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A B S T R A C T

In this work, we adopt a predictor-corrector technique to examine the accuracy of the Fractional Black-Scholes 
(FBS) model. Compared to the standard Black-Scholes (B-S) model, FBS model involves one additional parameter, 
a Hurst value (H) providing information whether the time series exhibits persistent or anti-persistent behavior. 
The FBS model, as a result, has been shown to provide more accurate predictions of option price [Heo et al. 
(2017) and reference therein]. Estimation accuracy of volatility and H values are key to better option price estimates. 
However, volatility and Hurst values are unknown prior to the closing time; consequently, the estimation of option 
prices relies heavily on the accuracy of volatilities and Hurst parameter estimation. In this study we compare option 
price estimation accuracy using three variations of calculating H values, and two volatility measures. We estimate 
two H values using historic data using one-month data (21 trading days) and three-month data (63 trading days), 
respectively, and by using predicted volatility estimates obtained using a binomial method, as a predictor and then 
used them to estimate implied H values. We subsequently correct the predicted volatility measure using the implied 
H value, the predictor-corrector technique. We investigate the accuracy of these FBS models and examine effective-
ness of this predictor-corrector technique using Euro currency option (XDE) data traded in NASDAQ from 
November 2007 to June 2016.

Keywords: European Options, Fractional Black-Scholes model, Predictor-Corrector Technique

Ⅰ. Introduction

In developing option pricing models, a mathematically 

closed form is desirable because it is easy to implement 

for calculations and applications. One well-known 

model is the Black-Scholes model (B-S) (Black & 

Scholes, 1973). Because of its simplicity and reasonable 
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accuracy, the B-S model remains popular in the 

financial world even though it is almost a half century 

old. This model assumes asset prices follow a standard 

Brownian motion [Gaussian and Markovian process] 

resulting in systematic pricing bias based on moneyness 

and time to maturity (MacBeth & Merville, 1979; Geske 

& Roll, 1984; Rubinstein, 1985). Since the standard 

Brownian motion has independent increments, the B-S 

model misses long- range dependence in financial 

markets (Willinger et al., 1999). In an effort to 

incorporate long-range dependence, a non-Markovian 



GLOBAL BUSINESS & FINANCE REVIEW, Volume. 24 Issue. 4 (WINTER 2019), 1-7

2

Fractional Black Scholes model (FBS) (Elliott & Van 

der Hoek, 2003; Hu & Oksendal, 2003) was developed. 

The FBS model is mathematically closed and adopts 

a fractional Brownian motion so that it captures 

long-range dependence. Meng & Wang (2010) and 

Heo et al. (2009, 2017) demonstrate that the FBS 

model reduces option pricing error as compared to 

the B-S model. Yet, there are not many empirical 

studies using the FBS model with actual option data. 

Since the FBS model involves one additional parameter, 

Hurst value, which provides whether time series 

exhibits persistent or anti-persistent behavior, the 

model yields better results than the B-S model, but 

the FBS model still carries similar pricing bias 

depending on moneyness, the time to maturity, and 

other underlining parameters as the B-S model (Heo 

et al., 2009 & 2017).

Unlike other parameters involved in these models, 

the implied volatility and Hurst values are unknown 

prior to the trading day’s closing time so that the 

estimation accuracy of option prices is sensitive to 

volatilities and Hurst values. It has been demonstrated 

that models using implied volatility produce more 

accurate estimates than using historical volatility 

(Katz & McCormick, 2005; Heo et al., 2017). 

Furthermore, recent studies show that implied volatility 

is more powerful predictor of future volatility than 

other types of historical volatility (Kim, 2016; Kim 

& Poonvoralak, 2019). There are still unanswered topics 

utilizing FBS models such as methods for obtaining 

better Hurst values and volatilities.

In this study, we examine the accuracy of two 

versions of Black-Scholes European Call and Put 

option pricing model using Euro currency option data 

(XDE) traded on the NASDAQ market from November 

2007 to June 2016. For the B-S model, we follow 

the traditional method of using the implied volatility 

retrieved from a binomial tree model with 100 steps. 

In evaluating the FBS model, we use the implied 

H values obtained from FBS models, and the Hurst 

values from the built-in program in Mathematica® 

based on the Method of Moments with one-month 

data (21 trading days) and three-month data (63 trading 

days). Then we use the implied volatility obtained 

by the binomial method as a predictor and recover 

the corrected implied volatilities from the FBS model 

using three Hurst values. A model’s accuracy is 

determined by measuring the mean absolute percentage 

error with respect to the actual option price (MAPE), 

also by the mean percent error with respect to option 

price (MPE), and the root mean squared error (RMSE). 

In Section II, we describe the B-S and FBS models 

and Section III discusses our research methodology 

and data. Estimation results are reported in Section 

IV. Section V concludes the study with suggestions 

for future research.

Ⅱ. Model

Fractional Brownian motion (fBm) with Hurst 

parameter ∈  is the centered Gaussian process 

on a probability space defined by


    and 

 
     .

That is, the increment 


  is normally 

distributed with zero mean and variance    for 

each  ≥ . When   , it is the standard Brownian 

motion. In fBm, the increments are positively 

correlated if   and they are negatively correlated 

if  . When increments are positively correlated, 

the long-range dependence property makes fBm a 

better source of noise in modeling the stochastic 

evolution of asset prices. Therefore, the Brownian 

motion is replaced by fBm in the Black-Scholes 

model, the Hurst parameter provides an additional 

instrument of capturing market predictability (Qian 

& Rasheed, 2004). Heo et al. (2009) provides a brief 

history of fBm and the FBS model for pricing European 

options.

Using the time variable  ,  ≤  ≤, where    

corresponds to the issue date of the option and   

corresponds to its expiration date, we define the 

following variables:
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  : stock price at time 

: strike price of option

: current risk-free interest rate

σ: stock price volatility

τ : time to expiration

: Hurst parameter

Based on the results of Elliott and Van der Hoek 

(2003), and Hu and Øksendal (2003), the Fractional 

Black-Scholes (FBS) European Call option model 

is described below [Daye (2003)]:

       τ  ,

where

 


   

ln



 





    

 

 


   

ln



 





    



and

  


 
 ∞




  

 

Using Put-Call parity, we can obtain the following 

version of the FBS European put option model

 

    

We note that if   , the FBS formula is identical 

to the B-S formula.

Ⅲ. Methodology and Data

The calculation of the FBS model is very sensitive 

to two parameters, volatility (σ) and Hurst Parameter 

() because they are unknown prior to the trading 

day’s closing time. In this study, we incorporate the 

implied volatility obtained by the binomial method 

with 100 steps. Then, because the FBS model has 

a mathematically closed form, we recover the implied 

Hurst values from the FBS model. For comparison, 

we compute Hurst values using historical one- and 

three-month (21 and 63 trading days, respectively) 

data, which are independent of the model, where 

we adopt the Method of Moments (Fractional Brownian 

Motion Process [] in Mathematica® software). 

Then, we employ the Predictor-Corrector method to 

recover implied volatility values using the FBS model. 

This process is described as below:

(Step 1) An Implied Hurst Parameter () is 

recovered from the FBS model. This  depends 

on the predicted implied Volatility () obtained 

from a binomial tree model with 100 steps.

(Step 2) Using the implied Hurst Parameter from 

Step 1, we recover the corrected implied volatility 

() from the FBS model.

(Step 3) Compute historical Hurst values   and 
  using the Method of Moments built in 

Mathematica® with one-month and three-month 

data, respectively.

(Step 4) Using the historical Hurst values   and 
  from Step 3, we recover corresponding cor-

rected implied volatilities (),   and  , 

respectively from the FBS model.

(Step 5) Compute both B-S and FBS call and put 

option values with the combinations of

  and ,  and 

  and  ,   and 

  and  ,   and  .

We use Euro currency option data (XDE) traded 

on the NASDAQ from November 2, 2007 to June 

30, 20161) consisting of 6,366 different call and put 

options. The data set consists 672,804 observations. 

For a variety of reasons described below, it is necessary 

to screen the data. First, to eliminate transaction costs, 

observations with option prices less than or equal 

to $0.40 were deleted. We also delete outliers defined 

1) The XDE data set was purchased from www.ivolatility.com. 

This set includes the volatility recovered from binomial tree 

model with 100 steps and LIBOR is used for the risk-free 

interest rates.
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Call
Predicted Implied Volatility ( ) Corrected Implied Volatility ( )

B-S FBS( ) FBS( ) FBS( ) FBS( ) FBS( ) FBS( )

MPE 10.2976 0.6991 8.4195 8.9503 0.6821 0.6746 0.6779

MAPE 11.1155 4.1673 17.7914 14.0642 4.1535 4.1589 4.1542

RMSE 0.7424 0.3336 0.7953 0.7644 0.3281 0.328 0.328

Table 1. Call Options: Predicted Implied Volatility vs. Corrected Implied Volatility

Put
Predicted Implied Volatility ( ) Corrected Implied Volatility ( )

B-S FBS( ) FBS( ) FBS( ) FBS( ) FBS( ) FBS( )

MPE -4.053 -1.4265 -7.658 -5.1624 0.1624 0.1327 0.1544

MAPE 5.7293 3.9902 12.4781 8.9956 2.8584 2.8655 2.8566

RMSE 0.4373 0.3652 0.5409 0.4785 0.135 0.1352 0.1349

Table 2. Put Options: Predicted Implied Volatility vs. Corrected Implied Volatility

as estimated B-S and FBS option values that are 

outside of Mean ± 3*STDEV. Option prices must 

satisfy the no-arbitrage boundary conditions:

 ≤ ,  ≤ .

Otherwise, they were also deleted. Input variables 
 and  were recovered from the previous day’s 

data, thus the first observation of each option was 

lost. The last filter required deleting options whose 

Hurst values are not in the range of 0 to 1. Consequently, 

the final dataset consists of 146,947 call option and 

173,903 put option usable observations.

We also use two-percent filter around the exercise 

price () to define the moneyness. For call options, 

if  , then it is in-the-money (ITM), if 

 ≤ ≤ , it is at-the-money (ATM). Otherwise, 

it is out-of-the-money (OTM). For put options, the 

definition of ITM and OTM are the opposite of those 

of call options.

To examine the accuracy of each model, we employ 

three different measures - mean absolute percent error 

(MAPE) for accuracy, mean percentage error (MPE) 

for bias, and root mean squared error (RMSE) for 

variation given by the following equations respectively:

 






 
×  (1)

 






 
×  (2)

  





    (3)

Ⅳ. Empirical Results

The results of the accuracy tests for B-S and FBS 

models of all usable XDE option data are presented 

in the following tables. Tables 1 and 2 show the overall 

estimation errors for call and put options, respectively. 

Both tables demonstrate that the FBS model with the 

predicted volatility ( ) and the implied Hurst value 

() outperforms the B-S model across all three 

accuracy measures.

This was not the case using the predicted volatility 

() and historical Hurst values estimated with 

one-month () and three-month ( ) data sets. The 

FBS model, using   or  , was not any better than 

B-S model for both call and put options. In the case 

of call options, the MAPE’s of both FBS call and 

put options are noticeably worse than that of B-S 

model. In the case of put options, all three measures 

show that the FBS model yields higher errors than 

the B-S models.

When the corrected volatility () is used, regardless 
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Table 4. Put Options by Moneyness3)

PUT
Predicted Implied Volatility ( ) Corrected Implied Volatility ( )

B-S FBS( ) FBS( ) FBS( ) FBS( ) FBS( ) FBS( )

ITM

MPE -2.7039 -1.4219 -3.4611 -3.171 -0.0129 -0.016 -0.0169

MAPE 3.2007 2.397 4.1374 3.801 1.304 1.3036 1.3013

RMSE 0.5868 0.5034 0.6303 0.612 0.1736 0.1736 0.1734

ATM

MPE -4.1724 -1.822 -7.9813 -5.559 0.2809 0.2484 0.2806

MAPE 6.6119 4.8016 13.1637 9.8932 3.2413 3.2592 3.2426

RMSE 0.3932 0.3194 0.5626 0.4518 0.1184 0.1186 0.1183

OTM

MPE -5.5245 -1.042 -12.2829 -7.1171 0.252 0.1937 0.2316

MAPE 7.8375 5.0669 21.6268 14.2293 4.3119 4.3171 4.3081

RMSE 0.2168 0.151 0.3818 0.2865 0.0916 0.0917 0.0915

Table 3. Call Options by Moneyness2)

Call
Predicted Implied Volatility ( ) Corrected Implied Volatility ( )

B-S FBS( ) FBS( ) FBS( ) FBS( ) FBS( ) FBS( )

ITM

MPE 6.0513 2.057 5.3279 5.8881 2.0387 2.0429 2.0431

MAPE 6.3509 3.0077 6.8261 6.761 2.9859 2.986 2.986

RMSE 0.9848 0.542 0.96 0.9859 0.5331 0.5331 0.5331

ATM

MPE 10.7263 0.2787 7.2086 9.4188 0.2596 0.2082 0.2275

MAPE 11.6191 3.7741 17.372 14.0326 3.7675 3.7785 3.7733

RMSE 0.7138 0.1531 0.7978 0.7366 0.1496 0.1497 0.1496

OTM

MPE 14.0969 -0.2409 12.6629 11.5358 -0.2548 -0.2313 -0.2403

MAPE 15.3569 5.6996 29.083 21.3444 5.6869 5.692 5.6833

RMSE 0.4193 0.1234 0.5845 0.4897 0.1225 0.1221 0.122

of call and put options, the FBS model with any Hurst 

value outperforms the B-S model across the board. 

All three FBS(), FBS() and FBS() results show 

that their pricing errors have been improved and they 

have very similar pricing errors. In fact, the FBS model 

with  produces less errors than the corresponding 

FBS model with  . Particularly, we notice significant 

improvement of FBS() and FBS().

This evidence shows that if this predictor - corrector 

method is adopted, the estimation accuracy of FBS 

models is very sensitive to the choice of volatility 

estimate, but insensitive to Hurst parameter whether 

it is implied ( ) or historical ( , ). There are 

different methods to obtain Hurst parameter as 

summarized in Biagini et al. (2008) but research does 

not provide clear evidence that one method is better 

choice over the others. By incorporating the predictor 

- corrector method, the method obtaining Hurst 

parameters is less critical.

Theoretically, the FBS model outperforms B-S 

model but we have notice that it is not the case 

if we use wrong combinations of volatility   and 

Hurst values ( , ). So, we closely examine the 

pricing errors by moneyness. Table 3 and Table 4 

present the pricing errors by the moneyness for call 

and put options, respectively. We notice from Table 

3 with MPE that for call options, all models with 

predicted volatility ( ) overestimate the pricing 

2) Among 146,947 usable call options, 49,239 are ITM, 48,105 

are ATM and 49,603 are OTM options.

3) Among 173,903 usable put options, 64,743 are ITM, 54,197 are 

ATM and 54,963 are OTM options.
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values except the case of FBS() with OTM. With 

the corrected volatility ( ), FBS model with any 

Hurst value underestimates only in the case of OTM. 

For put options, Table 2 reveals that all models with 

predicted volatility ( ) underestimate the option 

values. Even if we consider the moneyness, the same 

results are observed in Table 4. Contrary to call 

options, all models with the corrected volatility () 

underestimate only in the case of ITM.

For both call and put options, FBS() and FBS

( ) with predicted volatility () yield significant 

pricing errors in the ATM and OTM cases, which 

contributes to the overall pricing errors in Table 1 

and Table 2.

With the corrected volatility, FBS(), FBS() 

and FBS( ) yield almost the same pricing errors 

across the board, particularly, the pricing errors in 

the three ITM case. As far as RMSE is concerned, 

all FBS models with corrected implied volatility 

produce similar pricing errors, but RMSE decreases 

in the order of ITM, ATM, and OTM. Thus, it seems 

to be that the FBS model is the best fit in the OTM 

case. However, the result of MAPE has the opposite 

order. This pattern was also documented in Heo et 

al. (2009). One plausible explanation is the average 

option call (put) values for ITM, ATM, and OTM 

are $9.94 ($10.64), $2.93 ($3.01), and $1.62 ($1.64), 

respectively. So even if RMSE of the OTM case 

is smaller than that of the ITM case, the percentage 

error could be greater. For instance, when we examine 

the RMSE and MAPE of FBS() with  for call 

options, MAPE is 2.9859% and RMSE is $0.5331 

in the case of ITM and, MAPE is 5.6869% and RMSE 

is $0.1225 in the case of OTM. So relative to the 

call option values ($9.94 vs. $1.62), RMSE $0.5331 

is relatively in percentage terms smaller than RMSE 

$0.1225. Therefore, FBS is a better fit in the ITM case.

Our results are consistent with the systematic 

pricing bias documented in Geske & Roll (1984) 

and reference therein. In our case, all FBS models 

with the corrected volatility underestimate in the case 

of OTM for call options (less than -0.25%) and ITM 

for put options (less than -0.017%), which are very 

small. This bias is the opposite of that in Black (1975). 

This may be the case that we only considered the 

moneyness ignoring time to maturity.

Ⅴ. Conclusion

In this article, we adopt the predictor - corrector 

method to estimate the accuracy of the FBS model 

using Euro currency option data (XDE) traded on 

the NASDAQ from November 2, 2007 to June 30, 

2016. The comparison results are presented by 

variance estimations (Predicted Implied Volatility vs. 

Corrected Implied Volatility), Hurst parameter, and 

by moneyness. Our results show that when corrected 

volatility () was used, FBS(), FBS() and FBS

() produce least pricing errors across the board 

and all three have almost same pricing errors. Hence, 

when the predictor - corrector technique is applied, 

FBS model is very sensitive to the choice of volatility 

but insensitive to Hurst parameter. The Hurst 

parameter is well studied but it is difficult to measure 

from real life data [Clegg (2006)]. Hence, our technique 

makes easy on this problem because our findings 

show that the accuracy does not heavily depend on 

the choice of the Hurst parameter if we adopt this 

technique. However, our study has limitations because 

we only tested XDE option and used FBS model 

driven implied Hurst parameter and the Hurst 

parameter based on the moment method using one 

and three- month data. As summarized in Biagini 

et al. (2008), there are several methods to obtain 

the Hurst parameter. It would be interesting to apply 

this technique using Hurst parameters derived from 

different method to other European options and 

expand this technique to American options.
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