
Gudmundsson, Jens; Hougaard, Jens Leth; Platz, Trine Tornøe

Working Paper

Decentralized Task Coordination

IFRO Working Paper, No. 2020/11

Provided in Cooperation with:
Department of Food and Resource Economics (IFRO), University of Copenhagen

Suggested Citation: Gudmundsson, Jens; Hougaard, Jens Leth; Platz, Trine Tornøe (2020) :
Decentralized Task Coordination, IFRO Working Paper, No. 2020/11, University of Copenhagen,
Department of Food and Resource Economics (IFRO), Copenhagen

This Version is available at:
https://hdl.handle.net/10419/225512

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/225512
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Decentralized Task Coordination

Jens Gudmundsson
Jens Leth Hougaard
Trine Tornøe Platz

2020 / 11

IFRO Working Paper 2020 / 11

Decentralized Task Coordination

Authors: Jens Gudmundsson, Jens Leth Hougaard, Trine Tornøe Platz

JEL-classification: C72, C78, D47, D63, D78

Published October 2020

This work is supported by the Center for Blockchains and Electronic Markets funded by the Carlsberg
Foundation under grant no. CF18-1112.

See the full series IFRO Working Paper here:
www.ifro.ku.dk/english/publications/ifro_series/working_papers/

Department of Food and Resource Economics (IFRO)
University of Copenhagen
Rolighedsvej 25
DK 1958 Frederiksberg DENMARK
www.ifro.ku.dk/english/

http://www.ifro.ku.dk/english/publications/ifro_series/working_papers/
http://www.ifro.ku.dk/english/

Decentralized Task Coordination∗

Jens Gudmundsson1, Jens Leth Hougaard1,2, and Trine Tornøe Platz1

1Department of Food and Resource Economics, University of Copenhagen, Denmark
2NYU-Shanghai, China

October 19, 2020

Abstract

We study decentralized task coordination. Tasks are of varying complexity and agents asymmetric:

agents capable of completing high-level tasks may also take on tasks originally contracted by lower-

level agents, facilitating system-wide cost reductions. We suggest a family of decentralized two-stage

mechanisms in which agents first announce preferred individual workloads and then bargain over the

induced joint cost savings. The second-stage negotiations depend on the first-stage announcements as

specified through the mechanism’s recognition function. We characterize mechanisms that incentivize

cost-effective task allocation and further single out a particular mechanism, which additionally ensures

a fair distribution of the system-wide cost savings.

Keywords Decentralized mechanisms · Implementation · Bargaining · Consistency · Blockchain

JEL Classification C72 · C78 · D47 · D63 · D78

1 Introduction

The ongoing development of the digital economy is enabling “smart” markets in which computational agents

make decisions on behalf of organizations (e.g. Can, 2019), supported for instance by a blockchain-based

infrastructure for increased transparency and decentralization of power (Abadi and Brunnermeier, 2018). It

creates new avenues for cooperation between independent self-optimizing agents, with ample opportunities

for mutual gains when supported by well-designed institutions and mechanisms. These mechanisms can

be implemented by self-executing smart contracts (e.g. Gans, 2019; Catalini and Gans, 2020), automating

transactions and eliminating the need for trusted third parties. The particular design of such mechanisms

poses a serious challenge as one must account for issues pertaining to both incentives and fairness to ensure

efficient and sustainable cooperation. However, when successful, it holds tremendous potential as automated

agents can solve bottlenecks in almost all parts of the economy without distortion from third-party mediators,

reducing both transaction and contract enforcement costs (see e.g. World Bank Group, 2020).

∗
This work is supported by the Center for Blockchains and Electronic Markets funded by the Carlsberg Foundation under

grant no. CF18-1112. Emails: jg@ifro.ku.dk, jlh21@nyu.edu, and ttp@ifro.ku.dk.

1

Our focus is on creating and sharing systemic cost reductions from distributed task processing. Whereas

most of the literature on job scheduling and task allocation concerns optimal solutions implemented in a

centralized way by a “scheduler” or a trusted third party (see e.g. Brucker, 2004; Bertsimas and Farias,

2012; Hillier and Lieberman, 2021), we explore decentralized solutions. Specifically, we study cost-effective

coordination among autonomous service providers (“agents”, henceforth) who individually have contracted

on and guaranteed the completion of certain tasks. Tasks and agents are heterogeneous: tasks differ for

instance in service requirements while agents differ in the quality of service that they provide. Task assignment

is thus highly asymmetric with almost all agents eligible for the most basic tasks but only the most complex

agents, the service providers with the highest quality of service, capable of performing the most complex

tasks. Other factors, such as privacy and security, may further influence task assignment and is succinctly

represented through task/agent-specific capacity constraints. Typically, the uncoordinated contracts provide

a suboptimal task allocation with system-wide cost savings attainable through careful reallocation. However,

as taking on extra tasks is costly, and no agent can force another to do so, agents will only take on higher

workloads if appropriately compensated. Hence, agents must decide on both an allocation as well as side

payments to support it. In this way, the initial contracts serve as the the starting point from which we seek

beneficial task reallocation as well as the default to which we revert if agents cannot reach agreement.

Inspired by Gudmundsson et al. (2019), we suggest a family of decentralized two-stage mechanisms to find

and implement cost-effective allocations. In the mechanism’s first stage, agents sequentially announce desired

workloads subject to feasibility constraints; in the second, they bargain over the resulting cost reductions and

settle on the side payments needed to support the reallocation. The bargaining process follows a random-

proposer protocol, requiring unanimous consent to finalize the agreement (Binmore et al., 1986; Binmore,

1987; Baron and Ferejohn, 1989). This allows us to connect the two stages: the probability distribution over

who gets to propose a solution in the second-stage negotiations will depend on the first-stage announcements.

Specifically, an agent is “recognized” as the proposer with a certain probability, making the mechanism’s

recognition function a key design parameter. This function can depend on initial contracts, announced

workloads, and capacity constraints, and it is exogenous to the agents. From a practical perspective, a

mechanism can be hard-coded in a smart contract, and its recognition function can be implemented through

a provably fair algorithm (compare blockchain-based gambling, see e.g. Min et al., 2019). Our objective is to

identify recognition functions that incentivize agents to announce cost-effective first-stage workloads all the

while ensuring a “fair” division of the cost reductions through the second-stage negotiations. Throughout,

the primitives of the model—the initial contracts, capacities, and cost functions—are common knowledge.

Our mechanism induces a two-stage game, which we analyze through backward induction. In Proposi-

tion 1, we detail the agents’ expected costs in all (stationary) subgame-perfect equilibria of the bargaining

stage. Generally, there is a unique such equilibrium; in it, agents share the system-wide cost reductions

in proportion to their recognition probabilities. This reveals a potential trade-off: it may be beneficial for

an agent to announce an inefficient first-stage workload if it increases the agent’s second-stage recognition

probability (compare Holmstrom, 1982, Theorem 1); cost reductions are then smaller, but the agent ac-

quires a larger share of them. Still, some recognition functions succeed in aligning individual incentives with

cost-effective task allocation, encouraging agents to always announce efficient workloads. In this way, the

hierarchical order of the agents from basic to complex together with the sequential decision making is used to

overturn Holmstrom’s (1982) impossibility. These recognition functions are said to satisfy cost-effective im-

plementation. Proposition 2 gives a precise description of what cost-effective implementation implies for the

recognition function: specifically, an agent’s recognition probability has to be independent of the workloads

2

announced by the agent herself as well as by the more complex agents.

While cost-effective implementation ensures desirable first-stage announcements, we turn to the literature

on fair allocation to pin down desirable cost-savings distributions in the second-stage negotiations. We take

an axiomatic approach and first turn to the notion of consistency (see e.g. Thomson, 2011, 2016). Loosely

speaking, consistency extends the intuitive principles, which suggest the solution to a part of a problem, to the

problem in its entirety. To explain the novelty of our approach, it is useful to separate the axiom in two parts:

for a given problem, one typically specifies (i) a reduced problem and (ii) a relation between the original and

the reduced problem. In our case, consistency pertains to the situation in which the probability for agent 1—

the most basic service provider—has been settled; the agent’s excess of contracted, but not yet completed,

tasks are then distributed to the others to form the reduced problem. However, without compelling reasons

to distribute the excess in one way rather than another, we do not specify a reduced problem for (i). Yet,

there is a clear-cut relation that maintains the principle of (ii), namely that the remaining agents’ relative

recognition probabilities should be unchanged in the reduced problem. In this way, our consistency axiom

asserts that there should exist some reduced problem with respect to which the recognition probabilities are

unchanged when adjusting the probability mass accordingly. Figure 1 illustrates this approach.1

Z

Z∗

a b

Figure 1: The original problem a and its possible reduced problems Z (light).

The typical approach (solid) relates a to a specified problem b. Our consistency

(dotted) only asserts that the relation should be maintained with respect to

some reduced problem. However, to be compatible with cost-effective imple-

mentation and top-agent proportionality, Proposition 4 shows (dashed) that

consistent recognition functions have to relate to problems in Z∗ (dark).

A consequence of cost-effective implementation through Proposition 2 is that the recognition probability

for agent 1 is independent of the first-stage announcements. We then turn to another well-documented

principle in fair allocation, namely proportionality: top-agent proportionality asserts that a fair recognition

probability for agent 1 equals her share of the initial contracts. Proposition 3 then identifies the functional

form of recognition functions that satisfy consistency and top-agent proportionality. Thereafter, Proposition 4

pertains to the intersection of the two prior results: it details the reduced problems for which a function can be

consistent so it remains compatible with cost-effective implementation and top-agent proportionality. Finally,

building on Proposition 4, Theorem 1 provides an axiomatic characterization of a particular recognition

function p∗. This first settles agent 1’s probability to 1’s share of the contracted tasks; it then continues

recursively (order 2, 3, . . .), awarding agent i a share of the remaining probability mass that equals i’s maximal

announcement in proportion to the total remaining tasks given the prior agents’ announcements. Theorem 1

shows that p∗ is the unique recognition function to satisfy cost-effective implementation, consistency, and

top-agent proportionality. Thus, it succeeds both in incentivizing agents to announce cost-effective first-stage

workloads as well as in distributing the cost reductions fairly through the second-stage negotiations.

Our contribution relates to several strands of literature. The operations research and computer science

literature abound with job-scheduling problems of many different kinds (see e.g. Brucker, 2004). In a clas-

1
Our approach is related to parameterizing axioms (see Thomson, 2019), say through “consistency parameterized by the

set of reduced problems X”. This would require the original problem to have a specified relation to some member of X. Our

consistency axiom sets X to the entire set of reduced problems, the conventional notion sets X to a single problem, and

Proposition 4 concerns the case X = Z∗ as defined in the main text.

3

sic job-scheduling problem, agents control machines that have to perform a number of jobs with different

lengths as well as starting and ending times. Given machine capacities, the scheduler’s problem typically

consists of minimizing the makespan (i.e., minimizing the resource cost). In particular, a recent and very

popular topic is scheduling of cloud computing, with numerous papers analyzing various forms of resource

allocation mechanisms (see e.g. Azar et al., 2015; Li et al., 2016; Bao et al., 2018). For instance, Huang

et al. (2015) consider jobs submitted to cloud computing clusters and Chen et al. (2019) consider jobs across

geo-distributed datacenters, both with a focus on optimal centralized resource allocation and fairness when

utility is sensitive to completion times. Zhang et al. (2015) and Zhou et al. (2017) analyze the same problem

using market mechanisms in the form of different auction designs. A branch of the scheduling literature

considers the benefits of distributed processing, typically dubbed “task allocation problems” (see e.g. Dutta

et al., 1982; Ernst et al., 2006): a set of tasks is centrally assigned to a set of (capacitated) processors

such that total processing cost is minimized. Due to problem complexity in real-world applications, focus

is primarily on optimization and heuristic algorithms. Lastly, Tawarmalani et al. (2009) consider allocating

objects in a network of caches. Nodes in the network face external object demands, analogous to our agents’

initial contracts, which they can meet by either offering the objects themselves or by relying on neighboring

nodes to do so. As nodes have capacity constraints, they have to think carefully about which objects to hold.

Tawarmalani et al. (2009) design an auction mechanism that settles side payments such that a cost-effective

allocation is reached.

The economic literature has mainly been concerned with fairness and incentives in queueing (e.g. Chun,

2016) and scheduling (e.g. Moulin, 2007). In short, a machine, which serves one job at a time, is shared

by users with jobs of arbitrary length and waiting-time costs, and the question is how users share the joint

externality by suitable side payments. Recently, Bahel and Trudeau (2019) consider a version of classic

job scheduling with a focus on fair division of the efficient cost using the framework of cooperative game

theory. They provide a characterization of stable cost allocations in the sense of the core as well as axiomatic

characterizations of two allocation rules. We, on the other hand, maintain a similar focus on fair division of

welfare, but analyze how allocation of welfare influences agents’ incentives via decentralized, non-cooperative

mechanisms. Hence, there is no centralized scheduling done by a planner and agents are autonomous entities,

organizing their own production schedule through the mechanism. Lastly, our model provides a generalization

in several directions of the river-sharing model studied by Gudmundsson et al. (2019), who reallocate a

homogeneous resource among an ordered set of agents. In contrast, our tasks are heterogeneous, agents may

perform some, but perhaps not all, task types, and reallocation is constrained by the agents’ capacities. In the

river context, welfare gains require collaboration between high-inflow and high-consumption countries and is

facilitated by intermediate transfer countries; in the present context, there is no analogue to an “intermediate

transfer country”: while water is bound to flow downstream, tasks do not obey such a physical restriction.

This is also the reason that we opt for the weak form of consistency. Thus, while there is an overlap in our

axiomatic approaches, the conditions imposed here are novel and lead us to new, interesting results.

The paper is organized as follows. Section 2 defines the formal model and the mechanisms. Section 3

introduces the axiomatic analysis. Our results are contained in Section 4. Section 5 closes with final remarks

on potential modifications of the model. Technical remarks and proofs are postponed to the Appendix.

4

2 Model

We study the interaction of a group of heterogeneous agents, broadly interpreted as service providers, set

to complete a number of tasks of varying complexity. We take as given that the agents have incentives to

complete all tasks and that they will do so as, say, the negative long-term effects of a contract breach exceeds

the one-time cost of performing the tasks. While the primitives of the model are common knowledge, the

agents are independent and make independent decisions, each seeking to minimize their own cost. In this

way, there is a joint interest in concerting a cost-effective task allocation, but it is only attainable if all agents

obtain a fair and agreeable share of the system-wide cost reductions it entails. We leave open the relation

between the agents: the collaboration may be between firms, such as airline alliances (Hu et al., 2013), or

cross-functional within a firm (Kouvelis and Lariviere, 2000) in which senior staff may be overqualified yet

able to perform tasks intended for junior staff.

2.1 Preliminaries

There is a set of agentsN = {1, . . . , n} and a set of task types T = {1, . . . ,m}, both ordered by complexity:

agent 1 and type 1 are the most basic, whereas n and m are the most complex. We assume throughout that

tasks are perfectly divisible. Each agent i has signed a contract on the completion of dit ≥ 0 tasks of type t;

we let D ∈ Rn×m
≥0 denote the matrix specifying the contracted tasks. This will serve also as the “default

allocation” and the disagreement point in the forthcoming negotiations: if agreement to reallocate tasks

differently is not reached, then we revert to D. Let Ti = {t ∈ T : dit > 0} denote agent i’s contracted

task types. Easier tasks may in some cases be performed at a satisfactory level also when delegated to

more complex agents. This is captured by the capacity matrix C ∈ Rn×m
≥0 such that C ≥ D,2 specifying

that agent i can perform at most cit ≥ 0 tasks of type t. If i is ineligible to perform tasks of type t, then

cit = 0. The purpose of redistributing tasks is to lower systemic costs. Specifically, for each agent i, the

strictly convex and increasing cost function fi : R≥0 → R≥0 specifies the cost fi(z) to agent i of completing

z tasks (regardless of types). In summary, the primitives of the model are D ∈ Rn×m
≥0 , C ∈ Rn×m

≥0 , and

f = (f1, . . . , fn).

An allocation X ∈ Rn×m
≥0 specifies that agent i completes xit ≥ 0 tasks of type t. Moreover, tasks are

done only by eligible agents and all tasks are completed, so the set of allocations is X (D,C) = {X ∈ Rn×m
≥0 :

X ≤ C and x1 + · · · + xn = d1 + · · · + dn}. The total cost for allocation X is F (X) =
∑

i fi(
∑

t xit). An

allocation that minimizes F is cost effective. Given D, C, and f , let E(D,C, f) ⊆ X (D,C) denote the set

of cost-effective allocations.3 The cost savings from redistributing tasks from D to X are ∆(X,D, f) =

F (D)−F (X). Given that X may require some agents to undertake more tasks than contracted on, they need

to be compensated for doing so. This is achieved through side payments π ∈ Rn such that π1 + · · ·+πn = 0.

The (net) cost to agent i of allocation X and payments π is fi(
∑

t xit)−πi. As individual side payments are

unbounded but jointly add to zero, the set of attainable vectors U(X,D,C), or U(X) for short, contains all

ways of sharing the total cost F (X): U(X) = {u ∈ Rn :
∑

i ui = F (X)}.
A special subdomain of problems is interesting from both a theoretical and practical perspective. Gener-

ically, no two agents/service providers are identical in practice in the sense that they all provide service of

differing quality. This puts additional restrictions on the problem, namely that no two agents contract on

the same tasks, Ti ∩ Tj = ∅, and, for agents i < j and task type t ∈ Tj , cit = 0. To distinguish this special

2
We use element-wise comparisons. Hence, C ≥ D means ci ≥ di for each i; this in turn means cit ≥ dit for each t.

3
When there are multiple cost-effective allocations, say X and Y, then, for each agent i,

∑
t xit =

∑
t yit.

5

case from the general one, we let D denote the “extended” domain defined originally and D̃ ⊂ D denote the

special case just referred to. That is, D̃ = {D ∈ D : i 6= j =⇒ Ti ∩ Tj = ∅}. Next, we illustrate the model

through a numerical example.

Example 1. Consider the five-agent, five-task example with D and C as follows:

D =

9 0 0 0 0

0 5 0 0 0

0 0 4 0 0

0 0 0 2 0

0 0 0 0 1

 and C =

9 0 0 0 0

2 5 0 0 0

2 2 4 0 0

1 2 1 2 0

1 1 2 1 1

 .

Each agent has contracted on a single task type and D ∈ D̃. The agents can complete their obligations as

C ≥ D and some tasks, but not all, can be delegated from lower- to higher-level agents. Assuming identical

cost functions f1 = · · · = f5, two among many cost-effective allocations are X and Y as follows:

X =

5 0 0 0 0

1 3 0 0 0

1 1 2 0 0

1 1 1 1 0

1 0 1 1 1

 and Y =

5 0 0 0 0

2 2 0 0 0

2 0 2 0 0

0 2 0 2 0

0 1 2 0 1

 .

Thus, agent 1 completes five tasks while the other agents complete four each. As an example, with fi(z) = z2,

the cost savings amount to ∆(X) = F (D)−F (X) = (81 + 25 + 16 + 4 + 1)− (25 + 16 + 16 + 16 + 16) = 38. ◦

2.2 Two-stage mechanisms

Our aim is to identify decentralized methods which ensure that agents are incentivized to cost-effectively

redistribute tasks without coordinating through a trusted third party. For this, we look to the mechanisms

introduced in Gudmundsson et al. (2019). These operate in two stages. First, agents declare their desired

workloads. As it may be possible to delegate tasks from lower- to higher-level agents, agents make their

announcements sequentially: agent 1 chooses first; agent 2 chooses second, and the tasks available to choose

from will depend on 1’s choice; and so on until agent n is left to take on the remaining tasks.4 Still, this

is merely a declaration of interest: in the second stage, every agent has a chance to veto the allocation and

revert to D. In this way, the first stage ends with some announced allocation X while the second pertains to

bargaining over the total costs F (X). In particular, one agent proposes a vector of costs u ∈ U(X) for the

others to accept or reject. Only on unanimous acceptance is the allocation actually realized: if the proposal

is vetoed, then there is a new round of negotiations with a new proposal to evaluate.

A central characteristic of the mechanism is who gets to propose. The proposer holds an advantage—

they can assign the highest cost shares acceptable to all other agents and thereby minimize their own share.

Following the literature on fair allocation, we take as given that all agents should have a fair chance of

4
For practical purposes, the process may be expedited if agents make simultaneous announcements. Over- and under-

demanded tasks can then be assigned as a function of the announcements; compare for instance the “lexicographic allocation”

in Cachon and Lariviere (1999, page 1097). While Cachon and Lariviere are unable to achieve cost effectiveness in equilibrium

(Cachon and Lariviere, 1999, Theorem 4) in a model featuring multiple retailers announcing desired quantities to a supplier,

our second-stage negotiations help to overturn this result.

6

obtaining this advantage: for instance, we may want to favor agents who have contracted on many tasks or

who have announced that they are willing to take on many tasks. In this way, the mechanism chooses the

proposer as a function of X, D, and C; specifically, agent i is chosen with probability pi(X,D,C) ∈ [0, 1].

We call p the recognition function and pi(X,D,C) agent i’s recognition probability.

Within the context of computational tasks and services, we may expect algorithms to compute the

announcements and handle the thereupon following bargaining stage on behalf of the service providers

involved. Under such circumstances, we would expect agreement to be reached almost instantaneously. Next,

we describe the two stages formally.

Stage 1: Sequential announcements of desired workloads. Agents sequentially choose task vectors

xj = (xj1, . . . , xjm). Choices are limited by the agent’s capacity cj , task availability given prior choices xi
and the contracts di for i < j, and the remaining capacities ck for k > j. The agent should be able to

perform their announced tasks, the choice should be compatible with the prior choices, and the tasks that

reamin should be managable by the higher-level agents. Let X denote the allocation eventually formed by

the individual announcements x1, . . . , xn. Formally,

1. Agent 1 chooses x1 ≤ c1 such that x1 ≤ d1 and x1 +
∑

k>1 ck ≥
∑

i di.
...

j. Agent j chooses xj ≤ cj such that
∑

i≤j xi ≤
∑

i≤j di and
∑

i≤j xi +
∑

k>j ck ≥
∑

i di.
...

n. Agent n chooses xn such that
∑

i xi =
∑

i di.

The latter inequalities provide a lower bound on each agent’s announcement for the more complex agents

to be able to complete the remaining tasks. There is also an upper bound: given the announcements X<j by

agents prior to agent j, the maximal announcement that j can make is5

x̄j = min{
∑

i≤j di −
∑

i<j xi, cj}.

Agent j cannot go beyond cj for capacity reasons nor beyond the total tasks available given the prior

announcements.

Stage 2: Bargaining on side payments. Agents bargain, possibly indefinitely, on how to share the costs

using a random-proposer protocol. If a proposal is rejected, then negotiations continue to the next round

with probability δ and break down otherwise. We may view δ as a built-in feature of the mechanism used

to speed up the negotiations: the lower δ, the more likely it is that negotiations break down and thus the

riskier it is to reject a proposal. Formally, Stage 2 is as follows:

1. Some agent gets to propose a cost vector from U(X). In particular, agent i is selected as proposer with

probability pi(X,D,C).6

2. In random order,7 agents choose whether to accept or reject the proposed costs.

5
The minimum is taken element-wise: for each type t, x̄jt = min{

∑
i≤j dit −

∑
i<j xit, cjt}.

6
We may also view it as all agents choosing cost vectors simultaneously, but that the acceptance decision (steps 2 and

onward) only concerns the vector announced by the agent chosen to be the proposer.
7
By ‘random order’ we mean that the order is chosen randomly from all orders on the set of agents. Thus, for each agent,

there is positive probability that they are the last to decide on whether to accept or reject the proposal.

7

3. If unanimously accepted, the proposal is implemented and the negotiations end.

4. Otherwise, if the proposal is rejected by at least one agent:

(a) With probability δ, the negotiations proceed to the next round, returning to Step 1 above with a

possibly different proposer drawn again using the distribution p(X,D,C).

(b) With probability 1−δ, the negotiations break down and end, reverting to the allocation D without

side payments.

For tractability, we restrict attention to stationary strategies represented by a pair (ui, ai) ∈ U(X)×R:

agent i always proposes the cost vector ui and always accepts a proposal in which their assigned cost does

not exceed ai.

3 Normative foundations for recognition functions

As the recognition function p ties the two stages of the mechanism together, it is a key design element that

affects both agents’ welfare and their incentives to distribute tasks in a cost-effective way. We now formally

define recognition functions and introduce three axioms for such functions, inspired by the literature on fair

allocation.

3.1 Recognition functions

Throughout, we fix the number of tasks m whereas the number of agents n may vary. An n-agent problem is

described by a triple (X,D,C) such that X ∈ X (D,C), D ∈ D, and C ≥ D. Let Pn denote the set of n-agent

problems and P̃n = {(X,D,C) ∈ Pn : D ∈ D̃} denote the restricted domain of problems connected to D̃. A

recognition function p selects, for each population size n ∈ N and each n-agent problem (X,D,C) ∈ Pn, a

point p(X,D,C) = (p1(X,D,C), . . . , pn(X,D,C)) in the n-simplex. That is, pi(X,D,C) ∈ [0, 1] is agent i’s

recognition probability, and the probabilities add to one,
∑

i pi(X,D,C) = 1. Each recognition probability

pj is continuous in its inputs xit, dit, and cit, so small input variations only have small probability effects.8

3.2 Cost-effective implementation

Our first axiom pertains to cost effectiveness. Take as given contracted tasks D ∈ D̃, a capacity matrix C,

a list of cost functions f = (f1, . . . , fn), and the associated cost-effective allocations E(D,C, f). As noted,

the recognition function affects the incentives for the first-stage announcements. For instance, if agent i’s

recognition probability is increasing in i’s own announcement, we may expect i to announce a high, possibly

inefficient, workload. On the other hand, if i’s probability is independent of i’s own announcement, then i’s

incentives are better aligned with the common objective of minimizing costs: it is in i’s interest to choose

xi to maximize the cost savings ∆(X,D, f). In this way, some recognition functions encourage agents to

announce cost-effective workloads. The axiom cost-effective implementation requires exactly that.

Axiom 1 (Cost-effective implementation). For each population size n ∈ N, matrix D ∈ D̃, capacity matrix

C ≥ D, and list of cost functions f = (f1, . . . , fn), every subgame-perfect equilibrium of the two-stage game

induced by the recognition function p entails cost-effective announcements: that is, in each such equilibrium,

the first-stage announcement X is in E(D,C, f).

8
See Gudmundsson et al. (2019, Appendix A) for an extended discussion on continuity in recognition functions.

8

The approach we take is familiar from the literature on implementation theory (see e.g. Maskin and

Sjöström, 2002; Corchón, 2009). We seek a game form (here, the two-stage mechanisms represented by the

recognition function) that combines with the agents’ types (here, their cost functions) to induce a game with

socially desirable equilibria (here, cost-effective allocations). While cost-effective implementation may appear

a strong condition, it is immediate that it is satisfied by some recognition functions. A trivial example is to

equalize probabilities through pj(X,D,C) = 1/n for each agent j. As each agent’s probability is independent

on her own announcement, the agent will want to minimize total costs. However, there are also recognition

functions that satisfy cost-effective implementation yet depend on the announcements X; we take a closer

look at these in Section 4 and Proposition 2.

3.3 Consistency

Typically, a consistency axiom (see e.g. Thomson, 2011, 2016) specifies a particular reduced problem and a

condition that connects the reduced problem to the original problem. In our context, the reduced problem

corresponds to the situation in which the first agent’s probability has been settled. The tasks that this

agent announces that she will not perform are made available to remaining eligible agents. The condition

then asserts that the recognition probabilities should be unchanged when adjusting the probability mass

accordingly. When as much as possible of agent 1’s surplus tasks are passed on to agent 2, subsequently

agent 3, and so forth, we obtain consistency with direct transfer as defined below. The index “≥ 2” indicates

all but agent 1: for instance, X≥2 is the sub-matrix of X ≡ X≥1 comprised of the announcements by all

agents but agent 1. The matrix Z ∈ Rn×m specifies how the excess—the tasks that agent 1 has contracted

on but announced she does not intend to perform—is split among the agents. For consistency with direct

transfer, Z is such that all excess, up to capacity, is pushed to the next agent.

Axiom 2 (Consistency with direct transfer). For each population size n ∈ N, problem (X,D,C) ∈ Pn, and

agent j ≥ 2,

pj(X,D,C) = (1− p1(X,D,C)) · pj(X≥2,D≥2 + Ẑ≥2,C≥2),

where ẑ1 = 0 and, for each agent j ≥ 2, ẑj = min{e1 − x1 − (ẑ1 + · · ·+ ẑj−1), cj − dj}.

The values ẑ1, . . . , ẑn are defined recursively. We first set ẑ1 = 0 and then assign as much as possible of

agent 1’s excess to agent 2: ẑ2 = min{d1−x1, c2−d2}. We can view this as two cases: if d1t +d2t ≤ x1t + c2t,

then we fully specify Ẑ (for that type t) through ẑ2t = d1t − x1t and ẑ3t = · · · = ẑnt = 0; otherwise, we set

ẑ2t = c2t − d2t and continue to the next agent to distribute the remaining excess.

In general, for each agent j ≥ 2, we check whether
∑

i≤j dit ≤
∑

i<j xit + cjt. If so, building on the

values ẑ1t, . . . , ẑj−1,t determined in previous steps, we set
∑

i≤j ẑit = d1t − x1t and ẑj+1,t = · · · = ẑnt = 0.

Otherwise, we set ẑjt = cjt − djt and continue to the next agent. If we reach agent n, then necessarily∑
i dit =

∑
i xit ≤

∑
i<n xit + cnt, so we fall into the first case, ensuring that Ẑ indeed is well-defined.

Consistency with direct transfer is a natural starting point but not completely uncontroversial. After all,

tasks left over by agent 1 need not be passed on to the next agent capable of performing them; they may

instead, for instance, be split evenly among all agents capable of performing them. For this reason, how the

excess tasks are reassigned is not immediately clear. And indeed, how they are reassigned may affect the

recognition probabilities: if all excess goes to agent 2, then that increases the relative importance of agent 2

and perhaps also her recognition probability; if instead only a small amount goes to agent 2, then, analogously,

9

her recognition probability may decline. Therefore, we instead impose a very weak form of consistency. In

what follows, consistency only asserts that there should exist some reduced problem with respect to which

the recognition probabilities are unchanged when adjusting the probability mass accordingly. Formally, we

let Z(X,D,C) denote the set of distributions of agent 1’s excess at (X,D,C) ∈ Pn:

Z(X,D,C) =
{

Z ∈ Rn×m
≥0 : z1 = ~0 and (X≥2,D≥2 + Z≥2,C≥2) ∈ Pn−1

}
.

Axiom 2∗ (Consistency). For each population size n ∈ N, problem (X,D,C) ∈ Pn, and agent i = 2, . . . , n,

pi(X,D,C) = (1− p1(X,D,C)) · pi(X≥2,D≥2 + Z≥2,C≥2),

for some Z ∈ Z(X,D,C).

As Ẑ ∈ Z(X,D,C), consistency with direct transfer is a stronger condition than consistency. Still, for

some problems the two axioms have the same implication: for instance, if X is such that agent 2 takes on

all tasks left behind by agent 1, then the only reduced problem is as in consistency with direct transfer.

However, in general, there will be an infinite number of valid reduced problems, each possibly inducing

different recognition probabilities.

Example 2. We continue on Example 1 and explore all ways Z ∈ Z(X,D,C) to distribute agent 1’s excess

e1− x1 = (4, 0, 0, 0, 0). Thus, it suffices to consider type t = 1 for which, in addition, no agent j ≥ 2 has any

contracts initially, dj1 = 0.

1. For agent 1, we set z11 = 0.

2. Agent 2 should be able to complete their announced tasks, z21 ≥ x21 = 1, but not hold more than

their capacity, z21 ≤ c21 = 2.

3. Agent 3 may indirectly receive some excess through agent 2 if z21 > x21. Still, together they should

have enough to complete their tasks, z21 + z31 ≥ x21 + x31 = 2, while agent 3 should not go beyond

capacity, z31 ≤ c31 = 2.

4. We derive similar bounds for agent 4: z21 + z31 + z41 ≥ x21 + x31 + x41 = 3 and z41 ≤ c41 = 1.

5. Finally, for agent 5, z11 + · · ·+ z51 = d11 − x11 = 4 yields z51 = 4− z21 − z31 − z41.

The possible assignments to later agents depend on how much earlier agents are given: for instance, if

z21 = 1, then 1 ≤ z31 ≤ 2; on the other hand, if z21 = 2, then 0 ≤ z31 ≤ 2. In Figure 2, the possible

distributions among agents 3, 4, and 5 given that agent 2 are assigned z21 = 2 is illustrated through the light

and dark gray areas. ◦

3.4 Top-agent proportionality

In Section 4, Proposition 2 will show that an implication of cost-effective implementation is that agent 1’s

recognition probability cannot depend on the announcements X at all. That is to say, if p1 were to depend

on x1, then agent 1 could be better off announcing an inefficient workload. Likewise, if p1 were to depend

on some other xi, then agent 1 could, through their announcement, affect the tasks available to later agents

and thereby affect agent i’s announcement and, in effect, affect 1’s own recognition probability. In this

way, agent 1 could again be better off announcing an inefficient workload. Thus, insisting on cost-effective

implementation, agent 1’s probability can essentially depend only on their contracted tasks d1. Top-agent

proportionality asserts that agent 1’s probability should equal her fraction of the contracted tasks.

10

0, 0, 2 0, 2, 0

2, 0, 0

1, 0, 1 1, 1, 0

0, 1, 1

Figure 2: The light and dark gray areas together give all ways to share agent 1’s excess among agents 3, 4,

and 5 given that agent 2 is assigned z21 = 2, so {(z31, z41, z51) : Z ∈ Z(X,D,C), z21 = 2}. The dark gray

area is the set {(z31, z41, z51) : Z ∈ Z∗(X,D,C)} referred to in Example 3. The white areas are infeasible

due to capacity constraints.

Axiom 3 (Top-agent proportionality). For each population size n ∈ N and problem (X,D,C) ∈ Pn,

p1(X,D,C) =

∑
t d1t∑

i

∑
t dit

.

For our practical applications, we envision task quantities to represent iterations, computation time, or

similar aspects. Thus, just as when dealing with the cost function, we are justified in adding quantities of

different task types.

4 Results

We now turn to our formal results. First, we take as given a particular two-stage mechanism (as repre-

sented by an arbitrary recognition function p) and analyze its subgame-perfect equilibria through backward

induction. Thus, we first solve for the equilibrium bargaining behavior in the second stage of the mecha-

nism. Proposition 1 shows that, in equilibrium, the cost savings ∆(X,D, f) will in expectation be shared in

proportion to the recognition probabilities pi(X,D,C). Thereafter, we proceed with the axiomatic analysis

and pin down the class of recognition functions that satisfy cost-effective implementation: Proposition 2

shows that these functions are such that each agent i’s probability pi is independent of the announcements

xi, . . . , xn. Thereafter, Proposition 3 turns to our other axioms to establish the functional form of all recogni-

tion functions that satisfy consistency and top-agent proportionality. Proposition 4 connects the prior results,

giving a complete description of all reduced problems with respect to which the recognition function can be

consistent yet still satisfy cost-effective implementation and top-agent proportionality. Finally, Theorem 1

shows that the three axioms pin down a particular recognition function p∗. Expressed differently, the two

classes identified in Propositions 2 and 3, respectively, overlap in a single recognition function p∗. In this

way, Theorem 1 provides a normative foundation for p∗, a recognition function which guarantees that agents

announce cost-effective workloads all the while ensuring that the cost savings are shared fairly.

4.1 Equilibrium behavior in the bargaining stage

Fix a matrix D ∈ D̃ together with a capacity matrix C ≥ D and cost functions f . We analyze the two-stage

mechanism from the end, starting with its second stage. Hence, take as given a first-stage announcement X.

11

Recall that agents bargain on how to share the costs F (X), or, equivalently, on which solution in U(X) to

implement. Recall also that we restrict to stationary strategies in which each agent i always proposes the

same ui ∈ U(X) and always accepts any proposal that awards i a net cost of at most ai ∈ R.

Proposition 1 shows that, in the subgame-perfect equilibrium of the bargaining stage, agents share the cost

savings in expectation in proportion to the recognition probabilities. That is, all agents pay fi(di) for the tasks

that they have contracted on, but, on top of that, save a share pi(X,D,C) of the total savings ∆(X,D, f).

In this way, the expected payoffs are independent of the continuation probability δ while the equilibrium

strategies depend on δ in a natural way: the greater the probability of the bargaining process continuing, the

more the proposer has to award the other agents in order to reach an agreement (compare Gudmundsson

et al., 2019, Figure 1). A general discussion of the uniqueness of equilibrium payoffs in coalitional bargaining

models can be found in Eraslan and McLennan (2013) and references therein.

Proposition 1. An agent’s expected cost is the same in all stationary, subgame-perfect equilibria of Stage 2.

In particular,

A. If ∆(X,D, f) ≤ 0, then agent i’s expected cost is fi(di), and there are several cost-equivalent equilibria;

B. If ∆(X,D, f) > 0, then agent i’s expected cost is fi(di)− pi(X,D,C) ·∆(X,D, f), and the equilibrium

is unique.

All proofs are postponed to the Appendix. Next, we turn to analyzing the game as a whole.

4.2 The implication of cost-effective implementation

Agents foresee that their equilibrium payoffs in the second stage will be as described in Proposition 1: they

are awarded a share of the total savings that is proportional to their recognition probability. For that reason,

when announcing their desired workloads in the first stage, they may face a trade-off: if they can announce

an inefficient amount that reduces total savings but sufficiently increases their own probability, they may be

better off. Of course, if an agent cannot affect their own recognition probability through their announcement,

then they have nothing to gain from inefficient announcements. Thus, recognition functions that prevent

agents from affecting their probabilities satisfy cost-effective implementation. Indeed, Proposition 2 shows

that these are the only recognition functions to do so.

Proposition 2. The recognition function p satisfies cost-effective implementation if and only if, for each

matrix D ∈ D̃, capacity matrix C, agent j, and pair of allocations X,Y ∈ X (D,C) that coincide for all

agents i < j, agent j’s recognition probability is the same:

X<j = Y<j =⇒ pj(X,D,C) = pj(Y,D,C).

A first implication of Proposition 2 is that agent 1’s recognition probability p1 is independent of the

announcements X; this has been used as an argument in favor of top-agent proportionality. A second impli-

cation is that agent j’s recognition probability pj cannot depend on j’s own announcement xj ; this will later

be used to pin down the consistent and top-agent proportional recognition functions that satisfy cost-effective

implementation.

12

4.3 The class of consistent and top-agent proportional recognition functions

Next, we identify the class of recognition functions characterized jointly by consistency and top-agent pro-

portionality. The latter axiom immediately settles agent 1’s probability (below, p1(X,D,C) = g(1)). At

that point, we can appeal to consistency to reduce the problem and distribute 1’s excess through some

Z1 ∈ Z(X,D,C). Through top-agent proportionality, we can then pin down the probability for the “new”

first agent in the reduced problem with n− 1 agents. In this way, going back and forth between the axioms,

distributing each agent j’s excess through some Zj ∈ Z(X≥j ,D≥j + Z1
≥j + · · · + Zj−1

≥j ,C≥j), we derive a

particular member of the characterized class.9

Proposition 3. The recognition function p satisfies consistency and top-agent proportionality if and only

if, for each population size n ∈ N and problem (X,D,C) ∈ Pn, there exist Z1, . . . ,Zn−1 such that Z1 ∈
Z(X,D,C) and, for each j ≥ 2, Zj ∈ Z(X≥j ,D≥j + Z1

≥j + · · ·+ Zj−1
≥j ,C≥j), such that

p1(X,D,C) = g(1) =

∑
t d1t∑

i

∑
t dit

and, for each agent j ≥ 2,

pj(X,D,C) = (1− g(1)) · · · (1− g(j − 1)) · g(j),

where, for each j ≥ 2,

g(j) =

∑
t djt +

∑
i<j

∑
t z

i
jt∑

i

∑
t dit −

∑
i<j

∑
t xit

.

To summarize, Proposition 2 provides a precise description of the class of recognition functions that satisfy

cost-effective implementation, while Proposition 3 pins down the functional form of recognition functions

satisfying consistency and top-agent proportionality. Next, we turn to the intersection of these classes.

4.4 All forms of consistency compatible with cost-effective implementation and

top-agent proportionality

We now determine all forms of consistency that are compatible with cost-effective implementation and

top-agent proportionality ; that is, we find all ways to specify reduced problems such that the axioms are

compatible. These distributions of the first agent’s excess form a sort of “equivalence class” Z∗(X,D,C) ⊆
Z(X,D,C) within the set of distributions. The class includes Ẑ as defined in consistency with direct transfer

as an extreme member, but there are generally many other distributions as well.

We now outline an arbitrary distribution Z ∈ Z∗(X,D,C); see Appendix A for additional arguments

verifying that Z always is well-defined. The construction borrows from consistency with direct transfer,

differing only in Case 2 below. We set z1t = 0 and then determine z2t, z3t, . . . recursively. In general, for

each agent j = 2, 3, . . . , we check whether
∑

i≤j dit ≤
∑

i<j xit + cjt:

Case 1. If so, we set zjt ≥ 0 such that
∑

i≤j zit = d1t − x1t and zj+1,t = · · · = znt = 0, building on the

values zit for i < j determined in previous steps.

9
Indices refer to agents rather than matrix rows: z

i
j is agent j’s assignment of agent i’s excess, so row j−i of Z

i ∈ R(n−i+1)×m
.

13

Case 2. Otherwise, we set 0 ≤ zjt ≤ cjt − djt such that∑
i≤j

(dit + zit) ≥
∑
i<j

xit + cjt (?)

and continue to the next agent.

Compared to Ẑ, we find that z2t coincides with ẑ2t whereas later values zjt may differ. However, if we

use the upper bound zjt = cjt−djt whenever in Case 2, then we obtain Z = Ẑ, so Ẑ ∈ Z∗(X,D,C). On the

other hand, the lower bound is interpreted as follows. On top of what agents 1 through j have contracted

on,
∑

i≤j dit, they are assigned sufficiently many tasks,
∑

i≤j zit, to meet the actual announcements by all

but agent j,
∑

i<j xit, together with the maximal announcement x̄jt by agent j.

Example 3. Continuing on Examples 1 and 2, we turn to the distributions Z ∈ Z∗(X,D,C). For agent 2,

as d11 + d21 6≤ x11 + c21, we set z21 = 2. This restricts the possible distributions compared to Z(X,D,C).

Next, as d11 +d21 +d31 6≤ x11 +x21 +c31, we set 0 ≤ z31 ≤ 2 such that d21 +d31 +z21 +z31 ≥ x21 +c31, which

reduces to 1 ≤ z31 ≤ 2. This imposes further restrictions on the set of distributions compared to Z(X,D,C).

Any remaining excess, 4 − z21 − z31 = 2 − z31 ≤ 1, can be distributed in any way between agents 4 and 5.

In Figure 2, Z∗(X,D,C) corresponds to the dark gray triangle. ◦

The next result characterizes the consistent and top-agent proportional recognition functions p that

satisfy cost-effective implementation. In particular, p must be consistent with respect to Z∗(·). That is, if

p ever is consistent with respect to some Z′ 6∈ Z∗(X,D,C), then some agent can be better off announcing

an inefficient workload. On the other hand, if p always is consistent with respect to some Z ∈ Z∗(X,D,C),

then p is consistent with respect to all matrices in Z∗(X,D,C) and satisfies cost-effective implementation.

Proposition 4. Let p satisfy consistency and top-agent proportionality. Then p satisfies cost-effective im-

plementation if and only if, for each population size n ∈ N and problem (X,D,C) ∈ P̃n, p is consistent with

respect to some Z ∈ Z∗(X,D,C) and no Z′ 6∈ Z∗(X,D,C).

Next, we will see that there is only one recognition function that satisfies the three axioms. That is to

say, regardless with respect to which Z ∈ Z∗(X,D,C) the function is consistent, the resulting probabilities

are the same, confirming the idea that Z∗ forms an “equivalence class” with Z.

4.5 Main characterization

Theorem 1 shows that the three axioms jointly single out a unique recognition function p∗. This function

essentially splits the recognition probability in proportion to the contracts available to the agent when it is

their turn to announce their desired workload. That is, agent 1’s probability equals her share of the total

contracts (by top-agent proportionality); next, all of 1’s excess that agent 2 can hold is added to 2’s contracts

when computing 2’s share of the remaining tasks; and so on.

Theorem 1. The recognition function p satisfies cost-effective implementation, consistency, and top-agent

proportionality if and only if, for each population size n ∈ N and problem (X,D,C) ∈ P̃n,

p1(X,D,C) = p∗1(X,D,C) = g(1) =

∑
t d1t∑

i

∑
t dit

14

and, for each agent j ≥ 2,

pj(X,D,C) = p∗j (X,D,C) = (1− g(1)) · · · (1− g(j − 1)) · g(j),

where, for each j ≥ 2,

g(j) =

∑
t djt +

∑
i<j

∑
t ẑ

i
jt∑

i

∑
t dit −

∑
i<j

∑
t xit

=

∑
t x̄jt∑

i

∑
t dit −

∑
i<j

∑
t xit

=

∑
t min{

∑
i≤j di −

∑
i<j xi, cj}t∑

i

∑
t dit −

∑
i<j

∑
t xit

.

The statement gives different ways to describe the function g. From Proposition 3, we know the functional

form under consistency and top-agent proportionality ; here, Theorem 1 shows that when also cost effective

implementation is satisfied, the function g is as in the case where the excess-distribution matrices Z coincide

with Ẑ as in consistency with direct transfer. Moreover, the probabilities are again determined recursively,

starting from “the top”. The share agent j gets out of the remaining probability mass 1− (p∗1 + · · ·+p∗j−1) is

given by the size of their maximal announcement x̄j in relation to the total remaining tasks
∑

i di−
∑

i<j xi.

As agent j’s probability is independent of the announced workloads by those more complex than j, the

recognition function p∗ depends on the announcements while still satisfying cost-effective implementation.

Example 4. We continue on Examples 1 through 3 to compute the maximal announcements using

x̄jt = min{
∑

i≤j dit −
∑

i<j xit, cjt}.

Specifically, X̄ coincides with C except x̄42 = x̄53 = 1 and x̄52 = 0.10 The probabilities p∗ are as follows:

X̄ =

9 0 0 0 0

2 5 0 0 0

2 2 4 0 0

1 1 1 2 0

1 0 1 1 1

p∗1 = 9/21 = 3/7

p∗2 = (7/16) · (1− 3/7) = 1/4

p∗3 = (8/12) · (1− 3/7− 1/4) = 3/14

p∗4 = (5/8) · (1− 3/7− 1/4− 3/14) = 15/224

p∗5 = 1− 3/7− 1/4− 3/14− 15/224 = 9/224.

Expressed differently, p∗(X,D,C) = (96, 56, 48, 15, 9)/224 ≈ (.43, .25, .21, .07, .04). As an example, with

identical cost functions fj(z) = z2, the costs are reduced from (81, 25, 16, 4, 1) at D through the total savings

∆(X,D, f) = 38 to approximately (64.7, 15.5, 7.9, 1.4,−0.5) in expectation in equilibrium. ◦

Next, we show that the axioms imposed in Theorem 1 are independent. To do so, we design recognition

functions that satisfy two of the properties but not the third. First, the recognition function p such that

pj(X,D,C) = 1/n for each agent j satisfies cost-effective implementation and consistency but not top-agent

proportionality. Second, if we set probabilities proportional to D,

p̃j(X,D,C) =

∑
t djt∑

i

∑
t dit

,

then p̃ satisfies cost-effective implementation and top-agent proportionality. However, p̃ fails consistency for

the problem (X,D,C) with non-zero entries d11 = 3, d22 = 2, d33 = 1; C = D except c31 = 1; and X = C

except x11 = 2. Once agent 1’s probability is settled, p̃1(X,D,C) = 3/6, there is only one way Z̃ to distribute

10
The corresponding maximal announcements given Y differ from X̄ through ȳ4 = (0, 2, 1, 2, 0) and ȳ5 = (0, 1, 2, 0, 1). This

difference is of no consequence for the probabilities as
∑

t ȳjt =
∑

t x̄jt for each agent j.

15

1’s excess, so Z(X,D,C) = Z∗(X,D,C) = {Z̃}, where z̃31 = 1 and z̃it = 0 otherwise. Then consistency and

top-agent proportionality would require agent 2’s probability to be (2/4) · (1− 3/6) 6= 2/6 = p̃2(X,D,C).

To satisfy consistency and top-agent proportionality but not cost-effective implementation, we first appeal

to Proposition 3. Borrowing parts of Proposition 3, the recognition function is defined through some matrices

Z1, . . . ,Zn−1 and the function g such that, for agent j ≥ 2,

g(j) =

∑
t djt +

∑
i<j

∑
t z

i
jt∑

i

∑
t dit −

∑
i<j

∑
t xit

.

For p∗, each matrix Zj is given by the corresponding Ẑ as in consistency with direct transfer. This assigns

as much as possible of the excess in order 2, 3, . . . : agent 2 gets as much as possible, then agent 3 gets as

much as possible out of what remains, and so on. Different orders induce different recognition functions. In

particular, for the function p̌, we use the order 2, . . . , n− 2, n, n− 1. Specifically, p̌ is defined around Z with

zn = min{ẑn−1 + ẑn, xn − en} and zn−1 = ẑn−1 + ẑn − zn. As Ẑ is well-defined and zn−1 + zn = ẑn−1 + ẑn,

0 ≤ zn−1 ≤ ẑn−1, and en + zn ≤ xn, so is Z.

To show that p̌ fails cost-effective implementation, modify the problem (X,D,C) above through capacities

Č = C except č21 = 1. Then Z ∈ Z(X,D, Č) whenever z21 + z31 = 1, z21, z31 ≥ 0, and otherwise zit = 0.

We construct p̌ around Z̃ defined above, so z̃31 = 1. In particular, we have p̌2(X,D, Č) = (2/4) · (1− 3/6).

Suppose now instead that agent 2 announces x̌2 = x̄2 = (1, 2, 0), so we end on X̌ such that X̌ = X except

x̌21 = 1 and x̌31 = 0. Then Z(X̌,D, Č) = {Ž}, where ž21 = 1 and žit = 0 otherwise. By consistency and

top-agent proportionality, p̌2(X̌,D, Č) = (3/4) · (1− 3/6) > p̌2(X,D, Č). In particular, there are costs f for

which X is cost effective yet agent 2 is better off at X̌ than at X.

5 Concluding remarks

The intrinsically decentralized nature of the new, digital economy brings about new challenges, one of which

is the construction of institutions to align individual incentives with collective, societal objectives (compare

Chen et al., 2020). We have taken one step towards designing mechanisms to support efficient collaboration

between independent agents, yet there remain many interesting avenues for future research.

Throughout, we have assumed costs to be common knowledge. While this can be challenged in practice, we

still contend that agents with privately held costs, through repeated interaction, would get better informed

on each other’s costs and eventually converge on desirable allocations supported by agreeable payments.

Related, we have not explored the computational aspect of the agents’ optimization problem. However, in

the present model this is a straightforward minimization of a convex function (the total costs). In practice,

the optimization problem may be more involved. For instance, tasks may not be divisible. While this would

add new constraints to the reallocation possibilities, it would not require a significant change to the model.

Alternatively, capacities may not be separable in tasks as assumed here. For instance, different “weights” may

be assigned different tasks, and agents may be limited in the total “weight” of their assignment. Again, the

optimization problem gets more intricate, but our solution generalizes readily once we account for the more

complex computation needed to find the agents’ maximum announcements. Finally, in practice, we might

expect agents’ capacities to be expressed more through the cost functions than through hard constraints.

However, this can be viewed as a special case of the model, covered by setting capacities to cit = 0 for

feasibility constraints and otherwise cit = K for a large enough K. A more extensive modification of the

model that we have not considered is to model time, say arrival and completion times of tasks. Lastly, we

16

“step in” at a point in which agents already hold some initially-signed contracts. An interesting avenue for

future research is to generalize this and model also the interaction with the task providers. An intermediate

step towards this may be to study a model in which agents may choose not to complete some tasks.

Thus far, we have not discussed who chooses the mechanism but rather argued in favor of a particular

mechanism. Again, it is intrinsic to the open, blockchain-based economy that anyone can set up a smart

contract. This leaves little room for rent extraction for the contract creator as anyone can copy the contract,

make modifications, and invite the service providers to settle their allocation on the alternative platform.

Thus, we expect that whether a mechanism will thrive in practice will depend on the fairness of the solution it

provides. The reasoning is entirely analogous to what has been observed for centralized matching mechanisms,

which, as noted for instance by Roth (1991), are most often successful when the outcomes they produce are

perceived as fair (“stable”). Hence, similar to the evolution of norms in society, we expect to converge towards

a mechanism that ensures cost-effective allocations with fair sharing of the cost reductions.

References

Abadi, J. and M. Brunnermeier (2018). Blockchain Economics. NBER Working Paper No. 25407 .

Azar, Y., I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S. Naor, and J. Yaniv (2015). Truthful online scheduling

with commitments. In Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC

’15, New York, NY, USA, pp. 715–732. Association for Computing Machinery.

Bahel, E. and C. Trudeau (2019). Stability and fairness in the job scheduling problem. Games and Economic

Behavior 117 (C), 1–14.

Bao, Y., Y. Peng, C. Wu, and Z. Li (2018). Online job scheduling in distributed machine learning clusters.

CoRR abs/1801.00936.

Baron, D. P. and J. A. Ferejohn (1989). Bargaining in legislatures. The American Political Science Re-

view 83 (4), 1181–1206.

Bertsimas, D. and V. F. Farias (2012). On the Efficiency-Fairness Trade-off. Management Science 58 (12),

2234–2250.

Binmore, K. (1987). Perfect equilibria in bargaining models. In: Binmore K., Dasgupta P. (Eds.) The

Economics of Bargaining, Chapter 5. Blackwell, Oxford.

Binmore, K., A. Rubinstein, and A. Wolinsky (1986). The Nash Bargaining Solution in Economic Modelling.

The RAND Journal of Economics 17 (2), 176–188.

Brucker, P. (2004). Scheduling Algorithms, (fourth ed.). Springer.

Cachon, G. P. and M. A. Lariviere (1999). Capacity Choice and Allocation: Strategic Behavior and Supply

Chain Performance. Management Science 45 (8), 1091–1108.

Can, B. (2019). Economic Design of Things. In Laslier, Moulin, Sanver, and Zwicker (Eds.), The Future of

Economic Design, pp. 487–493. Springer International Publishing.

17

Catalini, C. and J. S. Gans (2020). Some Simple Economics of the Blockchain. Communications of the

ACM 63 (7), 80–90.

Chen, L., S. Liu, B. Li, and B. Li (2019). Scheduling jobs across geo-distributed datacenters with max-min

fairness. IEEE Transactions on Network Science and Engineering 6 (3), 488–500.

Chen, Y., P. Cramton, J. A. List, and A. Ockenfels (2020). Market Design, Human Behavior, and Manage-

ment. Management Science.

Chun, Y. (2016). Fair Queueing. Springer, New York, NY.

Corchón, L. C. (2009). Implementation Theory. In R. Meyers (Ed.), Encyclopedia of Complexity and Systems

Science. Springer, New York, NY.

Dutta, A., G. Koehler, and A. Whinston (1982). On optimal allocation in a distributed processing environ-

ment. Management Science 28 (8), 839–853.

Eraslan, H. and A. McLennan (2013). Uniqueness of stationary equilibrium payoffs in coalitional bargaining.

Journal of Economic Theory 148 (6), 2195 – 2222.

Ernst, A., H. Jiang, and M. Krishnamoorthy (2006). Exact solutions to task allocation problems. Manage-

ment Science 52 (10), 1634–1646.

Gans, J. (2019). The fine print in smart contracts. NBER Working Paper 25443 .

Gudmundsson, J., J. L. Hougaard, and C. Y. Ko (2019). Decentralized mechanisms for river sharing. Journal

of Environmental Economics and Management 94, 67 – 81.

Hillier, F. and G. Lieberman (2021). Introduction to Operations Research (11 ed.). McGraw Hill.

Holmstrom, B. (1982). Moral Hazard in Teams. The Bell Journal of Economics 13 (2), 324–340.

Hu, X., R. Caldentey, and G. Vulcano (2013). Revenue Sharing in Airline Alliances. Management Sci-

ence 59 (5), 1177–1195.

Huang, Z., B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. Tsang (2015, August). Need for speed:

Cora scheduler for optimizing completion-times in the cloud. In 2015 IEEE Conference on Computer

Communications, IEEE INFOCOM 2015, Proceedings - IEEE INFOCOM, United States, pp. 891–899.

Institute of Electrical and Electronics Engineers Inc.

Kouvelis, P. and M. A. Lariviere (2000). Decentralizing Cross-Functional Decisions: Coordination Through

Internal Markets. Management Science 46 (8), 1049–1058.

Li, Z., J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, and B. Luo (2016, December). A security and cost aware

scheduling algorithm for heterogeneous tasks of scientific workflow in clouds. Future Generation Computer

Systems 65, 140–152.

Maskin, E. S. and T. Sjöström (2002). Implementation Theory. In KJ Arrow and AK Sen (Ed.), Handbook

of Social Choice and Welfare, Chapter 5. Elsevier, Amsterdam.

18

Min, T., H. Wang, Y. Guo, and W. Cai (2019). Blockchain Games: A Survey. In 2019 IEEE Conference on

Games (CoG), pp. 1–8.

Moulin, H. (2007). On scheduling fees to prevent merging, splitting and transferring of jobs. Mathematics

of Operations Research 32 (2), 266–283.

Roth, A. E. (1991). A natural experiment in the organization of entry-level labor markets: Regional markets

for new physicians and surgeons in the United Kingdom. American Economic Review 81, 415–440.

Tawarmalani, M., K. Kannan, and P. De (2009). Allocating Objects in a Network of Caches: Centralized

and Decentralized Analyses. Management Science 55 (1), 132–147.

Thomson, W. (2011). Consistency and its converse: an introduction. Review of Economic Design 15 (4),

257–291.

Thomson, W. (2016). Fair allocation. In M. D. Adler and M. Fleurbaey (Eds.), The Oxford Handbook of

Well-Being and Public Policy, Chapter 7. Oxford University Press.

Thomson, W. (2019). On the Axiomatics of Resource Allocation: Classifying Axioms and Mapping Out

Promising Directions. In Laslier, Moulin, Sanver, and Zwicker (Eds.), The Future of Economic Design,

pp. 213–222. Springer International Publishing.

World Bank Group (2020). Smart Contract Technology and Financial Inclusion. FinTech Note No. 6 .

Zhang, X., Z. Huang, C. Wu, Z. Li, and F. C. Lau (2015). Online auctions in iaas clouds: Welfare and profit

maximization with server costs. In Proceedings of the 2015 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS ’15, New York, NY, USA, pp. 3–15.

Association for Computing Machinery.

Zhou, R., Z. Li, C. Wu, and Z. Huang (2017, April). An efficient cloud market mechanism for computing

jobs with soft deadlines. IEEE/ACM Trans. Netw. 25 (2), 793–805.

A Non-emptiness of Z∗

For convenience, we drop the subscript t throughout. If we reach step j in the construction of Z, then we

must have gone through Case 2 for agent j − 1. By equation ? for j − 1 and as cj−1 ≥ xj−1,∑
1<i<j

(di + zi) ≥
∑

1<i<j−1
xi + cj−1 ≥

∑
1<i<j

xi =⇒
∑

1<i<j

(di + zi − xi) ≥ 0.

Suppose Case 1 applies to agent j. We will verify that dj + zj ≤ cj . By Case 1,
∑

1<i≤j zi = d1 − x1 and

cj ≥
∑
i≤j

di −
∑
i<j

xi =
∑

1<i≤j

(di + zi)−
∑

1<i<j

xi = dj + zj +
∑

1<i<j

(di + zi − xi) ≥ dj + zj .

Suppose instead Case 2 applies to agent j. We will verify that equation ? can be satisfied for some 0 ≤ zj ≤
cj − dj . In particular, it is true for zj = cj − dj as then∑

1<i≤j

(di + zi) =
∑

1<i<j

(di + zi) + cj ≥
∑

1<i<j

xi + cj .

Here, again, we appeal to equation ? for agent j − 1. Finally, if we reach agent n, then
∑

i di =
∑

i xi ≤∑
i<n xi + cn, so we fall into Case 1, finalizing the construction of Z.

19

B Proofs

When it causes no confusion, we ease the notation as follows in the proofs: pi(X,D,C) is referred to as pi(X),

∆(X,D, f) as ∆(X), and when tasks can be dealt with independently, we sometimes drop the subscript t.

The proofs of Proposition 1 and 2 mirror proofs found in Gudmundsson et al. (2019).

B.1 Proof of Proposition 1

Let f0j ≡ fj(
∑

t djt) denote agent j’s cost at D. If j sets their acceptance threshold aj to f0j , then either

agreement is reached and j pays at most f0j , or the negotiations fail, we revert to D, and j pays f0j . In this

way, there cannot be an equilibrium in which j pays more than f0j . Moreover, aj ≤ f
0
j in equilibrium.

(Part A) If ∆(X) < 0, then there is no proposal u ∈ U(X) such that u ≤ f0, so agreement cannot be

reached, and thus expected costs are Eπ = f0 (that is, Eπj = f0j for each agent j). If ∆(X) = 0, then only

the proposal u = f0 can be agreed on and, again, expected cost are Eπ = f0. In these cases, we have a = f0

in equilibrium (recall, we restrict to subgame-perfect equilibria). To see this, suppose for contradiction that

there is an equilibrium with aj < f0j for some agent j and in which agreement never is reached. Then there

is a subgame off the equilibrium path in which all agents but j accept the proposal and the offer to j, uj , is

such that aj < uj < f0j . Then j is better off accepting the proposal (cost uj) rather than rejecting it (cost

f0j), a contradiction to it being an equilibrium.

(Part B) Next, assume that ∆(X) > 0, so there is u ∈ U(X) such that u ≤ f0. We claim that agree-

ment will be reached in equilibrium. For contradiction, suppose agreement is not reached. Then equilibrium

expected costs and acceptance thresholds are Eπ = a = f0. Every agent j is then better off proposing, for

instance, the costs u such that ui = f0i −pi(X) ·∆(X) ≤ ai for each agent i. This proposal would be accepted

and decrease the proposer’s expected costs, a contradiction to it being an equilibrium. Thus, agreement will

be reached in equilibrium. Moreover, no proposal is ever rejected: if, say, agent j were to make a proposal

that was rejected while, among the agents who make accepted proposals, agent k makes the proposal that

assigns the lowest cost to j, then j is better off offering k’s proposal. In this way, agreement is always reached

in the first round of negotiations.

Let uij denote the cost that agent i proposes agent j to bear. Then the expected cost of agent j is

Eπj =
∑

i pi(X) · uij . As each proposal ui is in U(X),
∑

j u
i
j = F (X), and as

∑
i pi(X) = 1,∑

j Eπj =
∑

i

∑
j pi(X) · uij =

∑
i pi(X) ·

∑
j u

i
j =

∑
i pi(X) · F (X) = F (X).

In equilibrium, agent j accepts a proposal if its expected cost is smaller than the expected cost from rejecting

it. As strategies are stationary and negotiations break down with probability 1 − δ, the expected cost of

rejection is δEπj + (1− δ)f0j , and the agent rejects all more expensive proposal. Thus, this is the equilibrium

acceptance threshold: aj = δEπj + (1− δ)f0j . As
∑

j f
0
j = F (D) and

∑
j Eπj = F (X) as just shown,∑

j aj = δ
∑

j Eπj + (1− δ)
∑

j f
0
j = δF (X) + (1− δ)F (D).

In equilibrium, agents make proposals to minimize their own cost by offering the others exactly their accep-

tance thresholds. That is, agent i assigns cost uij = aj to agent j and uii = F (X) −
∑

j 6=i aj to themself.

20

Therefore,

Eπj =
∑

i pi(X) · uij = pj(X) · (F (X)−
∑

i6=j ai) + (1− pj(X)) · aj
= aj − pj(X) · (F (X)−

∑
i ai)

= aj − pj(X) · (F (X)− δ · F (X)− (1− δ) · F (D))

= aj − (1− δ) · pj(X) · (F (X)− F (D))

= aj − (1− δ) · pj(X) ·∆(X)

= δEπj + (1− δ) · f0j − (1− δ) · pj(X) ·∆(X)

= δEπj + (1− δ) · (f0j − pj(X) ·∆(X)).

Rearranging, Eπj = f0j − pj(X) ·∆(X) as desired.

B.2 Proof of Proposition 2

(‘If ’ part) From Proposition 1, the expected cost for agent j is fj(
∑

t djt)−pj(X) ·∆(X) whenever ∆(X) > 0

and fj(
∑

t djt) otherwise. Since, by assumption, j’s recognition probability only depends on factors that j

cannot affect, j can only influence her expected cost through ∆(X). If pj(X) > 0, maximizing ∆ by choosing

according to a cost-effective allocation is the best response, whereas if pj(X) = 0, it is one out of several

best responses. Therefore, the best she can do is to choose xj to maximize ∆, knowing that the agents that

follow will in the same way choose announcements to minimize total costs. Since there is common knowledge,

agents can compute a cost-effective allocation X ∈ E(D,C, f) and choose their announcements accordingly,

and this will be an equilibrium.

(‘Only if ’ part) By contradiction, suppose that there is D ∈ D̃, C ≥ D and X,Y ∈ X (D,C) that

coincide prior to agent j, X<j = Y<j , yet pj(X) 6= pj(Y). We will show that, when that is the case, there

are cost functions for which j’s expected cost is lower from announcing an inefficient workload compared to

a cost-effective one, a contradiction to cost-effective implementation. We proceed from the end, starting with

j = n, then j = n− 1, and so on.

(Agent n) As agent n must announce xn such that
∑

i xi =
∑

i di, agent n does not have a different

announcement yn 6= xn to make. Hence, there are no such two allocations X and Y, so j 6= n.

(Agent n − 1) Next, consider agent n − 1 who chooses xn−1 and implicitly xn. Let X,Y ∈ X (D,C) be

such that X<n−1 = Y<n−1 and X 6= Y. Suppose pn−1(X) 6= pn−1(Y) and, without loss, specifically that

pn−1(X) < pn−1(Y). As p is continuous in the announcements, we may assume that X,Y 6= D11 and that,

for each agent k ≥ n − 1,
∑

t xkt 6=
∑

t ykt. We proceed to show that there are costs f for which X is cost

effective but agent n− 1 is better off at the inefficient Y.

Define `j(z) = max{z−max{
∑

t xjt,
∑

t yjt}, 0} and restrict attention to costs f such that, for each agent

j and amount z ≥ 0, `j(z) ≤ fj(z) ≤ lj(z) + ε; see Figure 3. There exist such functions f for which marginal

costs are equal across agents at X, f ′i(
∑

t xit) = f ′j(
∑

t xjt), so X ∈ E(D,C, f) and Y 6∈ E(D,C, f).12 By

construction, for each agent i,

fi(
∑

t xit) ≥ `i(
∑

t xit) = `i(
∑

t yit) ≥ fi(
∑

t yit)− ε =⇒
∑

i fi(
∑

t xit) ≥
∑

i(fi(
∑

t yit)− ε).
11

If, say X = D, then there is X
′ 6= D close to X such that pn−1(X

′
) ≈ pn−1(X) < pn−1(Y), so we can use X = X

′
instead.

12
In particular, any marginal cost δ ∈ (0, 1) with δ ≤ ε/(maxj

∑
t yjt −

∑
t xjt) should be attainable.

21

z
ε

`j(z) + ε
`j(z)

max{
∑

t xjt,
∑

t yjt}

fj(z)

Figure 3: The cost function fj (dashed) is within the bounds set by the piece-wise linear functions.

Hence, F (X) ≥ F (Y)−nε and ∆(X) = F (D)−F (X) ≤ F (D)−F (Y)+nε = ∆(Y)+nε. Since X ∈ E(D,C, f)

and X 6= D, ∆(X) > 0, so for small enough ε > 0, also ∆(Y) > 0. Therefore, since pn−1(X) < pn−1(Y),

there exists ε > 0 such that

∆(X)

∆(Y)
≤ ∆(Y) + nε

∆(Y)
<
pn−1(Y)

pn−1(X)
.

But then n−1 prefers the inefficient Y over the cost effective X, a contradiction. Hence, pn−1(X) = pn−1(Y).

As in the first part of the proof, agent n− 1 therefore always announces workloads to maximize ∆.

(Agent j < n− 1) Next, consider any agent j < n− 1. By the argument above, j chooses announcement

foreseeing that each agent k > j will choose to minimize total costs given the choices made by agents prior

to k. We proceed as for agent n− 1.

Let X,Y ∈ X (D,C) be such that X<j = Y<j and X 6= Y. Suppose pj(X) 6= pj(Y) and, without loss,

specifically that pj(X) < pj(Y). As p is continuous in the announcements, we may assume that X,Y 6= D

and that, for each agent k ≥ j,
∑

t xkt 6=
∑

t ykt. We proceed to show that there are costs f for which X is

cost effective but agent j is better off at the inefficient Y. Again, we bound the costs f by ` and ` + ε as

when considering agent n− 1 to ensure that X is cost effective, yet the total costs at Y are close to those at

X. When agent j changes announcement from xj to yj , then the agents who follow will still seek to minimize

costs thereafter. That is to say, the costs f should also be such that Y>j minimize total costs given Y≤j .

By assumption,
∑

t xjt 6=
∑

t yjt. Consider first
∑

t xjt <
∑

t yjt. Suppose, for contradiction, that∑
t xkt <

∑
t ykt for some agent k > j. As there are fewer tasks left to complete for agents j + 1, . . . , n

following Y≤j than X≤j , there is also an agent k′ > j for which
∑

t xkt >
∑

t ykt. However, by construction

of f , marginal costs are equal at X for agent j+ 1, . . . , n. As cost functions are strictly convex, the marginal

cost must then be higher for agent k than for agent k′ at Y, a contradiction to that k and k′ minimize total

costs given the prior announcements. Hence, we have
∑

t xkt >
∑

t ykt for each agent k > j. Therefore, we

can select f such that marginal costs are equal at
∑

t ykt for all agents k > j while simultaneously equating

marginal costs for all agents at X; see Figure 4. The second case,
∑

t xjt >
∑

t yjt, is analogous but instead

results in
∑

t xkt <
∑

t ykt for each agent k > j.

The proof proceeds by the same steps as for agent n− 1: f is selected such that ∆(X) ≤ ∆(Y)− nε, so

there exists a small enough ε > 0 for which agent j prefers the inefficient allocation Y over the cost-effective

allocation X, a contradiction to cost-effective implementation.

B.3 Proof of Proposition 3

(‘If ’ part) Consider the recognition function p associated with matrices Z1,Z2, . . . and an arbitrary problem

(X,D,C) ∈ Pn. It is immediate that p satisfies top-agent proportionality. For consistency, we will show

22

z

ε

`i(z) + ε

`i(z)

∑
t xit =

∑
t yit

fi(z)

z

ε

`j(z) + ε

`j(z)

∑
t yjt

∑
t xjt

fj(z)

z

ε

`k(z) + ε

`k(z)

∑
t xkt

∑
t ykt

fk(z)

Figure 4: Sketch for
∑

t xjt <
∑

t yjt. Left is for agents i < j, middle for agent j, and right for agents k > j.

Marginal costs should be equal across agents at the filled dots and likewise at the non-filled dots (for k > j).

that p is consistent with respect to Z1. Let g(1), . . . , g(n) denote the resulting functions when applying p on

(X,D,C) and let g̃(2), . . . , g̃(n) denote the corresponding functions when applying p on the reduced problem

(X≥2,D≥2 + Z1
≥2,C≥2).

By construction, we have
∑

i≥2 z
1
i = e1 − x1. For each j ≥ 2,

g̃(j) =
(
∑

t djt +
∑

t z
1
jt) +

∑
2≤i<j

∑
t z

i
jt

(
∑

i≥2
∑

t(dit + z1it))−
∑

2≤i<j

∑
t xit

=

∑
t djt +

∑
i<j

∑
t z

i
jt∑

i

∑
t dit −

∑
i<j

∑
t xit

= g(j).

Therefore, for each j ≥ 2,

pj(X≥2,D≥2 + Z1
≥2,C≥2) · (1− p1(X,D,C) = (1− g̃(2)) · · · (1− g̃(j − 1)) · g̃(j) · (1− g(1))

= (1− g(2)) · · · (1− g(j − 1)) · g(j) · (1− g(1))

= pj(X,D,C),

showing that p is consistent with respect to Z1.

(‘Only if ’ part) Let p satisfy consistency and top-agent proportionality and fix an arbitrary problem

(X,D,C) ∈ Pn. By consistency, p is consistent with respect to some Z1, . . . ,Zn−1 such that Z1 ∈ Z(X,D,C)

and, for each j ≥ 2, Zj ∈ Z(X≥j ,D≥j + Z1
≥j + · · ·+ Zj−1

≥j ,C≥j). We will show that for each j ≥ 2,

pj(X,D,C) = (1− g(1)) · · · (1− g(j − 1)) · g(j),

where g is as in the statement of Proposition 3 when applied to Z1, . . . ,Zn−1. By top-agent proportionality,

p1(X,D,C) =

∑
t d1t∑

i

∑
t dit

= g(1)

and, for each j ≥ 2,

pj(X≥j ,D≥j + Z1
≥j + · · ·+ Zj−1

≥j ,C≥j) =

∑
t djt +

∑
i<j

∑
t z

i
jt∑

i

∑
t dit −

∑
i<j

∑
t xit

= g(j).

Finally, by repeated application of consistency, for each j ≥ 2,

pj(X,D,C) = (1− p1(X,D,C)) · pj(X≥2,D≥2 + Z1
≥2,C≥2)

= (1− p1(X,D,C)) · (1− p2(X≥2,D≥2 + Z1
≥2,C≥2)) · pj(X≥3,D≥3 + Z1

≥3 + Z2
≥3,C≥3)

...

=
∏
i<j

(1− pi(X≥i,D≥i + Z1
≥i + · · ·+ Zi−1

≥i ,C≥i) · pj(X≥j ,D≥j + Z1
≥j + · · ·+ Zj−1

≥j ,C≥j)

= (1− g(1)) · · · (1− g(j − 1)) · g(j).

23

B.4 Proof of Proposition 4

(Functional form) Take as given a problem (X,D,C) ∈ Pn. By Proposition 3, consistency and top-agent

proportionality together imply that each probability pj(X,D,C) takes on a particular form, namely

pj(X,D,C) = (1− g(1)) · (1− g(2)) · · · (1− g(j − 1)) · g(j),

where g is constructed with respect to some matrices Z1, . . . ,Zn−1 such that, in general,

g(j) =

∑
t djt +

∑
i<j

∑
t z

i
jt∑

i

∑
t dit −

∑
i<j

∑
t xit

.

(Implementation) By Proposition 2, p satisfies cost-effective implementation if and only if, for each i ≤ j,
agent i’s probability pi is independent of agent j’s announcement xj . This is immediate for p1(X,D,C) =

g(1), as g(1) is independent of X. Assume now that for each i < j, pi is independent of X≥i. Then, for each

i < j, g(i) is independent of X≥i. Therefore, pj is independent of X≥j if and only if g(j) is. Within g(j),

only the numerator dj +
∑

i<j z
i
j can depend on xj .

(Maximal announcement) Given the announcements X<j by agents prior to agent j, the maximal an-

nouncement that j can make is x̄j = min{
∑

i≤j di−
∑

i<j xi, cj}. For any announcement xj , Z1 through Zj−1

will be such that xj ≤ dj+
∑

i<j z
i
j ≤ x̄j : the left inequality as otherwise j is unable to complete the announced

tasks, the right due to the reasons just given. In particular, if j announces x̄j , then we have dj+
∑

i<j z
i
j = x̄j .

On the other hand, were j to announce some xj ≤ x̄j , then cost-effective implementation through Propo-

sition 2 requires j’s recognition probability to be unchanged. (Else there exists a problem in which xj is

cost-effective but x̄j preferred to j or vice versa.) Specifically, also g(j) and especially dj +
∑

i<j z
i
j needs to

be unchanged. Hence, Z1 through Zj−1 must be such that dj +
∑

i<j z
i
j = x̄j regardless of j’s announcement

xj . We will show that this is true if and only if, for each i < j, Zi ∈ Z∗(X≥i,D≥i + Z1
≥i + · · ·+ Zi−1

≥i ,C≥i).

(Z∗ necessary) Assume that, for some i, Zi 6∈ Z∗(X≥i,D≥i + Z1
≥i + · · · + Zi−1

≥i ,C≥i). For convenience

and without loss, say i = 1. There is a first agent j > i for which zij is not as prescribed for Z∗, so too much

of the excess is pushed beyond j, and too little is left to j. (The proof is considerably easier for j = 2 than

for j > 2. For that reason, we restrict attention to j > 2.)

Once all agents i < j have been removed, agent j holds the following number of tasks:

dj +
∑
i<j

zij = dj + z1j +
∑

1<i<j

zij ≤ dj + z1j +
∑

1<i<j

(di + z1i − xi) =
∑

1<i≤j

(di + z1i)−
∑

1<i<j

xi.

The weak inequality follows as j receives at most di + z1i − xi out of the di + z1i tasks that agent i < j holds

after completing their announced xi tasks following 1’s removal.

Suppose first that agent j falls into Case 1, so
∑

i≤j di ≤
∑

i<j xi + cj and x̄j =
∑

i≤j di −
∑

i<j xi, yet

Z1 is such that
∑

i≤j z
1
i < dj − x1. As z11 = 0,∑

1<i≤j

(di + z1i)−
∑

1<i<j

xi <
∑
i≤j

di −
∑
i<j

xi = x̄j .

Suppose instead that j falls into Case 2, so
∑

i≤j di >
∑

i<j xi + cj and x̄j = cj , yet Z1 contradicts

equation ? through
∑

1<i≤j(di + z1i) <
∑

1<i<j xi + cj . Then∑
1<i≤j

(di + z1i)−
∑

1<i<j

xi < cj = x̄j .

24

In both cases, had j instead announced xj = x̄j , then dj +
∑

i<j z
i
j = x̄j . Therefore, agent j can affect

their probability pj through their announcement xj , a contradiction to cost-effective implementation.

(Z∗ sufficient) Fix an announcement xj . Assume, for each i < j, Zi ∈ Z∗(X≥i,D≥i+Z1
≥i+· · ·+Zi−1

≥i ,C≥i).

We will show that dj +
∑

i<j z
i
j = x̄j . First, suppose that, for each i < j, all excess is shared among agents

i+ 1, . . . , j. That is, for each i < j < k, zik = ~0. By construction, once all agents i < j are removed, agent j

holds as much as possible up to capacity, so dj +
∑

i<j z
i
j = min{

∑
i≤j di −

∑
i<j xi, cj} = x̄j .

Suppose instead that there is a type t and agents i < j < k such that zikt > 0.13 Identify step i∗ < j as

the last step for which this holds, so, for each i∗ < i < j < k, zik = ~0. By equation ? applied on the reduced

problem (X≥i∗ ,D≥i∗ + Z1
≥i∗ + · · ·+ Zi

∗−1
≥i∗ ,C≥i∗), we set zi

∗

j such that∑
i
∗
<i≤j

((di + z1i + · · ·+ zi
∗−1
i) + zi

∗

i) ≥
∑

i
∗
<i<j

xi + cj .

Rearranging, we have

dj +
∑
i≤i∗

zij +
∑

i
∗
<i<j

(di + z1i + · · ·+ zi
∗

i − xi) ≥ cj ≥ x̄j .

After step i∗, every intermediate agent i, so i∗ < i < j, will complete xi out of the di + z1i + · · ·+ zi
∗

i tasks

they hold after agents 1 through i∗ have been removed. By the choice of i∗, no excess is pushed beyond agent

j for i∗ < i < j. Hence, once all agents i < j have been removed, the remaining excess is eventually added

to agent j through Zi
∗
+1 through Zj−1:∑

i
∗
<i<j

zij =
∑

i
∗
<i<j

(di + z1i + · · ·+ zi
∗

i − xi).

Taken together,

dj +
∑
i<j

zij = dj +
∑
i≤i∗

zij +
∑

i
∗
<i<j

zij = dj +
∑
i≤i∗

zij +
∑

i
∗
<i<j

(di + z1i + · · ·+ zi
∗

i − xi) ≥ x̄j .

Feasibility constraints dictate that dj +
∑

i<j z
i
j ≤ x̄j , so dj +

∑
i<j z

i
j = x̄j as desired.

B.5 Proof of Theorem 1

For each agent j, p∗j is independent of X≥j , so by Proposition 2, p∗ satisfies cost-effective implementation. As

p∗ belongs to the class characterized in Proposition 3, p∗ satisfies consistency and top-agent proportionality.

The converse follows readily from the proof of Proposition 4. For each agent j, regardless of j’s announce-

ment xj , we must have

dj +
∑
i<j

zij = x̄j = min{
∑
i≤j

di −
∑
i<j

xi, cj}.

This pins down the desired g(j), namely as in the construction of p∗:

g(j) =

∑
t x̄jt∑

i

∑
t dit −

∑
i<j

∑
t xit

=

∑
t min{

∑
i≤j di −

∑
i<j xi, cj}t∑

i

∑
t dit −

∑
i<j

∑
t xit

.

13
For convenience, we drop the subscript t in the remainder of the proof.

25

	IFRO_WP_2020_11_forside.pdf
	IFRO_WP_2020_11_kolofon.pdf
	Decentralized_Task_Coordination.pdf

