary price information in a timely manner. They also need reliable internet connections

to upload their own data and feed and update the software.

Based on data obtained from the EU Commission’s netBravo initiative, we have two measures of

broadband performance in the local area around each gas station: whether the local area around the

gas-station has widespread access to high speed internet in a particular year, and the reliability of

broadband signals in that year. We use three indicator variables for high speed internet availability,

capturing whether a 10 Mb/s, a 15 Mb/s or a 30 Mb/s connection is widely available in the local

area.58 Reliability is based on average signal strength (in dB) and the variance of signal strength. The

intuition behind these instruments is that a gas station should be more likely to adopt algorithmic

pricing software once its local area has access to high speed internet. It should also be more likely to

adopt algorithmic pricing software if internet signals in its local region are reliable. The availability

of internet in the area should not be correlated with station specific unobservables conditional on all

other local demographics (income, population density, etc).

There are two downsides to this identification strategy relative to our main approach. First,

variation at the region-year level is relatively limited as compared to variation at the brand-month

level. Second, because an important source of the variation comes from regional geographic condi-

tions, it is difficult to extend these instruments from station-level analysis to duopoly market level

analysis. Duopoly markets, by definition, consist of stations that are close together in geographic

space. There are no stations that we consider to be in the same market but that have different

broadband conditions.

Table A16 in the Appendix presents results from regression using these instruments. Qualitatively,

the results are similar to those derived using our primary identification strategy. IV estimates show

that the adoption of algorithmic pricing software increases mean station margins above wholesale

prices. Mean station prices also go up. We once again find that adoption by monopolist stations has

no effect on mean margins.

Quantitatively, point estimates of the effects of adoption are substantially (5x) larger than our

main estimates. Results from the first stage suggest why this is the case. The instruments shift the

adoption variable in expected directions - a reduction in signal quality and increase in signal variance

reduce the probability that a station adopts. The availability of 10, 15, and especially 30 Mb/s

58We define speed X to be widely available in an area if average speed-tests in that area in that year exceed that
speed. As well, we assume that if an area has speed X widely available in a year, it also has the same speed widely
available in every subsequent year. More details on the construction of these variables are in the Data Appendix.
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broadband increases adoption. But compared to the brand-level instruments the instruments do not

shift adoption probabilities by as much as the brand level instruments. As mentioned previously,

there is also less variation in these instruments than in our brand-month instruments.

8 Mechanism

There are two main explanations for why pricing algorithms could reach margins above competitive

levels. Pricing algorithms could fail to learn to compete effectively (Cooper et al 2015, Hansen, Misra

and Pai 2020). For example, algorithms may not fully incorporate rivals’ prices or may not best

respond to these prices. Alternatively, algorithms could fully incorporate rivals’ prices and best

respond to them, but they could also learn how not to compete (i.e. how totacitly collude). For

example, algorithms may learn to punish competitors for reducing prices or other tacitly-collusive

strategies. The two explanations have very different implications for competition policy, which should

mostly be concerned with algorithms actively learning not to compete.

The two explanations also have different predictions regarding how quickly prices and margins

increase after algorithmic adoption. If the first explanation holds we would expect to see high margins

throughout the post-adoption period.59 If the second explanation holds, we would expect to see no

initial effects followed by an eventual convergence towards tacitly-collusive price levels and increased

margins. Echoing statements made by AI experts, Calvano et al (2019) show in simulations that it

takes a long time for algorithms to train and converge to stable strategies. Without “offline” training,

their results suggest that training should take several years. Even with offline training, it could take

up to a year for their algorithms to converge to stability.

We provide some evidence in favour of the second explanation by examining the timing of adoption

effects. Figure 3 shows estimates of time-specific effects of both stations adopting on mean market

margins (i.e. the “Both Stations Adopted” dummy variable, T 2
mt, from Equation 4), in a regression

that includes the controls from Table 6, market and time FE and controls for whether one station

adopted (T 1
mt). Time-specific adoption variables are instrumented by time-specific versions of IV 2

mt

from Equation (5). We start the timing in the month both stations adopt and go until the latest

post-adoption period we observe in the sample - 29 months after adoption.

In Panel (a) of Figure 3 we show 2SLS coefficient estimates of the “Both Stations Adopted”

variable on average monthly market-level margins. Consistent with simulation results in Calvano

59Or high initial margins followed by lower margins if algorithms learn how to compete more effectively over time.
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et al (2019), we find that for roughly the first year after both duopolist stations in a ZIP code

market adopt AI there are no statistically significant changes in average market margins at the 95%

confidence level.60 However, starting 12 months after both duopolists adopt we find a persistent

upward trend in average market-level margins. This trend peaks 20-22 months after both duopolists

adopt at around a 3 cent increase in margins above the baseline. After 23 months, our estimates

start fluctuating widely due to statistical power issues - there are only 84 observations with “Both

Stations Adopted”= 1 in months 24-29. Nonetheless, the average of point estimates for 24-29 months

after adoption is higher than the average of point estimates from 0-12 months after adoption. These

results are similar to previous findings on transitions to collusive strategies in other markets. Igami

and Sugaya (2019) show that 1990s Vitamin cartels took several years to increase their prices and

margins. Clark, Hortsmann and Houde (2020) also show a lengthy adjustment period to high prices

for a Canadian bread cartel.

We provide additional supporting evidence of algorithms learning to not to compete by looking

at the average number of price changes in duopoly markets. The number of price changes per day

is one of our main markers of adoption, but, conditional on both stations adopting, it is possible

that increases or decreases in competition will play out through changing the “speed” of interactions.

Panel (b) of Figure 3 displays coefficient estimates from the same type of regression as Panel (a), but

with a different outcome variable: the average number of daily price changes in market m at time

t. The average number of price changes is higher in markets in which both stations adopted than in

markets where none did.61 However, during the period when margins increase there is a downward

pattern in the average number of daily price changes. This is not a statistically significant change but

it is fairly large - the point estimates fall from around 4 price changes per day (above the baseline) in

the 13th period after both stations adopt to 3 price changes per day (above the baseline) in the 23rd

month after both stations adopt. Similarly, during a fall in average margins (24 to 27 months after

adoption), there is a mirror increase in the number of mean daily price changes. Once again, the

60Figure 10 in Calvano et al (2019) shows that profit margins for algorithms do not substantially change for over
500,000 simulation “periods.” Under the assumption that a simulation period lasts for a few minutes, Calvano et al
(2019) suggest that this would correspond to at least a year (if not several years). In our estimates, there are some
small statistically significant margin increases at the 90% confidence level in the first year after market-wide adoption.
7 months after adoption, for example, margins increase by about 1 cent (8%) above the average outcome for markets
where no stations adopted.

61In part, this is a mechanical effect that comes from our definition of adoption. Even in period 0 the number of
daily price changes in a duopoly market where both adopt is larger than in a duopoly market where none adopt. This
is because markets generally follow a progression - one station adopts, and then another adopts. This means that in
period 0 when both stations adopt, one station has already adopted and the average number of price changes is higher
than in a market where no stations adopted.
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last pattern is driven by a small number of observations and is noisy. These findings are consistent

with the number of price changes capturing more or less competitive behaviour.

Brown and MacKay (2020) present a third possible explanation for why prices and margins may

increase in response to algorithmic adoption that is neither about algorithms failing to learn to com-

pete nor about algorithms learning to tacitly-collude. In their model, the adoption of algorithmic

software transforms the game that firms play from a standard simultaneous Bertrand pricing game

to a stage game. This increases prices and margins relative to a simultaneous Bertrand-Nash equi-

librium without firms resorting to tacitly-collusive strategies. Our data allow us to test an important

prediction from their model: in cases of asymmetric adoption (when one firm adopts technology

that allows it to respond more quickly to a rival’s price changes and the other one does not) the

non-adopting firm should have higher prices and margins than the adopter. In general, the bigger

the asymmetry in pricing technology, the higher market prices and margins should be. We observe a

large number of duopoly markets that feature asymmetric adoption of algorithmic pricing technology.

Table A11 shows results from a regression of a non-adopting stations’ margins on a dummy variable

of whether its rival has adopted algorithmic pricing technology (instrumented by the rival brand’s

adoption share). We find that there are no statistically significant changes in margins following a

rival’s adoption.62 Although the Brown and MacKay (2020) model appears to fit well certain settings

(such as cold medicine markets), in our context it does not seem to apply. Instead we find more

support for the Calvano et al (2019) framework.

Overall, our results suggest that algorithmic adopters learn tacitly-collusive strategies over time.

62Point estimates on the non-adopter’s mean margins are negative.
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(a) Average Market Margins (b) Average Market Number of Daily Price Changes

Figure 3: Timing Tests for Duopoly ZIP Market Outcomes

9 Discussion: Algorithmic Collusion, Competition Law and

Policy

Our results present the first systematic evidence of the effects of algorithmic pricing software adop-

tion on competition. From the perspective of competition and antitrust authorities, they are trou-

bling. We find that algorithmic pricing software can learn tacitly-collusive strategies, suggesting that

widespread adoption of such software can facilitate tacit collusion and raise prices and markups. To

the best of our knowledge, this occurs without explicit communication between competitors, making

it legal according to current competition laws in many countries.

Our findings have important implications for antitrust authorities around the world and for com-

petition law. Multiple antitrust authorities and economic organizations (OECD 2017; Competition

Bureau 2018; Autorité de la Concurrence and Bundeskartellamt 2019; UK Digital Competition Ex-

pert Panel 2019) have released reports on algorithmic collusion and competition law. The reports

agree that explicit algorithmic collusion would not require any changes to existing competition laws,

but would change how competition authorities monitor for and investigate collusive practices. In-

creased tacit collusion through algorithms could change the legal status of such forms of collusion (in

addition to monitoring and investigative practices). Currently, tacitly collusive behaviour is difficult

to prove and prosecute as it does not rely on explicit communication. The UK Digital Competition
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Expert Panel states that with “further evidence...of pricing algorithms tacitly co-ordinating of their

own accord, a change in the legal approach may become necessary” (p.110, 2019).

If antitrust authorities were to amend laws to account for tacit algorithmic collusion, they would

encounter considerable difficulties in doing so. As in all cases of tacit collusion, it is difficult to estab-

lish a collusive agreement absent explicit communication. With algorithms, the definition of what

constitutes a formal agreement and what constitutes communication should change. For example,

repeated interactions between competing algorithms could be a form of communication. There is

also an issue of liability when it comes to algorithmic collusion. Antitrust authorities must determine

who is at fault in these cases: the algorithm creator, the user, or the algorithm itself.

In Germany, the Federal Cartel Office (Bundeskartellamt) is the competition authority charged

with regulating and protecting competition.63 Germany also has an independent advisory board, the

Monopoly Commission (Monopolkommission), tasked with advising the German Federal Government

on competition related issues.64 The Monopolkommission’s 2018 report on competition issues in

Germany included a discussion on the issue of algorithms and collusion. The report states that

further monitoring and evidence is needed to determine whether changes need to be made. If evidence

does arise that algorithms lead to the further development of collusive markets, the report suggests

that potential revisions could include (i) in cases of prohibited competitive behaviour, imposing the

burden of proof that algorithmic usage has not contributed to infringement, and (ii) supplementation

of the liability regimen under Article 101 of the TFEU to include review and potential regulation of

third parties (i.e. those that contribute IT expertise to algorithms) in cases of collusive behaviour.

While our evidence is particular to retail gasoline markets in Germany (where high frequency

pricing data are available), the same algorithmic pricing software is adopted in gasoline retail markets

around the world. At a minimum, our results suggest that competition authorities in Germany and

elsewhere should undertake a census of retail-gasoline pricing software to understand the market

structure of the algorithmic software market and the extent of adoption. Such a census can help

separate whether the main effect of algorithmic pricing software on competition comes from multiple

stations in a market adopting the same or different algorithms. We do not directly observe which

algorithm competitors adopt and the two possibilities have different implications for regulators and

63The Bunderskartellamt’s tasks are in accordance with legal provisions provided on both a national and European
level. Relevant provisions regarding collusion are articles 101 and 102 of the Treaty on the Functioning of the European
Union (TFEU) and the Act against Restraints of Competition (Competition Act - GWB) (The Bundeskartellamt,
2020).

64The tasks of the Monopolkommission are regulated by a number of legislative acts including sections 42(5) and
44 to 47 of the GWB (Monopolkommission, 2020).
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policy-makers.

Our focus in this paper is on the retail gasoline market, but custom-made and “off-the-shelf” al-

gorithmic pricing software is widely available to use for online and offline retailers. Adoption of such

algorithms is growing: Brown and MacKay (2019) present evidence of algorithmic pricing by phar-

maceutical drug retailers online. Vendavo, an AI based retail pricing software reports over 300 global

deployments in manufacturing, chemicals, distribution and high tech industries (Vendavo.com). Per-

fectPrice, another AI retail pricing software, provides specialized solutions for airlines, car rental

and vacation rental companies (PerfectPrice.com). Our results suggest that competition authorities

should investigate the relationship between algorithmic pricing software adoption and competition

in these and other contexts.

10 Conclusion

We investigate potential links between algorithmic pricing and competition by looking at the widespread

introduction of AI-pricing software in the German retail gas market. First, we identify which stations

have adopted this pricing software through structural break tests in various measures of behaviour

during a sample period of 2016-2018. We then analyze the impact of algorithmic-pricing adoption

by comparing competition measures for adopting stations vs. non-adopting stations before and after

the time of adoption.

To identify algorithmic-pricing adoption, we focus on stations that experience structural breaks

in at least two out of three measures of pricing behaviour within an 8 week period. Comparing breaks

in (i) the number of price changes, (ii) the average size of price changes, and (iii) rival response time,

we find that the vast majority of breaks occur in mid-2017, the time at which the AI software became

widely available.

Having identified adopting stations we investigate the effects of algorithmic adoption on mean,

25th and 75th percentiles of daily margins. Due to the potential endogeneity of station-level adoption

decisions, we instrument for station i’s adoption using the share of stations in i’s brand that have

adopted. Results indicate that, overall, AI-adopters with nearby competitors increase mean margins

by 9% on average in comparison to pre-adoption levels. These stations also experience higher levels of

both 25th and 75th percentiles of margins post-adoption. In contrast, adopters that are a monopolist

in their ZIP code do not see changes in their mean margins or the margin distribution. Looking at

duopoly (two station) markets exclusively, we find that there is no difference in market-level margins
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between markets in which no stations adopted and markets in which one of the two stations adopted.

However, markets in which both stations adopted show a mean margin increase of nearly 30% and

the entire distribution of margins shifts to the right (increases). These estimates are lower-bounds

on the true effects, since measurement errors in the first step of the analysis likely result in labelling

some AI adopters as non-adopters.

We investigate the mechanism behind the increases in margins by looking at the timing of effects.

If algorithms fail to learn to compete effectively we should see immediate increases in margins after

both stations in duopoly markets adopt AI. If algorithms learn how not to compete, we should see no

initial effects followed by eventual convergence to high prices and margins. This is what we find in the

data - margins in markets where both duopolists adopt do not change for about a year after adoption

and then increase gradually. This is suggestive of algorithms learning tacitly- collusive strategies over

time. Overall, the results indicate that the adoption of algorithmic pricing has affected competition

and facilitated tacit-collusion in the German retail gas market.

Our findings suggest that regulators should be concerned about the mass-adoption of algorithmic

pricing software in markets. That said, while we identify that adoption has an effect on tacit-collusion

between stations, we do not observe which algorithm or algorithms stations and brands adopt. We

have information about the mass availability of one particular algorithm in Germany but there are

other software providers active in this market and stations or brands could have adopted different

algorithms. Whether our estimated effects come from multiple stations in a market adopting the same

or different algorithms should have different implications for regulators and competition policy.
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A Appendix A

A.1 Algorithms in Gasoline Retail Markets

Figure A1: December 2017 TANKSTOP Trade Magazine Cover and a2i Advertisements
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Figure A2: How Algorithms Work (wsj.com)
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A.2 Tests for Structural Break in the Three Adoption Markers

A.2.1 Number of Price Changes

For each station we construct a variable measuring the number of times it changes its price for each

date in our sample period. For structural break testing, we aggregate this variable to the weekly

level.65 Figure A3 shows the overall distribution of significant breaks.

Figure A3: Frequency of Significant Structural Breaks in Number of Price Changes (12,402 stations
included)

We compare the number of price changes before and after structural breaks for stations that

experienced structural breaks in Table A1. We also include stations that did not experience structural

breaks. Adopting stations change their prices more frequently than non-adopting stations, suggesting

that our structural breaks do manage to pick out large changes in pricing strategy. On average, a

station that experienced a structural break changes their prices 5.5 times a day before the break and

9.2 after the break. There is also a general rightward shift in the distribution of the number of daily

price changes after the break.66 Stations that do not experience breaks experienced 6 changes per

day, which is close to the number of changes for breaking stations in the pre-break period.

65Any stations that do not have a weekly observation for average number of price changes in every week of 2017 are
dropped. See more details in the Data Appendix.

66At the 25th percentile of number of price changes, a station only changes their prices 4 times per day before the
break but 7 times a day after the break.
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Table A1: Daily Number of Price Changes

Mean Std. Dev.

Post Structural Break Stations 9.2 3.1

Pre Structural Break Stations 5.5 2.5

No Structural Break Stations 6.3 3.4

A.2.2 Rival Response Time

We define a rival for station i as the closest station j that is within a 1KM radius of station i but

that belongs to a different brand.67 Rival response time for station i is calculated as the number of

minutes between the time of a price change by rival j and the subsequent price change by station

i. If station j changes its price more than once before station i makes a price change, rival response

time is taken as the average of the time gaps between each of station j’s price changes and station i’s

subsequent change. When testing for structural breaks in rival response time, we take into account

the fact that changes in response time will be mechanically impacted by changes in number of price

changes. To identify structural changes separately from this mechanical effect, we control for the

number of price changes when running Equation (1) for this measure. Figure A4 shows the overall

distribution of significant breaks.

67This reflects the average distance of stations in the data.
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Figure A4: Frequency of Significant Structural Breaks in Rival Response Time (5,449 stations in-
cluded)

We compare average rival response times (in minutes) for stations that adopted before and after

adoption in Table A2. We find that the structural break captures substantial changes in the measure.

On average rival response time decreases from 80 minutes to 52 minutes after the structural break,

a drop of about 35%. There are also decreases at other points in the response time distribution,

especially in the right tail.68 Stations that did not experience a structural break in this measure look

more like the stations in the pre-break period, having average response times of over one hour.

Table A2: Rival Response Time (Minutes)

Mean Std. Dev.

Post Structural Break Stations 52 38

Pre Structural Break Stations 80 73

No Structural Break Stations 73 69

68At the 75th percentile, response time falls from an hour and a half to an hour. At the 95th percentile, response
time falls by 100 minutes.
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A.2.3 Average Size of Price Change

For the average size of price changes, we calculate the average size of price changes made in a day

for each station and then average this measure to a weekly level.69 We look at the distribution of

weekly break periods for stations with a QLR statistic that is significant at the 5% level. Results

are presented in Figure A5. Although there is a spike of stations experiencing structural breaks

in average price change size in Spring 2017, there is a large number of breaks in mid-2016 and a

number of stations experiencing structural breaks throughout 2018. The occurrence of breaks in

2016 may be due to prevailing effects of Shell’s 2015 price-matching policy, which induced changes

in pricing behaviour for some German retail gas stations. In particular, during this time, Shell

and ARAL began to interrupt the previously observed price cycles in the market with upward price

jumps around midday. Medium and small retail gas brands would follow these increases, although

the extent of the midday price jumps for these stations was not as large of those of Shell and ARAL

(Cabral et al. 2018).

Figure A5: Frequency of Significant Structural Breaks in Average Size of Price Change (11,264
stations included)

Looking at stations that experience structural breaks in 2016, ARAL and Shell stations make

up over 40% of these occurrences. Figure A6 shows the distribution of break periods for Shell and

ARAL stations in comparisons to all other stations. The figure makes it clear that Shell and ARAL

69See more details in the Data Appendix.
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stations drive the observed spike in break frequency in 2016. For all brands, over 15% of stations still

experience structural breaks in the spring/summer of 2017. Importantly, we do not use this measure

alone to define adoption of algorithmic pricing. As discussed in the main text, we focus on stations

that experience structural breaks in at least two measures within a relatively short window of time.

We also directly address concerns about Shell in a robustness check, dropping all markets where Shell

is present and where the price matching guarantees would have any effect. Results are qualitatively

and quantitatively similar to our main estimates (see Section 7.3.1 for additional discussion).

Figure A6: Frequency of Significant Structural Breaks in Average Size of Price Change for Shell and
Aral stations vs. other stations)

Table A3 shows differences in average sizes of daily price changes (in cents) before and after the

structural breaks. For stations that experience a structural break, the average size of price changes

falls from 4.1 cents to 3.4 cents. The standard deviation in the average size of price changes falls as

well, suggesting that price fluctuations become more targeted after the structural break.70 Unlike

for the other two measures, the average measure for stations that did not experience a structural

break is more similar to stations that have already had a structural break than to those that did

not. This reflects the underlying heterogeneity between stations that adopt and stations that do

70Changes at other points in the distribution are less stark than for the other measures. Partly this is because
there is a lower bound to the amount by which stations can change their price (0.1 cents). Both before and after the
structural break, at the bottom of the distribution stations are actually fairly close to this lower bound. Nonetheless,
there are changes at the top end of the distribution after the break. At the 95th percentile, stations reduce their price
change size from 7.2 cents to 5.2 cents, a decrease of nearly 30%.
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not adopt. We address this concern in two ways in our main analysis on the effects of adoption on

market outcomes. We include station-level fixed effects to control for time-invariant station specific

characteristics. We also use an instrumental variables approach to address potential endogeneity

because of unobservable time and station varying heterogeneity.

Table A3: Average Daily Price Change Size (cents)

Mean Std. Dev.

Post Structural Break Stations 3.4 1.6

Pre Structural Break Stations 4.1 2.2

No Structural Break Stations 3.7 3.0
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A.3 Alternative Structural Breaks

We look at the distribution of F-statistics for structural break tests in the number of price changes

for stations over the sample period for a few representative stations. We find that generally, stations

display a uni-modal distribution in their F-stastistics, meaning we are unlikely to find structural

breaks at a significantly different date if we were to, for example, take the second highest F-statistic

rather than the maximum. A few examples are shown in A7 of what a typical distribution would

look like for a station’s F-statistics for structural break tests in the number of price changes.

(a) Station 8 (Shell) (b) Station 22 (Esso)

(c) Station 107 (ARAL) (d) Station 335 (Hem)

Figure A7: Distribution of F-statistics for Structural Break Tests in Number of Price Changes

To take a more systematic approach to test whether there may be significantly different alternative

break dates, for each station, we look at the dates associated with the 2 highest F-statistics for

structural break tests in the number of price changes. We find that for 90% of stations, these dates

are 1 week apart meaning that the next alternative break date would be occur either 1 week before

or after the break associated with the highest F-statistic. We find only 5% of stations have difference

of 4 or more weeks between the dates associated with the highest and second highest F-statistic.
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A.4 Adopter/Non-Adopter Heterogeneity

Table A4: Adopter and Non-Adopter Station Characteristics in 2016

(1)
Outcome: Will Station j Adopt AI?

Population Density 0.00003***
(6.67e-06)

ln(Population) 0.011
(0.035)

Median Population Age 0.004**
(0.002)

Employment Share 0.079
(0.079)

ln(region GDP) -0.005
(0.032)

N Competitors in ZIP 0.005***
(0.002)

Observations 155,898

Notes: The sample for this regression includes gas station/month observations from January 2016 until December 2016 that are not labelled
as AI adopters during this period. The outcome is a dummy variable equal to 1 if the station will eventually be labelled as an adopter in
2017 or 2018, and zero otherwise. Population Density, ln(Population), Median Population Age, Employment Share and ln(regional GDP)
are all computed at the NUTS3-year level. “N Competitors in ZIP” is equal to the number of other stations present in postal code of
station j in month t. We include month fixed effects. Standard errors clustered at the gas station level in parentheses. *** p<0.01, **
p<0.05, * p<0.1
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A.5 Heterogeneity in Structural Breaks/Adoption by Brand Size

(a) Top 5 Brands (b) Non-Top 5 Brands

Figure A8: Frequency of Significant Structural Breaks in Number of Daily Price Changes by Brand
Size

(a) Top 5 Brands (b) Non-Top 5 Brands

Figure A9: Frequency of Significant Structural Breaks in Rival Response Time by Brand Size
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(a) Top 5 Brands (b) Non-Top 5 Brands

Figure A10: Frequency of Significant Structural Breaks in Average Price Change Size by Brand Size

Table A5: Correlates to Brand-Level Adoption Probability

(1)
Outcome: Share Brand Adopters

Mean Brand Population Density 0.00002
(0.00003)

Mean Brand ln(Population) -0.052
(0.143)

Mean Bran Median Age 0.010
(0.008)

Mean Brand Employment Share 0.065
(0.323)

Mean Brand ln(region GDP) 0.075
(0.127)

Mean Brand N Competitors in ZIP 0.008
(0.006)

N Brand Stations 0.0004***
(0.00001)

Observations 6,853

Notes: The sample for this regression includes brand/month observations from January 2016 until December 2018 for brands with two
stations or more. The outcome is the share of a brand’s stations that are labelled as adopters by month t. The variable “Mean Brand
X” is a simple average of variable X across all brand b stations in month t. Population Density, ln(Population), Median Population Age,
Employment Share and ln(regional GDP) are all computed at the NUTS3-year level. “N Competitors in ZIP” is equal to the number of
other stations present in postal code of station j in month t. We include year-month fixed effects. Standard errors clustered at the brand
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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A.6 Diesel Gas Structural Breaks

Figure A11: Frequency of Significant Structural Breaks in Number of Price Changes, Rival Response
Time, and Average Size of Price Change (Diesel Gas)
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A.7 Additional Estimates and Robustness

Table A6: Station-Level Price Results

(1) (2) (3) (4)
Sample: All Stations All Stations ZIP Monopolists ZIP Non-Monopolists
Outcome: Mean Price Mean Price Mean Price Mean Price

OLS 2LSL 2SLS 2SLS

Adopter -0.001*** 0.005*** -0.004 0.006***
(0.000) (0.002) (0.005) (0.002)

N Competitors in ZIP -0.002*** -0.003*** 0.000 -0.003***
(0.000) (0.000) (0.000) (0.000)

Non-Adopter Mean Outcome 1.339 1.339 1.340 1.339
Station FE YES YES YES YES
Year-Month FE YES YES YES YES
Annual Regional Demographics YES YES YES YES
N Brand Stations Control YES YES YES YES
Weather Controls YES YES YES YES
Observations 451,457 430,357 65,543 364,735

Notes: Column (1) and (2) sample includes all gas station/month observations from January 2016 until January 2019. Columns (3) and (4)
are two subsamples: Column (3) only includes stations that have no competitors within their ZIP code. Column (4) includes only stations
that have one or more competitors within their ZIP code. Mean Margin is the monthly average of daily differences of pump price for station
j in month t and wholesale gasoline prices. “Adopter” is a dummy equal to 1 in month t if the gas station experienced a structural break
in any 2 of 3 relevant measures in any previous month {1, ..., t− 1}. “Share Brand Adopters” is the excluded instrument used in the 2SLS
regression. It is equal to the share of stations that belong to the brand of station j that adopted in period t. “N Competitors in ZIP” is
equal to the number of other stations present in postal code of station j. Regional demographics include GDP, total population, population
density, share of population employed and median age a the NUTS3/year level. Weather controls include the mean and standard deviation
of monthly temperature and precipitation near station j in month t. Standard errors are clustered at gas station level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1
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Table A7: Station-Level Results by 1km Market Structure

(1) (2) (3) (4)
Outcome: Mean Margin 25th Percentile Margin 75th Percentile Margin Mean Price

2LSL 2SLS 2SLS 2SLS

Sample: Monopoly 1km Radius Stations

Adopter 0.006** 0.007*** 0.002 0.003
(0.003) (0.002) (0.002) (0.003)

N Competitors in ZIP -0.002*** -0.003*** -0.002*** -0.003***
(0.000) (0.000) (0.000) (0.001)

Station FE YES YES YES YES
Year-Month FE YES YES YES YES
Annual Regional Demographics YES YES YES YES
N Brand Stations Control YES YES YES
Weather Controls YES YES YES YES
Observations 180,951 180,951 180,951 180,951

Sample: Non-Monopoly 1km Radius Stations

Adopter 0.008*** 0.010*** 0.009*** 0.006***
(0.002) (0.002) (0.002) (0.002)

N Competitors in ZIP -0.003*** -0.003*** -0.002*** -0.003***
(0.000) (0.000) (0.000) (0.000)

Station FE YES YES YES YES
Year-Month FE YES YES YES YES
Annual Regional Demographics YES YES YES YES
N Brand Stations Control YES YES YES
Weather Controls YES YES YES YES
Observations 249,406 249,406 249,406 249,406

Notes: Sample is gas station/month observations from January 2016 until January 2019, split up into two subsamples: one subsample
only includes stations that have no competitors within a 1km radius. The other subsample includes only stations that have one or more
competitors within a 1km radius. Mean Margin is the monthly average of daily differences of pump price for station j in month t and
wholesale gasoline prices. 25th Percentile Margin is the 25th percentile of the daily difference of pump price and wholesale gasoline prices
for station j in month t. 75th Percentile Margin is the 75th percentile of the daily difference of pump price and wholesale gasoline price
for station j in month t. Mean Price is the average pump price for station j in month t. “Adopter” is a dummy equal to 1 in month
t if the gas station experienced a structural break in any 2 of 3 relevant measures in any previous month {1, ..., t − 1}. “Share Brand
Adopters” is the excluded instrument used in the 2SLS regression. It is equal to the share of stations that belong to the brand of station
j that adopted in period t. “N Competitors in ZIP” is equal to the number of other stations present in postal code of station j. Regional
demographics include GDP, total population, population density, share of population employed and median age a the NUTS3/year level.
Weather controls include the mean and standard deviation of monthly temperature and precipitation near station j in month t. Standard
errors are clustered at gas station level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A8: 1km Duopoly Market Results

(1) (2) (3) (4)
Outcome: Mean Mkt Margin Mean Mkt Margin 25th Percentile Mkt Margin 75th Percentile Mkt Margin

OLS 2SLS 2SLS 2SLS

One Station Adopted -0.002** -0.008 -0.000 -0.009
(0.001) (0.009) (0.030) (0.010)

Both Stations Adopted -0.003* 0.030** -0.004 0.024
(0.001) (0.015) (0.045) (0.016)

IVs NO YES YES YES
Market FE YES YES YES YES
Year-Month FE YES YES YES YES
Annual Regional Demographics YES YES YES YES
N Brand Stations Controls YES YES YES YES
Weather Controls YES YES YES YES
Observations 41,527 38,489 38,489 38,489

Notes: The sample includes duopoly market/month observations from January 2016 until January 2019. A duopoly market is defined as
two stations that are within 1km of each other and have no other stations within 1km. Outcome variable Mean Market Margin is the
average of mean market daily differences of pump prices for stations in market m in month t from wholesale price. 25th Percentile Market
Margin is the 25th percentile of observed mean market daily difference of pump prices for stations in market m in month t from wholesale
gasoline price. 75th Percentile Market Margin is the 75th percentile of observed mean market daily difference of pump prices for stations in
market m in month t from wholesale gasoline price. “One Station Adopted ” is a dummy equal to 1 in month t if one of the two stations in
the market experienced a structural break in any 2 of 3 relevant measures in any previous month {1, ..., t− 1}. “Both Stations Adopted” is
a dummy equal to 1 in month t if both stations in the market experienced a structural break in any 2 of 3 relevant measures in any previous
month {1, ..., t− 1}. Regressions in Columns (2)-(4) instrument for adoption using the “share of brand adopters” of the two stations in the
market. 1st stage regression results are in Table A9 in the Appendix. Regional demographics include GDP, total population, population
density, share of population employed and median age a the NUTS3/year level. Weather controls include the mean and standard deviation
of monthly temperature and precipitation near station j in month t. Standard errors clustered at market level in parentheses. *** p<0.01,
** p<0.05, * p<0.1
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Table A9: 1st Stage Results for Duopoly Markets

(1) (2) (3) (4)
Outcome: One Station Adopted Both Stations Adopted One Station Adopted Both Stations Adopted
Market Definition ZIP Code 1km Radius

IV1 0.691*** -0.094 0.782*** -0.023
(0.160) (0.089) (0.179) (0.095)

IV2 -0.580* 1.254*** -0.881*** 0.993***
(0.308) (0.229) (0.314) (0.248)

Market/ZIP FE YES YES YES YES
Year-Month FE YES YES YES YES
Annual Regional Demographics YES YES YES YES
N Brand Stations Controls YES YES YES YES
Weather Controls YES YES YES YES
Observations 38,656 38,656 38,489 38,489

Notes: The sample includes duopoly market/month observations from January 2016 until January 2019. Columns (1)-(2) define a duopoly
market as a ZIP code with two gas stations. Columns (3)-(4) define a duopoly market as two stations that are within 1km of each other
and have no other stations within 1km. “One Station Adopted ” is a dummy equal to 1 in month t if one of the two stations in the
market experienced a structural break in any 2 of 3 relevant measures in any previous month {1, ..., t − 1}. “Both Stations Adopted”
is a dummy equal to 1 in month t if both stations in the market experienced a structural break in any 2 of 3 relevant measures in any
previous month {1, ..., t − 1}. IV 1 and IV 2 use the “share of brand adopters” of the two stations in the market as follows: for market
m at time t, IV 1mt = B1t(1 − B2t) + B2t(1 − B1t), where Bjt is the share of brand adopters for station j in this market. Similarly,
IV 2mt = B1tB2t. Regional demographics include GDP, total population, population density, share of population employed and median
age a the NUTS3/year level. Weather controls include the mean and standard deviation of monthly temperature and precipitation near
station j in month t. Standard errors clustered at market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A10: Duopoly Market Price Results

(1) (2) (3)
Outcome: Mean Mkt Price 25th Percentile Mkt Price 75th Percentile Mkt Price

2SLS 2SLS 2SLS

Market Definition: ZIP Code

One Station Adopted -0.008 -0.005 -0.011
(0.009) (0.009) (0.009)

Both Stations Adopted 0.020** 0.027*** 0.018*
(0.010) (0.010) (0.011)

IVs YES YES YES
ZIP FE YES YES YES
Year-Month FE YES YES YES
Annual Regional Demographics YES YES YES
N Brand Stations Controls YES YES YES
Weather Controls YES YES YES
Observations 38,656 38,656 38,656

Market Definition: 1km Radius

One Station Adopted -0.013 -0.013 -0.015*
(0.009) (0.008) (0.009)

Both Stations Adopted 0.026* 0.026* 0.029*
(0.015) (0.015) (0.016)

IVs YES YES YES
Market FE YES YES YES
Year-Month FE YES YES YES
Annual Regional Demographics YES YES YES
N Brand Stations Controls YES YES YES
Weather Controls YES YES YES
Observations 38,489 38,489 38,489

Notes: The sample includes duopoly market/month observations from January 2016 until January 2019. The top panel defines a duopoly
market as a ZIP code with two gas stations. The bottom panel defines a duopoly market as two stations that are within 1km of each
other and have no other stations within 1km. Outcome variable Mean Market Margin is the average of mean market daily pump prices for
stations in market m in month t. 25th Percentile Market Price is the 25th percentile of observed market daily pump prices for stations in
market m in month t. 75th Percentile Market Price is the 75th percentile of observed mean market daily pump prices for stations in market
m in month t. “One Station Adopted ” is a dummy equal to 1 in month t if one of the two stations in the market experienced a structural
break in any 2 of 3 relevant measures in any previous month {1, ..., t− 1}. “Both Stations Adopted” is a dummy equal to 1 in month t if
both stations in the market experienced a structural break in any 2 of 3 relevant measures in any previous month {1, ..., t− 1}. Regressions
in Columns (2)-(4) instrument for adoption using the “share of brand adopters” of the two stations in the market. 1st stage regression
results are in Table A9 in the Appendix. Regional demographics include GDP, total population, population density, share of population
employed and median age a the NUTS3/year level. Weather controls include the mean and standard deviation of monthly temperature
and precipitation near station j in month t. Standard errors clustered at market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A11: Rival Adoption Effects

(1) (2) (3)
Outcome Mean Margin 25th Percentile Margin 75th Percentile Margin

2SLS 2SLS 2SLS

Rival Adopted -0.001 0.001 -0.001
(0.005) (0.005) (0.005)

IVs YES YES YES
Station FE YES YES YES
Year-Month FE YES YES YES
Annual Regional Demographics YES YES YES
N Brand Stations Control YES YES YES
Weather Controls YES YES YES
Observations 65,938 65,938 65,938

Notes: The sample includes all station/month observations belonging to duopoly markets from January 2016 until January 2019 where zero
or one of the duopolists adopted AI. Mean Margin is the monthly average of daily differences of pump price for station j in month t and
wholesale price. 25th Percentile Margin is the 25th percentile of the daily difference of pump price and wholesale gasoline prices for station
j in month t. 75th Percentile Margin is the 75th percentile of the daily difference of pump price and wholesale gasoline price for station j
in month t. “Rival Adopted” is a dummy equal to 1 in month t if the duopoly rival of station j in market m experienced a structural break
in any 2 of 3 relevant measures in any previous month {1, ..., t− 1}. Regressions in Columns (1)-(3) instrument for a rival’s adoption using
the “share of brand adopters” of the rival in the market. Regional demographics include GDP, total population, population density, share
of population employed and median age a the NUTS3/year level. Weather controls include the mean and standard deviation of monthly
temperature and precipitation near station j in month t. Standard errors clustered at station level in parentheses. *** p<0.01, ** p<0.05,
* p<0.1

Table A12: Monopoly and Duopoly Market Definition

N ZIP Monopoly Stations 2,323 N ZIP Duopoly Stations 3,093
N 1km Monopoly Stations 6,072 N 1km Duopoly Stations 3,800
N Overlap 1,857 N Overlap 1,126
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Table A13: Sample Robustness Checks

(1) (2) (3) (4)
Sample: No Shell Markets Dropping 2016 Data Balanced Sample Market-Level Balanced Sample
Outcome: Mean Margin Mean Margin Mean Margin Mean Margin

2SLS 2SLS 2SLS 2SLS

Adopter 0.005** 0.018*** 0.007*** 0.007***
(0.002) (0.003) (0.002) (0.002)

N Competitors in ZIP -0.003*** -0.003*** -0.002***
(0.000) (0.000) (0.000)

Station FE YES YES YES YES
Year-Month FE YES YES YES YES
Annual Regional Demographics YES YES YES YES
N Brand Stations Control YES YES YES YES
Weather Controls YES YES YES YES
Observations 248,482 286,548 348,479 264,329

Notes: Sample in Column (1) includes gas station/month observations from January 2016 until January 2019 that do not belong to a
market where a station by a Shell brand is present. Sample in Column (2) includes gas station/month observations from January 2017 until
January 2019 (dropping 2016 data). Column (3) includes all gas station/month observations belonging to gas stations that are present in
every month of the sample. Column (4) includes all gas station/month observations belonging to gas stations that are present in every
month of the sample and are in markets where the number of stations does not vary across the sample period. Mean Margin is the monthly
average of daily differences of pump price for station j in month t and wholesale gasoline prices. “Adopter” is a dummy equal to 1 in
month t if the gas station experienced a structural break in any 2 of 3 relevant measures in any previous month {1, ..., t−1}. “Share Brand
Adopters” is the excluded instrument used in the 2SLS regression. It is equal to the share of stations that belong to the brand of station
j that adopted in period t. “N Competitors in ZIP” is equal to the number of other stations present in postal code of station j. Regional
demographics include GDP, total population, population density, share of population employed and median age a the NUTS3/year level.
Weather controls include the mean and standard deviation of monthly temperature and precipitation near station j in month t. Standard
errors are clustered at gas station level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

68



Table A14: Station Level Results with Alternative “Adopter” Definitions

(1) (2) (3)
Sample: Non-Monopoly ZIP Stations
Adopter Measures: Breaks within 4 weeks Breaks within 2 weeks E10 + Diesel
Outcome: Mean Margin

Adopter 0.009*** 0.006** 0.015***
(0.002) (0.003) (0.003)

N Competitors in ZIP -0.003*** -0.003*** -0.003***
(0.000) (0.000) (0.000)

Station FE YES YES YES
Year-Month FE YES YES YES
Annual Regional Demographics YES YES YES
N Brand Stations Control YES YES YES
Weather Controls YES YES YES
Observations 435,899 435,899 435,899

1st Stage Results
Outcome: Adopter Dummy

Share Brand Adopters 0.682*** 0.655*** 0.661***
(0.039) (0.043) (0.044)

Station FE YES YES YES
Year-Month FE YES YES YES
Annual Regional Demographics YES YES YES
N Brand Stations Control YES YES YES
Weather Controls YES YES YES
Observations 364,735 364,735 364,735

Notes: Sample is gas station/month observations from January 2016 until January 2019 that have one competitor or more in their ZIP
code. Outcome variable Mean Margin is the monthly average of daily differences of pump price for station j in month t and wholesale
prices. In Column (1) “Adopter” is a dummy equal to 1 in month t if the gas station experienced a structural break in any 2 of 3 relevant
measures within 4 weeks in any previous period. In Column (2) “Adopter” is a dummy equal to 1 in month t if the gas station experienced
a structural break in any 2 of 3 relevant measures within 2 weeks in any previous period. In Column (3) “Adopter” is a dummy equal to
1 in month t if the gas station experienced a structural break in any 2 of 3 relevant measures for both E10 and Diesel gasoline within 8
weeks in any previous period. “Share Brand Adopters” is the excluded instrument used in the 2SLS regression. It is equal to the share of
stations that belong to the brand of station j that adopted in period t. “N Competitors in ZIP” is equal to the number of other stations
present in postal code of station j. Regional demographics include GDP, total population, population density, share of population employed
and median age a the NUTS3/year level. We also control for the number of stations belonging to station i’s brand in month t. Weather
controls include the mean and standard deviation of monthly temperature and precipitation near station j in month t. Standard errors
are clustered at gas station level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A15: Duopoly ZIP Market Level Results with Alternative “Adopter” Definitions

(1) (2) (3)
Adopter Measures: Breaks within 4 weeks Breaks within 2 weeks E10 + Diesel
Outcome: Mean Market Margin

One Station Adopted -0.004 -0.004 0.012
(0.010) (0.007) (0.011)

Both Stations Adopted 0.020** 0.029* 0.033
(0.010) (0.016) (0.021)

IVs YES YES YES
Market FE YES YES YES
Year-Month FE YES YES YES
Annual Regional Demographics YES YES YES
N Brand Stations Controls YES YES YES
Weather Controls YES YES YES
Observations 38,656 38,656 38,656

Notes: The sample includes duopoly market/month observations from January 2016 until January 2019. A duopoly market is defined as a
ZIP code with two gas stations. Outcome variable Mean Market Margin is the monthly average of mean market daily differences of pump
prices for stations in market m in month t from wholesale price. In Column (1) a station is labelled as an adopter if it experienced a
structural break in any 2 of 3 relevant measures within 4 weeks in any previous period. In Column (2) a station is labelled as an adopter
if it experienced a structural break in any 2 of 3 relevant measures within 2 weeks in any previous period. In Column (3) a station is
labelled as an adopter if it experienced a structural break in any 2 of 3 relevant measures for both E10 and Diesel gasoline within 8 weeks
in any previous period. “One Station Adopted ” is a dummy equal to 1 in month t if one of the two stations in the market adopted in
any previous period. “Both Stations Adopted” is a dummy equal to 1 in month t if both stations in the market adopted in any previous
period. We use the “share of brand adopters” of the two stations in the market as instruments for adoption. 1st stage regression results
are in Table A9 in the Appendix. Regional demographics include GDP, total population, population density, share of population employed
and median age a the NUTS3/year level. We also control for the sizes of the brands of the two stations at time t. Weather controls include
the mean and standard deviation of monthly temperature and precipitation near station j in month t. Standard errors clustered at market
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A16: Station Level Results with Alternative Instruments

(1) (2) (3) (4) (5)
Sample: All Stations All Stations ZIP Monopolists ZIP Non-Monopolists All Stations
Outcome: Adopter Mean Margin Mean Margin Mean Margin Mean Price

Adopter 0.039*** 0.019 0.044*** 0.063***
(0.009) (0.013) (0.010) (0.013)

N Competitors in ZIP 0.005 -0.003*** 0.000 -0.003*** -0.004***
(0.007) (0.000) (0.000) (0.000) (0.001)

10 Mbps Internet Available 0.028**
(0.013)

15 Mbps Internet Available 0.031**
(0.015)

30 Mbps Internet Available 0.133***
(0.041)

Average Internet Signal Strength (dB) 0.002*
(0.001)

Average Internet Signal Variable (dB) -0.005**
(0.002)

Station FE YES YES YES YES YES
Year-Month FE YES YES YES YES YES
Annual Regional Demographics YES YES YES YES YES
N Brand Stations Controls YES YES YES YES YES
Weather Controls YES YES YES YES YES
Additional Broadband Controls YES YES YES YES YES
Observations 314,820 314,820 45,408 269,363 269,363

Notes: Samples in Columns (1), (2) and (5) include gas station/month observations from January 2016 until January 2019. Column (3)
only includes stations that have no competitors within their ZIP code. Column (4) includes only stations that have one or more competitors
within their ZIP code. Mean Margin is the monthly average of daily differences of pump price for station j in month t and wholesale
gasoline prices. Mean Price is the average retail price for station j in month t. “Adopter” is a dummy equal to 1 in month t if the gas
station experienced a structural break in any 2 of 3 relevant measures in any previous month {1, ..., t− 1}. Excluded instruments used in
the 2SLS regressions in Columns (2)-(5) include annual internet speed and signal quality measures: a dummy for whether 10/15/30 Mbps
internet was available in that year in that region, and two measures of average broadband signal strength. “N Competitors in ZIP” is equal
to the number of other stations present in postal code of station j. Regional demographics include GDP, total population, population
density, share of population employed and median age a the NUTS3/year level. Weather controls include the mean and standard deviation
of monthly temperature and precipitation near station j in month t. Standard errors are clustered at gas station level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1
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B Appendix B

We use annual data from Kent Marketing, a leading survey company in the Canadian gasoline

market.71 It captures annual data from 1991 to 2001 for all retail gasoline stations in seven medium-

sized markets in Ontario: Brantford, Cornwall, Guelph, Hamilton, Kingston, St. Catharines and

Windsor. The 5 brands with most stations in this data are PetroCanada (98 stations), Esso (84

stations), Shell (61 stations), Sunoco (56 stations) and Pioneer (36 stations). The data includes

station characteristics including whether the station accepts “electronic payments.”

This is a good benchmark technology for AI adoption. Both could improve station performance

as electronic payments allow for a wider set of consumers to purchase gasoline (and larger quantities

of gasoline). As for AI, electronic payment companies also have HQ-level deals with retail gasoline

brands, but individual station owners had to bear some of the costs of upgrading their equipment.

For example, in 1997, Exxon Mobil (Esso’s parent company) rolled out the Mobil Speedpass, a

contactless electronic payment system. BusinessWeek reported that after the brand-wide rollout,

individual Mobil station owners “have to install new pumps costing up to $17,000–minus a $1,000

rebate from Mobil for each pump” (BusinessWeek).

The first appearance of electronic payments at any gas station in the data is in 1993 (the third

year of the dataset). Among the five largest brands, no one reached 50% adoption rates of this

technology by 2001. The largest share of adopting stations is for Pioneer, where 46% of stations

adopted by 2001. Figure B1 shows adoption rates by the top 5 brands (by the number of stations)

in this data. It suggests that electronic payment adoption follows a highly staggered pattern. Of

the 5 biggest brands, by 1998 (5 years after the technology became available) only two of the brands

had any adoption. It is also brand specific. Some brands, such as Esso, appear to be continuously

upgrading (or supporting the upgrade) of their stations. Stations by other brands, like Pioneer,

adopt faster but later. This likely reflects brand-specific strategies.

71This is a subset of data used in Clark, Houde and Carranza (2015).
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Figure B1: Share of Electronic Payment Adopters Among Top 5 Brands in Canada
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