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ABSTRACT
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Air Pollution Exposure and COVID-19*

In light of the existing preliminary evidence of a link between Covid-19 and poor air quality, 

which is largely based upon correlations, we estimate the relationship between long term 

air pollution exposure and Covid-19 in 355 municipalities in the Netherlands. Using detailed 

secondary and administrative data we find compelling evidence of a positive relationship 

between air pollution, and particularly PM2.5 concentrations, and Covid-19 cases, hospital 

admissions and deaths. This relationship persists after controlling for a wide range of 

explanatory variables. Our results indicate that a 1 μ/m3 increase in PM2.5 concentrations 

is associated with 9.4 more Covid-19 cases, 3.0 more hospital admissions, and 2.3 more 

deaths. The relationship between Covid-19 and air pollution withstands a number of 

sensitivity and robustness exercises including instrumenting pollution to mitigate potential 

endogeneity and modelling spatial spillovers using spatial econometric techniques.
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1 Introduction

The Covid-19 pandemic is causing significant social and economic impacts across large

parts of the world. At the time of writing the number of Covid-19 cases worldwide has

reached 7.2 million, while the death toll has exceeded 400,000.1 Governments and health

care systems are facing the immense challenge of trying to control the spread of the virus

and to prevent hospitals from being overwhelmed as millions of individuals remain subject

to lockdown and face significant economic uncertainty. In order to respond to these un-

precedented challenges it is important for policy makers and health care professionals to

understand which groups of individuals suffer the highest morbidity and mortality risks

from Covid-19 and which factors may exacerbate these risks.

A contributory factor that has been tentatively explored in several recent academic

studies is poor air quality. While some such studies have identified the significant improve-

ments in air quality that have resulted from Covid-19 lockdowns (Cicala et al., 2020; Cole

et al., 2020), others have pointed to a correlation between Covid-19 hotspots and areas with

high levels of pollution concentrations (Travaglio et al., 2020; Conticini et al., 2020). It is

well known that long term exposure to pollutants such as nitrogen dioxide (NO2), sulphur

dioxide (SO2), and fine particulate matter (PM2.5) contributes to cardiovascular disease,

reduces lung function, and causes respiratory illness (Faustini et al., 2014; Ming Han et

al., 2015; Katanoda et al., 2011; Abbey et al., 1999; Weerdt et al., 2020). These pollutants

have been shown to cause a persistent inflammatory response even in the relatively young,

and to increase the risk of infection by viruses that target the respiratory tract (Travaglio

et al., 2020; Conticini et al., 2020). While Covid-19 produces only mild symptoms for most

sufferers, in a minority of cases it results in an excessive inflammatory response causing

Acute Respiratory Distress Syndrome (ARDS) and death. Given the clear overlaps be-

tween the symptoms of Covid-19-induced ARDS and long term exposure to air pollution,

a number of studies have begun to explore the links between the two.

Focusing on the UK, Travaglio et al. (2020), for instance, find evidence of a correlation

between Covid-19 cases and concentrations of nitrogen oxides and ozone, while Ogen (2020)

examines 66 regions across Italy, France, Germany, and Spain and finds similar evidence.

1As of June 9th 2020. Source https://www.worldometers.info/coronavirus/countries
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Conticini et al. (2020) focus on Northern Italy and conclude that pollution concentrations

are a likely contributor to the high Covid-19 death rates experienced in that region. A

preliminary analysis of the Netherlands also finds evidence of a link between concentrations

of PM2.5 and Covid-19 cases (Andree, 2020). Finally, Wu et al. (2020) examine US counties

and econometrically estimate the relationship between county-level Covid-19 death rates

and long-term concentrations of fine particulate matter (PM2.5), controlling for a wide

range of confounding factors. They conclude that a 1 µg/m3 increase in PM2.5 is associated

with an 8% increase in the Covid-19 death rate.

While the above studies provide useful preliminary evidence, Conticini et al. (2020)

and Ogen (2020) offer only geographical correlations between Covid-19 cases and pollution

exposure, whereas Travaglio et al. (2020) take a similar approach but control only for differ-

ences in population density and do so across only 7 relatively large regions. Establishing a

convincing link between exposure to pollution and Covid-19 cases requires individual-level

data with the ability to control for individual characteristics, such as age and the presence

of underlying health conditions. Since individual-level data on Covid-19 infections is not

available, the next best alternative is to examine a large number of small geographic re-

gions with detailed data on the characteristics of those regions. This allows the researcher

to assess whether any correlation between Covid-19 and pollution exposure still holds once

differences in social deprivation, population density, ethnic composition, and other factors

are controlled for. While Wu et al. (2020) come closest to doing this, US counties are still

relatively large, raising the question of how well such aggregated data can capture the local

variation in confounding effects without being ‘averaged out’.2 Furthermore, by focusing

only on particulate matter, and on Covid-19 deaths, it is not clear whether other pollu-

tants have an effect on Covid-19 deaths once other factors are controlled for or, indeed, on

Covid-19 infections, or hospitalisation rates more generally.

With the above in mind, this paper undertakes a detailed econometric analysis of the

relationship between pollution concentrations and Covid-19 using data for 355 relatively

small Dutch municipalities. More specifically, by using high-resolution air pollution data as

well as combining administrative with secondary data, we estimate the relationship between

2For instance, Los Angeles County, the largest in the US, had a population of over 10 million in 2019,
with the average county-level population being over 104,000 (US Census Bureau).
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long term exposure to concentrations of PM2.5, NO2, and SO2 and the number of Covid-19

infections, the number of individuals hospitalised with Covid-19, and the number of those

who died as a result of Covid-19. We are able to control for a wide range of potential

confounding effects, including those relating to income, age, underlying health conditions,

education, social deprivation, ethnic composition, workplace characteristics, spatial and

social proximity to potential risk factors and others. Our analysis utilises Covid-19 data

up to 5th June 2020 allowing us to capture almost the entire course of the epidemic and

hence much more fully than the previous studies which have examined data up to only

March or early April. Finally, we undertake a number of robustness exercises including

instrumenting pollution to address possible endogeneity concerns.

The Netherlands provides a useful setting in which to examine the link between Covid-

19 and air pollution. As a relatively small, densely populated nation with an ethnically

diverse, aging population, the country faces a number of potential Covid-19 risk factors. It

also shares an open land border with Germany and Belgium, the latter a country that cur-

rently has the highest number of Covid-19 deaths per capita. The Netherlands additionally

experiences hot spots of poor local air pollution both within urban areas and also, in the

case of PM2.5, in more rural areas due in part to intensive livestock farming. By early June

2020, the Netherlands had experienced over 6,000 deaths as a result of Covid-19, resulting

in the 7th highest number of Covid-19 deaths per capita.3

Our results provide compelling evidence of a statistically significant positive relation-

ship between air pollution and Covid-19 cases, hospital admissions and deaths. More

specifically, we find that an increase in PM2.5 concentrations of 1 µg/m3 is associated with

an increase in Covid-19 cases of between 9.4 and 15.1, depending on our model. The same

increase in PM2.5 is associated with an increase in Covid-19 hospital admissions of between

2.9 and 4.4, and an increase in Covid-19 deaths of between 2.2 and 3.6.

The remainder of this paper is organized as follows. Section 2 provides background

information on Covid-19 and air pollution in the Netherlands and Section 3 presents our

empirical methodology. Section 4 describes our data, Section 5 reports our results and

Section 6 concludes.

3As of June 9th 2020. All Dutch Covid-19 data is provided by the National Institute for Public Health
and the Environment (RIVM). The international ranking excludes the principalities of San Marino and
Andorra and stems from: https://www.worldometers.info/coronavirus/countries
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2 Covid-19 and Air pollution

The first confirmed Covid-19 case in the Netherlands occurred in late February 2020,

and by early June over 46,000 cases had been identified. Daily cases of Covid-19 peaked

at 1,335 on April 10th, while the daily death toll peaked 3 days earlier at 235. Both daily

cases and daily deaths have been declining steadily since. While all 12 of the Netherlands’

provinces have experienced broadly similar trends, levels of Covid-19 cases have differed

significantly across provinces. For instance, in the southern provinces of North Brabant and

South Holland daily cases peaked at over 350, while in other provinces such as Groningen

and Drenthe, both in the north of the country, cases peaked at fewer than 40 per day.

From the outset of the epidemic within the Netherlands the south east has experienced

a disproportionate number of Covid-19 cases. Figure 1 shows the distribution of cases

per capita across the 355 municipalities of the Netherlands up to June 5th 2020. The red

‘hotspots’ in the south east, which are largely within the provinces of North Brabant and

Limburg, demonstrate the relative intensity of cases in those regions. Unusually, these

are relatively rural regions with low population density raising the question of why these

provinces have been so badly affected by Covid-19.4

One potential explanation raised by the Dutch media has been the annual carnival

celebrations held during the last week of February and beginning of March which were

concentrated largely within North Brabant and Limburg. These celebrations attracted

thousands of people from all over the country to street parties and parades, as they do

each year. Numerous Dutch media reports have suggested that these celebrations may at

least partially explain the rapid spread of Covid-19 within these regions and also to other

regions of the Netherlands via carnival participants.5 However, the significant variation

4Figure 2 in the Appendix shows that both hospital admissions and deaths per capita from Covid-19
have also been disproportionately high in these south eastern regions.

5A non-exhaustive list includes:
https://www.nrc.nl/nieuws/2020/04/09/vuile-lucht-vergroot-de-kans-om-te-sterven-aan-covid-19-

a3996388
https://nos.nl/nieuwsuur/artikel/2332460-gebieden-met-veel-luchtverontreiniging-zwaarder-getroffen-

door-corona.html
https://www.rtlnieuws.nl/nieuws/nederland/artikel/5094341/corona-update-noorden-minder-

besmettingen
https://nadavos.nl/nieuws/2020-luchtverontreiniging-covid-19
https://www.trouw.nl/binnenland/zorgt-de-veehouderij-voor-meer-coronadoden-in-oost-

brabant b2b5487d/
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in Covid-19 cases across the municipalities within these two provinces suggests that the

carnival is unlikely to fully explain the density and distribution of these cases.

Another possible explanation that has received less attention in the Netherlands re-

volves around the intensive livestock farming that takes place within North Brabant and

Limburg. These regions house over 63% of the Netherlands’ 12 million pigs and 42% of

its 101 million chickens.6 Such intensive livestock production produces large quantities of

ammonia (NH3), which is an important contributor to PM2.5 concentrations. Figure 3

in the Appendix provides a map of 2019 NH3 concentrations and shows that the south

eastern regions have some of the highest concentrations within the Netherlands. Indeed, a

comparison with the map of PM2.5 concentrations in Figure 1 shows a very similar pattern

illustrating how ammonia contributes to PM2.5.

While the maximum annual average concentration of PM2.5 at municipality level is

12.3 µg/m3, the equivalent figure for a 1km x 1km gridcell is 23.9µg/m3, which is close to

the EU air quality standard of 25µg/m3. This indicates that local concentrations of PM2.5

within the regions of North Brabant and Limburg are close to dangerous levels even when

averaged annually, raising the likelihood that for shorter periods they may exceed safe

levels. Since PM2.5 concentrations show a similar spatial distribution to Covid-19 cases,

also in Figure 1, it’s reasonable to examine this potential link and to see whether the visual

relationship between Covid-19 cases and PM2.5 concentrations withstands controlling for

other potential contributory factors.7

3 Methodology

In order to examine the relationship between Covid-19 and air pollution we begin by

estimating Equation 1 for 355 municipalities:

Ci = φpollutioni + β1D
′

i + β2P
′

i + β3E
′

i + β3S
′

i + β4L
′

i + γr + εi (1)

62019 data from CBS Statline.
7This article in Trouw, a Dutch national newspaper, expresses the concerns of local residents that

poor air quality in the intensively livestocked regions may be leaving the local population suscepti-
ble to Covid-19, https://www.trouw.nl/binnenland/zorgt-de-veehouderij-voor-meer-coronadoden-in-oost-
brabant b2b5487d/

5



Figure 1: Covid-19 cases per 100,000 people and annual concentrations of
PM2.5, NO2 and SO2 averaged over the period 2015-19

where C refers to Covid-19 cases, the number of individuals hospitalised by Covid-19,

or the number of deaths from Covid-19 in municipality i as of June 5th 2020. Pollution

refers to annual concentrations of PM2.5, NO2, or SO2, averaged over the period 2015-

2019. Vectors D
′
, P

′
, E

′
, S

′
and L

′
contain control variables capturing demography, social
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and physical proximity, employment/education, spatial and health variables, respectively,

for the year 2019, as defined in the next section. The term γr denotes province level fixed

effects for each of our 12 provinces, r.

Since our dependent variables take the form of discrete count variables, estimating

Equation 1 using OLS could result in inconsistent, inefficient, and biased estimates (Long,

1997; Hoffman, 2004). The alternative is to use Poisson or negative binomial count models.

Since the error assumption of the Poisson model requires the conditional mean to equal

the conditional variance, a condition that our over-dispersed data fails to meet, we employ

the negative binomial model. This model builds upon the Poisson model by adding a

parameter that allows the conditional variance to exceed the conditional mean.

Importantly our attempt to estimate the relationship between pollution exposure and

Covid-19 cases (as well as hospital admissions and deaths) potentially suffers from a number

of econometric challenges:

1. Omitted variable bias

If we fail to control for all potential determinants of Covid-19 that are possibly

correlated with pollution, then the estimated coefficients on the pollution measures

could potentially be biased. As will be outlined in Section 4, our strategy is to control

for a wide range of potential explanatory variables and thereby keep any such bias

to a minimum.

2. Measurement error of pollution

This could take 2 forms. First, we may not be accurately capturing long-term pol-

lution exposure within each municipality. While Section 4 outlines how we measure

long-term pollution exposure, we note that any non-systematic measurement error of

this kind is likely to result in a conservative estimate of the association between pollu-

tion and Covid-19 due to possible attenuation bias. Second, there may be systematic

measurement error if the error was in some way related to the pollution-Covid-19

relationship. For instance, if individuals with poor health were more (or less) likely

to live in polluted areas and hence were more (or less) likely to catch or succumb to

the virus. We are unable to identify any potential mechanisms of this nature and

our wide range of explanatory variables should obviously help to control for any such

7



effects if they were to exist.

Nevertheless, we do instrument pollution in equation 1 as a means of further reducing

concerns around attenuation bias. Since we are using a non-linear count model we

instrument using a control function approach, which is likely to be more efficient

than a standard instrumental variables model (Wooldridge, 2015). This approach

involves estimating air pollution, our potentially endogenous variable, as a function

of our instruments and other exogenous variables, and then inserting the predicted

errors from this first stage into the second stage as a separate control variable (in

addition to our air pollution variable). A simple test of the statistical significance of

the coefficient on the predicted residuals will inform us whether our pollution variable

was indeed endogenous, a procedure equivalent to a Durbin-Wu-Hausman exogeneity

test.

To be suitable for use as an instrument a variable should be correlated with air pollu-

tion but independent of our Covid-19 variables and hence should only influence them

through the effect of air pollution. We experiment with two potential candidates.

The first is a long lag of air pollution. More specifically, we use annual pollution

concentrations averaged over the period 1995-2000. Second, we use a measure of

the average commuting time for residents in each municipality. This variable draws

upon free-flow road network data from VUGeoPlaza enabling us to calculate average

travel time for every j and k location pair. In order to calculate the commuting times

we obtain the residential and work locations of each worker at the 4 − digit postal

code level (which corresponds to neighbourhood level) by constructing an employer-

employee data set (LEED) based on linking administrative data, Dutch Labour Force

surveys, and Tax Registers.8 We then combine the travel time data with the LEED.

Travel times linked with the LEED allow us to calculate the commuting time of each

worker to their actual place of work. Additionally we calculate the travel time based

on the Euclidean distance between the 4 − digit postal code, assuming an average

speed of 10km/h. We then choose the lowest of the commuting time and the Eu-

clidean distance travel time for each worker and average these across municipalities.9

8The access to these data sets requires confidentiality agreement with Statistics Netherlands.
9See Koster & Ozgen (2020) for more details. Generally, for short distances (e.g. less than 5km) it is
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Differences in commuting time between municipalities reflect differences in the dura-

tion and intensity of journeys undertaken and should therefore influence differences in

air pollution concentrations. We see no reason why commuting time should directly

influence Covid-19 cases.

3. Measurement error of Covid-19

A third potential econometric challenge is the existence of possible measurement error

within our Covid-19 data. Non-systematic measurement error would tend to reduce

the precision of our estimates by increasing the standard errors on the estimated coef-

ficients. Alternatively, if the measurement error is related to other omitted variables

that are important for the pollution-Covid-19 relationship, or to its own values, this

could be a cause for concern. Given our rich set of controls and the manner in which

Covid-19 data are collected, this is unlikely to be a problem in our context and hence

we see no reason for the existence of such systematic measurement error. Section 4

discusses the nature of our Covid-19 data in more detail.

4. Spillover effects

The final potential econometric challenge is the possible existence of spillover effects

caused by the virus spreading from one municipality to another. To allow for this

possibility we extend equation 1 to include a spatially lagged dependent variable and

a spatial error term, each using spatial weight matrices with varying distance cut-offs,

as specified in equation 2.

Ci = θpollutioni + α1D
′

i + α2P
′

i + α3E
′

i + α3S
′

i + α4L
′

i + ρwiCi + λwiεi + µi (2)

where wi is an inverse distance spatial weight matrix with a 50km cut-off, a 100km

cut-off, or no cut-off at all. All other variables are as previously specified. Note that

the inclusion of a spatially lagged dependent variable into a non-linear count data

model is not straightforward and hence there has yet to be a widely accepted method

of doing so (Glaser, 2017). Equation 2 is therefore a linear model estimated using

slower to use the road network and so the Euclidean travel time is used.
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maximum likelihood.

4 Data and Summary Statistics

4.1 Data

We utilize extensive secondary data combined with administrative micro-data and spa-

tial data from various sources in the Netherlands. Our analysis rests on municipality level

cross-sectional Covid-19 data provided by the National Institute for Public Health and the

Environment (RIVM) and a rich set of controls from 2019 (unless otherwise stated). We

further use high resolution spatial data for air pollution indicators which span the period

2015-19.

The municipal-level data is obtained from the data repository Statline of the Statistics

Netherlands, while some variables are aggregated from the administrative micro-data up

to municipality level. When modelling the relationship between Covid-19 and air pollu-

tion, we control for a wide range of potentially confounding effects which we categorise

as demographic, social and physical proximity, employment and education, spatial, and

health-related. Below we discuss Covid-19 and pollution data and each category of control

variable:

4.1.1 Covid-19

The Covid-19 data used in our analysis is obtained from the RIVM. The Regional Public

Health Service Centres (known as GGD) from all across the country10 provide RIVM with

the Covid-19 data, which is then corrected for any inconsistencies before being released

by RIVM. As stated by RIVM on their website, there is a slight delay between the day

of hospitalization or death and the day on which the the number of cases is reported.11

However, when the data is available RIVM does the necessary adjustment to the data

retrospectively. This incident of slight delay is well-known for all countries. Again similar

to the other countries, the number of Covid-19 cases is likely to be an underestimate as

not everybody in the country is tested. Finally, all Covid-19 variables are coded by the

10https://www.ggd.amsterdam.nl/coronavirus/.
11https://www.rivm.nl/coronavirus-covid-19/actueel.
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residence of each individual rather than the address of the test centre or the hospital to

which they are admitted.

4.1.2 Air pollution

Annual concentrations of PM2.5, NO2, and SO2 measures are provided by RIVM. These

pollution concentrations are reported at the level of 1x1 km2 grid-cells having been mod-

elled using a wide range of sources and components in the Netherlands and in other Euro-

pean countries. Maps of the spatial distribution of pollution concentrations were calculated

using the Operational Priority Substances dispersion model, which constructs the average

annual concentrations of pollutants stemming from the dispersion, transport, chemical con-

version and dispersion of emissions. The resultant concentrations are calibrated with the

observations from the Dutch Air Quality Monitoring Network G. J. Velders et al. (2020);

Fischer et al. (2020).12

To produce municipality level measures of pollution concentrations we use the median

grid-cell concentrations within each municipality. In order to overcome any potential mea-

surement bias due to annual fluctuations and to capture the long term exposure of residents

within a municipality, we average the annual pollution concentrations data over the 5-year

period 2015-2019.

4.1.3 Demographic and labour market indicators

The demographic controls include the total population as well as the density of popula-

tion in each municipality, expressed as population per square kilometre. The share of the

population over 70 years of age in our regressions accounts for the particular vulnerability

of the elderly to Covid-19, as the stylized facts from around the world indicate higher ca-

sualties among the elderly population. We also include the share of the population under

18 years old, with the omitted category being the working age share of the population.

Finally, several recent studies from a number of countries including the UK and the US13

have indicated that ethnic minorities are disproportionately affected by Covid-19. There

are a number of potential reasons why this might be so. First, Zorlu & Hartog (2012) show

12For more details on the construction of the pollution concentrations data see G. Velders et al. (2017)
13See Kirby (2020) and Platt & Warwick (n.d.) https://www.ifs.org.uk/inequality/chapter/are-some-

ethnic-groups-more-vulnerable-to-covid-19-than-others
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that ethnic groups in the Netherlands are more likely to work in manual occupations, which

have been shown to increase the risk of exposure to Covid-19 due to the greater frequency

of face-to-face contact amongst workers (Lewandowski, 2020).14 Second, ethnic minorities

may be more likely to experience social deprivation, live in smaller housing and belong to

larger households. As will be discussed below, we try to control for each of these factors

by taking housing and household size conditions into account. Other risk factors may

include the use of certain cultural practices (e.g., attending places of worship) or having

a disposition for underlying health conditions. To control for any such effects we include

the number of non-western migrants as a share of the population. Non-western migrants

in the Netherlands are defined as the number of immigrants who are born in Africa, Latin

America, Asia (excluding Japan and Indonesia), and Turkey.

We also include the average household income level and the share of employment in

elementary occupations to control for the possibility that groups that are economically

and occupationally more vulnerable could be more affected by Covid-19. Finally, our

specification includes the number of highly educated people as a share of the total educated

population at the municipal level. Highly educated is defined as those who have obtained

a bachelor’s degree or higher.

4.1.4 Social and Physical Proximity

While the majority of countries have disproportionately experienced Covid-19 infections

in large metropolitan areas, the empirical findings so far are unclear about the role played

by population density.15 Epidemiological studies have argued that density per se is not

important but rather it is the type of interaction between people that is important e.g.

weddings, close family events and occasions when individuals come into close proximity

with each other (Hu et al., 2013). One such occasion in the Netherlands is annual the

Carnival which is widely celebrated in the southern regions of the country – North Brabant

and Limburg– as discussed in Section 2. To capture the potential impact of the Carnival we

initially rely on province level fixed effects which capture the effects in North Brabant and

14https://www.theguardian.com/world/2020/may/11/manual-workers-likelier-to-die-from-covid-19-
than-professionals.

15See for example,
https://www.centreforcities.org/blog/have-uk-cities-been-hotbeds-of-covid-19-pandemic/
http://jedkolko.com/2020/04/15/where-covid19-death-rates-are-highest/.
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Limburg and all other provinces individually. Furthermore, in sensitivity analysis we test a

Carnival(municipality) measure by creating a dummy variable for the seven most populous

municipalities (Den Bosch, Tilburg, Breda, Bergen op Zoom, Eindhoven, Helmond, Oss)

within the borders of North Brabant and Limburg provinces. Alongside this, in order to

account for the potential spread of the virus from the areas where the Carnival is widely

celebrated, we also test a proximity to Carnival(municipality) measure that is the inverse

distance from the centroid of these seven Carnival municipalities to the centroid of all

municipalities in the Netherlands.

To capture physical interactions between households we include the share of small

housing, defined as the share of total housing that is between 15 and 50 m2 in size, and

the average household size. We also apply the same principle to workplaces. We aggregate

a linked employer-employee data set based on the population of firms and employees in

the Netherlands from 2016 records in order to create an average firm size variable at the

municipal level. This data is obtained from Tax Registers, which include approximately

12 million observations from the universe of employees.

4.1.5 Spatial Controls

Our specification includes several spatial variables which capture the spatial interactions

and spillovers between municipalities. First, we account for the municipalities where Covid-

19 infections may have been influenced by the transmission of the virus beyond Dutch

national borders. The Dutch municipalities bordering Belgium experience substantial daily

cross-border mobility and Covid-19 cases in Belgium have been the highest of all countries

in per capita terms. Dutch municipalities that border Germany also experience intensive

daily crossings, although, in contrast, the Covid-19 cases in Germany had been relatively

low compared to other European countries. In order to capture the potential contagion

through cross-border mobility, we therefore construct 2 dummy variables; municipalities

bordering Germany and municipalities bordering Belgium.

Second, Schiphol airport within the borders of the municipality of Haarlemmermeer (9

km from Amsterdam) is the main international hub of the country and one of the largest

airports in Europe with approximately 72 million passengers a year. We therefore construct

a variable capturing the inverse distance from each municipality centroid to Schiphol airport
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to capture the potential contagion from the high volume of passengers. Lastly, to capture

the effect of the prevailing wind from the North Sea which could mean less physical spread

of the virus and/or reduced spillovers from neighbours, we include a dummy variable for

all of the municipalities on the Dutch coast.

4.1.6 Health-related

Covid-19 statistics in many countries have indicated that those persons with underlying

health conditions are likely to be disproportionately affected by the virus. Our data allows

us to control for these groups at the municipality level. We include in our estimations the

share of smokers and the share of those suffering from obesity in the total local population

in 2019. Moreover, the share of people receiving incapacity benefits is also included to

proxy those who cannot be active in the labour market due to health constraints.

4.2 Descriptive Statistics

We report the descriptive statistics of our data in Table 1. Our Covid-19 data covers

the period since the first Covid-19 case in February until the tail-end of the epidemic in

June. During this period there have been on average 131 Covid-19 cases per municipality

with a maximum number of 2416. In the same period on average 33 hospital admissions

were recorded across all municipalities (maximum 611) while on average 17 people died

(maximum 336).

Our data set includes 355 municipalities based on the 2019 municipal borders in the

Netherlands, where each has an average population of approximately 47000 people, of which

7.4% are non-Western European immigrants. Although the size of the municipalities is

broadly uniform, average population density across municipalities shows a large variation,

ranging from 23 individuals per km2 to 6523 per km2. On average 3.5% of housing is

classed as small (15-50 m2) while the average household size is 2.3 individuals. Finally,

15% of the population is over 70 years old.

The median annual wage is 32722. With 32% of the population holding a university

degree or higher, Netherlands has a relatively highly-educated population. 9% of the pop-

ulation performs elementary occupations which require low-skilled manual-task intensive

work. Median firm size is 556 workers, but becomes larger for peripheral areas, although
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the average firm size in large cities is still around a standard deviation higher than the

median. Although known to be one of the healthiest nations, 19% of the population are

smokers and 14% experience obesity (defined as % of over 19s with BMI¿30 kg/m2). 6%

receive incapacity benefits due to not being able to work.

With regard to our pollution concentrations data which is measured in µg/m3, we see

that the average value of PM2.5 concentrations in our dataset is 10.491, with a maximum of

12.264. For NO2 concentrations the mean value is 15.757, with a maximum value of 27.413,

and for SO2 concentrations the mean value is 0.797 with the maximum being 3.092. While

the EU air quality standards do not stipulate a safe limit for annual concentrations of SO2,

for PM2.5 and NO2 concentrations the limit is 25µg/m3 and 40µg/m3, respectively. We

can therefore see that 5 year averages of annual concentrations in the Netherlands do not

exceed these limits. However, it is worth noting that the maximum values of the annual

concentrations of our 1 x 1 km2 grid-cells that form the basis of our municipality pollution

data are 23.9µg/m3 and 62.4µg/m3 for PM2.5 and NO2, respectively. In the case of NO2,

this is significantly beyond the EU safe limit, while for PM2.5 it is very close to the safe

limit.

5 Results

Table 2 provides our initial negative binomial estimates of Equation 1 with columns

(1) to (3) providing the estimates of Covid-19 cases for the three pollutants. Columns (4)

to (6) do the same for hospital admissions, and columns (7) to (9) provide estimates of

Covid-19 deaths, again for the three pollutants.

Focusing initially on the estimated pollution coefficients, we see that PM2.5 concentra-

tions have a positive and statistically significant relationship with Covid-19 cases, hospital

admissions and deaths. In the case of NO2 we find a positive and statistically significant

association between Covid-19 cases and deaths, but this is not statistically significant for

hospital admissions. Finally, for SO2 we again discover a positive relationship with our

dependent variables, but this is only statistically significant for Covid-19 deaths. After

calculating marginal effects, we find that a one unit increase in PM2.5 concentrations is as-

sociated with 9.4 more Covid-19 cases, 3.0 more hospital admissions, and 2.3 more deaths.
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Table 1: Summary statistics

Variable Mean Std. Dev. Min. Max. N
PM2.5, 5yr ave 10.491 1.354 6.915 12.264 355
NO2, 5yr ave 15.757 3.861 6.835 27.413 355
SO2, 5yr ave 0.797 0.36 0.21 3.092 355
# of Covid-19 cases 131.459 224.887 0 2416 355
# of deaths 16.865 31.445 0 336 355
# of hospital admissions 33.017 55.129 0 611 355
Carnival(province) 0.262 0.44 0 1 355
Carnival(municip) 0.02 0.139 0 1 355
Proximity to Carnival(municip) 0.000 0.000 0 0.0001 355
Days since 1st case 86.468 3.197 76 89 355
Proximity to Schiphol 86.491 46.151 5.274 194.828 355
Belgian border 0.073 0.261 0 1 355
Coast 0.093 0.291 0 1 355
German border 0.09 0.287 0 1 355
Ave gross income 32.722 3.05 23.5 53.6 355
ln(firm size) 8.9 0.513 3.258 10.06 355
Sh elementary occup 0.089 0.031 0 0.2 358
Sh high educated 0.323 0.095 0.071 0.9 358
Ave household size 2.297 0.178 1.712 3.339 355
Sh of small houses 0.036 0.045 0 0.672 355
Sh of under 18 0.196 0.024 0.126 0.335 355
Sh of 70+ 0.15 0.025 0.063 0.243 355
Obesity 14.389 2.13 9 22 355
Smokers 19.623 2.747 14 31 355
Sh receiving incapacity benefits 0.063 0.017 0.02 0.132 355
Population/km2 877.315 1042.722 23.111 6523.142 355
ln(population) 10.398 0.826 6.842 13.668 355
Non-western mig sh 0.074 0.059 0.014 0.386 355
Ave commuting time 14.066 8.284 4.279 134.432 358

Note: The proximity to carnival measure is calculated as the negative exponential of dis-
tance i.e. (exp(-distance)) and produces numbers that are very small in magnitude, thereby
explaining the large estimated coefficients for this variable.

A one unit increase in NO2 increases Covid-19 cases by 2.2 and deaths by 0.35. To make

these comparable, a one standard deviation increase in PM2.5 and NO2 concentrations

increases Covid-19 cases by 12.7 and 8.6, respectively. The same one standard deviation

in PM2.5 and NO2 concentrations increases Covid-19 deaths by 3.0 and 1.4, respectively.

Table 3 summarises our pollution marginal effects from the estimated results in which

pollution is statistically significant.

Turning to the other explanatory variables, and focusing on those that are generally
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statistically significant, we find that municipalities next to the German border have lower

Covid-19 cases, hospital admissions, and deaths compared to other municipalities. We

also find average household income to have a negative association with all three dependent

variables, while average household size and the share of housing that is small both have

positive relationships with our Covid-19 variables. Relative to the share of the working age

population, the share of those under 18 has a negative association with Covid-19 while,

as expected, the share over 70s has a positive association. Finally, smokers, the share of

non-Western immigrants, and the total population of each municipality are associated with

increased Covid-19 cases, hospital admissions, and deaths.

Since we find the greatest statistical significance and largest marginal effects for PM2.5

concentrations, for reasons of space we focus on this pollutant alone for the remainder of

our analysis.16 Table 4 reports the results of the instrumental variable estimations using

a control function approach, as outlined previously. In Table 4 we see that the estimated

coefficients on PM2.5 concentrations remain positive and statistically significant, with a

similar magnitude to those in Table 2. It is notable that the first stage residuals are not

statistically significant, thus failing to reject the null of exogeneity. One can also see that

an F-test on our instruments in the first stage is highly statistically significant. Table 7 in

the Appendix reports the first stage results, which use commuting time, commuting time

squared, and lagged particulate matter concentrations from 1995-2000 as instruments. In

sensitivity analysis we tested different combinations of these variables including lagged

pollution alone, commuting time alone, and commuting time in linear form only. In each

case the first stage residuals were not statistically significant in the second stage. Our

results therefore provide reassurance that our estimations in Table 2 are not being unduly

influenced by endogeneity.

16Results for other pollutants are available upon request from the corresponding author.
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Table 2: Main Estimation Results
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Table 3: Summary of estimated Marginal Effects for pollution

Table 5 reports the results of the spatial econometric estimations based on Equation

2 in which we include a spatially lagged dependent variable and spatial errors using three

different spatial weight matrices (50km, 100km, no cut-off). Table 5 reports the estimated

coefficients on PM2.5 concentrations for the three dependent variables. The three models

with differing weight matrices are presented. For each we also report the spatial error and

spatial lag coefficients, λ and ρ, respectively. Table 5 indicates that PM2.5 concentrations

continue to have a positive and statistically significant relationship with all three of the

Covid-19 dependant variables, for all three of the spatial weight matrices. The introduction

of the spatially lagged dependent variable into Equation 2 changes the interpretation of our

estimated coefficients. PM2.5 concentrations in municipality i continue to affect the condi-

tional mean of Covid-19 in that municipality but now that change in Covid-19 potentially

changes the conditional mean of Covid-19 in other nearby municipalities (depending on our

weight matrix). Furthermore, the change in Covid-19 in those nearby municipalities affects

the conditional mean of Covid-19 in their neighbouring municipalities and so on. PM2.5

concentrations therefore now have a direct effect on Covid-19 in their own municipality

plus an indirect effect on Covid-19 in other municipalities.

If we take the example of our estimate of Covid-19 Cases using a weight matrix with

a 50km cut-off, which reports an estimated coefficient on PM2.5 concentrations of 20.88,

we can calculate the marginal effect to consist of a direct effect of 20.95, an indirect

effect of -5.89, and a total effect of 15.06. This implies that a 1 unit change in PM2.5
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Table 4: Instrumental Variables Results

concentrations results in an increase in Covid-19 cases of 15.06. However, it is notable that

the estimates of both λ and ρ from this model are not statistically significant, implying

that spatial spillovers are not unduly influencing our results, either through the error term

or through the dependent variable. Indeed, if we look at the estimates of λ and ρ from

the other models in Table 5 we see that the majority are not statistically significant. This

is particularly true of the spatial error coefficient λ. So, while we find limited evidence of

statistically significant spatial spillovers, Table 5 at least confirms that our positive and

statistically significant association between Covid-19 and PM2.5 concentrations is robust

to the inclusion of such spillovers.

Finally, Table 6 reports some additional sensitivity estimations. In columns (1) to (3),

rather than relying only on province dummies to control for the effect of the carnival, we

include a municipality-level dummy of the seven most populous municipalities within North

Brabant and Limburg provinces. In addition, we include a measure of the proximity of

each municipality to the centroid of these seven combined municipalities. Table 6 indicates

that these municipality-level carnival variables are not statistically significant, nor do they

have the expected signs. Furthermore, the coefficients on PM2.5 concentrations remain

unaffected by their inclusion in terms of magnitude, sign, or significance.

As mentioned earlier, the effect of urban density on the spread of Covid-19 has been an

ongoing discussion with a number of studies providing mixed and inconclusive evidence.
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Table 5: Sensitivity Checks I - Spatial Results

To explore this further, columns (4) to (6) in Table 6 report estimations in which we

omitted from our analysis the major urban areas of Amsterdam, Rotterdam, Utrecht and

The Hague in case, given their high levels of concentration, they are unduly influencing

our results. The sign, significance and magnitude of our estimated coefficients on pollution

are consistent with our previous results (in columns (1), (4) and (7) from Table 2).

6 Conclusion

This paper has contributed to the nascent literature examining the link between poor

air quality and Covid-19. We examine data for 355 Dutch municipalities to identify the

relationship between concentrations of PM2.5, NO2 and SO2 and Covid-19 cases, hospital

admissions and deaths. In contrast to much of the previous literature we are able to control
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Table 6: Sensitivity Checks II - Additional Results

for a wide range of potential confounding effects and, by examining Covid-19 data between

February and June 2020, are able to examine almost the full duration of the epidemic

within the Netherlands.

We find compelling evidence of a statistically significant positive relationship between

air pollution and Covid-19 cases, hospital admissions and deaths. This relationship is

particularly evident for concentrations of PM2.5 and to a lesser extent NO2 and persists

after controlling for explanatory variables capturing income, demography, social and phys-

ical proximity, employment/education, health and spatial factors. The relationship with-
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stands a number of sensitivity and robustness exercises including instrumenting pollution

to mitigate potential endogeneity and modelling spatial spillovers using spatial econometric

techniques.

Our results indicate that an increase in PM2.5 concentrations of 1µg/m3 is associated

with an increase in Covid-19 cases of between 9.4 and 15.1, depending on our model. The

same increase in PM2.5 is associated with an increase in Covid-19 hospital admissions of

between 2.9 and 4.4, and an increase in Covid-19 deaths of between 2.2 and 3.6. The only

comparable study to our own is provided by Wu et al. (2020) who examine Covid-19 deaths

in the US. They find that a 1 µg/m3 increase in PM2.5 is associated with an 8% increase

in the Covid-19 death rate. Since the mean number of deaths in our sample is 16.86, our

estimated increases of between 2.2 and 3.6 are equivalent to increases of between 13.0%

and 21.4%, which are clearly larger in magnitude than those of Wu et al. (2020).

Two clear policy implications arise from our analysis. First, the impact of poor air

quality on Covid-19 morbidity and mortality represents a considerable and unexpected

additional cost from air pollution. Our results would therefore suggest a clear need to

regulate air pollution more stringently, even in a relatively well-regulated nation such as the

Netherlands. Second, our findings should prove useful to public health officials by signaling

where subsequent waves of Covid-19, or indeed future pandemics, might hit hardest. This

could be particularly important in countries where pollution sources don’t correlate well

with major metropolitan areas. If, for instance, livestock production is a major source

of emissions, as appears to be the case in some parts of the Netherlands, then advance

warning may prove particularly beneficial for rural areas where healthcare infrastructure

and coordination may be less developed.

We believe the statistical relationships we have observed between PM2.5 concentrations

and Covid-19 data are robust. Furthermore, given the established literature linking poor

air quality with respiratory disease, they are also plausible. Nevertheless, a degree of

caution is needed. Until detailed individual-level data is available providing information

on Covid-19 and a wide range of other individual characteristics the statistical evidence

will remain suggestive, perhaps strongly suggestive, but not conclusive.
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A Appendix

Figure 2: Covid-19 hospital admissions and deaths per capita

Figure 3: Ammonia (NH3) Concentrations (2019)
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Table 7: First Stage Results
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