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Abstract

Investment funds are highly connected with each other, but also with the broader
financial system. In this paper, we quantify potential vulnerabilities arising from
funds’ connectedness. While previous work exclusively focused on indirect connec-
tions (overlapping asset portfolios) between investment funds, we develop a macro-
prudential stress test that also includes direct connections (cross-holdings of fund
shares). In our application for German investment funds, we find that these direct
connections are very important from a financial stability perspective. Our main re-
sult is that the German fund sector’s aggregate vulnerability can be substantial and
tends to increase over time, suggesting that the fund sector can amplify adverse
developments in global security markets. We also highlight spillover risks to the
broader financial system, since fund sector losses would be largely borne by fund
investors from the financial sector. Overall, we make an important step towards a
more financial-system-wide view on fund sector vulnerabilities.
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1 Introduction

The connectedness of the financial system can be a source of financial instability. In this
regard, much research following the global financial crisis has been devoted to the role of
banks (Glasserman and Young (2016)), but over recent years the focus has shifted towards
non-bank financial intermediaries (NBFI). In this regard, open-end investment funds have
received particular attention given that these tend to be the dominant actors within the
NBFI segment and, due to the strong growth since the global financial crisis, the sector’s
importance within the financial system continues to increase.1 For example, as shown in
the left panel of Figure 1, the German fund sector’s total assets under management have
more than doubled over the last decade. Similar growth rates can be observed for other
major fund domiciles.

Figure 1: Growth and direct connectedness of major fund domiciles around the world. Left: aggregate
total net assets under management (indexed to December 2009 = 1). Right: aggregate portfolio share
of fund shares in IFs’ asset portfolios (in percent). Data were taken from the ECB Statistical Data
Warehouse and the Investment Company Institute 2020 Fact Book, respectively. Note ∗: since the ICI
U.S. mutual fund totals (cf. Table 1 of the Fact Book) exclude funds that invest primarily in other funds,
we show the TNA of funds-of-funds (cf. Table 48 of the Fact Book) relative to the sum of Total TNA
and funds-of-fund TNA. As such, the U.S. figures likely underestimate the sector’s direct connectedness.

Moreover, investment funds exhibit structural liquidity and run risks due to strategic
complementarities in the fund-share redemption process (e.g., Goldstein, Jiang, and Ng
(2017)): to pay out redeeming investors, fund managers may need to liquidate assets.
These asset sales can have a negative impact on market prices, which affects the remain-
ing fund investors. These externalities therefore give rise to first mover advantages2,
suggesting the potential of a negative run-equilibrium with price/illiquidity spirals. In

1See, e.g., Luis de Guindos’ speech at the Euro Finance Week in November 2018.
2A growing body of literature investigates instruments to internalize these externalities, such as swing

pricing (see, e.g., Capponi, Glasserman, and Weber (2018); Jin, Kacperczyk, Kahmaran, and Suntheim
(2019)). Note that these instruments are slowly becoming available to investment funds in the euro area.
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line with recent empirical examples3, there is substantial evidence that institutional in-
vestors’ fire sales (and purchases) indeed have persistent effects on asset prices and their
co-movement (see, e.g., Coval and Stafford (2007); Manconi, Massa, and Yasuda (2012);
Antón and Polk (2014); Chernenko and Sunderam (2020)). Moreover, a growing litera-
ture documents that funds’ fire sales have real effects on the firms that were subject to
such liquidations (Edmans, Goldstein, and Jiang (2012); Hau and Lai (2013)) and even
on their peers (Dessaint, Foucault, Fresard, and Matray (2019)).

Interestingly, the existing literature focused exclusively on the potential externalities
of funds’ common asset liquidations that arise from overlapping asset portfolios. However,
one aspect that has not been taken into account is that funds can also invest in other
funds (cross-holdings), which creates another layer of connectedness between investment
funds. In fact, these cross-holdings are becoming increasingly important: for example, as
illustrated by the right panel of Figure 1, the aggregate portfolio share of fund shares in
German IFs asset portfolios has increased from around 10% to more than 20% since 2009.
Note that both the Euro area as a whole and the U.S. also showed marked increases in
IF fund holdings over this period, whereas the growth was much more modest for funds
in Ireland and Luxembourg. In fact, the German IF sector displays much higher levels
of IF fund holdings compared to other domiciles. This paper is the first to investigate
the financial stability implications of such cross-holdings and their potential to amplify
vulnerabilities of funds’ fire sales.

For this purpose, we develop a macroprudential stress test for the open-end investment
fund sector that builds upon the models of Greenwood, Landier, and Thesmar (2015) and
Fricke and Fricke (2020).4 Our model imposes an abrupt drop of global bond and equity
prices (the initial shock), which induces a first round of fund portfolio losses. To capture
second round effects triggered by this initial shock, there are three further steps: first,
funds suffer losses on their fund holdings (cross-holdings) as the initial shock propagates
through the cross-holdings network. Second, funds need to liquidate assets to meet both
investor redemptions and their leverage targets. Third, funds’ asset liquidations lead to
additional asset price drops and thus to further fund portfolio losses. We define the fund
sector’s aggregate vulnerability (AV) as the sum of funds’ second round portfolio losses due
to funds’ common asset liquidations (indirect connectedness) and cross-holdings (direct
connectedness), relative to the aggregated pre-shock total net assets (TNA). As such, the
AV measures systemic risks from funds’ connectedness and combines information from
a number of commonly used macroprudential risk indicators for the fund sector (e.g.,
funding stability, leverage, and market liquidity). Note that our paper is the first to
investigate fund sector vulnerabilities arising from both direct and indirect connections
between investment funds.

We apply the model using a unique dataset on the German investment fund sector,
which is the third-largest fund sector in the euro area.5 We find that, under a scenario
of a shock on global bond and equity prices of 4.5% and 14.2% respectively, the average

3See https://www.bloomberg.com/news/articles/2019-06-25/six-h2o-funds-lost-almost

-eu1-4-billion-on-friday and https://www.ft.com/content/a025e93a-0601-11ea-a984-fbbacad9e7dd.
4The Financial Stability Board (2017) recommended that the relevant authorities should develop

macroprudential stress tests that quantify the potential effects of fire sales in the investment fund sector.
5According to the ECB investment fund balance sheet statistics, the market share of the German fund

sector is at 18% (http://sdw.ecb.europa.eu/reports.do?node=1000003417).

2

https://www.bloomberg.com/news/articles/2019-06-25/six-h2o-funds-lost-almost
-eu1-4-billion-on-friday
https://www.ft.com/content/a025e93a-0601-11ea-a984-fbbacad9e7dd
http://sdw.ecb.europa.eu/reports.do?node=1000003417


AV during the period November 2015 to July 2019 is 1.8% based on stressed market
conditions (1.2% under actual market conditions), corresponding to second round losses
of up to 44% of the initial shock. This suggests that the German fund sector may amplify
losses on global securities markets. Moreover, the AV displays a strong positive time trend
as it increased by up to 140% over our relatively short sample period. We find that much
of this increase is ‘real’ in the sense that the nominal growth of the fund sector accounts
for at most 1/3 of this increase. Another key finding is that direct connections between
investment funds matter for financial stability, since an average of 65% of the sector’s AV
is due to funds’ cross-holdings. As expected, we find that both bond funds and mixed
funds contribute most to the AV, given their relatively illiquid asset portfolios and high
levels of direct connectedness (cross-holdings). Lastly, we document spillover risks to the
broader financial system. Given that German investment funds are predominantly held by
financial intermediaries outside the fund sectors, these actors would bear the vast majority
of fund sector losses (on average 75% of the total losses). We find that these spillover
risks can be substantial: for example, second round losses of pension funds due to fund
sector losses can amount to more than 4% of their fund holdings, which corresponds to
second round effects of up to 70% of the initial shock. We should stress that our approach
likely underestimates the vulnerability of the financial sector to fund sector losses, since
we only include German investment funds in our application.

With regards to the existing literature, our paper makes several important contribu-
tions. First, we make an important step towards a fund sector-wide stress test. Previous
work typically focused on specific fund types, such as bond funds (e.g., Baranova, Coen,
Lowe, Noss, and Silvestri (2017); Cetorelli, Duarte, and Eisenbach (2016); Falato, Hor-
tacsu, Li, and Shin (2020)). In contrast, our model application covers around 85% of
the German fund sector’s total assets as we include the most important fund types in
Germany (equity funds, bond funds, mixed funds6, and funds-of-funds), covering both
retail and institutional funds.7 Second, we make use of the most granular information
available on funds’ asset portfolios. In contrast, the existing literature typically uses more
aggregated information on funds’ asset portfolios (e.g., at the asset class level, see Cetorelli
et al. (2016)), which heavily overestimates the portfolio overlap within the fund sector (see
Fricke and Fricke (2020)). Third, our model explicitly incorporates cross-holdings between
investment funds. This is important because fund shares make up a growing proportion
of funds asset portfolios and we shed light on the financial stability implications of the
increased direct connectedness within the German fund sector. While direct connections
have been studied extensively in the case of banks (e.g., interbank lending networks as
discussed Glasserman and Young (2016)), we are the first to take a comparable aspect for
investment funds into account. In fact, previous work on cross-holdings between invest-
ment funds largely focused on within fund-family cross-holdings.8 We acknowledge the

6Mixed securities funds are also referred to as Allocation funds. In contrast to bond and equity funds,
mixed funds can invest in a broad range of asset classes. From a financial stability perspective, mixed
funds are particularly interesting because they might ‘connect’ bond and equity funds, in that they could
propagate idiosyncratic shocks affecting these two fund types and thus facilitate the comovement between
bonds and equities in general. These diversified funds may therefore give rise to socially sub-optimal
comovement between these asset classes along the lines of Ibragimov, Jaffee, and Walden (2011).

7As of July 2019, institutional funds make up roughly 77% of the German fund sector’s total assets.
8For example, Gaspar, Massa, and Matos (2006) document strategic incentives within fund-families

to transfer performance across member funds via directed cross-holdings. Evans, Prado, and Zambrana
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fact that cross-holdings can also occur between fund-families, which creates an intricate
network of direct connections between investment funds. As such, our paper is the first to
investigate the financial stability implications of funds’ cross-holdings. Lastly, the unique
dataset used in this paper allows for a deeper analysis of the effects of investment funds’
asset sales on the broader financial system. For example, we quantify the direct port-
folio losses of investors from other sectors (such as banks and insurance companies) due
to funds’ connectedness. Such aspects are important since the existing literature largely
focuses on intrasectoral effects. Overall, our paper proposes a more system-wide view on
fund sector vulnerabilities.

The remainder of the paper is structured as follows: section 2 presents the model.
Section 3 provides information on the empirical data and on the parameter calibration.
Section 4 presents and discusses the main results and section 5 concludes.

2 Model

Our model is a substantial extension of the model of Fricke and Fricke (2020), which itself
was an extension of the original Greenwood et al. (2015) model. The basic steps are as
follows (cf. Figure 2):

Step 0: We impose an initial shock on funds’ asset portfolios (bonds and equities).

Step 1: The initial portfolio losses lead to further losses due to funds’ cross-holdings.

Step 2: Fund managers need to liquidate assets. We incorporate two channels:

a) In response to the initial shock, fund investors redeem some of their fund shares
(flow-performance relationship).

b) Fund managers have fixed financial leverage targets. For funds that make use
of leverage, additional asset sales may be necessary in order to revert back to
the target leverage ratio.

Step 3: Fund managers liquidate a vertical slice of their asset portfolios (pro-rata
liquidation), which negatively affects market prices. This leads to:

a) Portfolio losses on bonds and equities of investment funds.

b) Portfolio losses on funds’ cross-holdings.

We define the fund sector’s aggregate vulnerability (AV) as the sum of funds’ portfolio
losses due to their common asset liquidations (indirect connectedness; Step 3a) and cross-
holdings (direct connectedness; Steps 1 and 3b). We normalize the AV by the aggregated
pre-shock total net assets (TNA).

(2020) find that cross-holdings are more prevalent in fund families that encourage cooperation and that
these funds tend to have less volatile cash flows. Bhattacharya, Lee, and Pool (2013) show that affiliated
funds-of-funds (who can only invest in other funds within the family) provide an insurance pool to other
funds in the family.
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Figure 2: Basic mechanism of the model.

2.1 Details

Before describing the different steps of the model in detail, let us provide the general
setup: there are N investment funds and K + 1 marketable assets, where asset (K + 1)
denotes cash. We think of marketable assets as those assets (bonds and equities) that can
be liquidated, even during stressed market conditions. Let M{N×(K+1)} denote the matrix
of portfolio weights, where each element 0 ≤ Mi,k ≤ 1 is the initial weighted share of
marketable asset k in fund i’s asset portfolio, and

∑
kMi,k = 1. Fund i’s total investment

in marketable assets is equal to AMKT
i > 0.

Funds can also hold fund shares in their portfolios and we denote the matrix of funds’
cross-holdings as aFUND

{N×N}, where element aFUND
i,j ≥ 0 is the (euro-)amount of shares of

fund j in fund i’s portfolio. The total amount of fund i’s fund holdings are denoted
as AFUND

i =
∑

j a
FUND
i,j . Here we assume that funds do not liquidate fund shares under

distress. Lastly, funds can invest in non-marketable assets which will also not be liquidated
even under stress.9 For simplicity, we summarize these non-marketable investments in a
single asset with fund i’s total investment in this asset being ANON

i ≥ 0. Funds are

9We comment on the distinction between marketable and non-marketable assets below. Effectively,
we use a data-driven approach to categorize individual assets.
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financed by a mix of debt, Di, and equity (or TNA), Ei.
10 Total assets are thus given by

Ai,i = AMKT
i + AFUND

i + ANON
i ≡ Ei +Di,

where A{N×N} is a diagonal matrix. We define B{N×N} as the diagonal matrix of pre-
shock leverage ratios with Bi,i = Di/Ei. Finally, FMKT denotes a (K + 1) vector of
asset-specific shocks on marketable assets and FNON is a scalar that denotes the initial
shock on non-marketable assets. We omit time indices for pre-shock variables.

Step 0: Initial Shock

In matrix notation11, we obtain funds’ original returns on marketable and non-marketable
assets as

RMKT = MFMKT, (1)

and
RNON = FNON. (2)

Funds’ fund share holdings are not directly affected by the initial shock (we will return
to this point in Step 1). The post-shock total marketable assets are

AMKT
0 = AMKT(1 +RMKT), (3)

and
ANON

0 = ANON(1 +RNON). (4)

In the following, we always assume that the initial shock does not lead to negative fund
equity and the updated balance sheet identity is

A0 = AFUNDS + AMKT
0 + ANON

0 , (5)

with return on assets

RA
0 =

A0 − A
A

= wMKTRMKT + wNONRNON, (6)

where wMKT = AMKT/A and wNON = ANON/A are the initial shares of marketable and
non-marketable assets, respectively. The return on equity is equal to

RE
0 =

E0 − E
E

= (IN +B)RA
0 , (7)

with IN being the identity matrix of size N ×N . Note that the initial shock also changes
the matrix of portfolio weights of individual marketable assets, which we denote as M0

(post-shock).

10Importantly, investment funds’ equity is provided by fund investors in exchange for fund shares.
Fund equity therefore equals the sum of all issued fund shares, i.e., the fund’s TNA. This has major
implications for the nature of fund equity, as, in contrast to conventional equity, it can be withdrawn by
fund investors on a (mostly) daily basis and is thus runnable like bank deposits.

11In the following, unless stated otherwise, subscripts refer to different points in time.
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Step 1: Impact of Initial Shock via Funds’ Cross-Holdings

The initial shock led to a direct loss on funds’ asset portfolios. This shock, however, did
not directly affect fund shares that are held in funds’ portfolios. However, as should be
clear from Eq. (7), if a given fund holds shares of other funds in its portfolios, we need to
take the losses from Step 0 into account, which involves the fund cross-holdings matrix
aFUND.

The total value of a given fund i’s fund holdings (after taking the initial shock into
account) can be written as:

AFUND
1,i =

∑
j

aFUND
i,j (1 +RE

1,j). (8)

To solve for the unknown RE
1 , we rewrite the previous equation as

(AFUND
1,i − AFUND

0,i ) =
∑
j

aFUND
i,j RE

1,j, (9)

which is the additional loss due to fund i holding other funds in its asset portfolio. Hence,
we can write the updated return on equity as

RE
1,i =

E1,i − Ei
Ei

=
AiR

A
1,i + (AFUND

1,i − AFUND
0,i )

Ei
= RE

1,i +

∑
j a

FUND
i,j RE

1,j

Ei
. (10)

Hence, through the cross-holdings network, fund i’s cross-holdings adjusted return may
depend on all other funds’ returns.

In matrix notation
RE

1 = RE
0 + E−1 × aFUNDRE

1 . (11)

Solving for RE
1 , we obtain

RE
1 = [IN − E−1 × aFUND]−1RE

0 = ω−1RE
0 , (12)

= RE
0︸︷︷︸

Direct contribution of initial shock

+
∞∑
n=1

(E−1 × aFUND)nRE
0 ,︸ ︷︷ ︸

Contribution of cross-holdings network

(13)

which is the return on equity due to the initial shock and the corresponding reduction in
the value of fund shares.12 Note that matrix ω = [IN −E−1×aFUND] should be invertible,
which is generally the case, even for relatively complex network structures. Also note
that, if fund i does not hold any fund shares in its portfolio (

∑
j ai,j = 0), Eq. (12) simply

yields RE
1,i = RE

0,i. We denote the updated cross-holdings matrix after Step 1 as aFUND
1 .

(A similar reasoning will come into play when we look at the losses that arise from funds’
common asset liquidations.) The vector of funds’ nominal losses due to cross-holdings can
be written as:

LossCrossHoldings
1 = (RE

1 −RE
0 )× E0 (14)

12See Miller and Blait (2009, Ch. 2). Note that the functional form of Eq. (12) shares some similarities
with the Leontief-inverse in the literature on input-output networks (e.g., Acemoglu, Carvalho, Ozdaglar,
and Tahbaz-Salehi (2012)).
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Note that, while being an immediate effect of the initial shock, these losses due to cross-
holdings should be interpreted as a second round effect and thus will be taken into account
in our aggregate vulnerability measure below. This is in line with the existing financial
contagion literature that quantifies vulnerabilities purely based on mechanical balance
sheet interlinkages. For example, Castren and Kavonius (2009) use contingent claims
analysis (CCA) to quantify second round losses based on sectoral balance sheet linkages.
The within-sector losses from Step 1 are similar in spirit to the CCA approach.

Illustration. Let us provide several examples to illustrate the concept and potential
importance of fund cross-holdings.

• Example 1. There are N = 2 funds, both of equal size (normalized to 1), using
zero leverage, and the same initial shock in terms of return-on-equity RE

0,i = −0.1
for i = {1, 2}. Without specifying the details of funds’ asset portfolios, fund 1 does
not hold shares of fund 2, but fund 2 holds shares of fund 1:

aFUND =

(
0 0

0.2 0

)
Given that fund 1 has no exposure towards fund 2, we can solve this problem by
backward induction: we know that RE

1,1 = RE
0,1. Therefore, we can calculate fund

2’s return on equity as follows

RE
1,2 = RE

0,2 + (−0.1)0.2 = −0.12.

Eq. (12) yields this result directly:

RE
1 =

(
1 0

0.2 1

)(
−0.1
−0.1

)
=

(
−0.1
−0.12

)
.

Note that the updated cross-holdings matrix reads as

aFUND1 =

(
0 0

0.18 0

)
• Example 2. There are N = 3 funds, all of equal size, zero leverage and the following

initial shocks:

RE
0 =

−0.1
−0.1
−0.2

 .

The cross-holdings network has a ring structure as shown in Figure 3. Note that, in
contrast to the first example, we cannot solve this case by backward induction since
funds’ returns depend on each other, either directly or indirectly. Using Eq. (12) we

8



Figure 3: Ring network structure corresponding to Example 2.

obtain the following solution:13

RE
1 ≈

−0.112
−0.121
−0.211

 .

• Example 3. The final example is based on the actual data on German investment
funds’ cross-holdings for July 2019. The relevant input variables are taken directly
from the data. Here we assume that all funds are being hit equally by the same
initial shock (RE

0,i = −0.1 ∀ i). The cross-holdings matrix is relatively sparse over-
all: out of approx. 33 million possible directed links, fewer than 6,000 links exist.
(See Figure 9 for a schematic representation of the German investment fund cross-
holdings network in 2009/09 and in 2019/07.) The initial shock after taking funds’
cross-holdings into account can be much larger than the direct shock, sometimes by
a factor of 2 or more, as illustrated in Figure 4. Overall, these results indicate that
taking into account funds’ cross-holdings is important, even more so since Figure 5
shows that the relative importance of fund shares can be quite large (and growing)

13In principle, we could obtain the same solution iteratively. Depending on the size of the network,
the iterative solution can be slower or faster than the analytical solution. For example, for the network
shown in Figure (12), the results converge to the analytical solution after 30 iterations. In this specific
case, the iterative solution takes roughly 3,000 times longer to compute than the analytical solution. As
the network gets larger, computing the inverse matrix becomes more and more time-consuming, such
that the iterative solution may become relatively more attractive. In our application, we always rely on
the analytical solution.
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for the German IF sector as a whole. As shown in the bottom panel, this increase
is largely driven by certain fund types, in particular institutional mixed funds.
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Figure 4: Histogram of a hypothetical initial shock before (in blue) and after (in red) taking into
account funds’ cross-holdings in 2019/07.

Step 2: Asset Liquidations

2a: Flow-Performance Relationship (FPR). In line with the existing fund litera-
ture, we assume a positive relationship between lagged fund performances and investor
net inflows (see, e.g., Sirri and Tufano (1998); Berk and Green (2004)):

∆E2a

E1

= γRE
1 , (15)

where γ ≥ 0 is the return sensitivity of investor flows. Hence, a negative (positive)
performance is followed by a net outflow (net inflow) of fund equity. The fund manager
has to liquidate assets in order to make the payments of ∆E2a. Taking net outflows into
account, updated equity equals

E2a = E1(1 + γRE
1 ),

= A
(
[IN +B]−1 +RA

1

)︸ ︷︷ ︸
E1

[
1 + γ(IN +B)RA

1

]
. (16)
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Figure 5: Aggregated portfolio share of fund shares in German investment funds’ asset portfolios. Top:
aggregate share across all funds and excluding funds-of-funds. Bottom: by fund type.



Updated total assets are equal to

A2a = D + E2a,

= A
(
1 +RA

1

[
1 + γ(IN +B)RA

1

])
,

(17)

with return on assets

RA
2a =

A2a − A
A

= RA
1

[
1 + γ(IN +B)RA

1

]
. (18)

2b: Leverage Targeting (LT). We assume that fund managers target their leverage
ratios. This seems reasonable, since fund managers generally need to specify the compo-
sition of both their asset and liability side in their sales prospectuses and are unlikely to
deviate significantly from these proposed targets. In order to reach the desired level of
debt, funds will liquidate additional assets to repay some of their existing debt.

Given that fund managers will have to liquidate an amount ∆E2a due to fund share
redemptions after a negative shock, we need to add another leverage targeting component
to the total amount to be liquidated. Suppose that the fund targets a leverage ratio of
B (which may be equal to zero to begin with), so the desired level of debt would be
D2b = E2a × B. Assuming that the fund manager has an adjustment parameter η, with
η ≥ 0, we can write the amount to be liquidated due to LT as

∆D2b = η × (E2aB −D) (19)

= η × ( ABRA
1︸ ︷︷ ︸

LT due to
initial shock

+ABRA
1 γ(1 + (IN +B)RA

1 )︸ ︷︷ ︸
LT due to

net outflows

). (20)

Note that η = 1 corresponds to immediately targeting the desired leverage ratio. (This is
the baseline model of interest.) On the other hand, setting η = 0 yields a case where the
fund manager does not target his leverage ratio.

Putting everything together, we obtain

Φ︸︷︷︸
Amount to be liquidated

= ∆D2b︸ ︷︷ ︸
Leverage targeting

+ ∆E2a︸ ︷︷ ︸
Net outflows

, (21)

= ηABRA
1 + AΓRA

1 [(IN + ηB) + (IN + ηB)(IN +B)RA
1 ], (22)

where we have replaced the scalar γ by the diagonal matrix Γ{N×N} to allow for a fund-
specific FPR. Note that for the case of immediate leverage targeting (η = 1) we obtain

Φη=1 = ABRA
1 + AΓRA

1 [(IN +B) + (IN +B)2RA
1 ]. (23)

Figure 6 shows that Φη=1 is a non-linear function of Γ, B, and RA
1 . (We set A = 1 and

γ = 0.3, as a function of B and RA
1 .) The region at the top right of the Figure is undefined,

since Eq. (23) is only valid for cases where the initial shock does not completely wipe out
a fund’s equity.
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is shown for leverage ratios between B = 0 (bottom) and B = 1 (top).



Asset liquidations. We assume that fund managers liquidate assets proportional to
the post-shock portfolio weights (pro-rata liquidation).14 This is in line with empirical
evidence that suggests that mutual funds tend to sell assets according to their liquidity
pecking order during normal times, but on a pro-rata basis during times of market stress
(see, e.g., Jian, Li, and Wang (2016)). In our model, asset liquidations only involve
marketable assets (including cash), whereas non-marketable assets (and fund shares) will
not be traded even under stress. Hence, the liquidation amounts at the asset level are

φ = M ′
0Φ,

which gives a (K + 1) vector of total net asset sales of marketable assets by all fund
managers.

Step 3: Losses Due to Common Asset Liquidations

3a: Direct Portfolio Losses via Price Impact. We assume that asset sales generate
linear price impact

FMKT
3a = Lφ = LM ′

1Φ, (24)

where L{(K+1)×(K+1)} is the diagonal matrix of price impact ratios, expressed in units of
returns per euro of net sales.15 Since liquidating cash has zero price impact, element
(K + 1) in matrix L equals to zero by construction, whereas all other diagonal elements
will be positive. Using Eq. (24), we can write the return on marketable assets as

RMKT
3a = M1F

MKT
3a = M1LM1

′Φ. (25)

At the fund level, this involves nominal losses of AMKTRMKT
3a , or normalized by equity

prior to asset liquidations

RE
3a =

AMKTRMKT
3a

E2b

. (26)

The vector of funds’ nominal losses due to fire sales can be written as:

LossFireSales = AMKT ×RMKT
3a . (27)

3b: Additional Impact of Losses via Funds’ Cross-Holdings. Similar to Step 1,
we also need to take funds’ cross-holdings into account in order to obtain the total losses
due to funds’ systemic asset liquidations. Using the same procedure, we obtain

RE
3b = [IN − E−1

2b × a
FUND
1 ]−1︸ ︷︷ ︸

ω−1
2b

RE
3a, (28)

14A similar approach has been used in the recent literature that explores the real effects of funds’ fire
sales. See, e.g., Edmans et al. (2012); Dessaint et al. (2019). Note that both Greenwood et al. (2015)
and Fricke and Fricke (2020) use pre-shock portfolio weights, M , in their modelling approaches. The
post-shock portfolio weights are the more natural choice when considering asymmetric initial shocks.

15We ensure that asset prices are non-negative and funds can sell at most their marketable assets.
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with aFUND
1 being the cross-holdings network matrix after Step 1. The vector of funds’

nominal losses from their cross-holdings due to fire sales can be written as:

LossCrossHoldings
3 = (RE

3b −RE
3a)× E2b (29)

= (ω−1
2b − 1)× LossFireSales.

2.2 Measuring Vulnerabilities from Funds’ Connectedness

Suppose there is a negative shock on non-marketable assets, FNON ∈ [−1, 0], and on
marketable assets, FMKT = (fMKT

1 , fMKT
2 , · · · , fMKT

K , 0) with fMKT
k ∈ [−1, 0] ∀ k. Note

that the shock on the market value of cash (element K + 1) is zero by construction. We
summarize this initial shock as F1 = {FNON, FMKT}.

The total nominal loss due to the initial shock is given by 1′NAR
A
0 . Using Eqs. (14),

(27), and (29), we define the aggregate vulnerability (AV) of the fund sector as follows:

AV =
1′N(LossFireSales +

LossCrossHoldings︷ ︸︸ ︷
LossCrossHoldings

1 + LossCrossHoldings
3 )∑

iEi
. (30)

Note that the losses due to cross-holdings (i.e., funds’ direct connectedness) consist of a
part that comes from the initial shock and a part that comes from funds’ common asset
liquidations. Overall, the AV quantifies the vulnerability of the fund sector that stems
from its connectedness. Note that the overall losses are normalized by the sector’s TNA
(
∑

iEi) before the initial shock. The AV measures the percentage of aggregate total net
assets that would be wiped out by funds’ asset liquidations after initial shock F . As
shown in Figure 7, the AV shows the expected dependency with regards to the different
inputs and, in fact, can be seen as a combined indicator that summarizes information
associated from several standard macroprudential risk indicators of investment funds.

Figure 7: Aggregate vulnerability (AV) and its drivers.
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Similar to Greenwood et al. (2015), we wish to decompose the AV into each fund’s
individual contribution to the whole sector’s vulnerability. It turns out that this becomes
more complicated due to the non-linearity induced by taking into account funds’ cross-
holdings. Ideally, our fund-level measure of systemicness (Si) should capture a given
fund’s contribution to the AV, i.e., the losses that arise due to the fund’s asset sales,
where we distinguish between losses due to fire sales and losses due to cross-holdings:

Si = SFireSales
i + SCrossHoldings

i , (31)

with AV =
∑N

i Si. Following Fricke and Fricke (2020), the first component is given by:

SFireSales
i =

1′NA
MKTM1LM1

′δiδ
′
iΦ∑

iEi
, (32)

where δi is a (N × 1) vector with all zeros except for the ith element, which is equals 1.
The second component in Eq. (31) is less straightforward, since Eq. (29) gives us fund

i’s additional losses due to the cross-holdings network, but does not tell us the effect
of fund i’s network position on other funds. Suppose that fund j has additional losses
of LossCrossHoldings

j due to its cross-holdings. The question is: how much of these losses
are caused by fund i? Intuitively this depends on fund i’s position in the cross-holdings
network (e.g., Alter, Craig, and Raupach (2015)). Fund i’s contribution to the total losses
should therefore be proportional to its network centrality:

SCrossHoldings
i =

Ci × (1′NLossCrossHoldings)∑
iEi

, (33)

where Ci is a given network centrality measure (normalized to
∑

iCi = 1). Which network
centrality measure should be used? Since the fund-level systemicness will depend on the
choice of a specific measure, several aspects need to be considered from an economic
perspective:

• Fund i will only send losses through the network if it is being held in other funds’
portfolio. In other words, fund i is a sender if its in-degree is positive (

∑
j a

FUND
j,i >

0). Note that the in-degree is typically not a choice variable for fund managers, at
least in the case of retail funds.

• Fund i will only receive losses through the network if it holds other funds in
its portfolio. In other words, fund i is a receiver if its out-degree is positive
(
∑

j a
FUND
i,j > 0). The out-degree (which funds to hold in its portfolio) is a choice

variable for fund managers.

• Fund i is both a sender and a receiver if it holds shares of other funds and its
own shares are also being held by other funds (i.e.

∑
j a

FUND
j,i > 0,

∑
j a

FUND
i,j > 0).

This may lead to losses being amplified through fund i’s central position in the
network.

• Finally, if fund i is neither a sender nor a receiver it is technically not part of
the network and therefore does not contribute to losses due to cross-holdings (i. e.∑

j a
FUND
j,i =

∑
j a

FUND
i,j = 0).
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Figure 8: Hypothetical cross-holdings network.

A simple example of a cross-holdings network with the different fund types is shown
in Figure 8. As an empirical illustration, Figure 9 shows a schematic representation of the
German investment fund cross-holdings network at different points in time: in September
2009 (top panel) cross-holdings within the German fund sector amounted to roughly e56
bn, or 5.6% of the fund sector’s aggregate TNA. In July 2019 (bottom panel), the total
cross-holdings were e272 bn, or 12% of the sector’s aggregate TNA. Most importantly,
the weight on the direct link from senders to receivers has increased more than five-fold
over this period.16

Given that systemicness is about the effect of a fund on other funds, the natural
centrality measure is given by Eq. (28):

Ci = (ω−11N − 1), (34)

which is equivalent to the well-known Katz centrality measure from network theory.17

Note that Ci is normalized such that funds that are not part of the network will have
Ci = 0.

16Note that previous work largely focused on cross-holdings within fund-families (Gaspar et al. (2006);
Bhattacharya et al. (2013); Evans et al. (2020)), while we incorporate also cross-holdings between fund-
families. This is important because in terms of the number of connections, within family links make up
only between 27% (September 2009) and 37% (July 2019) of the German fund sector’s cross-holdings.
However, in terms of volume, within family cross-holdings are much more important, making up between
46% (September 2009) and 69% (July 2019) of the sector’s cross-holdings.

17Katz centrality is related to, but distinct from, eigenvector centrality. See Newman (2010), Ch. 7,
for details and Billio, Getmansky, Lo, and Pelizzon (2012) and Diebold and Yilmaz (2014) for related
discussions.
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Figure 9: A schematic representation of the German investment fund cross-holdings network in 2009/09
(top panel) and in 2019/07 (bottom panel), respectively. The width of the arrows is proportional to the
volume of a directed link; the size of the nodes is proportional to the sum of the TNA of funds within
that category (actual numbers written in each node). All values are shown in ebillion.



3 Data and Empirical Calibration

We provide the first macroprudential stress test application for the German investment
fund sector. Germany is an important domicile for investment funds, hosting the third
largest investment fund sector in the euro area. The German fund sector has grown
substantially since the global financial crisis. For example, the sector’s total assets have
more than doubled since September 2009 (cf. Figure 10), amounting to e2.3 trillion in
July 2019. The sector’s relative importance within the German financial system also
continues to increase, as it makes up 14% of the total assets of the German financial
system (at the end of 2009, the share was 8%).

Figure 10: Size of the German open-end investment fund sector. Aggregate total assets under man-
agement (in e trillion), broken down by fund type.

In addition to the marked increase in German funds’ direct connectedness (cf. Figure
1), the German fund sector is also highly interconnected within the financial system. For
the purpose of illustration, Figure 11 shows the aggregate balance sheet of the sector:
on the asset side (left), securities issued by actors from the financial system (including
shadow banks, insurance corporations and pension institutions, and monetary financial
institutions) make up roughly 50% of funds’ investments. On the liability side (right),
more than 70% of German funds’ TNA are held by actors from the financial system.
Hence, dynamics in the fund sector are not independent of the dynamics in the broader
financial system, and vice versa.
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Figure 11: Illustration of the German fund sector’s aggregated balance sheet in 2019/06.

3.1 Data

Our dataset consists of all open-end equity funds, bond funds, mixed funds, and funds-of-
funds reporting to the investment fund statistics (IFS) of the Deutsche Bundesbank. As
of July 2019, these fund types cover roughly 87% of the total assets under management
of the German investment fund sector (cf. Figure 10). In the following, we use data on
individual fund share classes, since the redemption decisions of fund shareholders may
depend on share-class specific features.18 Our stress test sample for the period November
2015 to July 2019 covers a total number of 6,950 unique fund share classes (994 equity
funds, 1,261 bond funds, 4,340 mixed funds, and 355 funds-of-funds).

Compared with the U.S., the German investment fund sector is peculiar in the sense
that it consists of two very different sub-sectors: first, Publikumsfonds are akin to tradi-
tional open-ended retail funds which are open to both private and institutional investors.
Second, Spezialfonds are specialized investment vehicles for institutional investors, which
are generally not available to private investors. These institutional funds are typically

18We drop exchange traded funds (ETFs) from our sample due to structural differences in their cre-
ation/redemption process. While ETFs may be very interesting from a financial stability perspective
(see, e.g., Pagano, Serrano, and Zechner (2019) for a review), the main reason for this choice is that
ETFs differ structurally from open-end investment funds: ETFs do not allow investors to redeem their
fund shares, but rather ETF shares must be traded on secondary markets. As explained by Goldstein
et al. (2017), the usual redemption-liquidation mechanism that forms the basis of our model therefore
cannot simply be applied to the case of ETFs. For example, estimating the FPR regressions for ETFs
would give us the sensitivity of the authorized participant to past performances, not the sensitivity of the
actual fund investors. We believe that this exclusion of ETFs is unlikely to lead to a severe underestima-
tion of systemic risks, given that the ETF sector remains rather small compared to traditional open-end
investment funds that we are concerned with in our paper. For example, as of July 2019, ETFs make up
only 2% of the German fund sector’s TNA.

20



tailored to the specific needs of a very small number of large investors, such that run risks
should be less relevant for these institutional funds. As of July 2019, institutional funds
make up roughly 77% of the German fund sector’s total assets under management (cf.
Figure 10), so it is important to include these funds in the analysis.

In principle, monthly fund-level information is available since April 1993. Also, gran-
ular holdings data on a fund-month-security level are available from September 2009
onwards. We complement the IFS data with two other datasets: first, we use data from
the Securities Holdings Statistics (SHS) to obtain information on the holder structure for
each investment fund over time. This information is provided at the sectoral level based
on the European System of Accounts (ESA). Second, we use granular information on the
individual securities in funds’ asset portfolios from the Eurosystem’s Centralized Security
Database (CSDB). Unfortunately, the CSDB reports information on security-level trad-
ing volumes only from November 2015 onwards. This information is crucial, however,
to calculate the PriceImpact-parameters (cf. 3.2.3). Therefore, the actual stress-test
application will be for the period November 2015 to July 2019.

3.2 Parameter Calibration

In the following, we will first provide details on the two liquidation channels (FPR and
LT) and then turn to the estimation of the PriceImpact parameters.

3.2.1 Flow-Performance Relationship (FPR)

Regarding the FPR-liquidation channel, the key parameter is γ, which denotes the sen-
sitivity of fund flows with regards to past returns. An important advantage of the IFS
is that investment funds report their inflows and outflows separately for each month,
allowing us to directly calculate the relative net flows (Flow) as

Flowi,t =
Inflowi,t −Outflowi,t

TNAi,t−1

. (35)

Using data for the period January 2007 to July 2019, we estimate the following equation
based on Fama-MacBeth-regressions:

Flowi,t = at + bt × Controlsi,t + γt × Returni,t−1 + εi,t.

The Fama-MacBeth approach estimates the above relationship separately for each cross-
section t and averages these coefficients to provide point estimates. In everything that
follows, unless otherwise stated, we use Newey-West standard errors with 4 lags.

Following the literature, we drop individual fund share classes younger than 1 year
and/or with TNA below e1 million. We also filter out extreme Flow/Return observa-
tions.19 Table 1 shows the baseline parameter estimates, where we differentiate between
the four different fund types, and also between retail and institutional funds.20 Table

19Following the standard procedure in the literature, we disregard observations with Flows and/or
Returns above 200% or below -80%. Our findings are not driven by this particular choice of data filters.

20Table A.1 in the Appendix shows the results from an alternative specification based on regressions
with time FEs and standard errors clustered by share-class (the specification of Goldstein et al. (2017)).

21



1 shows that the time-average of γt is insignificant for institutional funds. This is not
surprising given that run risks should be less relevant for these funds. On the other hand,
we find significantly positive values for retail funds, ranging between 0.13 (funds-of-funds)
and 0.20 (bond funds). Note that, compared with U.S. equity funds (Fricke and Fricke
(2020)), the strength of the relationship is weaker for German investment funds: ceteris
paribus, a negative return of -10% in month t− 1 leads to net outflows of between 1.3%
and 2.0% in month t.

Table 1 hides substantial time-variation in the estimated γ parameters both over time
and in the cross-section. In fact, one major advantage of the Fama-MacBeth approach is
that it lends itself naturally to incorporate time dynamics in the estimated relationship.
For the sake of illustration, Figure 12 shows the 36-month rolling window average estimate
of γt, by fund type. Dotted lines indicate observations that are not significantly larger than
zero at the 5% level (based on the standard errors in Table 1). While the results are mostly
significant for retail funds, the relationship tends to be insignificant for institutional funds.
(We should note that we do not have enough observations for institutional funds-of-funds
to estimate the cross-sectional γt reliably, so these are treated as zero in everything that
follows.) One important exception are institutional bond funds, for which γ is significantly
positive from the end of 2016 onwards. In our model application, we will use these
dynamic γ parameters based on the 36-month rolling window averages. If a given value
is not significantly positive for a given fund type, we will shut down the FPR channel for
these funds in a given month t.

A natural question is whether our estimated γ would be different during crisis periods
compared to non-crisis periods, since the shock scenario is one where global equity and
bond markets are assumed to be under severe stress. In this regard, the existing literature
indicates that the flow-performance sensitivity tends to be lower during periods of extreme
market returns. For example, Franzoni and Schmalz (2017) find that γ is about twice as
large during moderate as in extreme states. In other words, if anything, we would expect
our approach to overestimate γ by not conditioning on a market state with large negative
returns. To show this, we ran the following additional analyses:

• Figure A.1 in the Appendix shows the flow-performance sensitivity, by quintiles of
the market return (retail funds only). Specifically, it reports the average of the
estimated γt, along with 95% confidence intervals, by quintiles of the realization
of the market return (proxied by the TNA-weighted average fund return in each
category) during the month when the fund performance was measured. The spec-
ification replicates the one in the baseline Fama-MacBeth regressions. In order to
increase the statistical power of this excercise, this sample includes monthly data
for a longer sample period, namely January 1997 to July 2019. The results are very
similar to those of Franzoni and Schmalz (2017), namely we find a hump-shaped re-
lationship in all cases. In other words, by conditioning on adverse market states, we
would find a weaker flow-performance relationship. (In the case of funds-of-funds,
the relationship could even be negative.)

• Table A.2 in the Appendix shows separate Fama-MacBeth regression results for
periods with moderate returns versus periods with extreme returns. Again following

We also experimented with several non-linear specifications, e.g. adding Return2
t−1 to the regression. In

all cases, we find that these non-linear terms are insignificant.
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Dep. var.: Equity funds Bond funds Mixed funds Fund-of-funds
Flowt Retail Inst. Retail Inst. Retail Inst. Retail Inst.
Returnt−1 0.175*** 0.032 0.200*** 0.018 0.160*** 0.009 0.128** -0.174

(0.028) (0.036) (0.046) (0.029) (0.024) (0.013) (0.051) (0.274)
Returnt−2 0.079*** 0.005 0.126** 0.053** 0.121*** 0.037** 0.069 0.339

(0.017) (0.030) (0.052) (0.022) (0.029) (0.015) (0.044) (0.407)
Returnt−3 0.038 -0.025 0.247*** 0.036 0.153*** 0.009 0.036 -0.485

(0.026) (0.040) (0.056) (0.026) (0.024) (0.015) (0.056) (0.305)
Returnt−4 0.033* -0.018 0.163*** 0.004 0.075*** 0.034*** 0.123** 0.190

(0.019) (0.043) (0.047) (0.024) (0.025) (0.011) (0.052) (0.287)
Returnt−5 0.037* -0.051* 0.064 0.047** 0.031 0.022 0.027 -0.105

(0.022) (0.028) (0.041) (0.021) (0.023) (0.015) (0.047) (0.201)
Returnt−6 0.027 0.006 0.124** 0.007 0.101*** 0.030** -0.057 0.248

(0.023) (0.026) (0.056) (0.025) (0.027) (0.013) (0.062) (0.245)
Returnt−7 0.064*** 0.044 0.159*** 0.051* 0.033 0.029** 0.057 0.126

(0.019) (0.044) (0.038) (0.029) (0.025) (0.013) (0.068) (0.221)
Returnt−8 0.042* 0.014 0.037 -0.016 0.053** 0.035** 0.058 -0.034

(0.023) (0.042) (0.049) (0.032) (0.023) (0.014) (0.064) (0.202)
Returnt−9 0.025 -0.037 0.012 0.022 0.052 0.040*** 0.033 0.141

(0.022) (0.032) (0.048) (0.025) (0.032) (0.010) (0.074) (0.219)
Returnt−10 0.009 0.046 -0.029 0.013 0.031 0.017 -0.024 0.121

(0.019) (0.036) (0.079) (0.026) (0.029) (0.014) (0.054) (0.251)
Returnt−11 -0.005 0.010 0.046 -0.005 0.017 -0.001 0.004 0.123

(0.020) (0.054) (0.040) (0.019) (0.029) (0.011) (0.048) (0.196)
Returnt−12 0.018 -0.028 -0.022 -0.078*** -0.010 -0.037*** -0.084 0.084

(0.021) (0.040) (0.040) (0.023) (0.023) (0.012) (0.059) (0.187)
Flowt−1 0.099*** 0.072*** 0.145*** 0.059*** 0.161*** 0.041*** 0.104*** 0.079

(0.011) (0.024) (0.013) (0.012) (0.013) (0.004) (0.022) (0.088)
Flowt−2 0.075*** 0.075*** 0.066*** 0.035*** 0.097*** 0.030*** 0.108*** 0.088

(0.012) (0.024) (0.010) (0.007) (0.009) (0.003) (0.024) (0.187)
Flowt−3 0.038*** 0.020 0.050*** 0.034*** 0.080*** 0.020*** 0.096*** -0.042

(0.007) (0.014) (0.010) (0.009) (0.012) (0.003) (0.022) (0.225)
Flowt−4 0.053*** 0.018 0.031*** 0.010 0.077*** 0.016*** 0.058** 0.364*

(0.011) (0.020) (0.009) (0.006) (0.008) (0.004) (0.023) (0.193)
Flowt−5 0.040*** 0.026* 0.065*** 0.024*** 0.042*** 0.015*** 0.028 0.052

(0.012) (0.015) (0.010) (0.005) (0.010) (0.003) (0.024) (0.203)
Flowt−6 0.011 0.050** 0.023** 0.023*** 0.036*** 0.008*** 0.076*** 0.181**

(0.009) (0.020) (0.011) (0.008) (0.008) (0.002) (0.020) (0.089)
Flowt−7 0.005 0.028 0.041*** 0.021** 0.032*** 0.007** 0.050** -0.207

(0.010) (0.021) (0.010) (0.008) (0.008) (0.003) (0.021) (0.225)
Flowt−8 0.019*** 0.034** 0.013 0.006 0.022*** 0.010*** 0.048** 0.485*

(0.007) (0.016) (0.010) (0.007) (0.006) (0.004) (0.019) (0.289)
Flowt−9 0.023** -0.035 0.019** 0.025*** 0.013* 0.009*** 0.033 -0.344

(0.009) (0.023) (0.008) (0.008) (0.008) (0.003) (0.022) (0.414)
Flowt−10 -0.000 0.007 0.005 0.018*** 0.008 0.007** -0.019 0.120

(0.010) (0.014) (0.010) (0.006) (0.007) (0.003) (0.032) (0.102)
Flowt−11 0.013 0.017 0.017* 0.015** 0.024*** 0.008*** 0.019 0.413

(0.009) (0.020) (0.009) (0.007) (0.008) (0.003) (0.019) (0.312)
Flowt−12 0.027*** 0.017 0.034*** 0.038*** 0.017*** 0.028*** 0.068*** 0.669

(0.008) (0.011) (0.012) (0.008) (0.006) (0.004) (0.020) (0.508)
log(TNAt−1) -0.000 -0.000 -0.001* -0.000 -0.000 -0.000*** -0.000 -0.001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
log(Aget) -0.001* -0.001 0.001 -0.000 -0.001 -0.001*** -0.001 -0.000

(0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.001) (0.001)
Fama-MacBeth

√ √ √ √ √ √ √ √

Obs. 60,025 25,117 43,510 82,730 88,892 315,174 26,020 9,949
adj. R2 0.208 0.297 0.242 0.117 0.203 0.035 0.462 0.625

∗ p<0.1; ∗∗ p<0.05; ; ∗ ∗ ∗ p<0.01

Table 1: Flow-performance regressions, based on monthly data using Fama-MacBeth regressions. The
model parameter γ is the time-average of the coefficient on Returnt−1 (Newey-West std. errors with 4
lags in parentheses). TNA is a fund’s total net assets, Age is the fund age in months, and Flow is defined
in Eq. (35). Monthly data from January 2007 to July 2019.



Franzoni and Schmalz (2017), we define periods with moderate/extreme market
returns as those with absolute returns below/above 5% (absolute value). Compared
with Figure A1, here we use the monthly return on the European stock market
provided by Ken French. The results show that the point estimate of γ tends to
indeed be larger during moderate conditions, but the difference may not necessarily
be statistically significant. The general picture, however, is in line with the findings
in Figure A.1.

Overall, these results indeed suggest that, if anything, our current estimation approach
likely overestimates the strength of the flow-performance relationship since we do not
condition on an adverse market state. As such, the results on the aggregate vulnerability
should be seen as a relatively conservative estimate.
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Figure 12: 36-month rolling window average of γt over time. Based Fama-MacBeth regressions in Table
1 (dotted lines indicate observations that are not significantly larger than zero at the 5% level, based on
the standard errors in Table 1).

For the sake of completeness, Table 2 shows evidence along the lines of Coval and
Stafford (2007) that retail funds indeed respond to outflows (inflows) with asset liquida-
tions (purchases).21 The results are broadly consistent across the different fund categories:
funds with the largest net outflows (inflows), tend to reduce (increase) their cash posi-
tion by 17% to 30% (17% to 34%). These funds also reduce (increase) between 36% and
56% (40% and 59%) of their positions. In other words, funds with large outflows tend to
liquidate assets.

3.2.2 Leverage Targeting (LT)

Generally speaking, the financial leverage ratios (defined as B = debt-over-TNA) of Ger-
man investment funds are rather small. As an illustration, Figure 13 shows the TNA-

21Note that Table 2 is restricted to retail funds only, since the different flow percentiles for institutional
funds generally do not contain the same number of observations. This is due to the fact that many
institutional funds show zero in- and outflows in most of the sample months.
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Percentile Avg. Avg. %∆Casht New Increased Constant Reduced Eliminated
Flowt Flowt Returnt−1 Positions

Equity funds
1 -10.43% 0.19% -27.34% 6.83% 7.94% 27.31% 56.20% 8.55%
2 -1.79% 0.41% -14.31% 6.72% 12.09% 49.57% 31.62% 6.72%
3 -0.87% 0.50% -9.54% 6.24% 12.61% 53.84% 27.36% 6.19%
4 -0.52% 0.48% -1.75% 5.84% 13.46% 55.89% 24.96% 5.69%
5 -0.27% 0.46% 1.49% 6.70% 16.82% 55.07% 22.23% 5.87%
6 -0.08% 0.42% -0.96% 6.04% 19.25% 54.07% 20.94% 5.73%
7 0.11% 0.34% 2.10% 6.31% 22.28% 50.91% 20.65% 6.15%
8 0.52% 0.51% 6.54% 5.89% 26.07% 49.54% 18.80% 5.59%
9 1.66% 0.63% 14.35% 5.89% 35.58% 41.25% 17.57% 5.60%
10 11.39% 0.88% 28.07% 7.54% 58.90% 25.45% 9.99% 5.66%

Bond funds
1 -11.91% -0.06% -29.71% 7.69% 8.26% 39.54% 42.57% 9.63%
2 -2.44% -0.02% -12.17% 4.96% 14.21% 48.89% 30.90% 6.00%
3 -1.18% 0.00% -6.31% 5.02% 15.50% 53.65% 25.69% 5.17%
4 -0.61% 0.07% -3.33% 6.33% 15.13% 59.21% 20.56% 5.10%
5 -0.25% -0.02% -0.24% 5.59% 16.21% 59.44% 19.41% 4.95%
6 -0.03% 0.07% 1.93% 4.94% 22.25% 52.94% 20.10% 4.71%
7 0.09% 0.02% 1.27% 4.92% 24.51% 50.53% 20.25% 4.71%
8 0.59% 0.10% 5.34% 5.11% 22.98% 53.54% 18.91% 4.57%
9 1.89% 0.00% 9.95% 5.31% 29.09% 49.87% 16.75% 4.29%
10 10.78% 0.21% 34.33% 8.64% 39.55% 42.90% 12.60% 4.95%

Mixed funds
1 -8.99% -0.05% -20.15% 7.11% 8.52% 38.90% 42.89% 9.69%
2 -1.70% -0.01% -9.51% 7.79% 12.81% 50.46% 29.92% 6.81%
3 -0.79% 0.05% -3.97% 6.88% 12.87% 55.96% 24.80% 6.38%
4 -0.34% 0.10% -0.92% 6.79% 14.53% 59.34% 20.39% 5.73%
5 -0.08% 0.12% 0.81% 6.82% 16.80% 60.83% 16.97% 5.41%
6 0.00% 0.01% -0.50% 6.06% 18.03% 60.91% 16.01% 5.05%
7 0.14% 0.12% 0.64% 6.00% 18.64% 60.07% 15.94% 5.35%
8 0.63% 0.22% 2.17% 6.24% 22.95% 54.77% 16.81% 5.46%
9 1.70% 0.13% 7.68% 6.47% 30.67% 49.34% 14.57% 5.43%
10 9.59% 0.22% 20.25% 8.98% 45.66% 37.56% 10.82% 5.96%

Funds-of funds
1 -7.47% 0.09% -17.19% 7.50% 6.69% 48.74% 36.11% 8.45%
2 -1.32% 0.23% -7.30% 6.71% 9.04% 61.72% 22.90% 6.34%
3 -0.67% 0.28% -7.94% 7.56% 9.73% 66.13% 18.15% 5.99%
4 -0.34% 0.35% -1.10% 5.81% 8.53% 70.36% 15.39% 5.72%
5 -0.12% 0.28% 1.88% 6.30% 9.58% 71.78% 12.66% 5.98%
6 0.04% 0.27% -0.90% 5.62% 11.77% 72.02% 11.03% 5.18%
7 0.27% 0.24% 2.50% 5.53% 12.87% 72.29% 9.45% 5.39%
8 0.64% 0.32% 6.04% 5.95% 15.73% 70.70% 8.08% 5.49%
9 1.44% 0.38% 8.50% 6.20% 21.99% 64.04% 8.77% 5.21%
10 10.16% 0.34% 16.84% 9.57% 46.96% 37.82% 8.63% 6.59%

Table 2: Funds’ asset-level portfolio adjustments as a function of funds’ net flows (à la Coval and
Stafford (2007)). Analysis includes only retail funds. Monthly data from January 2007 to July 2019.



weighted average leverage ratios over time. Note that, for retail funds the maximum
regulatory leverage is Bmax = 0.1 and for institutional funds Bmax = 0.3. In both cases,
the observed values are substantially smaller.22
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Figure 13: Cross-sectional weighted average leverage ratio over time. Note: maximum regulatory
leverage is 0.1 for retail funds and 0.3 for institutional funds.

The LT-liquidation channel can only be relevant for those funds that make use of
financial leverage. In the model, we make the assumption that investment funds target
their financial leverage ratios. To the best of our knowledge, this has not been studied
in the literature so far. Following Adrian and Shin (2010), we therefore run the following
regression model based on monthly data:

%∆Leveragegross
i,t︸ ︷︷ ︸

=
TotalAssetsi,t

TNAi,t

= a+ bt × Controlsi,t−1 + θt × log(Leveragegross
i,t−1) + εi,t. (36)

Note that we restrict ourselves to fund-month observations with Leveragegross
t−1 > 1 and

estimate parameters based on Fama-MacBeth regressions. (As for the FPR regressions,
we show the time-average of each coefficient and use Newey-West standard errors with 4
lags.)

Table 3 shows the results.23 We find that the estimated θ parameters are significantly
negative for all fund types. This is a strong indicator that German investment funds ac-
tively manage their leverage ratios to stay close to a given (fund-specific) long-run mean.24

22Figure B.2 in the Appendix shows that the median values are even smaller.
23These results are robust under alternative specifications. For example, Table B.3 shows the results for

a pooled regression, with fund and time FEs. We also performed panel unit-root tests (most importantly,
Fisher-type tests that allow for unbalanced panels), all of which strongly reject the presence of a unit-root
in all of the panels. In other words, there is strong evidence of leverage being mean-reverting.

24The mean-reversion character can be understood by writing (univariate) leverage growth as

yt = a+ (θ + 1)yt−1 + εt,
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In other words, the assumption that investment fund target their leverage ratios appears
plausible. We should also note that all fund types show significantly positive parameters
on contemporaneous total asset growth (%∆TotalAssetst). This suggests that leverage
growth of German investment funds is in fact procyclical,25 such that a fund suffering
large losses on its investments would potentially adjust its leverage target downwards.
Overall, our leverage targeting approach likely underestimates potential asset sales due
to this channel.

Dep. var.: Equity funds Bond funds Mixed funds Fund-of-funds
%∆Leveragegrosst Retail Inst. Retail Inst. Retail Inst. Retail Inst.
log(Leveragegrosst−1 ) -0.360** -0.205** -0.153** -0.115** -0.032** -0.124** -0.296** -0.052**

(0.017) (0.025) (0.015) (0.015) (0.007) (0.013) (0.040) (0.020)
%∆TotalAssetst 0.157** 0.247** 0.365** 0.458** 0.375** 0.420** 0.353** 0.512**

(0.011) (0.022) (0.020) (0.024) (0.020) (0.027) (0.025) (0.026)
Flowt−1 -0.167** -0.241** -0.388** -0.431** -0.392** -0.368** -0.360** -0.509**

(0.013) (0.024) (0.022) (0.023) (0.022) (0.023) (0.026) (0.033)
log(TotalAssetst−1) -0.000** 0.000** -0.000 0.000** -0.000** 0.000** -0.000* 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
CashRatiot−1 0.007** 0.009** 0.008** 0.005** 0.006** 0.006** 0.006* 0.014**

(0.001) (0.003) (0.002) (0.001) (0.001) (0.001) (0.002) (0.003)
Fama-MacBeth

√ √ √ √ √ √ √ √

Obs. 64,941 22,628 46,603 68,129 103,156 278,891 27,975 9,614
adj. R2 0.368 0.463 0.479 0.559 0.402 0.457 0.618 0.626

∗ p<0.1; ∗∗ p<0.05; ∗ ∗ ∗ p<0.01

Table 3: Leverage targeting regressions, based on Fama-MacBeth regression (Newey-West std. errors
with 4 lags in parentheses). Monthly data from January 2007 to July 2019.

As for the FPR regressions, the results in Table 3 hide time-variation in the estimated
θ parameters. Figure 14 shows the 36-month rolling window average estimate of θt.
Insignificant values that fall within the 5% confidence bands (based on the standard
errors in Table 3) are shown as dotted lines. With the exception of institutional funds-
of-funds, the estimated parameters are always significantly negative for the period from
2015 onwards. The insignificance for institutional funds-of-funds is likely driven by the
fact that the number of observations is rather small for these funds; in fact, we can only
estimate the parameters for these funds from 2005 onwards (recall that the regression
only includes funds that actually make use of financial leverage). Since the full sample
estimates in Table 3 are significantly negative, we switch on the LT channel for all funds
that make use of leverage during all months in our model application.

3.2.3 Price Impacts

Having established how much of each individual marketable assets (bonds and equities)
the fund sector will liquidate, we need to quantify how strongly prices react to these

with yt = log(Leveragegrossi,t ). Parameter θ can be seen as a measure of the strength of mean-reversion of
time series y. Broadly speaking, there are three cases: i) if θ = 0 then leverage follows a random walk
(unit root); ii) if θ = −1 then leverage is white-noise; iii) if −1 > θ > 0 then leverage follows an AR(1)
process with parameter (θ + 1). The results in Table 3 point towards case iii). Note that for larger θ
(in absolute terms), a given time series shows stronger mean-reversion since the time series tends to stay
relatively close to its unconditional mean.

25The estimated coefficients are substantially smaller in absolute terms compared with those of Adrian
and Shin (2010) for U.S. commercial banks and broker-dealers. This suggests that funds’ leverage ratios
are less procyclical compared to these types of financial institutions.
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Figure 14: 36-month rolling window average of θt over time. Based Fama-MacBeth regressions in Table
3 (dotted lines indicate observations that are insignificant at the 5% level, based on standard errors in
Table 3).

sales. For this purpose, we use the standard Amihud (2002) ratio as our measure of price
impact:

PriceImpactk,t =
|Returnk,t|
Volumek,t

, (37)

which is the absolute return of asset k divided by the nominal trading volume during the
same period (based on daily data). The Amihud ratio is quite attractive for our purposes
for at least two reasons: first, it only requires information on prices and trading volumes
(more on this below); second, given a linear market impact function, we can approximate
the expected price drop from funds’ fire sales.26

In order to calculate PriceImpacts we rely on the CSDB. Unfortunately, the CSDB
only has information on trading volumes available from October 2015 onwards, meaning
that the PriceImpacts cannot be calculated prior to that.27 As shown in Table 4, the
PriceImpact-coverage is excellent for equities, which are generally exchange-traded: the
average coverage (per month) is 87% in terms of the number of equities held by German
investment funds. The holdings-weighted coverage is close to 97%. For bonds, the picture
is very different: the average PriceImpact-coverage is 1.9% for those bonds that are held
by German investment funds (volume-weighted coverage: 6.4%). This is driven by the

26The latter element is quite important, since other liquidity measures, such as the bid-ask spread,
do not allow for this. More specifically, the bid-ask spread could be used as a proxy for the minimum
expected price change due to asset liquidations (the price after liquidation should be closer to the bid
rather than the ask). However, if funds liquidate large volumes they will consume all of the available
liquidity at the best bid and we would need to model the shape of the order book further away from the
best bid.

27On the other hand, price and return data are generally available from September 2009 onwards. In
the future, we may use the estimated parameters to calculate model-implied PriceImpact parameters
prior to November 2015.
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fact that, for many bonds, there is no information on trading volumes since these tend to
be traded over-the-counter.28

PriceImpact-Coverage Equal-weighted Holdings-weighted
Equities - raw 86.64% 96.76%

(3.45%) (2.69%)
Bonds - raw 1.91% 6.36%

(0.52%) (1.95%)
Bonds - model 89.11% 94.62%

(1.26%) (0.64%)

Table 4: Average PriceImpact-coverage (std. dev. in parentheses). Monthly data from November 2015
to July 2019.
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Figure 15: Total number of unique assets (ISINs) held by different fund types.

Compared with previous fire sale stress tests, the number of assets included in our
application is substantially larger due to the fact that we work with the most granular
fund portfolios and incorporate more than one fund type (cf. Figure 15). In order to
incorporate funds’ sales of bonds, we use a simple regression approach that approximates
the missing PriceImpact-parameters for bonds. As shown in the last row of Table 4, this
method increases the PriceImpact-coverage for bonds to 89% (volume-weighted coverage:
around 95%).

For our regression model, we make the identifying assumption that bonds with similar
characteristics should also have similar levels of market liquidity (i.e., PriceImpacts).29

28PriceImpact-coverage for bonds is comparable when using information from the standard market
data providers.

29To identify ’similar’ bonds, we follow the literature. Nevertheless, our PriceImpact estimates might
over- or underestimate the liquidity of single bonds with missing PriceImpacts at the security level.
Within the given cross-section, however, we see no reason for our methodology to systematically over- or
underestimate bond liquidity.
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Characteristic Bond-/ Value
issuer-level 0 1 2

Age Group Bond ≤ 5 yrs. > 5 yrs. > 10 yrs.
Maturity Group Bond ≤ 1 yr. > 1 yr. > 5 yrs.
HeldByFunds Bond No Yes
DevelopedCountry Issuer No Yes
Sovereign Issuer No Yes
Financial Issuer No Yes
HighYield Bond ≤ 75th perc. > 75th perc.
Size Group Bond ≤ Median > Median

Table 5: Characteristics used in the cross-sectional PriceImpact-regression. Time-varying characteristics
are computed separately for each cross-section.

There are different ways of imputing missing Amihud ratios and here we restrict ourselves
to a simple linear regression model:

log(PriceImpactk,t) = bt ×Xk,t + εk,t, (38)

which uses data on all bonds for which we can calculate the PriceImpact-parameter at time
t while X includes the observable characteristics reported in Table 5. Note that the set k
includes bonds that are being held by German investment funds (corresponding to those
in the second line of Table 4) and bonds that are not being held by German investment
funds that have non-missing PriceImpacts. Also note that we run the above regression
separately for each month t. Based on the estimated coefficients, we can ‘predict’ the
missing PriceImpacts in month t as

̂log(PriceImpact−k,t) = b̂t ×X−k,t, (39)

where −k denotes bonds with missing PriceImpacts that are held by German investment
funds. With regards to the characteristics X used in the cross-sectional regressions, we
follow the literature and use the characteristics reported in Table 5 (see, e.g., Bao, Pan,
and Wang (2011)).

Table 6 summarizes the results: the first column shows regression results based on
the Fama-MacBeth approach, the second column shows results from a pooled regression
across all months, and the last column adds time FEs to the pooled regression. The
results are broadly in line with those in the literature and the parameters generally show
the expected signs: for example, large bonds, sovereign bonds, and bonds from a developed
country are more liquid; older bonds, bonds with a long time until maturity, and high-yield
bonds tend to be less liquid. We should also mention that the fit of the cross-sectional
regressions is relatively good (average adj.-R2 of 0.26) and the fact that adding time FEs
to the regressions hardly improves the R2 can be seen as an indication that the estimated
relationships are rather stable over the sample period.

For the sake of completeness, Figure 16 shows the dynamics of the PriceImpact-
parameters over time. The results are as expected: on average, equities tend to be
the most liquid instruments, followed by sovereign bonds, whereas non-sovereign bonds
(including financial and non-financial corporate bonds) tend to be the least liquid instru-
ments.
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Dep. var.:
log(PriceImpact) (1) (2) (3)
Age Group 0.151*** 0.126*** 0.137***

(0.019) (0.013) (0.015)
Maturity Group 0.425*** 0.441*** 0.445***

(0.034) (0.014) (0.014)
HeldByFunds 0.413*** 0.533*** 0.522***

(0.064) (0.027) (0.027)
DevelopedCountry -0.955*** -0.954*** -0.966***

(0.065) (0.024) (0.024)
Sovereign -1.889*** -1.893*** -1.862***

(0.068) (0.032) (0.032)
Financial -0.026 -0.036 -0.006

(0.045) (0.024) (0.024)
HighYield 0.310*** 0.338*** 0.342***

(0.051) (0.024) (0.023)
Size Group -1.079*** -1.043*** -1.037***

(0.055) (0.028) (0.028)
Fama-MacBeth

√

Time FEs
√

adj.-R2 0.265 0.237 0.258
Obs. 46,977 46,977 46,977

∗ p<0.1; ∗∗ p<0.05; ∗ ∗ ∗ p<0.01

Table 6: PriceImpact-regressions (std. errors in parentheses). Monthly data from November 2015 to
July 2019.
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4 Vulnerabilities in the German Fund Sector

4.1 Initial Shock Scenario

As discussed in Section 2, our triggering stress event is a sudden shock on the value
of investment funds’ asset portfolios. Here we assume an abrupt and strong repricing
in global bond and equities markets. Of course, such a scenario will be challenging for
individual financial intermediaries, but it is also considered relevant by policy makers and
regulators from a financial stability perspective given the high asset valuation levels (see
e.g. ECB Financial Stability Review in November 2019). This initial shock translates
into direct portfolio losses for funds (Step 0) as well as further indirect portfolio losses
due to funds’ cross-holdings (Step 1). These are followed by funds’ asset sales (Step 2),
which give rise to additional fund portfolio losses (Step 3).

In order to identify a severe but plausible shock scenario, we use monthly returns from
a battery of broad bond and equity market indices for various geographic regions during
the period 2000-2018.30 Since we are interested in severe repricing scenarios, we focus
on the lower tail of the historical index return distributions and compute equal-weighted
averages of the historical 1%, 2.5% and 5% return percentiles for bond and equity index
returns separately (see Panel A of Table 7). As expected, these tend to be much larger
in absolute terms for equities compared to bonds. We make a conservative choice and
use the 1%-percentiles as our initial shock for both bonds and equities. This amounts to
a security-level return shock of -4.48% for bonds and -14.16% for equities. For the sake
of comparison, Panel B of Table 7 shows the corresponding percentiles for monthly fund
returns and net flows during the same period, based on aggregated data for the different
fund types. Consistent with the evidence provided in Panel A, equity funds tend to show
the most extreme returns, relative to the other fund types.

30Details are available upon request from the authors.
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Panel A Averages of different percentiles
(monthly returns, in percent)

Bonds Equities
1%-perc. -4.48 -14.16
2.5%-perc. -2.77 -11.91
5%-perc. -1.94 -9.22

Panel B German investment funds (sector-level data).
Monthly returns (in percent) Monthly flows (in percent)

Retail Institutional Retail Institutional
Equity Bond Mixed FoF Equity Bond Mixed FoF Equity Bond Mixed FoF Equity Bond Mixed FoF

1%-perc. -8.81 -2.77 -4.15 -3.59 -13.19 -1.80 -4.70 -8.26 -4.85 -0.75 -0.53 -3.69 -2.54 -3.51 -2.60 -1.64
2.5%-perc. -7.08 -2.30 -3.13 -2.97 -12.16 -1.48 -4.01 -5.86 -3.61 -0.50 -0.32 -0.89 -1.57 -2.47 -1.49 -1.10
5%-perc. -6.23 -1.88 -2.74 -2.42 -8.92 -1.29 -3.25 -4.87 -1.84 -0.21 -0.15 -0.23 -1.30 -2.04 -1.07 -0.73

Table 7: Equal-weighted averages of different return percentiles for broad bond and equity market indices (Panel A) and German investment fund
returns and flows (Panel B), based on aggregated information for different fund types. Sample period: January 2000 - December 2018. Note: FoF refers
to funds-of-funds.



4.2 Results

As noted in the previous section, we always allow for time-variation in the FPR-channel
(the channel is only relevant for a given fund type in month t if the corresponding 36-
month rolling window average of γt is positively significant), while the LT-channel is
relevant for all fund types during all month (θt tends to be significant throughout the
application period).31 For fund managers facing selling pressure, the assumed levels of
market liquidity strongly affect our AV measure. In fact, as shown in Figure 16, the
estimated level of market liquidity can vary substantially over time, even during our
relatively brief sample period.

In the following, we will therefore show separate results for two specifications: in our
baseline specification, we take the dynamic PriceImpacts as described in the previous
section to account for the observed time-variation. We refer to this specification as the
actual market conditions. In our alternative specification, we acknowledge that the
above specification likely overestimates the level of market liquidity during stress periods
(such as large losses on global bond and equity markets). By assumption, fund managers
need to liquidate assets in an adverse scenario and it seems reasonable to assume that
market liquidity should be under stress as well. In our alternative specification, which
we refer to as stressed market conditions, we use the 90% percentile of the observed
PriceImpact parameter over time for each asset.32 Note that this approach does not take
into account time-variation in market liquidity and should therefore yield relatively less
noisy AV estimates.

In what follows, we apply the model separately for each month and impose the same
initial shock to bonds and stocks consistently during each month. On average, the initial
shock in Step 0 amounts to losses of 6.6% of the sector’s TNA (cf. the blue squares in Fig-
ure 20).33 Given that the initial shock is independent of the assumed market conditions,
we can directly compare the AVs in the two cases.

4.2.1 Actual Market Conditions

Aggregate vulnerability over time. Panel (a) of Figure 17 shows the AV of the
German fund sector over time. The average AV amounts to 1.2%, but shows substantial
time-variation. For example, the AV ranges between 0.8% (March 2018) and 1.9% (May
2018) of the sector’s TNA. On average, the AV amounts to losses that are on the order
of 18% of the initial shock (ranging between 12% and 28%; cf. Figure 20). Overall, these
results indicate that the German fund sector’s connectedness may exacerbate an abrupt
drop in equity and bond prices, even under market conditions that are not particularly
stressed. However, in comparison to similar analyses for the European banking sector

31For the sake of completeness, in Appendix E we show results for a constant FPR (based on the
estimates in Table 1). This corresponds to the approach of Fricke and Fricke (2020), who assumed that
the FPR parameters are time-invariant.

32On an asset-by-asset level, the 90% percentile of the PriceImpact parameter is, on average, 3.6 times
the median value for each asset.

33A larger initial shock would, ceteris paribus, lead to a higher AV since funds would have to sell more
securities (cf. Figure 6). In fact, the relationship between the magnitude of the initial shock and the
AV is non-linear (cf. Figure 6). For the initial shock imposed in this paper, however, we confirm that
doubling the size of the initial shock increases the AV approximately by a factor of 2 as well.
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(a) Actual market conditions (dynamic PriceImpacts).

(b) Stressed market conditions (constant PriceImpacts, 90%-perc.).

Figure 17: AV over time. We apply the model separately for each month. The asset-level initial shock
is -4.48% for bonds and -14.16% for equities. Contribution by fund type is based on aggregating the
fund-level Systemicness measure in Eq. (31).



(as in Greenwood et al. (2015)), these results make the German investment fund sector
appear relatively robust.34

Note that, despite being relatively noisy, the AV has increased by 80% over our sample
period (from 1.0% in November 2015 to 1.8% in July 2019). In order to better understand
whether this increase might be driven by the nominal growth of the fund sector, we also
calculated an alternative AV under the assumption of constant total assets.35 Specifically,
in our model application, we rescale the nominal value of funds’ portfolios to match exactly
the total assets in November 2015, as shown in panel (a) of Figure D.3 in the Appendix.36

As expected, the AV is smaller when we fix the size of the fund sector and the distance
with the actual AV increases over the sample period.37 Nevertheless, even in this case
the AV increased by approximately 60% (from 1.0% to 1.6%). Given that all other model
inputs are kept as in the baseline application, these results suggest that at most 25% of
the AV increase can be attributed to the sector’s nominal growth. In other words, the
increase in the AV is ‘real’.

Panel (a) of Figure 17 also shows the contribution of the different fund types to the
overall AV. Unsurprisingly, mixed funds (55% of the total AV) and bond funds (27% of
the total AV) are the main contributors to the AV, given their relatively illiquid asset
portfolios and high levels of direct connectedness. However, it also becomes clear that
other fund types can add substantially to the AV during certain periods. Most strikingly,
retail equity funds made up approximately 40% of the sector’s AV in December 2018,
largely due to their common asset liquidations.38 During this period, equity markets faced
a substantial downward repricing which had a large effect on the PriceImpact parameters
(cf. Figure 16). In other words, equity funds’ asset sales had a larger effect on asset
prices during this period.

Relative importance of the different channels. Which channels contribute most
to the overall AV? Based on Eq. (30) we can broadly decompose the AV into losses due to
funds’ indirect connectedness (LossFireSales) and losses due to fund’s direct connectedness
(LossCrossHoldings), where the latter can be split into a component that comes from the
initial shock and a component that comes from funds’ fire sale losses. Panel (a) of Figure

34Greenwood et al. (2015) report an AV of 245%, based on a 50% shock on sovereign debt from Greece,
Italy, Ireland, Portugal, and Spain. Note that the difference in the AVs of banks and investment funds is
strongly driven by differences in their funding models. These differences lead to larger asset sales of banks
due to the LT channel and also imply a much smaller denominator for rescaling the AV in Eq. (30). On
the other hand, Greenwood et al. (2015) do not incorporate banks’ direct connectedness in their model,
thus underestimating vulnerabilities from this layer of connectedness.

35In addition, we explore the key drivers of the AV in Section C of the Appendix.
36The relationship between the AV and the size of the fund sector is sub-linear. This is because losses

from Step 1 remain unaffected by changes in the size of the fund sector. In nominal terms, however,
funds will need to liquidate twice as many assets following the initial shock, such that the price drop will
be twice as large. In other words, percentage losses due to cross-holdings remain roughly unaffected by
the size of the fund sector, while losses due to fire sales become be twice as large. We confirm that this
is indeed the case in our sample. On average, doubling the size of the fund sector would increase the AV
by a factor of 1.32 (1.45) under actual (stressed) market conditions.

37For example, in July 2019, the actual AV is 1.8% and the value with fixed total assets is 1.6%.
Therefore, the relative AV difference is 14%, while the relative difference in total assets is 28%.

38Note that institutional equity funds added very little compared to retail equity funds, since these
funds had to liquidate relatively few assets due to an insignificant FPR (cf. Figure 12).
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(a) Actual market conditions (dynamic PriceImpacts).
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(b) Stressed market conditions (constant PriceImpacts, 90%-perc.).

Figure 18: AV and the relative contribution of the different channels.



18 shows the relative contribution of these components under actual market conditions.
Clearly, the cross-holdings channel tends to dominate, in particular losses from Step 1,
with an average contribution of 65% of the estimated AV due to this component. The
remainder is largely due to the FPR channel (average contribution of 22%) and the LT
channel (11%). This dominance of the cross-holdings channel results from the relatively
high liquidity of the underlying bond and equity markets during our sample period, as
the fire sale channel and the cross-holdings channel are very asymmetrically affected
by changes in market liquidity: while the fire sale channel is driven by liquidity in the
underlying securities markets, liquidity has only an indirect effect on the cross-holdings
channel (via cross-holding losses due to funds’ fire sales, Step 3b). In other words, the
picture might look different for highly illiquid periods (see also section 4.2.2). Note that
up until the end of 2016, the FPR channel and the LT channel both had roughly the
same contribution to the overall AV, which shows that the LT channel can matter despite
the relatively low leverage ratios in the German fund sector.39 This appears to be due
to an aggregation effect: while we know that funds generally make relatively little use of
financial leverage (cf. Figure 13), aggregating the liquidation amounts due to LT across all
funds will lead to a sizable effect on asset prices. This is particularly true for institutional
funds, for which the FPR channel tends to be less relevant.

The relative contribution of the cross-holdings channel remains relatively stable over
our sample period across all fund types. However, Figure 18 hides substantial variation in
losses due to cross-holdings for different fund types. Most importantly, one would expect
that funds-of-funds, which generally mainly invest in fund shares, will incur most of their
losses via the cross-holdings channel. (Recall that our current modelling framework does
not allow funds to liquidate fund shares, but only bonds and equities.) We indeed find
evidence along those lines: averaged across all sample fund-months, losses due to cross-
holdings made up only around 7.3% of the total losses for equity funds, 5.9% for bond
funds, and 29% for the average mixed fund. On the other hand, losses due to cross-holdings
make up around 92.3% of the total losses for fund-of-funds. In other words, in the absence
of the cross-holdings channel, most funds-of-funds would suffer hardly any losses, despite
the fact that their portfolios consist of funds that suffered (potentially substantial) losses
themselves. Given that cross-holdings within the German fund sector tend to become more
important over time, we anticipate the fund sector’s direct connectedness to contribute
even more to the overall vulnerability of the sector.

A Closer Look at Fund-Level Indicators. We now take a closer look at the fund-
level results. From a macroprudential perspective, it is crucial to identify the most (sys-
temically) important funds. In this regard, we should stress that the results shown in Fig-
ures 17 and 18 were obtained by aggregating fund-level Systemicness measure in Eq. (31),
which measures how strongly the fund affects other funds due to its direct and indirect
connectedness.

39We should note that the results in Figure 18 were obtained for the case of η = 1 (immediate leverage
targeting). If we were to switch off the LT channel (η = 0), the AV would be lowered by the bars
corresponding to losses due to leverage targeting Figure 18.
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Transition probability (in %)
Systemicnesst Systemicnesst+12

Decile 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Panel A 1 80.18 11.53 3.62 2.21 1.16 0.56 0.32 0.20 0.14 0.10 62.88 11.92 5.24 4.16 4.20 4.32 3.04 2.36 1.28 0.60
(Actual) 2 20.49 49.55 20.25 5.41 2.40 1.23 0.43 0.19 0.04 0.02 18.18 40.09 19.00 6.26 4.84 4.84 3.87 1.64 0.89 0.37

3 7.43 19.33 44.32 19.80 5.54 2.07 1.02 0.32 0.12 0.05 11.28 18.69 32.20 17.51 8.61 5.27 3.41 1.71 0.96 0.37
4 4.36 5.44 19.76 44.09 18.83 5.08 1.51 0.54 0.31 0.08 7.89 6.93 23.07 28.00 20.41 7.96 3.02 1.40 0.88 0.44

Systemicnesst 5 2.01 2.36 5.74 19.28 47.52 18.17 3.52 0.83 0.33 0.24 6.93 4.69 7.68 29.66 24.52 16.39 5.81 2.98 0.60 0.75
6 0.70 1.00 2.06 4.95 19.13 53.12 16.18 1.82 0.67 0.36 4.61 3.32 3.82 6.99 26.03 31.07 16.01 4.76 2.24 1.15
7 0.53 0.35 0.89 1.63 3.35 16.82 59.38 14.34 1.97 0.73 4.30 2.08 2.08 2.87 5.09 22.15 38.21 16.49 4.16 2.58
8 0.39 0.18 0.19 0.57 0.70 1.73 14.91 67.83 11.97 1.54 2.90 1.01 1.59 1.01 2.24 3.11 20.13 48.37 17.16 2.46
9 0.22 0.06 0.06 0.15 0.34 0.63 1.81 12.36 77.01 7.35 1.72 0.50 0.64 0.64 0.86 1.36 4.37 17.77 58.31 13.83

10 0.22 0.05 0.03 0.08 0.16 0.29 0.72 1.56 7.46 89.42 1.96 0.15 0.29 0.29 0.29 0.94 2.03 3.41 14.81 75.82
Panel B 1 82.77 10.03 3.24 1.79 0.96 0.53 0.29 0.17 0.12 0.09 63.89 10.80 5.76 4.12 4.40 3.96 3.36 1.76 1.20 0.76
(Stressed) 2 18.14 59.90 15.90 3.17 1.53 0.71 0.36 0.20 0.07 0.02 18.00 40.18 17.48 5.90 5.30 5.00 4.78 2.09 1.12 0.15

3 6.12 14.99 58.85 15.38 2.65 1.15 0.48 0.17 0.13 0.08 11.35 19.57 30.92 18.82 8.66 4.85 2.76 1.79 0.67 0.60
4 3.41 3.39 14.54 62.15 13.38 1.81 0.78 0.38 0.11 0.05 6.90 6.61 23.01 30.81 17.97 6.90 3.56 1.86 1.56 0.82

Systemicnesst 5 1.74 1.54 2.68 13.11 67.53 11.34 1.25 0.43 0.27 0.12 7.26 4.77 8.14 25.68 27.07 14.23 6.90 3.23 1.76 0.95
6 0.76 0.75 1.12 1.76 11.59 73.75 8.95 0.78 0.32 0.22 5.38 3.85 3.85 5.60 23.35 36.58 13.38 3.35 2.25 2.40
7 0.56 0.37 0.54 0.69 1.03 9.10 78.81 7.86 0.69 0.37 4.71 2.78 2.43 3.35 5.42 20.41 38.33 15.99 3.28 3.28
8 0.37 0.12 0.13 0.29 0.43 0.74 7.98 82.90 6.62 0.42 2.02 1.44 1.59 1.08 2.02 2.82 21.08 51.34 13.94 2.67
9 0.21 0.04 0.09 0.10 0.20 0.37 0.68 6.73 86.98 4.59 2.00 0.29 0.72 1.07 1.14 2.00 3.43 17.31 61.09 10.94

10 0.22 0.03 0.06 0.11 0.06 0.16 0.28 0.39 4.71 93.99 1.74 0.22 0.36 0.44 0.58 1.53 1.96 3.12 13.65 76.40

Table 8: Persistence of fund-level Systemicness. The Table shows the transition probability (in percent) of funds in Systemicness-decile x in month t to
be in Systemicness-decile y in the future, over the next 1 and 12 months, respectively. Panel A shows the results for the actual market conditions and
Panel B for stressed market conditions. Results are pooled across all months (November 2015 to July 2019).



One important question regards the persistence of the fund-level Systemicness indi-
cator. We would expect a high level of persistence, given that the structural features of
individual funds (in particular their asset portfolios) tends to be rather persistent over
time. The results in Table 8 support this notion and provide evidence that the Systemic-
ness indicator is indeed persistent, particularly so for the extreme cases. For example,
after sorting funds into Systemicness-deciles separately for each cross-section t, we find
that funds in decile 1 in month t have a probability of 80% to stay in this decile in month
t+ 1 (left part of Panel A). For decile 10, the probability is close to 90%. Over 12 months
(right part of Panel A) the values are somewhat lower at 63% and 76%, respectively, but
still suggest high levels of persistence in funds’ Systemicness).

Another important question is whether more systemic funds are also more vulnerable
(i.e., suffer large relative second round losses). First evidence in this regard is based on a
significant Pearson-correlation between these two measures of 0.18 when pooling across all
fund-month observations. This suggests that, on average, funds with larger Systemicness
may also incur larger second round losses. In order to take a closer look at funds with
large Systemicness, Table 9 shows the probability of funds sorted into Systemicness decile
x (rows) to be in Loss decile y (columns) during month t. Panel A shows the average
results over each cross-section t. The results are striking: for example, funds with the
smallest Systemicness (decile 1) have a 44% probability to also display the smallest losses
(decile 1). On the other hand, funds with the highest Systemicness (decile 10) have a 78%
probability to also show the largest losses. In other words, funds that are systemic also
tend to be vulnerable. Clearly, these are the funds that are particularly relevant from a
macroprudential perspective.

Are Funds with higher systemicness more vulnerable? (Probability in %)
Relative losst

Decile 1 2 3 4 5 6 7 8 9 10
Panel A 1 43.52 12.03 10.63 9.79 8.32 7.15 5.23 2.38 0.73 0.22
(Actual) 2 21.25 16.83 13.35 13.75 12.10 10.06 7.16 3.74 1.36 0.41

3 18.24 22.04 14.47 11.91 10.47 9.12 7.60 4.03 1.59 0.53
4 13.54 20.33 17.68 13.90 11.48 9.79 7.68 3.85 1.23 0.51

Systemicnesst 5 6.88 12.79 17.15 16.90 15.53 13.17 9.95 5.23 1.83 0.55
6 2.42 6.98 13.15 15.84 17.72 17.76 14.66 8.24 2.43 0.80
7 0.71 2.37 6.27 9.60 13.97 18.70 23.96 19.27 3.98 1.16
8 0.17 0.51 1.69 2.90 5.38 8.63 16.58 36.00 26.71 1.43
9 0.11 0.20 0.67 1.00 1.86 2.79 4.87 15.72 51.94 20.85

10 0.01 0.05 0.30 0.45 0.60 1.23 2.48 4.29 12.36 78.23
Panel B 1 42.16 11.44 10.54 9.53 8.34 7.14 5.42 3.42 1.52 0.49
(Stressed) 2 21.79 14.22 13.19 13.55 10.84 9.85 7.66 5.27 2.44 1.19

3 17.07 19.41 14.79 12.02 10.71 9.65 7.14 5.38 2.80 1.03
4 13.88 20.42 16.87 13.66 10.58 9.08 7.63 4.54 2.31 1.01

Systemicnesst 5 8.17 14.23 15.65 15.71 14.58 12.12 9.11 6.61 2.78 1.05
6 4.00 8.61 13.18 14.05 16.82 15.56 13.11 8.34 4.56 1.77
7 0.73 4.12 7.26 10.42 13.93 17.15 21.65 16.55 5.95 2.24
8 0.09 1.06 2.17 4.38 7.37 11.23 17.60 28.20 24.77 3.12
9 0.20 0.85 1.16 1.90 2.61 4.05 6.96 18.23 43.32 20.71

10 0.03 0.27 0.58 1.06 1.65 2.58 3.67 5.26 13.07 71.82

Table 9: This Table shows the probability of funds (in %) that are in Systemicness-decile x to be in
Loss-decile y (relative second round loss). Decile 1 (10) corresponds to the smallest (largest) values in
absolute terms, respectively. For example, Decile(Systemicness)=10 and Decile(Loss)=10 would be funds
whose connectedness has a large effect on other funds and that also suffer large losses themselves. Panel
A shows the results for the actual market conditions and Panel B for stressed market conditions. Results
averaged over the different cross-sections (November 2015 to July 2019).
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Spillover effects to the broader financial system. Investment funds are not only
connected amongst themselves, but also with other economic sectors. In particular, Ger-
man investment funds are predominantly held by actors from the financial system (cf. Fig-
ure 11). This could make these actors prone to spillover effects triggered by losses within
the fund sector.40 Panel (a) of Figure 19 shows how losses of German investment funds
translate into spillover portfolio losses to the respective fund holders. Note that, in con-
trast to Figures 17 and 18, the Figure reports losses relative to each sector’s aggregated
fund portfolio TNA. Importantly, these spillover losses only show the second round ef-
fects (Steps 1 and 3), not the initial shock (Step 0). (We will comment on the relative
magnitude of the second round losses below.)

The results indicate that these portfolio losses fluctuate strongly over time and can
reach up to 3.3% of a given sector’s fund holdings. Pension funds and insurance companies
tend to display the largest second round losses (average losses of 2.3% and 1.3% on
their fund portfolios, respectively). This is not surprising given that these are the two
largest investor groups in German investment funds, particularly so in (institutional)
bond funds and mixed funds. The results also indicate that their hypothetical losses
increased substantially from the end of 2016 onwards, when the FPR channel became
relevant for institutional bond funds. Compared with other sectors, investment funds and
households tend to display the smallest losses (average loss of 0.4% and 0.5% on their fund
portfolios). However, households’ hypothetical losses reached 3.3% in December 2018,
since households tend to be the main investors in German retail equity funds, which were
the main contributors to the AV during this period (cf. Figure 17). Figure 20 plots the
second round losses for the different sectors from Figure 19 against the losses due to the
initial shock (Step 0). For the sake of completeness, we also report the AV and initial
shock size for the German fund sector as squares (denoted as Total). For example, for
pension funds the second round losses can reach up to 50% of the initial shock.

Overall, the results indicate that spillover effects due to funds’ connectedness tend to
hit fund investor groups asymmetrically and can be substantial, even under non-stressed
market conditions. Strikingly, we find that only about 4% of the fund sector losses would
actually remain in the fund sector, but more than 75% of the overall losses would be borne
by fund investors from the wider financial system. In other words, losses in the fund sector
tend to propagate to non-fund financial intermediaries. Future research should therefore
take a closer look at intersectoral effects of fund sector vulnerabilities.

4.2.2 Stressed Market Conditions

Aggregate vulnerability over time. We now turn to the results for stressed mar-
ket conditions (based on constant PriceImpact parameters at the asset-specific 90% per-
centile). Panel (b) of Figure 17 shows the AV of the German fund sector over time for this
case. Not surprisingly, the AVs are substantially larger under stressed market conditions
with an average value of 1.8% (ranging between 1.2% and 3.0%). On average, the AV
amounts to losses that are on the order of 28% of the initial shock (ranging between 18%
and 44%; cf. Figure 20). This suggests, that the fund sector could amplify losses during

40Note that this approach only takes into account losses on German fund shares that are held by these
sectors. In future work, we also aim to make use of information on the bond and equity portfolios that are
directly held by these sectors and estimate losses on these investments due to funds’ asset liquidations.
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(a) Actual market conditions (dynamic PriceImpacts).
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(b) Stressed market conditions (constant PriceImpacts, 90%-perc.).

Figure 19: Second round spillover portfolio losses, by sectors.
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Figure 20: Initial losses versus second round spillover portfolio losses, by sectors.



stressed market conditions more severely.
Note that the AV dynamics display an even stronger time trend, as the AV has in-

creased by 140% (from 1.2% in November 2015 to 3.0% in July 2019). In line with the
results under actual market conditions, Panel (b) of Figure D.3 in the Appendix shows
that much of this growth is ‘real’: over the same period, the AV under fixed total assets
would have roughly doubled (from 1.2% to 2.5%). In other words, at most 1/3 of the
increase in the AV is purely due to the nominal growth of the fund sector.

As before, mixed funds and bond funds remain the chief contributors to the AV (rel-
ative contribution of 48% and 37%, respectively), while equity funds and funds-of-funds
(relative contribution of 5.4% and 9.8%, respectively) play a much smaller role. Note that
from early 2018 onwards, the relative contribution of institutional mixed funds increases,
which is largely due to an increased use of financial leverage of these funds (the FPR-
channel is switched off for these funds for the full application period, cf. Figures 12 and
13).41 We find that the large increase in the AV at the end of the sample period is mainly
due to an increasing FPR parameter for institutional bond funds and an increasing use
of financial leverage for some institutional mixed funds.

Relative importance of the different channels. Panel (b) of Figure 18 shows the
relative contribution of the different loss components under stressed market conditions.
Given that funds’ asset sales now have a stronger impact on market prices, the two fire
sale components become more important. In this regard, the average relative contribution
of the FPR component to the AV is 33.4% and that of the LT component is 19.7%,
thus making up more than half of the overall AV. Losses due to cross-holdings remain
important, with losses from Step 1 making up an average of 43.8% of the overall AV.
Despite being somewhat lower, losses due to cross-holdings make up 6.2% and 5% of the
overall losses of equity and bond funds, respectively. For mixed funds and funds-of-funds,
the values are 26.2% and 91.6%, thus indicating that cross-holdings indeed matter from
a financial stability perspective. Lastly, we should note that Panel (b) of Figure 18 also
neatly illustrates how some of the observed variation in the AV is due to the time-dynamics
of the FPR-channel (e.g., the jump in late 2016).

A Closer Look at Fund-Level Indicators. Similar to the results for the actual
market conditions, we find that Systemicness is highly persistent (cf. Panel B of Table
8) and that more systemic funds tend to be more vulnerable. For example, the Pearson-
correlation between fund-level Systemicness and relative losses is positively significant
with a value of 0.18. Moreover, Panel B of Table 9 shows that funds with the highest
Systemicness (decile 10) have a 72% probability to also show the largest losses. In other
words, funds that are systemic also tend to be vulnerable.

Spillover effects to the broader financial system. In line with the results under
actual market conditions, Panel (b) of Figure 19 shows that pension funds and insurance
companies would bear the largest spillover losses due to their fund investments (average
second round losses of 2.9% and 2.4% on their fund portfolios), with maximum losses

41This can be seen even more clearly when comparing the results in Panel (b) of Figure 17 with those
in Panel (b) of Figure E.4 in the Appendix, where we use a constant FPR-parameter for all fund types
(γ = 0 for all institutional funds).
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reaching above 4%. In fact, much of the time dynamics in the overall AV in Panel (b)
of Figure 17 appear to be driven by this set of fund investors. Again, households and
investment funds tend to display the smallest losses (both showing average second round
losses 0.7% on their fund portfolios). In most cases, however, we see a positive time trend
in these hypothetical losses such that spillover effects to the broader financial system
appear to become more relevant over time. Figure 20 shows that the second round losses
for both pension funds and insurance companies can reach up to 70% of the losses due to
the initial shock. Lastly, we again find that only about 4% of the fund sector losses would
actually remain in the fund sector, while more than 75% of these losses would have to be
borne by non-fund financial intermediaries.

4.3 Discussion

One of our key findings is that both the direct connectedness of investment funds and their
pro-cyclical behavior may aggravate financial market stress. The estimated vulnerabilities
are due to the fund sector’s strong intra- and intersectoral connectedness. From a financial
stability perspective, funds’ intrasectoral connectedness is important since it facilitates the
propagation of shocks through the fund sector. Funds’ intersectoral connectedness then
has additional effects on fund investors, most importantly the wider financial system.

Our analysis suggests that fund sector vulnerabilities are both driven by direct connec-
tions (cross-holdings), but also by indirect connections (portfolio overlap). Depending on
the assumed market conditions, the relative importance of these two layers of connections
may differ. In particular, direct connections tend to drive the fund sector’s vulnerability
in times of moderate market conditions. During stressed market conditions, indirect con-
nections tend to matter more since funds’ asset sales have larger price effects. In addition,
vulnerabilities resulting from direct and indirect fund-level connections are interrelated:
as funds’ fire sales increase, so do funds direct losses via their cross-holdings. Overall,
these findings suggest that funds’ cross-holdings must be taken into account to accurately
assess fund sector vulnerabilities. In addition, our finding that fund sector losses would
largely be borne by non-fund financial intermediaries suggests that a system-wide view
on fund sector vulnerabilities is needed.

We should stress that, while our estimated fund sector vulnerabilities can be substan-
tial, we likely underestimate these vulnerabilities. This is for several reasons: first, our
sample period is relatively brief and reflects a period with relatively modest market stress.
It is therefore possible that the AVs could increase during prolonged periods of market
stress. Second, our analysis only takes into account German investment funds. Of course,
adding non-German investment funds to the model could increase the potential selling
pressure during a stress event. Relatedly, our framework is flexible enough to include
a broad variety of financial intermediaries (e.g., banks) to quantify financial sector-wide
vulnerabilities. Third, when it comes to spillover losses to the wider financial system,
we only discussed losses propagating to different holder groups via direct fund holdings.
However, given the results of this paper, second round losses via common asset holdings
can be substantial, especially during stressed market conditions. As such, non-fund finan-
cial intermediaries would incur additional losses on their asset portfolios, which we did
not incorporate in our analysis. Fourth, as noted throughout the paper, our fund sector
AV depends on the assumed initial shock. As such, a more severe stress scenario could
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affect the estimated vulnerabilities.
From a macroprudential policy perspective, two key aspects on the current agenda to

limit fund sector vulnerabilities are i) curtailing funds’ use of leverage, and ii) assuring
that funds’ asset portfolios are sufficiently liquid. In particular, proper asset liquidity
management practices allow for smooth asset liquidations in the case of large fund in-
vestor redemptions. Accordingly, macroprudential policy discussions focused on both
leverage limits and liquidity management tools (LMT), most importantly notice periods,
redemption gates or swing pricing (see, e.g., Hanouna, Noval, Riley, and Stahel (2015); Fi-
nancial Stability Board (2017)). The European Systemic Risk Board (2018) recently pub-
lished recommendations directed towards the European Commission and the European
Securities and Markets Authority (ESMA) to reduce risks to financial stability stemming
from funds’ liquidity transformation and use of leverage. These recommendations include,
among other aspects, the introduction of EU-wide harmonized LMTs, a refinement of the
already existing guidelines for funds’ liquidity stress-testing and limiting measures for (al-
ternative) investment funds’ use of leverage. While ESMA already published guidelines
for liquidity stress-testing, work on both guidelines for macroprudential leverage limits
and the EU-wide harmonization of LMTs is ongoing. For example, it remains unclear
whether fund managers would use LMTs adequately and sufficiently in case they were to
fear negative signalling effects.42 However, existing research suggests that swing pricing
may be a useful tool for mitigating fund sector vulnerabilities (e.g., Capponi et al. (2018);
Jin et al. (2019)). Looking forward, we believe that funds’ cross-holdings should deserve
further attention as our findings suggest that these matter for financial stability.

5 Conclusions

In this paper, we showed that the connectedness of the German fund sector matters for
financial stability. We propose a novel approach to quantify fund sector vulnerabilities to
both indirect (portfolio overlap) and direct (cross-holdings) connections between invest-
ment funds. In our empirical application, we show that the vulnerability of the German
fund sector can be substantial and tends to increase over time. This suggests that the
procyclical behavior of German funds could enforce adverse developments in global secu-
rity markets. Furthermore, we document substantial spillover risks resulting from fund
sector vulnerabilities, since the majority of fund sector losses would have to be borne by
fund investors from the wider financial system. Of course, all of these results are subject
to the assumed stress scenario and estimated vulnerabilities may differ substantially un-
der alternative stress scenarios. Moreover, our stress test application covers a relatively
brief sample period with relatively low levels of market stress. As such, the estimated
vulnerabilities could be even larger during prolonged periods of stress.

We make an important step towards a system-wide view on fund sector vulnerabilities.
Nevertheless, as discussed in our paper, our approach likely underestimates system-wide
vulnerabilities, since we only include German investment funds. A natural next step
would be to explicitly incorporate funds from other jurisdictions (e.g., Ireland and/or

42At the national level, additional LMTs have been introduced in Germany in March 2020, including
redemption gates, notice periods, and swing pricing. Single asset managers can now include these in their
funds’ investment brochures which need to be approved by the German Federal Financial Supervisory
Authority (BaFin).
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Luxembourg) and additional financial intermediaries (most importantly banks). Given
that our model is an extension of the banking fire-sale model of Greenwood et al. (2015),
banks could be easily incorporated into the model. Lastly, we should also note that
we currently assume that funds only liquidate bonds and equities under stress. In the
future, we aim to explicitly incorporate fund share redemptions as a means for funds to
obtain liquidity. Based on the network perspective of funds’ cross-holdings that we have
provided in this paper, it would be interesting to explore how large redemption shocks
could propagate through this network. Based on the rich dataset at hand, it would also be
possible to validate contagion mechanisms through funds’ cross-holdings. Another aspect
worth exploring is to what extent the increasing levels of direct connectedness among
investment funds may lead to more homogeneous fund performances (see Fricke (2019)).
For this purpose, the network perspective taken in this paper should provide a useful
framework.
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A Flow-Performance Relationship (FPR)

Dep. var.: Equity funds Bond funds Mixed funds Fund-of-funds
Flowt Retail Inst. Retail Inst. Retail Inst. Retail Inst.
Returnt−1 0.121*** 0.010 0.191*** 0.050 0.050*** 0.009 0.053 0.066

(0.015) (0.020) (0.035) (0.031) (0.013) (0.009) (0.040) (0.052)
Returnt−2 0.040*** -0.009 0.023 0.047*** 0.063*** 0.009 -0.004 -0.019

(0.013) (0.017) (0.030) (0.014) (0.012) (0.007) (0.029) (0.055)
Returnt−3 0.027* -0.005 0.026 0.021 0.060*** 0.012* -0.021 -0.038

(0.014) (0.020) (0.029) (0.016) (0.013) (0.007) (0.024) (0.056)
Returnt−4 0.014 -0.022 0.000 -0.002 0.051*** 0.016** -0.004 0.136

(0.013) (0.020) (0.026) (0.011) (0.011) (0.008) (0.026) (0.133)
Returnt−5 0.021 -0.025 0.043 0.031** 0.024* -0.007 0.017 0.071

(0.014) (0.025) (0.029) (0.013) (0.012) (0.008) (0.021) (0.044)
Returnt−6 0.024* -0.016 0.044 0.000 0.039*** 0.004 -0.013 0.122*

(0.012) (0.020) (0.029) (0.014) (0.012) (0.007) (0.024) (0.068)
Returnt−7 0.019 -0.016 0.054** 0.015 0.038*** 0.007 0.074*** -0.002

(0.012) (0.016) (0.027) (0.013) (0.011) (0.008) (0.028) (0.046)
Returnt−8 0.017 -0.014 0.031 0.016 0.042*** 0.012 -0.038 -0.213**

(0.013) (0.036) (0.031) (0.012) (0.013) (0.007) (0.023) (0.106)
Returnt−9 0.003 -0.009 0.078*** 0.005 0.021 0.020*** 0.017 0.006

(0.012) (0.018) (0.026) (0.013) (0.013) (0.006) (0.024) (0.052)
Returnt−10 0.009 0.010 -0.006 0.010 0.014 0.019** -0.041 -0.049

(0.012) (0.016) (0.026) (0.016) (0.014) (0.009) (0.027) (0.078)
Returnt−11 0.027** 0.035 0.088*** 0.019 0.030** 0.008 0.040 0.015

(0.012) (0.026) (0.030) (0.015) (0.014) (0.008) (0.026) (0.049)
Returnt−12 0.010 -0.003 -0.024 -0.062*** 0.028** -0.033*** 0.017 -0.127**

(0.012) (0.018) (0.029) (0.018) (0.012) (0.009) (0.028) (0.052)
Flowt−1 0.076*** 0.058*** 0.123*** 0.052*** 0.125*** 0.035*** 0.065*** 0.007

(0.012) (0.020) (0.016) (0.010) (0.008) (0.004) (0.023) (0.019)
Flowt−2 0.051*** 0.048*** 0.053*** 0.033*** 0.081*** 0.025*** 0.083*** 0.036**

(0.009) (0.018) (0.011) (0.006) (0.008) (0.003) (0.019) (0.017)
Flowt−3 0.030*** 0.004 0.043*** 0.023*** 0.061*** 0.018*** 0.028* 0.038**

(0.008) (0.007) (0.010) (0.006) (0.006) (0.002) (0.016) (0.015)
Flowt−4 0.043*** 0.007 0.037*** 0.009* 0.067*** 0.015*** 0.041 0.001

(0.007) (0.009) (0.012) (0.005) (0.007) (0.003) (0.026) (0.010)
Flowt−5 0.032*** 0.003 0.055*** 0.022*** 0.045*** 0.013*** 0.016* 0.022***

(0.011) (0.005) (0.012) (0.007) (0.005) (0.002) (0.009) (0.008)
Flowt−6 0.009 0.024** 0.009 0.018*** 0.031*** 0.008*** 0.055*** 0.015*

(0.012) (0.010) (0.008) (0.006) (0.005) (0.002) (0.016) (0.009)
Flowt−7 0.003 0.006 0.042*** 0.012 0.039*** 0.008*** 0.033** 0.032

(0.008) (0.009) (0.013) (0.008) (0.006) (0.003) (0.013) (0.023)
Flowt−8 0.023** 0.013** 0.012 0.010** 0.016*** 0.008*** 0.051*** 0.024

(0.010) (0.006) (0.009) (0.005) (0.005) (0.002) (0.014) (0.017)
Flowt−9 0.030*** -0.006 0.011 0.022*** 0.013** 0.009*** 0.016 0.015*

(0.010) (0.007) (0.009) (0.006) (0.005) (0.003) (0.011) (0.008)
Flowt−10 -0.011 0.013** -0.001 0.013** 0.009 0.007*** 0.006 0.027**

(0.009) (0.006) (0.011) (0.006) (0.007) (0.002) (0.010) (0.013)
Flowt−11 0.013* 0.011 0.013 0.008 0.025*** 0.008*** 0.006 0.012

(0.007) (0.009) (0.008) (0.005) (0.006) (0.002) (0.018) (0.010)
Flowt−12 0.027*** 0.025*** 0.030*** 0.025*** 0.015*** 0.031*** 0.044** 0.047***

(0.007) (0.008) (0.009) (0.006) (0.004) (0.005) (0.017) (0.014)
log(TNAt−1) 0.000 0.000 -0.000 0.000 -0.000 -0.000** -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
log(Aget) -0.002*** -0.001 0.000 -0.001** -0.000 -0.001*** -0.002* -0.003***

(0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.001) (0.001)
Time FEs

√ √ √ √ √ √ √ √

Obs. 60,025 25,117 43,510 82,730 88,892 315,174 26,020 9,949
adj. R2 0.034 0.018 0.052 0.013 0.076 0.007 0.051 0.049

∗ p<0.1; ∗∗ p<0.05; ∗ ∗ ∗ p<0.01

Table A.1: Flow-performance regressions with time-FEs and standard errors clustered by share-class
(as in Goldstein et al. (2017)). Monthly data from January 2007 to July 2019.
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Figure A.1: Flow-performance sensitivity, by quintiles of the market return (retail funds only). Fol-
lowing Franzoni and Schmalz (2017), this Figure reports the average of the estimated γt, along with 95%
confidence intervals, by quintiles of the realization of the market return (proxied by the TNA-weighted
average fund return in each category) during the month when the fund performance was measured. The
specification replicates the one in Table 1. In order to increase the statistical power of this excercise, this
sample includes monthly data for the period January 1997 to July 2019.



53

Dep. var.: Equity funds Bond funds
Flowt Retail Inst. Retail Inst.

Moderate Extreme Moderate Extreme Moderate Extreme Moderate Extreme
Returnt−1 0.193*** 0.104** 0.065 -0.100 0.202*** 0.193** 0.019 0.015

(0.028) (0.039) (0.044) (0.063) (0.057) (0.077) (0.034) (0.037)
...

...
...

...
...

...
...

...
...

Flowt−1 0.099*** 0.097*** 0.070** 0.077* 0.143*** 0.155*** 0.058*** 0.062***
(0.013) (0.029) (0.031) (0.043) (0.016) (0.024) (0.012) (0.016)

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
log(TNAt−1) -0.000 -0.000 0.000 -0.000 -0.001* -0.001 -0.000 0.000

(0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000)
log(Aget) -0.002** 0.001 -0.001 -0.001 0.000 0.001 -0.000 0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001)
Fama-MacBeth

√ √ √ √ √ √ √ √

Obs. 47,513 12,081 19,960 5,357 35,555 8,658 66,515 16987
adj. R2 0.205 0.223 0.304 0.271 0.240 0.249 0.127 0.080

Mixed funds Funds-of-funds
Retail Inst. Retail Inst.

Moderate Extreme Moderate Extreme Moderate Extreme Moderate Extreme
Returnt−1 0.162*** 0.149*** 0.007 0.017 0.175*** -0.062 -0.271 0.216

(0.032) (0.046) (0.014) (0.027) (0.064) (0.101) (0.288) (0.191)
...

...
...

...
...

...
...

...
...

Flowt−1 0.164*** 0.148*** 0.046*** 0.022** 0.100*** 0.122*** 0.032 0.269
(0.014) (0.029) (0.005) (0.010) (0.026) (0.040) (0.088) (0.261)

...
...

...
...

...
...

...
...

...
log(TNAt−1) -0.000 -0.001* -0.000*** -0.000 -0.000 0.000 -0.002 0.003

(0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.002) (0.002)
log(Aget) -0.001* 0.000 -0.001*** 0.000 -0.001 0.002 0.001 -0.004

(0.000) (0.001) (0.000) (0.000) (0.001) (0.003) (0.002) (0.003)
Fama-MacBeth

√ √ √ √ √ √ √ √

Obs. 74,705 15,246 253,715 63,310 20,975 5,219 8,342 1,703
adj. R2 0.199 0.219 0.035 0.037 0.470 0.427 0.599 0.730

∗ p<0.1; ∗∗ p<0.05; ∗ ∗ ∗ p<0.01

Table A.2: Flow-performance regressions, based on monthly data using Fama-MacBeth regressions.
The specification is the same as in Table 1, but differentiates between periods with moderate/extreme
market returns (below/above 5% in absolute value). As market return we use the monthly return during
month t − 1 on the European stock market provided by Ken French. Monthly data from January 2007
to July 2019.
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Figure B.2: Cross-sectional median leverage ratio over time. Note: maximum regulatory leverage is
0.1 for retail funds and 0.3 for institutional funds.

Dep. var. Equity funds Bond funds Mixed funds Fund-of-funds
%∆Leveragegrosst Retail Inst. Retail Inst. Retail Inst. Retail Inst.
log(Leveragegrosst−1 ) -0.510*** -0.460*** -0.262*** -0.439*** -0.118*** -0.332*** -0.649*** -0.239***

(0.034) (0.042) (0.025) (0.034) (0.011) (0.013) (0.028) (0.039)
%∆TotalAssetst 0.025*** 0.040*** 0.048*** 0.071*** 0.082*** 0.117*** 0.068*** 0.116***

(0.004) (0.011) (0.005) (0.018) (0.010) (0.019) (0.014) (0.030)
Flowt−1 0.000 0.001 -0.010*** -0.006*** -0.010*** -0.001 0.002 -0.002

(0.001) (0.003) (0.003) (0.002) (0.002) (0.001) (0.005) (0.004)
log(TotalAssetst−1) -0.000 0.001 0.002*** 0.002*** 0.001*** 0.001** 0.000 0.000

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002)
CashRatiot−1 0.005* 0.010** 0.001 0.001 0.009*** 0.003* 0.004 0.003

(0.003) (0.004) (0.006) (0.003) (0.003) (0.002) (0.005) (0.005)
Fund FEs

√ √ √ √ √ √ √ √

Time FEs
√ √ √ √ √ √ √ √

Obs. 64,531 22,446 46,346 67,702 102,926 277,138 27,821 9,569
adj. R2 0.246 0.207 0.156 0.290 0.117 0.169 0.300 0.216

∗ p<0.1; ∗∗ p<0.05; ∗ ∗ ∗ p<0.01

Table B.3: Regression results. Leverage targeting. (robust std. errors in parentheses). Monthly data
from January 2007 to July 2019.
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C Determinants of the Fund Sector’s AV

The fund sector’s AV is a combined risk indicator summarizing information from several
standard macroprudential risk indicators of investment funds. In this section we provide
a first indication about which of these indicators might be major determinants of our AV
measure. For this purpose, we are interested in the following linear regression:

∆AVt = a+ b×∆Xt, (40)

where Xt includes the set of factors that drive the level of the AV (see Figure 7):

- Leverage is the weighted cross-sectional average fund leverage,

- FundingInstability is the weighted cross-sectional average FPR parameter γ,

- DirectConnectedness is funds’ aggregated fund holdings relative to their total assets,

- IndirectConnectedness is funds’ aggregated marketable asset holdings relative to
their total assets,

- MarketIlliquidity is the portfolio-weighted cross-sectional average PriceImpact pa-
rameter,

- we also add Size as another control variable, which is the fund sector’s total assets.

Dep. var.: Market Conditions
∆AV Actual Stressed
∆Leverage 0.302** 0.154***

(0.123) (0.049)
∆FundingInstability 0.312*** 0.592***

(0.027) (0.056)
∆DirectConnectedness 4.438*** 0.135

(1.115) (0.466)
∆IndirectConnectedness 5.159* 0.306

(3.074) (1.275)
∆MarketIlliquidity 0.311*** 0.658

(0.029) (0.824)
∆Size -2.985* 0.717

(1.655) (0.668)
adj.-R2 0.844 0.802
Obs. 44 44

∗ p<0.1; ∗∗ p<0.05; ∗ ∗ ∗ p<0.01

Table C.4: AV determinants for actual and stressed market conditions. Based on linear regressions
(std. errors in parentheses). Monthly data from November 2015 to July 2019.

We estimate the linear regression in Equation (40) using monthly log-changes. Table
C.4 shows the results. As expected, the model captures a substantial part of the AV
variation, given a model fit of more than 80%. Under actual market conditions, the AV is
mainly driven by leverage, funding instability, direct connectedness, and market illiquidity.
Consistent with the rationale provided in Figure 7, an increase in these underlying factors

55



goes along with an increase in the fund sector’s AV. Under stressed market conditions,
fund leverage and funding instability are the key drivers of the AV. As expected, market
illiquidity no longer plays a role, given that this specification fixes the asset-specific Pri-
ceImpacts. This is also the reason why funds’ direct connectedness becomes insignificant.
We should stress, however, that the two connectedness indicators are imperfect and thus
only serve as proxies for the connectedness of the fund sector.
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D AV for Constant Total Assets
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(a) Actual market conditions (dynamic PriceImpacts).
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(b) Stressed market conditions (constant PriceImpacts, 90%-perc.).

Figure D.3: AV and time trend under constant aggregate total assets, fixed to the value in November
2015.
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E AV for Constant FPR

(a) Actual market conditions (dynamic PriceImpacts).

(b) Stressed market conditions (constant PriceImpacts, 90%-perc.).

Figure E.4: AV over time based on constant FPR (point estimates in Table 1). We apply the model
separately for each month. The asset-level initial shock is -4.48% for bonds and -14.16% for equities.
Contribution by fund type is based on aggregating the fund-level Systemicness measure in Eq. (31).
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(a) Actual market conditions (dynamic PriceImpacts).
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(b) Stressed market conditions (constant PriceImpacts, 90%-perc.).

Figure E.5: AV and time trend under constant aggregate total assets, fixed to the value in November
2015 (constant FPR).
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(a) Actual market conditions (dynamic PriceImpacts).
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(b) Stressed market conditions (constant PriceImpacts, 90%-perc.).

Figure E.6: Relative contribution of the different channels to the AV (constant FPR).


	1 Introduction
	2 Model
	2.1 Details
	2.2 Measuring Vulnerabilities from Funds' Connectedness

	3 Data and Empirical Calibration
	3.1 Data
	3.2 Parameter Calibration
	3.2.1 Flow-Performance Relationship (FPR)
	3.2.2 Leverage Targeting (LT)
	3.2.3 Price Impacts


	4 Vulnerabilities in the German Fund Sector
	4.1 Initial Shock Scenario
	4.2 Results
	4.2.1 Actual Market Conditions
	4.2.2 Stressed Market Conditions

	4.3 Discussion

	5 Conclusions
	References
	A Flow-Performance Relationship (FPR)
	B Leverage Targeting
	C Determinants of the Fund Sector's AV
	D AV for Constant Total Assets
	E AV for Constant FPR

