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Abstract

It is well known that the conventional CUSUM test suffers from low power and
large detection delay. We therefore propose two alternative detector statistics. The
backward CUSUM detector sequentially cumulates the recursive residuals in reverse
chronological order, whereas the stacked backward CUSUM detector considers a tri-
angular array of backward cumulated residuals. While both the backward CUSUM
detector and the stacked backward CUSUM detector are suitable for retrospective
testing, only the stacked backward CUSUM detector can be monitored on-line. The
limiting distributions of the maximum statistics under suitable sequences of alter-
natives are derived for retrospective testing and fixed endpoint monitoring. In the
retrospective testing context, the local power of the tests is shown to be substantially
higher than that for the conventional CUSUM test if a single break occurs after one
third of the sample size. When applied to monitoring schemes, the detection delay
of the stacked backward CUSUM is shown to be much shorter than that of the con-
ventional monitoring CUSUM procedure. Moreover, an infinite horizon monitoring
procedure and critical values are presented.

Keywords: structural breaks, recursive residuals, sequential tests, change-point detection,
local power, local delay
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1 Introduction

Cumulative sums have become a standard statistical tool for testing and monitoring struc-
tural changes in time series models. The CUSUM test was introduced by Brown et al.
(1975) as a structural break test for the coefficient vector in the linear regression model
yr = @B, + uy with time index ¢. Under the null hypothesis, there is no structural change,
such that 8, = B, for all ¢ = 1,..., T, while, under the alternative hypothesis, the coeffi-
cient vector changes at unknown time 7™, where 1 < 7" < T.

Sequential tests, such as the CUSUM test, consist of a detector statistic and a critical
boundary function. The CUSUM detector sequentially cumulates standardized one-step
ahead forecast errors, which are also referred to as recursive residuals. The detector is
evaluated for each time point within the testing period, and, if its path crosses the boundary
function at least once, the null hypothesis is rejected.

A variety of retrospective structural break tests have been proposed in the literature.
Kramer et al. (1988) investigated the CUSUM test of Brown et al. (1975) under a more
general setting. The MOSUM tests by Bauer and Hackl (1978) and Chu et al. (1995) are
based on a moving time window of fixed length. A CUSUM test statistic that cumulates
OLS residuals was proposed by Ploberger and Kramer (1992), and Ploberger et al. (1989)
presented a fluctuation test based on a sequence of OLS estimates. Kuan and Hornik (1995)
studied generalized fluctuation tests. Andrews (1993) proposed a sup-Wald test, and the
tests by Nyblom (1989) and Hansen (1992) consider maximum likelihood scores instead of
residuals.

Since the seminal work of Chu et al. (1996), increasing interest has been focused on
monitoring structural stability in real time. Sequential monitoring procedures consist of
a detector statistic and a boundary function that are evaluated for periods beyond some
historical time span {1,2,...,T}. It is assumed that there is no structural change within
the historical time period. The monitoring time span with ¢ > T" can either have a fixed
endpoint M < oo or an infinite horizon (see Figure 1). In the fixed endpoint setting, the
monitoring period starts at T'4 1 and ends at M, while the boundary function depends on

the ratio m = M/T. This setting is suitable if the length of the monitoring period is known



in advance. In case of an infinite horizon, the monitoring time span does not need to be
specified before the monitoring procedure starts. These two monitoring schemes are also
referred to as closed-end and open-end procedures (see Kirch and Kamgaing 2015). The
null hypothesis of no structural change is rejected whenever the path of the detector crosses
some critical boundary function for the first time. CUSUM-based monitoring procedures
for a fixed endpoint are proposed in Leisch et al. (2000), Zeileis et al. (2005), Wied and
Galeano (2013), and Dette and Gésmann (2019), whereas Chu et al. (1996), Horvath et al.
(2004), Aue et al. (2006), Fremdt (2015), and Gésmann et al. (2019) considered an infinite

monitoring horizon.

Figure 1: Retrospective testing and monitoring
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A drawback of the conventional retrospective CUSUM test is its low power, whereas the
conventional monitoring CUSUM procedure exhibits large detection delays. This is due to
the fact that the pre-break recursive residuals are uninformative, as their expectation is
equal to zero up to the break date, while the recursive residuals have a non-zero expectation
after the break. Hence, the cumulative sums of the recursive residuals typically contain a
large number of uninformative residuals that only add noise to the statistic. In contrast,
if one cumulates the recursive residuals backwards from the end of the sample to the
beginning, the cumulative sum collects the informative residuals first, and the likelihood
of exceeding the critical boundary will typically be larger than when cumulating residuals
from the beginning onwards. In this paper, we show that such backward CUSUM tests
may indeed have a much higher power and lower detection delay than the conventional

forward CUSUM tests.



Another way of motivating the backward CUSUM testing approach is to consider the
simplest possible situation, where, under the null hypothesis, it is assumed that the process
is generated as y; = [ + u;, with 8 and 0? = Var(u;) assumed to be known. We are
interested in testing the hypothesis, that at some time period 7%, the mean changes to
some unknown value g* > 0. To test this hypothesis, we introduce the dummy variable
Dy, which is unity for ¢t > T and zero elsewhere. For this one-sided testing problem, there
exists a uniform most powerful test statistic, which is the t-statistic of the hypothesis § = 0
in the regression (y; — 8) = 0D; + uy:

T

1
[ s DI

If § is unknown, we may replace it by the full sample mean 7, resulting in the backward

cumulative sum of the OLS residuals from period 7" through 7*. Note that if 7% is unknown,
the test statistic is computed for all possible values of T™, whereas the starting point T of
the backward cumulative sum remains constant. Since the sum of the OLS residuals is zero,
it follows that the test is equivalent to a test based on the forward cumulative sum of the
OLS residuals. In contrast, if we replace 8 with the recursive mean 7, = (t—1)"' 311y,
we obtain a test statistic based on the backward cumulative sum of the recursive residuals
(henceforth, backward CUSUM). In this case, however, the test is different from a test based
on the forward cumulative sum of the recursive residuals (henceforth, forward CUSUM).
This is due to the fact that the sum of the recursive residuals is an unrestricted random
variable. Accordingly, the two versions of the test may have quite different properties. In
particular, it turns out that the backward CUSUM is much more powerful than the standard
forward CUSUM at the end of the sample. Accordingly, this version of the CUSUM test
procedure is better suited for the purpose of real-time monitoring, where it is crucial to be
powerful at the end of the sample.

Furthermore, the conventional CUSUM test has no power against alternatives that do
not affect the unconditional mean of y;. In order to obtain tests that have power against
breaks of this kind, we extend the existing invariance principle for recursive residuals to a

multivariate version and consider a vector-valued CUSUM process instead of the univariate



CUSUM detector. For both retrospective testing and monitoring, we propose a vector-
valued sequential statistic in the fashion of the score-based cumulative sum statistic of
Hansen (1992). The maximum vector entry of the multivariate statistic then yields a
detector and a sequential test, that has power against a much larger class of structural
breaks.

In Section 2, the limiting distribution of the multivariate CUSUM process is derived
under both the null hypothesis and local alternatives. Section 3 introduces the forward
CUSUM, the backward CUSUM, and the stacked backward CUSUM tests for both retro-
spective testing and monitoring. While the backward CUSUM is only defined for ¢t < T
and can thus be implemented only for retrospective testing, the stacked backward CUSUM
cumulates recursive residuals backwardly in a triangular scheme and is therefore suitable
for real-time monitoring. Furthermore, we discuss testing against partial structural breaks
and present simulated critical values. Section 4 considers the estimation of the break date
based on backward cumulated recursive residuals. In Section 5, the local powers of the
tests are compared. In the retrospective setting, the powers of the backward CUSUM and
the stacked backward CUSUM tests are substantially higher than that of the the conven-
tional forward CUSUM test if a single break occurs after one third of the sample size. In
the case of monitoring, the detection delay of the stacked backward CUSUM under local
alternatives is shown to be much lower than that of the monitoring CUSUM detector by
Chu et al. (1996). Furthermore, Monte Carlo simulation results are presented. Finally,

Section 6 concludes.

2 The multivariate CUSUM process

We consider the multiple linear regression model
yt:m:ﬁﬁt+ut7 tEN)

where y; is the dependent variable, and x; = (1, x4, ..., x4) is the vector of regressor
variables including a constant. The k x 1 vector of regression coefficients 3, depends on

the time index ¢, and w; is an error term. Let {(y, x;)’, 1 <t < T} be the set of historical
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observations, such that the time point 71" divides the time horizon into the retrospective time
period 1 <t < T and the monitoring period ¢ > T'. We impose the following assumptions

on the regressors and the error term.

Assumption 1. (a) {x;}en is stationary and ergodic with Elx,x,] = C, where C is

positive definite, and E|z;|° < oo for some § > 2, for all j =2,... k.

(b) {ut}ien is a stationary martingale difference sequence with respect to Fy, the o-algebra
generated by {(z}, 1, w;)', i <t}, such that Eu?|F;_1] = 0> >0, and E|u,]° < oo for

some § > 2.

Recursive residuals for linear regression models were introduced by Brown et al. (1975) as
standardized one-step ahead forecast errors. Let 8,_, = (Zf;i :I:i:cg)fl ( S x;y;) be the
OLS estimator at time ¢ — 1. The recursive residuals are given by
_ Yt — @By
Wy =
V1t a(C o e e,

and w, =0fort=1,... k.

) t2k+17

For testing against structural changes in the regression coefficient vector, Brown et al.
(1975) introduced the sequential statistic Q; 1 = (727) /2 Z;Zl wj fort =1,...,T, where
02 is a consistent estimator for o2. In the monitoring context, Chu et al. (1996) considered
the detector statistic Q¢7 — Qrr for ¢ > T. The limiting behavior of the underlying
empirical process has been thoroughly analyzed in the literature. Under H, : B, = 3,
for all ¢ € N, Sen (1982) showed that Q|77 = (21)~ '/ ZJL;TIJ w; converges weakly and
uniformly to a standard Brownian motion W (r) for r € [0, 1]. Ploberger and Kramer (1990)
studied local alternatives of the form H, : 3, = B, + T~/?g(t/T), where g(r) is piecewise
constant and bounded. Let g = limy (%1, ..., Tx)" be the mean regressor, where T; is

the sample mean of the j-th component of the regressors, and let

h(r) = %/Org(z) dz—%/oT /0 ég(v) dv dz. (1)

The authors showed that Q7| converges weakly and uniformly to W (r) + p'h(r) for
€ [0,1]. As noted by Kréamer et al. (1988), if the break vector g(r) is orthogonal to p,
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the limiting distributions under Hy and H; coincide. Hence, if a break in the coefficient
vector does not affect the unconditional mean of y;, then the CUSUM tests of Brown et al.
(1975) and Chu et al. (1996) have no power against such an alternative.

Accordingly, we consider a multivariate cumulative sum process of recursive residuals,

which is defined as

[rT)

I 12
r) = C T Wy, r >0, 2
Qr(r) SUTCT ; Wy (2)

where 6% = (T — k — 1)} Z;‘.F:l(wj — w)? is a consistent estimator for o? (see Kramer
et al. 1988), and Cp = T~ 3, a2, denotes the empirical covariance matrix. Note that
Qr(r) is a vector of piecewise constant processes, where its domain can be divided into
the retrospective time period r € [0, 1] and the monitoring period » > 1. On the domain
r € [0,m], m < oo, the multivariate CUSUM process is bounded in probability. Hence,
each component of Qr(r) is in the space D([0,m]) of cadlag functions on [0, m], and Qr(r)
is an element of the k-fold product space D([0,m])* = D([0,m]) x ... x D([0,m]). The
space is equipped with the Skorokhod metric (see Billingsley 1999, p.166 and p.244), and
the symbol “=" denotes weak convergence with respect to this metric. The result presented

below summarizes the limiting behavior of Qz(r) for both the retrospective and the fixed

endpoint monitoring time period under both Hy and H;:

Theorem 1. Let {(xy, u;)}en satisfy Assumption 1, let g(r) be piecewise constant and
bounded, and let B, = B, + T~'?g(t/T) for all t € N. Then, for any fized and positive

m < 00,
Qr(r) = W(r) + CY?h(r), re[0,m], (3)

as T — oo, where W (r) is a k-dimensional standard Brownian motion and h(r) is defined

as in (1).

Note that the function g(r) is constant if and only if 8, = 3, for all t € N. Under Hy, we
then obtain C*?h(r) = 0, and thus Qz(r) = W (r). By contrast, under a local alternative

with a non-constant break function g(r), it follows that h(r) is non-zero, and, consequently,



C'?1(r) is non-zero, since C''/? is positive definite. The limiting distributions of Qg(r)
under both Hy and H; thus coincide only for the trivial case where g(r) is constant.
Therefore, tests that are based on Qz(r) have power against a larger class of alternatives
than the tests of Brown et al. (1975) and Chu et al. (1996).

The functional central limit theorem given by equation (3) is not suitable for ana-
lyzing the asymptotic behavior of an infinite horizon monitoring statistic, since Qp(r) is
unbounded as r — oco. In case of i.i.d. errors, Horvath et al. (2004) derived the limiting
distribution of the infinite horizon statistic sup,., |Qtr — Qrr|/d(t/T) for an appropriate
boundary function d(r) by using the KMT approximation of Komlés et al. (1975), which
is a strong invariance principle for the partial sum process of mean zero i.i.d. random vari-
ables. Wu et al. (2007) and Berkes et al. (2014) extended the strong approximation results
to more general classes of dependent random processes, which can be used to formulate a
stochastic approximation result for the supremum of (2). In what follows, let || - || denote

the maximum norm on R¥, which is the largest vector entry.

Theorem 2. Let {(x;, us) hien satisfy Assumption 1 and let B, = B, for allt € N. Then,

there ezists a k-dimensional standard Brownian motion W(r), such that, as T — oo,

o 19 () — W)
r>1 \/F

= OP(l).

3 CUSUM detectors

In this section, we consider sequential tests for both retrospective testing and monitoring
that are based on the multivariate CUSUM processes Qr(r). The null hypothesis of no
structural change in the regression coefficient vector is formulated as Hy : 3, = 3, for all

t € Z, where the testing period is given by

(

{teN: 1<t<T} in the retrospective context,

1= {teN: T+1<t<mT} in the fixed endpoint monitoring context,

{teN: T+1<t<oo} in the infinite horizon monitoring context.
\



In the monitoring context, the non-contamination assumption 8, = 3, for the historical
time period t = 1,...,T is imposed. The monitoring time span could have either a fixed
endpoint M = |mT'| with m > 1 or an infinite horizon such that m = co.

The sequential tests consist of a detector statistic and a critical boundary function, in
which the detector is evaluated for each time point within the testing period, and, if its
path crosses the boundary function at least once, the null hypothesis is rejected. We make

the following assumption on the boundary function:

Assumption 2. The boundary function is of the form b(r) = A\, - d(r), where \, denotes
the critical value, which depends on the significance level «, and d(r) is a continuous and

strictly increasing function with d(0) > 0 and sup,>o V7 + 1/d(r) < oo.

While the forward CUSUM detectors for retrospective testing and monitoring are dis-
cussed in Section 3.1, we introduce the backward CUSUM detector in Section 3.2 and the
stacked backward CUSUM detectors in Section 3.3. In Section 3.4 we present modified

detectors for testing and monitoring partial structural change.

3.1 Forward CUSUM

As an extension of the univariate CUSUM detector by Brown et al. (1975) we consider the

multivariate retrospective CUSUM detector
1

t
Qur=Qr(%) = a\\/TCTUZ ijwja 1<t<T.

The vector-valued detector is inspired by Hansen (1992)’s score-based cumulative sum

Jj=1

statistic. While Hansen (1992) considered OLS residuals and proposed averaging all entries
of the vector-valued cumulative sum, we consider recursive residuals and formulate the
multivariate detectors with respect to the maximum norm || - ||. The null hypothesis is
rejected if the path of ||Qqr|| exceeds the critical boundary function b, = A, - d(t/T)
for at least one time index within the retrospective testing period. The critical value A,

determines the significance level o such that

lim P(HQtTH > Ao d(%) for at least one index t =1,...,T ‘H()) = q.
T—o0



Let Mgt = maxi<<r || Qurll/ d(t/T) be the maximum statistic representation of the
CUSUM detector. The above condition can be equivalently expressed as

: ret > —
711_{130]3(./\/162 > \o|Hp) = «

Hence, ), is the (1 — ) quantile of the limiting null distribution of M. Note that M
together with the critical value )\, defines a one-shot test that is equivalent to the sequential
CUSUM test.

For real-time monitoring, we follow Chu et al. (1996) and define the multivariate retro-

spective CUSUM detector as

Q" = Qr(4) — Qr(1 >=—C‘”2 Z zw;, t>T,

j=T+1

and H is rejected if its maximum norm [|Q%" || exceeds the boundary by = Ao -d((t—T)/T)
at least once for some ¢ > T. For a fixed endpoint M = |mT'|, where 1 < m < oo, let

Oom = maxy<i<mr QPR /d((t —T)/T) be the corresponding maximum statistic. The

open end monitoring statistic is defined as M@%, = maxyr ||QP"||/d((t — T)/T).

Theorem 3. Let B, = 3, for allt € N and let Assumptions 1 and 2 hold true. Then,

W(r)|l
a M”tg sup Wl ,
(a) re(0,1) d(r)
(b) Mgor 25 sup W@l 2 sup —”B(T)Hr ;o L<m <o,
reOm—1)  A(r) re(o,m=1) (1= r)d(5)
D W)l » 1B(r)ll

(c) Mm‘m — SuUp 0 = SUp
re(000) (1) re(0,1) (1 —T)d<1 7‘)

as T — oo, where W (r) is a k-dimensional standard Brownian motion and B(r) is a

k-dimensional standard Brownian bridge.

While, for one-shot tests, the critical value determines the type I error, for sequential
tests, the critical boundary involves two degrees of freedom. Besides the test size, which is
controlled asymptotically by an appropriately chosen value for \,, the shape of the bound-

ary determines the distribution of the first boundary crossing under the null hypothesis,
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which is also referred to as the “distribution of the size” (see Anatolyev and Kosenok 2018).

Brown et al. (1975) suggested the linear boundary function
b(r) = Aa(1+2r), (4)

which is our main benchmark. In this case, the retrospective maximum statistic satisfies
\)\%
w1l oW
1<t<T 14 2(%) re01) 1427
under Hy, as T — oo, whereas, for the monitoring maximum statistic, we obtain

1Qurll o | B(r)]
m ———~ — sup
T<t<mT 1 + 2(7) reom=1y 1+7T

()

and

1Qirll o 1B

ma. — Su .
i 1+2( ) Te((fl) 1+

(6)

The linear boundary is widely applied in practice, but, as already noted by Brown
et al. (1975), the crossing probabilities cannot be constant for all potential relative crossing
time points r. The authors argued that it is more natural to consider a boundary that is
proportional to the standard deviation of the limiting process. Such a boundary is given
by the radical function b(r) = Aay/7. As noted by Zeileis (2004), if there is a single break
in the middle or at the end of the retrospective sample, there is no power gain using the
radical boundary when compared to the linear boundary. Only in cases where a break
occurs at the beginning of the sample, some increased power may be observed. Another
problem associated with the radical boundary is that it is not bounded away from zero. In
order to obtain critical values and avoid size distortions, some trimming at the beginning of
the sample in the fashion of the sup-Wald test by Andrews (1993) is necessary. For infinite
horizon monitoring, Chu et al. (1996) also considered a boundary function of radical type,

which is given by

b(r) = /(r + 1) In (2. (7)
The boundary is based on a result on boundary crossing probabilities for the path of

Brownian motions. Robbins and Siegmund (1970) showed that

P(W(r)| > V/(r+ 1)1 (%) for some r > 0) =a,
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and the univariate monitoring CUSUM detector together with the radical boundary by
Chu et al. (1996) thus yields a sequential test that has size a, as m — oco. Anatolyev and
Kosenok (2018) derived a theoretical boundary that yields a uniformly distributed size.
However, their boundary has no closed form solution and is only valid for the univariate
retrospective and fixed endpoint monitoring cases. Furthermore, simulations, which are
omitted here, indicate that, on the one hand, their approximative boundary does indeed
yield a uniform size distribution, but, on the other hand, their CUSUM test performs
uniformly worse in terms of power compared to the test when using the linear boundary of
Brown et al. (1975). Note that in the context of infinite horizon monitoring the size cannot

be uniformly distributed.

3.2 Backward CUSUM

An alternative approach is to cumulate the recursive residuals in reversed order. Suppose
there is a single break in 3, at time ¢ = T*. Then, {w;, t < T*} are the residuals from
the pre-break period, and {w;, t > T*} are those from the post-break period. The pre-
break residuals do not contain any information about the break and have mean zero. The
partial sum process 7~/2 Z§:1 w; has a random walk behavior for the pre-break period
t < T*, and cumulating those residuals brings nothing but noise to the detector statistic. In
contrast, the post-break residuals have nonzero mean and reveal relevant information about
a possible break. In order to focus on the post-break residuals, we consider backwardly
cumulated partial sums of the form 71/ Z;;E wr—;. We define the retrospective backward
CUSUM detector as
1

T
BQ,r = Qr(1) - Qr(5) = 8\/70;1/2 ijwja

where 1 < ¢t < T. The null hypothesis is rejected if the path of |BQ, 7| exceeds the
boundary by = A, - d((I" — ¢t — 1)/T) for at least one time index ¢.

Theorem 4. Let B8, = B, for allt € N and let Assumptions 1 and 2 hold true. Then,
B A%
BQusl o, W

Mret —
be 121%}%6“%) re01)  d(r)
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Figure 2: Illustrative example for the backward CUSUM with a break in the mean
Forward CUSUM Backward CUSUM

- _| - _|
| |
o o
I I
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
time time
—— detector statistic = = linear boundary (5%) recursive residuals

Note: The process yr = ut +ug, t =1,..., T, is simulated for "= 100 with p¢ = 0 for ¢t < 75, ur = 1 for t > 75, and i.i.d.
standard normal innovations u¢. Since k = 1, the detectors are univariate, and the vector norm is simply the absolute value.
The bold solid line paths are the trajectories of |Qq | and \BQt,T|. In the background, the recursive residuals are plotted.
The dotted lines shows the linear boundary (4) with a = 5% and Ao = 0.948.

as T — oo, where W (r) is a k-dimensional standard Brownian motion.

Using the same boundary as for the retrospective forward CUSUM, the limiting null
distributions of their maximum statistics coincide. Simulated critical values when using
the linear boundary are presented in Table 1. A simple illustrative example of the detector
paths together with the linear boundary of Brown et al. (1975) are depicted in Figure 2,
in which a process with & = 1 and a single break in the mean at 3/4 of the sample is
simulated.

Unlike the forward CUSUM detector, the backward CUSUM detector is not measurable
with respect to the filtration of available information at time ¢t and is therefore not suitable
for a monitoring procedure. The path of || BQ, || is only defined for ¢ < T, as its endpoint
T is fixed.

3.3 Stacked backward CUSUM

To combine the advantages of the backward CUSUM with the measurability properties of
the forward CUSUM for monitoring, we resort to an inspection scheme, which goes back

to Page (1954) and involves a triangular array of residuals together with an additional
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maximum. Let

1Y _ s=1
jgb(t) — max “QT(T) QT( T )H

()

be the backward CUSUM statistic with endpoint ¢t. The idea is to compute this statistic

sequentially for each time point ¢ = 1,..., 7T, yielding M, (1), M55(2), ..., Mi5o(T).
The stacked backward CUSUM statistic is the maximum among this sequence of backward

CUSUM statistics. An important feature of this sequence is that it is measurable with

ret

respect to the filtration of information at time ¢ and Mg, (t) can thus be adapted for

real-time monitoring. The stacked backward CUSUM detector is defined as
. L ipy
SBQ,,r = Qr(%) — Qr(3F) = ﬁCT / ijwj, 1<s<t<oo0.

Since the upper and the lower summation index of SBQ,,; r are both flexible with s < ¢,

j=s

this induces a triangular scheme. Hj is rejected if [[SBQ,; r|| exceeds the two-dimensional
boundary bs; = A, - d((t — s+ 1)/T) for some s and ¢t with 1 < s <t < T, or, equivalently,

if the double maximum statistic

spo = pax Mio(t) = max max —”fll(m_) |
exceeds A,

The backward CUSUM maximum statistic M, (t) is itself a sequential statistic. Stack-
ing all those maximum statistics on one another leads to an additional maximum and a
double supremum in the limiting distribution. The stacked backward CUSUM uses the
recursive residuals in a multiple way such that the set over which the maximum is taken
has many more elements than the forward CUSUM and the backward CUSUM. For t = 1
only wy is cumulated, for t = 2 the residuals ws and w, are cumulated, for t = 3 we consider
w3, wy, and wy, and so forth. Similar inspection schemes were also considered in different
situations in Fremdt (2015), Kirch et al. (2018), and Dette and Gosmann (2019).

The triangular detector can also be monitored on-line across all the time points ¢t > 7.
The null hypothesis is rejected if [|SBQ,, ;| exceeds by, = Ay - d((t — s +1)/T) at least

once for some s and t with 7' < s < t. Analogously to the retrospective case, let

mon 4y _ ||SBQs,t,TH
BOQ (t) = E?ﬁt W
- T
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be the sequence of backward CUSUM maximum statistics for ¢ > T', and let

$BOm =  max Mp2i(t) = max max —HSBQS’t’TH l1<m< oo
Qm 1 L | T<t<|mT| T<s<t d(%) ’
ISBQ, 7|
mon _ mon 32
Shgoe = 0 MG (1) = Joa pex Ty

be the fixed endpoint and infinite horizon monitoring statistics, respectively.

Theorem 5. Let B3, = 3, for allt € N and let Assumptions 1 and 2 hold true. Then,

[W(r) — W(s)|
a) M 2 sup sup ,
( ) SBQ re(0,1) se(0,r) d(T‘ - 8)
[W(r) — W(s)||
b) MZ56 ., N sup  sup
( ) SBQ, re(0,m—1) s€(0,r) d(’f’ - S)

D
= sup sup 1 <m < oo,

re(0,2=1) s€(0,r) (1-

[(1 = s)B(r) = (1 =r)B(s)]
r) (1= s)d(=hi=y)

) M3z D5 sp sup IV = WG

r€(0,00) s€(0,r) d(T - 5)
1— 9B 1-r)B
2 g sup 0= 2B0) — U= DB
re(0,1) s€(0,r) (1_T)(1 ) ((1—r)(1—s))

as T — oo, where W (r) is a k-dimensional standard Brownian motion and B(r) is a

k-dimensional standard Brownian bridge.

Analogously to the forward CUSUM, for the linear boundary of Brown et al. (1975), it
follows that,

SB mon 1 B (11— B
max_mae 9Bl o, I 9B(r) — (L= r)B(s)]

, 8
T<t<mT T<s<t—1 1 4 2( ) TG(O,E) se(0,r) (1 — T)(l — S) + 2(7’ — S) ( )

for any m € (1,00), and

SBQ; 1 1—s)B(r) - (1-r)B
max max M Py sup sup 1(1 = s)B(r) — (1 —1)B(s)||
>T T<s<t—1 14 2(%2) re(01)se(0)  (L—=7)(1—8)4+2(r —s)

under Hy, as T'— oo. Simulated critical values are presented in Tables 1 and 2.
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3.4 Tesing for partial structural change

Following the discussion of Section 2, the univariate CUSUM tests of Brown et al. (1975)
and Chu et al. (1996) are partial structural break tests in the sense that they have only
power against some particular alternatives. Since researchers are often interested in testing
for breaks in only some of the regression coefficients, partial structural break tests can be
beneficial in terms of a more powerful test if the number of regressors k is large. The
univariate CUSUM test has a higher power against a break in the intercept than the
multivariate forward CUSUM test, since the quantiles of its limiting distribution are smaller
due to its lower dimension.

More generally, we can test for the stability of linear combinations of regression coeffi-
cients. We consider the partial stability hypothesis ﬁo : H'3, = H'3, and the alternative
H, : H'B, # H'B, for some t, where H is the k x [ matrix that defines the [ lincar
combinations of interest. We assume w.l.0.g. that the columns of H are orthonormal and
that [ < k. The partial detector statistic is defined as Qt,T = H'Q,7. In case of a test
for a break in only the intercept, Qt,T coincides with the univariate CUSUM detector Q; r,
where H = e; = (1,0, ...,0)".

We can now define modified versions of the retrospective and monitoring statistics of
Sections 3.1-3.3 with respect to the partial detector statistic Qt,T instead of the global
detector Q. r, which are denoted as ]\vdgt, .//\v/lg(:l, ./\A//erezg, .//\v/l;e;Q, ]\v/t?;gm, m € (0, 00].
Under Hy, Theorem 1 yields Q| 7| 7 = H'W (r), where H'W (r) is in turn an I-dimensional
standard Brownian motion, since the columns of H are orthonormal. Hence, the limiting
distributions of the modified statistics coincide with those presented in Theorems 3-5,
except that the Brownian motions are [-dimensional instead of k-dimensional. Table 1
presents critical values for the retrospective tests using the linear boundary, while the
critical values for the stacked backward CUSUM monitoring procedure are shown in Table
2. Under the conditions of Theorem 1, it follows that Q. = H'W(r) + H'CY*h(r),
where H'C'*h(r) # 0 if H'g(r) is not constant. Hence, the modified tests have power
against all nontrivial alternatives of the form H'B, = H'3, + T~>H'g(t/T).
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Table 1: Asymptotic critical values for the retrospective tests

M5t and M5, Mo

v| 20% 10% 5%  2.5% 1% 20%  10% 5%  2.5% 1%

110734 0847 0945 1.034 1.143 | 1.018 1.113 1.198 1.278 1.374
210839 0941 1.032 1.115 1.219 | 1.107 1.196 1.277 1.352 1.442
310.89% 0993 1.081 1.163 1.260 | 1.156 1.244 1.321 1.392 1.481
410933 1.029 1.114 1.192 1.287 | 1.190 1.275 1.350 1.419 1.506
510962 1.066 1.139 1.216 1.307 | 1.216 1.299 1.372 1.441 1.526
6| 098 1.077 1160 1.235 1.323 | 1.237 1.317 1.388 1.457 1.541
7] 1.005 1.095 1.176 1.249 1.338 | 1.253 1.333 1.404 1.471 1.556
8 | 1.021 1.110 1.189 1.261 1.349 | 1.268 1.347 1.418 1.483 1.566

Note: Critical values A\ are reported for the linear boundary in (4). The v-dimensional Gaussian processes in the limiting
distributions are simulated on a grid of 10,000 equidistant points with 100,000 Monte Carlo repetitions. In case of a global
structural break test we have v = k, whereas v = [ in case of a partial structural break test.

4 Estimation of the breakpoint location

Consider a single break model, where the regression coefficient vector is given by

IBt = ,60 —|— 61{L‘ZT*}7 6 # 0 (9)

Once some retrospective or monitoring procedure has indicated structural instabilities, we
might also want to know the location of the relative break date 7* = T*/T. Horvath (1995)

and Bai (1997) suggested the maximum likelihood estimator

N 1 )
Tt = — - argmin Sy (t) + Sa(t), (10)
T =17

where S1(t) is the OLS residual sum of squares using observations until time point ¢ and
Sa(t) is the OLS residual sum of squares using observations from time t + 1 onwards. In

case of monitoring, Chu et al. (1996) considered

. 1 )
Tt == argmin Si(t) + Sa(t),
T —151,..1p

where Tp denotes the detection time point, which is the time index at which the detector
statistic exceeds the boundary function for the first time.
The ML estimator is very accurate if the breakpoint is located in the middle of the

sample. However, in the monitoring context, we are in a situation where the potential
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Table 2: Asymptotic critical values for the stacked backward CUSUM monitoring

v=1 v=2 v=3 v=4

m 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
1.2 1 0.782 0.859 1.024 | 0.859 0.935 1.092 | 0.902 0.975 1.129 | 0.932 1.003 1.152
1410941 1.030 1.208 | 1.028 1.111 1.277 | 1.0v6 1.156 1.320 | 1.108 1.185 1.345
1.6 | 1.026 1.113 1.292 | 1.111 1.192 1.365 | 1.158 1.238 1.406 | 1.189 1.269 1.432
1.8 | 1.077 1.162 1.344 | 1.161 1.244 1.411 | 1.208 1.286 1.452 | 1.240 1.317 1.476
2 1.113 1.198 1.374 | 1.196 1.277 1.442 | 1.244 1.321 1.481 | 1.275 1.350 1.506
1.211 1.293 1.462 | 1.291 1.366 1.524 | 1.334 1.407 1.558 | 1.363 1.436 1.582
1.262 1.339 1.500 | 1.336 1.410 1.564 | 1.378 1.450 1.599 | 1.407 1.478 1.621
1.316 1.390 1.544 | 1.387 1.460 1.606 | 1.428 1.496 1.638 | 1.456 1.522 1.660
1.346 1.419 1.569 | 1.417 1.486 1.629 | 1.456 1.522 1.661 | 1.483 1.548 1.686
10 | 1.367 1.440 1.588 | 1.437 1.503 1.644 | 1.475 1.540 1.677 | 1.500 1.565 1.703
oo | 1.450 1.514 1.648 | 1.512 1.573 1.703 | 1.547 1.606 1.736 | 1.570 1.629 1.760

o O e W

m 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
1.2 1 0954 1.023 1.170 | 0.972 1.041 1.186 | 0.987 1.054 1.198 | 1.000 1.065 1.206
14 ] 1.133 1.208 1.366 | 1.152 1.225 1.381 | 1.167 1.241 1.396 | 1.181 1.253 1.409
1.6 | 1.214 1.293 1452 | 1.235 1.311 1.466 | 1.251 1.325 1477 | 1.265 1.339 1.488
1.8 | 1.265 1.340 1.496 | 1.283 1.357 1.511 | 1.300 1.372 1.525 | 1.315 1.385 1.537
2 1.299 1.372 1.526 | 1.317 1.388 1.541 | 1.333 1.404 1.556 | 1.347 1.418 1.566
3 1.386 1.457 1.601 | 1.404 1.472 1.615 | 1.420 1.487 1.629 | 1.433 1.500 1.640
4 1.429 1.497 1.638 | 1.446 1.513 1.651 | 1.461 1.527 1.665 | 1.473 1.539 1.679
6

8

1476 1.541 1.680 | 1.492 1.557 1.696 | 1.507 1.571 1.709 | 1.519 1.583 1.718
1.503 1.567 1.706 | 1.519 1.582 1.718 | 1.633 1.596 1.728 | 1.545 1.607 1.739
10 | 1.520 1.584 1.718 | 1.536 1.599 1.732 | 1.551 1.612 1.744 | 1.562 1.623 1.752
oo | 1.589 1.647 1.775| 1.604 1.661 1.788 | 1.617 1.673 1.799 | 1.627 1.683 1.807

Note: Critical values Ao for Mg‘gnQ’m are reported using the linear boundary (4). The v-dimensional Gaussian processes
in the limiting distributions are simulated on a grid of 10,000 equidistant points with 100,000 Monte Carlo repetitions. In
case of a global structural break test we have v = k, whereas v = [ in case of a partial structural break test. The case m = oo
corresponds to the right-hand side of equation (8).
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breakpoint is very close to Tp. In this case, the finite sample estimation error can be quite
large, since S(t) is computed from very few observations. Therefore, we propose to use

backwardly cumulated recursive residuals to estimate the relative break location. Let

T
R 1 1 —1/2
Tret = — - argmax || ——C €TW; 11
t étST T 111 T ; JWi (11)
and
1 1 e
~ ~1/2
Tmon = — - argmax ||—————C xw;|.
T+1g§tSTD VIp—t+1 7T ; 7

Theorem 6. Let {(x¢, us) hen satisfy Assumption 1 and let B, be given by equation (9).

Then, as T — oo,
(a) Tres = 7, if 7 € (0,1],

(b) Tmon — 7, if T € (1,Tp /7).

5 Simulations

In this section, we compare both the asymptotic and finite sample properties of the tests.
While in Section 5.1 local asymptotic power an local asymptotic mean delay curves are

simulated, we present simulation results on the finite sample size and power in Section 5.2.

5.1 Local asymptotic power and delay

In order to illustrate the advantages of the backward CUSUM and the stacked backward
CUSUM tests, we consider the simple model y, = 3; + u; with a local break in the mean.
Let the mean be given by 8, = By +T'/2g(t/T), where g(r) is a piecewise constant and
bounded function. Note that in this case the multivariate CUSUM process coincides with
the univariate CUSUM process @ |,r|r. Furthermore, note that the covariance matrix C
is equal to unity, and the vector norm for k£ = 1 is simply the absolute value. Theorem 1

yields Q1 = W(r) + h(r), where

h(r):%/Org(z)dz—%/()r/ozég(v)dvdz,
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and together with the continuous mapping theorem, it follows that

Wi(r) +h(r)|
M 2y sup —| ,
@ re(0,1) d(r)

W (r) + h(1) — h(1 —7)]
5o = o d(r) !
W (r) = W(s) + h(r) — h(s)|

P sup sup ,
5BQ re(0,1) s€(0,r) d(?“ - 8)

as T' — oo. While, under Hj, the limiting distributions for the retrospective forward
CUSUM and the retrospective backward CUSUM coincide, they differ from each other

under the alternative. The maximum statistics in the fixed endpoint monitoring case

satisfy
w h 1) — h(1
v 2, IO EHO 1) )]
' re(0,m—1) d(?“)
Wir)—-W h 1) —h 1
w0,y WL W h 1) s 1]
re(0,m—1) s€(0,r) d('f’ - 8)

as T' — oo.

Generally, none of the tests can be shown to be uniformly more powerful in comparison
to the other tests. However, we can compare the tests under particular alternatives. We
consider a single break in the mean, where the break function is given by g(r) = ¢ 1>,

and 7* denotes the break location. Then,

h(r)zg/ dz——//T—dvdZ—

Simulated asymptotic local power curves under the limiting distribution at a 5% signif-

"1 Ay — cr*(In(r) — 11’1(7‘"‘))1{,,27*}.
-2 o

icance level are presented in Figure 3 for the retrospective case. The Brownian motions are
approximated on a grid of 1,000 equidistant points, and the linear boundary d(r) = 1427 is
implemented. The size-adjusted rejection rates are obtained from 100,000 Monte Carlo rep-
etitions for different break locations. The plots show that for a single break that is located
after 15% of the sample size, the backward CUSUM and the stacked backward CUSUM
clearly outperform the forward CUSUM in terms of power. The backward CUSUM per-
forms best for 7 > 0.3, while the stacked backward CUSUM outperforms the other two

tests if the break is located at around 1/5 of the sample size.
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Figure 3: Asymptotic local power curves for retrospective testing
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Note: The plots show simulated local power curves. While, for the plots at the top and the first two plots at the bottom,
the break location is fixed with 7* € {0.1,0.3,0.5,0.7,0.9} and local break sizes ¢/ are shown on the x-axis, for the last plot,
the local break size is fixed with ¢/ = 10, and the breakpoint locations 7 are given on the x-axis. The linear boundary (4)
is implemented for a significance level of a = 5%.

For the monitoring case with fixed endpoint m = 2, the local power curves of the forward
CUSUM test and the stacked backward CUSUM test have exactly the same shape as in
the retrospective case. The monitoring local power curve for a break at 7% € (1,2) then
coincides with the corresponding retrospective curve in Figure 3 with a single break at 7*—1.
Hence, the power of the stacked backward CUSUM is always higher than that of the forward
CUSUM if 7* > 1.15. However, the delay between the actual break and the detection time
point is a much more important performance measure for monitoring detectors than the
power itself, since every fixed nontrivial alternative will be detected if the monitoring
horizon is long enough. Let T be the stopping time of the time point of the first boundary
crossing, and let the mean local relative delay be given by E [TD JT|m* <Tp/T < m} — 7"

Figure 4 presents the simulated mean local relative delay curves for the fixed endpoint
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Figure 4: Asymptotic local mean delay curves for monitoring with m = 4
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Note: The plots show simulated local mean delay curves, where the relative mean delays are given on the y-axis. While,
for the first two plots, the break locations are fixed with 7* € {1.5,3} and local break sizes c/c are given on the x-axis, for
the last plot, the local break size is fixed with ¢/o = 20, and the breakpoint locations 7* are given on the x-axis. The linear
boundary (4) is considered for a = 5%.

Figure 5: Size distributions of the retrospective detectors
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Note: The plots show the frequencies of the location of the first boundary exceedance under the null hypothesis. The
frequencies are based on random draws under the limiting distribution of the maximum statistics of the forward CUSUM,
the backward CUSUM, and the stacked backward CUSUM detector using the linear boundary in (4) with a significance level
of 5% under a model with k = 1.
m = 4 for Mgpg, 4 with the linear boundary, for M9 with the linear boundary, and for
o4 with the radical boundary by Chu et al. (1996). The mean local relative delay of the
stacked backward CUSUM is much lower than that of the forward CUSUM. Furthermore,
the mean local relative delay is constant across different break locations, with the exception
of breaks that are located at 7 < 1.15.
Moreover, we compare the asymptotic distributions of the size, which is the distribution
of the time point of the first boundary crossing under H,. Figure 5 presents histograms

of the asymptotic size distributions for retrospective testing under the linear boundary.

For the forward CUSUM, the highest rejection rates under H, are obtained at relative

22



Figure 6: Size distributions of the monitoring detectors with m = 10

Stacked backward CUSUM Forward CUSUM (linear boundary) Forward CUSUM (radical boundary)

)
1.2
]
0.20
)

| |
0.6 1.0
density
0.10 0.15
| |

density
0.00 0.02 0.04 0.06 0.08 0.10 0.12
| |
density
0.4

|
2
|
0.00 0.05
|

=)
r T T T 1 r T T T J r T T T J
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
time point of rejection time point of rejection time point of rejection

Note: The plots show the frequencies of the location of the first boundary exceedance under the null hypothesis. The
frequencies are based on random draws under the limiting distribution of the monitoring maximum statistics with m = 10.
The stacked backward CUSUM detector using the linear boundary, the forward CUSUM detector using the linear boundary,
and the forward CUSUM detector using the radical boundary by Chu et al. (1996) are considered at a significance level of
5% under a model with k = 1.

locations between 0.15 and 0.4 of the sample. For the backward CUSUM, the picture is
mirror-inverted, such that most weight is put on rejections at relative locations between
0.6 and 0.85. The distribution for the forward CUSUM is right-skewed, whereas, for the
backward CUSUM, it is left-skewed. For the stacked backward CUSUM, the distribution
is much closer to a uniform distribution, although it is slightly left-skewed. Note that
the size distributions provide information about the location of false rejections, but, when
comparing Figure 3 with Figure 5, it is reasonable to assume that this is also related to
the distribution of the power across different time points. There is no consensus on which
distribution should be preferred, as whether one wishes to put more weight on particular
regions of time points of rejection depends on the particular application. However, Zeileis
et al. (2005) and Anatolyev and Kosenok (2018) argue that if no further information is
available, one might prefer a uniform distribution to a skewed one. Figure 6 presents the
distributions of the size for the fixed monitoring horizon with m = 10. The distribution for

the stacked backward CUSUM is much closer to a uniform distribution compared to those

of the forward CUSUM variants.
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Table 3: Empirical sizes of the retrospective tests

k=1 k=2 k=3 k=4

T | 100 200 500 | 100 200 500 | 100 200 500 | 100 200 500
MEE |38 42 46 | 40 44 45 | 40 44 45 | 41 43 45
ML | 41 42 46 | 48 47 46| 54 49 46 | 60 53 47
Miho | 28 35 42|39 40 42| 47 45 42 | 57 49 44

Note: Simulated rejection rates under Hp are presented in percentage points. The values are obtained from 100,000
Monte Carlo repetitions using the critical values from Table 1 at a significance level of 5% for the linear boundary (4).
The cases k = 1,...,4 represent the models y¢+ = 81 + ut, yr = L1 + Baxez + ut, y¢ = B1 + B2xi2 + B3xe3 + ut, and
yt = P1 + Baxi2 + PB3res + ut, respectively, where x42, xt3, x4, and us are simulated independently as standard normal
random variables for all t =1,...,T.

5.2 Finite sample performance

Empirical size results for a significance level of 5% are shown in Table 3. The tests have
only minor size distortions in finite samples. The empirical powers of the retrospective tests

are compared with that of the sup-Wald test of Andrews (1993). The sup-Wald statistic is

given by
max T - 50—51(7‘)—52(7“)7
r€(re,1—ro] ’f‘(l — ’I")
where Sy is the OLS residual sum of squares using observations {1,...,7}, Si(r) is the

OLS residual sum of squares using observations {1, ..., [rT'|}, and Sy(r) is the OLS residual
sum of squares using observations {|rT| + 1,...,T}. The parameter r defines the lower
and upper trimming parameters. In the subsequent simulations, we consider ry = 0.15,
which is the default setting suggested by Andrews (1993). The limiting distribution is
given by sup,¢(y1-r,] B(r)'B(r)/(r(1 — 7)), and critical values for different values of rq
and k are tabulated in Andrews (1993). The author showed that the sup-Wald test has
weak optimality properties in the sense that, in the case of a single structural break, its
local power curve approaches the power curve from the infeasible point optimal maximum
likelihood test asymptotically, as the significance level tends to zero. Note that the sup-
Wald statistic is not suitable for monitoring, since its numerator statistic 7'(So — S (t/T") —
Sa(t/T)) is not measurable with respect to the filtration of information at time ¢.

We illustrate the finite sample performance for a simple model with £ = 1 and a break
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Table 4: Size-adjusted powers of the retrospective tests

Model (12) (k=1) Model (13) (k = 2)
Mgt M’g& MI;EQ supW Mgt Mrgt@ Mgeng supW
7™ =0.1] 46.9 28.3 40.7 26.3 32.5 19.0 25.9 21.5
T =021 63.5 65.0 71.2 73.9 47.2 474 51.7 59.3
=03 67.1 84.0 83.9 86.8 50.8 70.3 68.1 75.3
7" =041] 63.5 91.5 88.7 91.4 47.1 81.9 75.9 82.3
7™ =051 54.0 93.8 89.4 92.5 38.2 85.7 77.0 84.3
7™ =0.6| 394 93.3 86.6 91.4 26.6 84.1 72.0 82.2
TF=0.7| 234 89.0 77.0 86.9 15.6 75.5 58.9 75.3
7™ =081 11.0 74.2 51.6 74.1 8.2 56.0 37.0 59.5
7™ =0.9 5.5 314 12.9 26.2 5.1 24.6 13.3 214

Note: Simulated size-adjusted rejection rates under models (12) and (13) are presented in percentage points for a significance
level of 5% and a sample size of T' = 100, where supW denotes the sup-Wald test with r9 = 0.15. The values are obtained
from 100,000 Monte Carlo repetitions for a sample size of T' = 100, while the linear boundary (4) is implemented.

in the mean, which is given by
iid
Yy = Mt + U, ﬂt:2+081{%27*}, Uy ~ (O,l), (12)
and for a univariate linear regression model with a break in the slope coefficient, which is

given by
Y=g+ Bt =2, B=1+08 1oy, mou ~N(0,1),  (13)
where t = 1,...,T. Table 4 presents the size-adjusted power results.

First, we observe that the backward CUSUM and the stacked backward CUSUM out-
perform the forward CUSUM, except for the case 7* = 0.1. Second, while the forward
CUSUM test has much lower power than the sup-Wald test, the reversed order cumulation
structure in the backward CUSUM seems to compensate for this weakness of the forward
CUSUM test. The backward CUSUM performs equally well than the sup-Wald test, which
is remarkable since, as discussed previously, the latter test has weak optimality properties.
Finally, while the sup-Wald statistic and the backward CUSUM detector are not suitable
for monitoring, the stacked backward CUSUM test is much more powerful than the forward

CUSUM test, and its detector statistic is therefore well suited for real-time monitoring.
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Table 5: Empirical sizes of the infinite horizon monitoring detectors

k=1 k=2

T =100 T =500 T =100 T =200 T =500

horizon | SBQ Q CSW |SBQ Q CSW || SBQ Q |SBQ Q |SBQ Q
m=15| 01 28 0.0 0.1 3.0 00 05 45| 02 37| 01 32
m =2 02 42 0.1 02 44 0.1 14 66| 07 bH5] 04 48
m =4 1.0 47 09 09 48 038 48 73| 25 60| 14 52
m==6 1.7 47 16 14 48 14 77 T74] 41 60| 23 5.2
m =38 24 47 20 20 48 18 103 74| 57 60| 3.3 52
m = 10 3.1 47 23 2.7 48 20 127 74| 72 6.0 43 52

Note: Simulated rejection rates under H are presented in percentage points. The linear boundary (4) is implemented,
while critical values for a = 5% and m = oo are considered. The values are obtained from 100,000 random draws of the
models y; = B1 +us and y; = B1 + Bowsz + ug for t = 1,..., |mT], where z;2 and u; are i.id. and standard normal. While
SBQ and Q correspond to the stacked backward CUSUM and the forward CUSUM with critical values for the case m = oo,
the univariate test by Chu et al. (1996) using the radical boundary (7) is denoted by CSW.

In order to evaluate the finite sample performances of the monitoring detectors, we
consider models (12) and (13) for the time points t = T+ 1,..., |[mT"|. We simulate the
series up to the fixed endpoints m € {1.5,2,4,10}, while the critical values for the case
m = oo are implemented. For M7 with the linear boundary, the 5% critical values are
given by 0.957 for £ = 1 and 1.044 for k = 2. Table 5 presents the size results. Note, that
the tests are undersized by construction, as not all of the size is used up to the time point
|mT|. For k > 2, we observe some size distortions for small sample sizes. The results in
Table 6 show that the mean delay for the stacked backward CUSUM is much lower than
that of the forward CUSUM and is almost constant across the breakpoint locations.

To compare the breakpoint estimator (11) with its maximum likelihood benchmark (10),
we present Monte Carlo simulation results for model (12) for the Bias and the MSE in Table
7. If the break 7* is located after 0.85 of the sample, the estimator based on backwardly

cumulated recursive residuals has a much lower Bias and MSE than the maximum likelihood

estimator.
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Table 6: Empirical mean detection delays of the monitoring detectors

Model (12) Model (13)
SBQ Q CSW |[SBQ Q
7 =151 414 394 53.6 | 62.2 504
" =2 384 594 60.1 | 57.7 77.0
TF=25 1369 79.2 65.8 | 54.6 103.4
T =3 36.0 99.1 71.1 | 524 129.6
T"=25 345 1780 894 | 48.1 233.6
7" =10 | 33.5 374.6 124.2 | 45.7 4878

Note: The empirical mean detection delays are obtained from 100,000 Monte Carlo repetitions using size-adjusted critical
values for a significance level of 5%, where models (12) and (13) are simulated for ¢t = 1,..., [mT| with T = 100 and m = 20.
While SBQ and Q correspond to the stacked backward CUSUM and the forward CUSUM with the linear boundary (4) and
with critical values for the case m = oo, the univariate test by Chu et al. (1996) with the radical boundary (7) is denoted by
CSW.

6 Conclusion

Two alternatives to the conventional CUSUM detectors by Brown et al. (1975) and Chu
et al. (1996) have been proposed. It has been demonstrated that a detector that back-
wardly cumulates recursive residuals yields much higher power than when using forwardly
cumulated recursive residuals when the break is located in the middle or at the end of
the sample. Furthermore, the stacked triangular array of backwardly cumulated recursive
residuals can be applied for monitoring and yields a much lower detection delay than that
of the monitoring procedure by Chu et al. (1996). Due to the multivariate nature of the
tests, we also have power against structural breaks that do not affect the unconditional

mean of the dependent variable.
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Table 7: Bias and MSE of breakpoint estimators

T=100 T=200

Bias MSE Bias MSE

T* ML BQ ML BQ ML BQ ML BQ

0.5 0.000 —0.029 0.012 0.019 0.000 —0.016 0.001 0.003
0.65 | —0.013 —0.025 0.014 0.019 | —0.001 —0.009 0.001 0.002

0.8 | —0.047 —0.031 0.032 0.024 | —0.003 —0.006 0.002 0.003
0.85 | —0.077 —0.041 0.051 0.029 | —0.006 —0.007 0.003 0.004

09| —0.137 —0.065 0.094 0.042 | —0.018 —0.012 0.010 0.007
0.95 | —0.259 —0.127 0.188 0.079 | —0.082 —0.035 0.058 0.020
097 | —0.341 —0.176 0.253 0.109 | —0.170 —0.070 0.129 0.041
0.99 | —0.451 —0.250 0.342 0.154 | —0.362 —0.164 0.286 0.099

Note: The Bias and MSE results for the breakdate estimators (10) and (11) are obtained from 100,000 Monte Carlo
repetitions, where model (12) is simulated for ¢ = 1,...,7. ML denotes the maximum likelihood estimator ?I*V;eLt and BQ
denotes the estimator Tyet, which is based on backwardly cumulated recursive residuals.

Appendix: Proofs

We first present some auxiliary lemmas which we require for the proofs of Theorems 1 and

2.

Lemma 1. Under Assumption 1, there exists a k-dimensional standard Brownian motion

W(r), such that the following statements hold true:

(a) For any fired m < oo, as T — oo,
1 [rT] )
— xu, = ocCY*W(r), re|0,m].
ﬁ; tUt () [ }
(b)

i IS5 2y — o CW ()]
t—o00 \/¥

=0 (as.)

Proof. For (a), note that a direct consequence of the functional central limit theorem for
multiple time series on the space D([0,1])* given by Theorem 2.1 in Phillips and Durlauf
(1986) is that M~Y2 S M g, = oCV*W(s), s € [0,1], as M — oo (see also Lemma 3
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in Krimer et al. 1988). Then, on the space D([0,m])*,

LT L(r/m)M]

\/_ Z \/_% Z U = \/Eacl/QW<r/m> 2 UCI/ZW(”? r € [0,m].

To show (b), note that {@;u; }en is a stationary and ergodic martingale difference sequence
with E[zu;] = 0 and E[(xu;) ()] = 0?C. We apply the strong invariance principle
given by Theorem 3 in Wu et al. (2007). Then,
[lea @ i& Z — wju; — W(H)||
im
e g1/ /l(D) (n(In(t))) V-

<00, (a.s.),

where ¢ = min{d, 4} (see also Strassen 1967), and the assertion follows from the fact that

limy o0 /9 /In(t) (In(In(t)))/* /vt = 0. O

Lemma 2. Let {(x,us) }en satisfy Assumption 1, let B, = By for all t € N, and let
m € (0,00). Let X; = 22:1 xjw;, Y, = Z;Zl xu;, and Z; = Zj;ll gzlj_laziui. Then,

as T — oo,
X, — (Y, - 7Z X, — (Y, - 7Z
sup X — (Y )l =op(1), and sup IX: — (Y | = op(1).
1<t<mT VT TH+1<t<o00 Vi

Proof. First, note that wy, = 0 for t < k. For t > k let f, = (14 (t — 1) 'x/C;} x;)"/? be

the denominator of w;. Then,

frwe =y — m:‘//@t—l = U — wg(i ) (ijuj) = U — < Zw]u]>
j=1

v t — 7 t—1
Furthermore, let Y, = >, ., f; 'zuj, and Z; = Dok Dz I gt I Y JERE N opur N1

Then, X; = Z] e (v — (= 1)l C S au;) = Y, — Zy. Hence, it remains
to show, that

Y. - Y| 1Y, — Y|
sup ——— =op(1l), and su ——F =op(l), 14
1§t§IT)nT VT r(1) T+1§£)<oo Vit P(1) (14)
and that
|Z: — Z4| 1Z: — Z4|
sup — = =op(1l), and su ——FF—F—F— =op(1). 15
1gtgme VT P(1) T+1§£)<oo Vi p() (15)
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To show (14) and (15), we apply Abel’s formula of summation by parts, which is given by

> Ab = ZAtb +ZZA (by — b)), A eR¥*F b eRF, pneN. (16)
t=1

t=1 j=1

Let ar = \/T((fT — 1>1{T>k} — 1{T§k})> which is Op(l), since \/T(fT — 1) = Op(l), as
T — oo, and let a; = t7Y2%7_ | a;z;u;, where ||ar|| = Op(1). Furthermore, note that
§7Y2 —(j +1)7Y2 < j73/2. Then,

t

t—1

~ ' B 1

Y- Y= E (a;u;)] P =a +§ ( 1/2 -+ 1/2D <a;+ E ;aj,
j=1

J=1

which implies that

H?t_YtH (”CLtH ”a]”)
sup ———— < su — :
1§t§]:7,T VT 1§t§%T T1/4 Z 5/4 p(1)
and
1Y — Y4 |a,t|| |a;||

|
wp VYl ) = or).
T+1§P<oo Vit T+1§$<oo VT T1/4 Z Jo/4 (1)

To show (15), let ZF = 23;11 S i, C  , Ay = 7 C M s — C Y and
a; = j V230, :ch:l:;-H;ija:iui, such that Z, — Z; = Z;;ll i Y%a;. Since {x;}ien is
ergodic, we have ||Ar|y = op(1), as T — oo, where || - || denotes the matrix norm
induced by || - ||, and ||ar| = op(1). Moreover, there exists some € > 0 and some random

variable £, such that ||a;|| < j~°¢. Thus,

T+1<t<oco

12 - 27 _ 12 -Zi| _ € <
07— ell - 2”2l o 5 = op(1).
S TS < o Z G =oe(l), | sup Tt <o Z e = or()

Finally, with A} = :ch:l:;-HC_l —Ix and b} =t7! 22:1 x;u;, (16) yields

Zt_ZA*b* ZA*b*1+ZZA* b — b7,

7j=1 =1
12 1 1
= (t—1)By_;b,_ 1+Z]B*[ +1bg+1‘|’jmy+1ua+1]
7j=1
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where B} = ¢! Z L A% Since || By |la = op(1) and ||b}]| = Op(T~'/?), there exists some
v > 0 and some random variable ¢, such that || B;b;|| < ¢t~Y277¢, | B;b;, || < t71/277¢,
and | Zj:l Bix; ujnl| < t1/277¢, which yields

]1/2 ¥
1Z; - il < ¢[(t - 1) W”+§Z -2
t—2
1/2— 1/2—v/2 1/2—v/2
< ¢l g Zjlﬂ/?] < CRET
j=1
for some constant K < oo. Consequently,
1Z; — Z4|| 1Z; — Z4||
sup ——— =op(1l), and su — =o0p(1),
1§t§EzT VT r(l) T+1§P<oo NG r(1)
and (15) follows by the triangle inequality. O

Lemma 3. Let W(r) be a k-dimensional standard Brownian motion and let B(r) be a

k-dimensional standard Brownian bridge. Then,

(a) W(r)— [; z"W(z)dz 2 W (r), forr >0,

(b) W(r/(1—r)) 2 B(r)/(1—r), forr € (0,1).
Proof. Let W;(r) and B;(r) be the j-th component of W(r) and B(r), respectively. We
show the identities for each 7 = 1,..., k, separately. Using Cauchy-Schwarz and Jensen’s
inequalities, we obtain [ 2 'E[|[W;(z)|]dz < co as well as [ 2~ E[|W;(r)W;(2)[] dz < oo,
which justifies the application of Fubini’s theorem in the subsequent steps. Since both
W;(r) and F(W;(r)) = W;(r) — [5 27'W;(z) dz are Gaussian with zero mean, it remains

to show that their covariance functions coincide. Let w.l.o.g. » < s. Then,

wmwm—[<> o)
// s - [ DA, [ WO,

= (2r+rln(s) —rin(r)) — (r +rin(s) — rn(r ))—7“—0

and (a) has been shown. The second result follows from the fact that both processes are

Gaussian with zero mean and
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Lemma 4. Let {(x;,u) }ben satisfy Assumption 1, let B, = By for all t € N, and let

m € (0,00). Then, as T — oo,

1 LrT)

Nia Z xw; = ocCY2PW(r), re[0,m)],
t=1

where W (1) is a k-dimensional standard Brownian motion.

Proof. From Lemma 2, we have sup,.¢o ) T2 X7 — (Yir — Zpr))|| = op(1). Let
F(Y|,r)) =Y —for 2 'Y dz. Then, limy oo || (Y o) — Zpor)) — F (Y pr)))|| = 0, and
Sup,c(o.m |17 /2X o) —F(T2Y ;1)) || = op(1). Lemma 1(a) and the continuous mapping
theorem imply F(T~Y2Y | 1) = F(cC~"*W(r)) = ¢C~"*F(W(r)). Furthermore, from

Lemma 3, it follows that F'(W (r)) 2 W (r). Consequently, T~ /2X |,z = cCY*W(r). O

Lemma 5. Let || - ||a be the induced matriz norm of || - ||. Let h be a RF-valued func-

tion of bounded variation, and let {A;}ien be a sequence of random (k x k) matrices with

SUD,-¢[0,m)] |71 ny (A; — A)||pr = op(1), where m € (0,00). Then, as T — oo,

L L7
swp {34~ ()| = op(1).
rel0,m] —1

Proof. By the application of Abel’s formula of summation by parts, which is given in (16),
it follows that

1T 1+ ] -1 ¢
D (A= Ah(1) =D (A - () + 3 > (A= A)(b(7) —h(F).

The fact that h(r) is of bounded variation yields

|rT |1
s =00, s |33 7o) - ne] = o,
Consequently,
1R 7] e Ty || —
sop 72— AmCE] < s 732 -] ] = ortt)
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and

=1 j=1
[rT]—-1 Pl
Sl ST
TG[O,m];Tt;(J )M (7) ) (1)
Then, by the triangle inequality, the assertion follows. o

Proof of Theorem 1

A~
Let wf = f;'(yf — «!B3,_,), which are recursive residuals from a regression without any

structural break, where f; = (1 + (t — 1) 'z/C; ! x,)"/?,
i t—1 Ll
yi = x;By +u;, and By, = (Z m]m;) (Z%y}k)
=1 =1
Then, y; = 2,8, +u; = y; + T~ ?a;g(t/T), and
Bi1 =B+ mctl1 > walg(i/T).

Furthermore, w; = w; + f; ' T~ 22\g(t/T) — f, ' T2t —-1)"1'C Z] v xxig(j/T). We

can decompose the partial sum process as 7~ /2 ZtLLTlJ xyw, = Sy 7(r) + Sar(r) + Ssr(r),

where
1 [rT| LTTJ
SlT thwp S2T th wtmtg % (17)
\/_
1 “"TJ 1
S;7(r) = —= —x;x.C xjx gL 18
3,T() T;ft(t 1) tlt tl; J gT) ( )
Let || - |as be the induced matrix norm of || -||. Lemma 4 yields S, 7(r) = cC"*W (r). For

the second term, note that, from Assumption 1(a) and the fact that vT'(f;' —1) = Op(1),
it follows that

[rT|
1 -1 /
su —g a:ac—CH = op(1). 19
TG[O,IZI’L] HT t=1 (ft o ) P( ) ( )
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Since g(r) is piecewise constant and therefore of bounded variation, Lemma 5 yields

r |[rT]
s s~ [ cgls)as] = s |7 >t - Ol =or(t) (20
For the third term, let
Iy X bT)
pi(r) = |_TT I_TTJ ijm g(%), par) = WCE,}TJ Cg(7),

j=1
[rT |

LTT Zg %

From Assumption 1(a), it follows that sup,¢(,, [[P2(7) — P3(r)|lsr = op(1). Furthermore,

from Lemma 5 and from the fact that sup,¢p Hﬁ tL;TH (i, — C)||;r = op(1), it

p37“

follows that sup,¢( ) [P1(r) — P2(7)|| = op(1). Thus, sup,¢jg [P1(r) — p3(r)|| = op(1).

Consequently,
1 LrT)
sup HS&T(T) + f Z ft_lwtili‘;hg,(%)H
rel0,m] —1
|rT|
< sup _ZHft 'zl lpy (FH) — s (), (21)

rel0,m] T
which is op(1). Since pj is a partial sum of a piecewise constant function, it is of bounded

variation, and, together with (19), we can apply Lemma 5. Then,
LTTJ

sup

5> )| = or (),
rel0,m] T —1

(ff lax; — C)DB(%
which yields

T S 1
sup HS;;T / ;Cg(v) dvds
o Jo

rel0,m]

= sup HSgT + CZpg )

rel0,m]

|+ op(1) = op(1)

Finally, Slutsky’s theorem implies that Sy 7(r) 4 S (7) +Ss.1(r) = cCY*W (1) +oCh(r),
which yields
Qr(r) = 571C*(S1r(r) + Sar(r) + Ssr(r)) = W(r) + C/?h(r),

since 0 is consistent for o2 (see Kramer et al. 1988).
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Proof of Theorem 2

Lemma 2 yields

1305 agwy = i (g — 5 o o) |
P i —or

Let W(r) be the k-dimensional standard Brownian motion given by Lemma 1(b). Then,

Ay — sup 130 wju; — o CPW (2]
T Vi

Furthermore, || Z;:l xu, — W(t)|| < &1/, for some € > 0 and some random variable &,

= 0p(1),

for all ¢t € N. It follows that

wp (s iy — 57 2 @) — o C VA (W () = 35 57 W ()|
t>T Vit

. t .
1527 ziui — W()| g
< Ap +su < Ar+ -(su )zo 1),
t>7QZ JVt 7+4 tZIB = iVt p(1)
since
t 1/2 € 0 1
su su — =op(1).
t>713 — ]\/_ t>¥z 1+6T6 pa j1+e P( )
Consequently,

o I i s = e O W — 5 WO
p 7 — op(1).

t>T

From the fact that T-Y/2W (t) z W(t/T) it follows that there exists some k-dimensional

standard Brownian motion W*(t), such that

aup /T2 @y = o CTA(W* () = S50 5 WG/ T)
r>1 \/E

Moreover, from Lemma 3 and the fact that limy_, ., Z]W;J JTIWE(G/T) = [ 27 "W (2) dz,

= OP(l).

there exists some k-dimensional standard Brownian motion W**(¢), such that

— rT ok
p [T E S s = o CPWI O
\/F — Up ’

r>1
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and, therefore,

— — — rT )k
qup IO Ty ~ Wy
r>1 \/F r '

Since ¢ is consistent for o (see Kramer et al. 1988) and {x; }ey is ergodic, we have
1671C7"” = o O Bl = 0p (1),

where || - ||»s denotes the matrix norm induced by || - ||. Consequently,

ap [V

Proof of Theorem 3

For any fixed m € (1,00), Theorem 1 yields Qr(r) = W(r), r € [0, m], under Hy. Then,
(a) follows with the continuous mapping theorem. For (b), the continuous mapping theorem

implies that

sy 1Q00) = QD] o WO =Wl W)

re(l,m) d<7n - 1) re(l,m) d(?“ - 1) re(0,m—1) d<7')

We transform the supremum to a supremum over a subset of the unit interval. Consider

[IS]

the bijective function g : (0, (m — 1)/m) — (0,m — 1) that is given by g(n) = n/(1 —n).
Furthermore, note that W(g(n)) Z B(n)/(1 — n), which follows from Lemma 3. Conse-
quently,

wp IWOU_ - IWD 2 B
rem—1)  d(T) ne(0,m=1) d(g(n)) ne(0,m-1) (1_77>d(i)

1-n

For the last result, Theorem 2 and Assumption 2 imply
1Qr(r) — Q1) [W(r) = W(1)|

s dir—1) e d(r—1)

< sup 1Qr(r) — QT(;?T__(Y;T(T) ~ W)

< sup IIQT&l—_%f(r)II +sup IIQTE;&—_Y\;(UH

< sup (HQT(T)\/—FW(T)H | d(f 1)) +1Qe(1) = W(L)| - sup d@l_ ;

< (o) (o) —o
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for some k-dimensional standard Brownian motion W (r). Then,

mon 1Qr(r) = Qr(D)|| » [W(r) — W)
o = sup — sup
@ re(1,00) d(?“ - 1) re(1,00) d(?’ - 1)

Consider now the bijective function ¢ : (0,1) — (0,00) that is given by g(n) = n/(1 —n),
which yields

sup W(r) -WD)|| p W)l W W (gm)Il o sup B
re(lo)  d(r—1) re(0,00)  A(7) ne,)  d(g(n)) e (1—n)d(£%)

Proof of Theorem 4

Theorem 1 and the continuous mapping theorem imply that

Qr(1) —Qr(r)| o W@) -W([)| o W (r)]]
MSH = sup ” — sup = sup
e re(0,1) d(1—r) r€(0,1) d(l—r) re0,)  d(r)
Proof of Theorem 5
Analogously to the proof of Theorem 3,
et D [W(r) — W(s)] mon D [W(r) — W(s)]
— sup sup , , — Sup sup
sbe re(0,1) s€(0,r) d(?" - 8) 559, re(l,m) se(l,r) d(?” - 8)

follow with Theorem 1 and the continuous mapping theorem. Furthermore, let the function

g:(0,(m—1)/m) — (0,m — 1) be given by g(n) = n/(1 —n). With Lemma 3(b), we have

IW(r) = W(s)| » [W(r) = W(s)
elmysetny A —5)  seomensewn  dr—5)
B [W(g(n) —W(s)ll _ W(g(n)) = W(g(Q))ll
B ne(so?%) se(sol,lgl?m) d(g(n) — s) nasol,l%) <2$€7> d(g(n) — (<))
D IB(n)/(1—mn) —W(C)/(1- )
(0,522 €0 a2 — 1)
1(1=O)B(n) — (1 =Bl

(1
= sup sup — :
ne0,m=1y¢ce(o.r) (1 —m)(1— <)d(—(1fz (iq))
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Finally, for (c¢), Theorem 2 and Assumption 2 imply

sup sup MO QeI W) = W)
r€(1,00) s€(L,r) d(?" - 8) re(l,00) s€(1,r) d(?“ - 3)
< sup sup 1Qz(r) = Qr(s) — (W(r) - W(s))|
re(1,00) s€(1,r) d(r — s)
< sup sup 1) =W 0 1Qr(s) = Wis)|
r€(1,00) s€(1,r) d(T’ - 8) re(l,00) se(1,r) d(T' — 8)
o 1QI W Q) - W)
TE(LOO) d(r - 1) TG(LOO) 86(177‘) d(?“ - 1)

(am a25) (o, 220

for some k-dimensional standard Brownian motion W(r). Then,

- W(r) - W
me o s 1O QO o IWE) - W)
' re(1,00) s€(1,r) d(r — s) re(1,00) se(1,r) d(r — s)

Consider now the bijective function ¢ : (0,1) — (0,00) that is given by g(n) = n/(1 —n).

Analogously to the derivations above, we obtain

WO Wl W) - W(s)]

reu,};) se(llj") d(r — s) ,«e(oEo) sE(Opr) d(r —s)

e o WO =Wl 10 - OB - 1 - 0B
n€e(0,1) CE(0,1) d(g(n) — g(¢)) ne(0,1) ceor) (1 —mn)(1 —()d(#@)

Proof of Theorem 6

Let g(r) = By + 61{>-+}, which yields

// dvdz—ﬁo//—dvds—i—é//—1{v>7*}dvds—rﬁo+6
/ dz—// dvdz—rﬂo—i-é/ ds—rﬁ0—5/ ST

= 7*5/ —ds =76 (In(r) — In(7*)) Ly rey-
T* S B

Following (17) and (18), we have T~ ZtL I;J xiw; = T7Y28, 7(r)+Sa.7(r)+S37(r). Lemma

4 yields sup,¢(o q [|T7"/2S1,0(r)|| = 0p(1), and equations (20) and (21) yield

sup HSQT +Sg7(r) — 7°C8(In(r) — ln(T*))l{TZT*}H = op(1).

rel0,1]
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Hence, o7~ 12Qr(r) = 7CY*§(In(r) — In(7*))1s,-y. If 75 € (0,1], the continuous

mapping theorem yields

r(1) — Qr(5)

Tret = — - argmax

1<t<T H \/74-( ‘
m(T*Clﬂé(ln(l) — 1n(7-*)) _ T*C1/25(ln(r) _ ln(T*))l{QT*}> H +op(1)

( S ) P 1n(7*>1{r<7*}) +op(l) =7 + op(1).

= argsup H
re(0,1]

= argsup

1
refo] V1—r

Analogously, if 7* € (1, 7p|, where 7p = Tp /T, we have

Tmon = argsup ——— ( s + In(75) 1y, T*>+0p1 =7"+o0p(1).
TGlTD]m (){Z} (){<} ()
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