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Abstract

In this paper we present a detailed numerical comparison of three monotone nonparamet-
ric kernel regression estimates, which isotonize a nonparametric curve estimator. The first
estimate is the classical smoothed isotone estimate of Brunk (1958). The second method has
recently been proposed by Hall and Huang (2001) and modifies the weights of a commonly
used kernel estimate such that the resulting estimate is monotone. The third estimate was
recently proposed by Dette, Neumeyer and Pilz (2003) and combines density and regression
estimation techniques to obtain a monotone curve estimate of the inverse of the isotone re-
gression function. The three concepts are briefly reviewed and their finite sample properties
are studied by means of a simulation study. Although all estimates are first order asymptot-
ically equivalent (provided that the unknown regression function is isotone) some differences
for moderate samples are observed.

AMS Subject Classification: 62G05, 62G20
Keywords and Phrases: isotonic regression, order restricted inference, Nadaraya-Watson estimator,
local linear regression, monte carlo simulation

1 Introduction

An important problem in applied statistics is to study the influence of an explanatory variable
on a response and numerous linear and nonlinear regression models have been proposed for this
purpose in the literature [see e.g. Seber and Wild (1989)]. Because it is often difficult to specify
a parametric form of a regression function, smoothing as a means of modeling nonlinear structure
in data has become increasingly popular in numerous applications. In many cases monotone
estimates of the regression function are required, because physical considerations suggest that the
response is a monotone function of the explanatory variable. These include the analysis of dose-
response curves in pharmakinetics, growth curves in biology and many specific practical problems
discussed in the literature cited below. Since the early work of Brunk (1955) a vast amount
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of literature has been published on the problem of estimating a regression function m which is
believed to be monotone [see Mukerjee (1988), Mammen (1991), Cheng and Lin (1981), Wright
(1981), Friedman and Tibshirani (1984), Ramsay (1988), Kelly and Rice (1990), Mammen and
Thomas-Agnam (1999), Mammen, Marron, Turlach and Wand (2001)].
As pointed out by Hall and Huang (2001) many of the constrained estimates proposed in the
literature reduce the smoothness of the estimator with which they started by projecting an un-
constrained curve estiamte onto a constrained subspace of regression functions or by using isotonic
regression techniques. As a consequence the monotone estimates appear less smooth as the un-
constrained estimates and often have jump discontinuities. For this reason Hall and Huang (2001)
proposed a new method for monotonizing a general kernel type estimator, which modifies the
weights of the estimator by the least possible amount such that the modified function is mono-
tone. This approach uses only standard computing routines and software, it is applicable to most
of the commonly used kernel estimates and is for these reasons particularly appealing to users of
conventional kernel methods. Because the method involves tilting of the empirical distribution
function by the least possible amount subject to the constraints being enforced it will be called
tilting method throughout this paper. An alternative smooth estimate could be obtained by
smoothing an isotonized regression estimate obtained from the PAVA (Pool-Adjacent-Violators-
Algorithm), which provides a simple and computational efficient technique for the calculation
of the isotone least squares estimate. This approach is first order asymptotically equivalent to
isotonizing a standard kernel estimate [see Mammen (1991)] and yields for this reason smooth
monotone increasing estimates for reasonable sample sizes. Recently Dette, Neumeyer and Pilz
(2003) proposed to combine a density with a regression estimate to obtain a monotone estimate
of the inverse regression function. The isotone regression estimate is finally obtained by reflect-
ing this function at the line y = x and the amount of smoothness can be controlled by the
smoothing parameter in the density estimation step. This method does not require constrained
optimization techniques and is therefore attractive to practitioners because of its computational
simplicity. Moreover the approach yields strictly isotone estimates which are first order asymp-
totically equivalent to the unconstrained estimates and to the estimates obtained by the PAVA
method. Throughout this paper the estimate of Dette, Neumeyer and Pilz (2003) will also be
called monotone density regression estimate.
It is a purpose of the present paper to present a detailed comparative study of the finite sample
properties of these three asymptotically first order equivalent kernel based estimates by means of
a simulation study. In Section 2 we review some of the properties of the PAVA-method, the tilting
approach of Hall and Huang (2001) and the density regression estimate of Dette, Neumeyer and
Pilz (2003). Section 3 is devoted to a detailed numerical comparison of the finite sample properties
of these estimates. It is demonstrated that all estimation techniques yield similar results which
confirms their first order asymptotic equivalence. Moreover, the tilting method of Hall and Huang
(2001) and the density regression approach usually yield estimates with a smaller mean squared
error than the PAVA estimate. Finally, some conclusions and recommendations for monotone
kernel regression estimation are presented in Section 4.

2 Monotone nonparametric regression estimates

Consider the nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,(2.1)
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where {(Xi, Yi)}n
i=1 is a bivariate sample of i.i.d. observations such that Xi has a positive two

times continuously differentiable density f with compact support, say [0, 1]. The variance function
σ : [0, 1] → R

+ and the regression function m : [0, 1] → R are also assumed to be two times
continuously differentiable, respectively. Throughout this paper m̂ denotes a nonparametric re-
gression estimate, which will be specified in concrete situations if necessary. We will briefly review
the different concepts to obtain monotone regression estimates, which will be considered in the
simulation study in Section 3. For a more complete review we refer to Gijbels (2004).

2.1 Smoothing isotonized estimates

Suppose that Y[1], . . . , Y[n] are the observations corresponding to the order statistic X(1) < . . . <
X(n) of {Xi}n

i=1, then Brunk (1958) proposed

Y ∗
i = max

s≤i
min
t≥i

1

t − s + 1

t
∑

j=s

Y[j](2.2)

as an estimate for the regression function at the point X(i). The monotone estimate of the curve
m is then obtained by linear interpolation. In order to obtain a smooth monotone curve several
authors proposed to apply a smoothing procedure to this linear interpolation, which consists in
the application of a nonparametric estimate to the “data” (X(i), Y

∗
i ). Mukerjee (1988) used the

Nadaraya-Watson estimate

m̂IS(x) =

∑n
i=1 Kr

(

X(i)−x

hr

)

Y ∗
i

∑n
i=1 Kr

(

X(i)−x

hr

)(2.3)

to obtain a smooth monotone estimate, where Kr denotes a symmetric kernel with existing second
moment and hr is a bandwidth converging to 0 with increasing sample size n. Mammen (1991)
showed that this estimate is first order asymptotically equivalent to the estimate, which is obtained
by projecting the Nadaraya-Watson estimate from the unconstrained data onto the space of all
monotone functions. As a consequence the estimate m̂IS is expected to be monotone for reasonable
sample sizes. Moreover, it is demonstrated by means of a simulation study that the mean squared
error of m̂IS is usually smaller than the mse of the estimate obtained by isotonizing a smooth
curve estimate. Mammen (1991) also showed that at points where the derivative of the regression
function is positive the estimate m̂IS is first order asymptotically equivalent to the unconstrained
estimate. In general any smoothing procedure as local polynomials [see Wand and Jones (1995),
Fan and Gijbels (1996)], other types of kernel estimators [see Müller and Gasser (1979)], smoothing
splines or series estimators [see Eubank (1988)] can be applied in the second step of this procedure.
Simple computational algorithms for the calculation of the estimate (2.2) can be found in Barlow,
Bartholomew, Bremner and Brunk (1972). Throughout this paper the estimate m̂IS will also be
denoted as PAVA estimate (Pool-Adjacent-Violators-Algorithm).

2.2 A tilting method

Recently, Hall and Huang (2001) proposed to modify the weights of the commonly used kernel
estimators such that the modification becomes (strictly) monotone. Roughly speaking the method
proposed by these authors involes tilting of the empirical distribution function subject to the
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constraint being enforced. To be more precise assume that the unconstrained nonparametric
estimate of the regression curve can be represented in the form

m̂(x) =
1

n

n
∑

i=1

Ai(x)Yi,(2.4)

where the weights Ai(x) depend only on the explanatory variables Xi but not on the responses
Yi. Note that the Priestley-Chao, the Nadaraya-Watson, the Gasser-Müller estimate and the local
linear estimates as well as many of the modified forms of these types can be written in the form
(2.4). Hall and Huang (2001) suggest to modify the estimate in (2.4) by replacing the weights 1

n

with arbitrary weights pi, i.e.

m̂(x | p) =

n
∑

i=1

piAi(x)Yi,(2.5)

and to determine the vector of probabilities p = (p1, . . . , pn) such that it is close to the uni-

form distribution puniform =
(

1
n
, . . . , 1

n

)

and such that the resulting estimate is monotone. In

order to achieve this monotonicity they introduce a distance measure d(., .) on the set of prob-
ability measures on {1, 2, . . . , n}. The algorithm proposed by these authors determines a vector
p = (p1, . . . , pn) such that the weights satisfy pi ≥ 0 (i = 1, . . . , n),

∑n
i=1 pi = 1 and such that

d(p, puniform) becomes minimal subject to the constraints m̂′(· | p) ≥ ε on a grid of N points,
where ε ≥ 0 is a prespecified constant. Some possible distance measures are given in Cressie and
Read (1984) and we mention the Kullback-Leibler divergence

d0(p, q) = −
n
∑

i=1

qi log
(pi

qi

)

,(2.6)

which will be used in our numerical study in Section 3. The implementation of this procedure
is straightforward using an off-the-shelf quadratic programming routine. Note that the resulting
constrained estimate will have the same smoothness properties as the unconstrained estimate, be-
cause the smoothness is mainly determined by the properties of the weight functions Ai. Moreover,
it was shown by Hall and Huang (2001) that on intervals where the regression function is strictly
increasing the constrained estimate coincides with the unconstrained estimate with probability 1
if the sample size is sufficiently large.

2.3 Combining density and regression estimation

Recently Dette, Neumeyer and Pilz (2003) proposed a simple estimate, which combines classical
density and regression estimation techniques to obtain an estimate of the inverse of a strictly
increasing regression function. The method can easily be motivated by considering an i.i.d. sample
of uniformly distributed random variables, say U1, . . . , UN ∼ U([0, 1]). If m is a strictly increasing
function on the interval [0, 1], Kd is a kernel function with compact support, say [−1, 1], and hd a
bandwidth, then

1

Nhd

N
∑

i=1

Kd

(m(Ui) − u

hd

)

(2.7)

is the classical kernel estimate of the density of the random variable m(U1), that is

(m−1)′(u)I[m(0),m(1)](u).
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Consequently

1

Nhd

∫ t

−∞

N
∑

i=1

Kd

(m(Ui) − u

hd

)

du(2.8)

is a consistent estimate of the function m−1 at the point t. One can easily utilize this idea to
obtain an isotone estimate of the regression function in the model (2.1). For this Dette, Neumeyer
and Pilz (2003) define for N ∈ N

m̂−1
I (t) :=

1

Nhd

N
∑

i=1

∫ t

−∞

Kd

(m̂( i
N

) − u

hd

)

du(2.9)

as an estimate of the inverse function m−1(t), where m̂(x) denotes an unconstrained nonparametric
estimate of the regression function at the point x. Note that the uniformly distributed random
variables in (2.8) have been replaced by an equidistant design. The number N used in the density
step does not necessarily coincide with the sample size n and the summation over the index i can
be considered as simple quadrature formula for the integral

1

hd

∫ 1

0

∫ t

−∞

Kd

(m̂(x) − u

hd

)

dudx .

In cases, where this integral can be evaluated directly, a summation is in fact not necessary. Obvi-
ously, the estimate m̂−1

I is isotonic if the kernel Kd is positive, which will be assumed whenever the
estimate m̂−1

I (or its inverse) is used in this paper. In this case an isotonic estimate of the regression
function m is simply obtained by reflection of the function m̂−1

I at the line y = x. This estimate
will be denoted by m̂I and is called density regression estimate throughout this paper. It can be
shown [see Dette, Neumeyer and Pilz (2003)] that on any interval [a, b], where the unconstrained
estimate m̂ is strictly increasing such that m̂−1({a}) and m̂−1({b}) are singletons the estimate m̂I

coincides with m̂ on the interval [a + hd, b − hd] for sufficiently large N → ∞ and small hd → 0.
If the Nadaraya and Watson estimate (2.3) or a local linear estimate is used for the preliminary
regression estimator m̂ these authors also show that the monotone estimate m̂I (appropriately
standardized) is asymptotically normal distributed, where the standardization depends on the
relative behaviour of the ratio of bandwidths hd/hr. In particular, if limn→∞ hd/hr = 0, then
the constrained estimator of the regression function is asymptotically first order equivalent to the
unconstrained estimator; see Dette, Neumeyer and Pilz (2003) for more details. As pointed also
out by these authors the choice of the bandwidth hd is less critical compared to the choice of the
bandwidth hr for the regression estimate. Usually, a substantially smaller bandwidth hd = hγ

r

with γ = 3, 4 is recommended for applications.

3 A comparison of smooth monotone regression estimates

It follows from Mammen (1991), Hall and Huang (2001) and Dette, Neumeyer and Pilz (2003) that
for a strictly monotone regression function and for the commonly used kernel estimators in the
preliminary step the three smooth monotone nonparametric kernel estimates are asymptotically
first order equivalent in the sense that for any t ∈ [0, 1] with m′(t) > 0

√

nhr

(

m̂monotone(t) − m(t) − h2
rb(t)

)

D
⇒ N

(

0,
σ2(t)

f(t)

∫

K2
r (u)du

)

,(3.1)
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where f is the density of the explanatory variables Xi, b(t) depends on the particular kernel
estimator m̂, Kr is the kernel used in this estimator and m̂monotone is any of the estimators discussed
in Section 2 (note that this statement requires hd = o(hr) for the density regression estimator m̂I).
In this section we investigate the finite sample properties of the three estimators m̂IS (the PAVA
estimator), m̂(·|p) (obtained from the tilting method) and m̂I (obtained by the inversion of the
combination of a density and regression estimate). Note that all techniques require a preliminary
nonparametric (unconstrained) estimate of the regression function with corresponding smoothing
parameter. For the the sake of comparison we use for all three methods the same regression
estimate m̂ in the first step, namely a local linear estimator [see Wand and Jones (1995), Fan and
Gijbels (1996)] with Epanechnikov kernel Kr(x) = 3

4
(1 − x2)I[−1,1](x). The bandwidth hr of this

estimate is chosen as

ĥr =
( σ̂2

n

)1/5

,(3.2)

where σ̂2 denotes the variance estimator of Rice (1984), that is

σ̂2 =
1

2(n − 1)

n−1
∑

i=1

(

Y[i+1] − Y[i]

)2

.

Note that this statistic converges almost surely to the integrated variance

σ2 =

∫ 1

0

σ2(x)dx

[see Rice (1984)], which appears in the asymptotically optimal global bandwidth

hr =

(

∫ 1

−1
K2

r (u) du
∫ 1

0
σ2(x) dx

n(
∫ 1

−1
u2Kr(u)du)2

∫ 1

0
(m ′′(x))2 dx

)1/5

(3.3)

for the estimation of the regression curve under the uniform design [see Fan and Gijbels (1996)].
We used the PAVA [Pool-Adjacent-Violators Algorithm, see Barlow, Bartholomew, Bremner and
Brunk (1972)] to obtain an isotone estimate of the regression function. This estimate was then
smoothed by a local linear estimator with bandwidth ĥr in order to obtain a strictly isotonic and
smooth estimate m̂IS [see Mammen (1991)]. Note that the resulting estimate is not necessarily
monotone increasing, because the smoothing step is performed after the isotonization. However,
in most of the examples of our empirical study the resulting estimate was monotone, which is in
accordance to the theoretical result that the estimate m̂IS is asymptotically first order equivalent
to the estimate obtained by projecting a smooth curve on the space of monotone functions [see
Mammen (1991)]. Moreover, this author compared the finite sample performance of the two
isotone regression estimates obtained by interchanging the order of smoothing and isotonizing and
concluded that the estimate m̂IS usually yields a smaller mean squared error than the estimate
obtained by projecting a non-monotone curve on the space of monotone functions [see Mammen
(1991); Table 1 for more details]. Thus we included the more efficient method of these two montone
regression estimates in our numerical study.
For the calculation of the estimator of Hall and Huang (2001) we minimized the function d0(p, puniform)
in (2.6) subject to the constraints pi ≥ 0 (i = 1, . . . , n),

∑n
i=1 pi = 1 and

m̂′(x, p) ≥ 0 x ∈ [0, 1].(3.4)
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It should be pointed out here that the number of constraints introduced by the tilting method
yields some technical restrictions in the application of standard numerical software for constrained
optimization. We used the NAG routine E04UCC, which had problems to handle optimization
problems with more than 100 constraints. As pointed out by Hall and Huang (2001) the mod-
ification of the non-monotone estimate has only to be applied on those intervals (and a little
beyond) where the original estimate is not monotone. However, this fact does not facilitate the
implementation of the tilting method in a simulation study because in each iteration the non-
monotone estimate m̂(·, puniform) would have to be inspected visually or numerically in order to
determine the intervals, where it is not isotone. Therefore, in our simulation, the algorithm was
implemented on the entire interval. The estimate m̂I obtained from the inversion of a combined
density and regression estimate requires the additional specification of a bandwidth hd and the
number of design points N for the step of density estimation. For the number of design points we
use N = n, which provides a reasonable approximation of the integral by the quadrature formula.
Some recommendations for choosing hd can be found in Dette, Neumeyer and Pilz (2003), who
pointed out that the choice of the bandwidth hd for the density estimate is less critical compared
to the choice of the bandwidth hr for the regression estimate. In particular hd should be chosen
substantially smaller than hr and Dette, Neumeyer and Pilz (2003) did not observe substantial
differences between the isotone estimates as long as this condition is met. Following these authors
we use hd = h3

r in the present simulation study.
We investigate the regression model (2.1) with a uniform design, i.e. Xi ∼ U([0, 1]), normally
distributed errors, i.e. εi ∼ N (0, 1), standard deviations σ = 0.2, σ = 1 and sample sizes n = 50
and n = 80. The regression functions are chosen as

m1(x) =
1

10
x +

1

2
(3.5)

m2(x) =
exp(20(x − 1/2))

1 + exp(20(x − 1/2))
(3.6)

m3(x) =
1

2
(2x − 1)3 +

1

2
(3.7)

m4(x) = sin(
π

2
x)(3.8)

m5(x) = x2(3.9)

m6(x) = x +
1

6π
sin(6πx)(3.10)

and correspond to flat curve (3.5), a continuous ”jump” (3.6), a strictly increasing curve with
some plateau (3.7) a concave and convex function [see (3.8) and (3.9), respectively] and a function
which changes several times from a strongly increasing part to a flat part (3.10). The different
functions are displayed in Figure 1.
We use 2000 simulation runs to calculate the bias, variance and mean squared error (mse) of
the three estimates m̂IS(·), m̂(· | p), m̂I(·) for the 6 regression functions defined in (3.5) - (3.10).
In the following, we first present curves for the mse, squared bias and variance of the three
estimates, where only the results for the sample size n = 50 and σ = 0.2 are displayed. The
results corresponding to the cases n = 50, σ = 1; n = 80, σ = 0.2 and n = 80, σ = 1 are quite
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similar and available from the authors [see also Table 1 for results of the integrated mse, squared
bias and variance in these cases]. The dashed curves in Figure 2-4 correspond to the PAVA
estimate m̂IS, the dotted curves represent Hall and Huang’s (2001) estimate, respectively, and the
estimate of Dette, Neumeyer and Pilz (2003) corresponds to the solid curves.

The upper and lower panel of Figure 2 show the squared bias-, mse- and variance-curves corre-
sponding to the regression functions (3.5) and (3.6), respectively. In the first case the estimator
m̂I(·) and m̂(·, p) have a very similar variance behaviour, while the bias of the estimator obtained
from the tilting method is substantially larger which leads some advantages of m̂I(·) with respect
to the mse-criterion. Here the PAVA estimator m̂IS has a substantially larger variance but a
smaller bias than the estimate obtained from the tilting method. Compared to the density re-
gression estimate m̂I the estimate m̂(· | p) yields larger values with respect to all three criteria.
Visually, the PAVA method yields the worst results while the differences to the tilting method are
only minor. For the function (3.6) the situation is not so clear. The bias is strongly influenced
by the magnitude of the second derivative, i.e. |m′′

2(x)|, which is maximal at x ≈ 0.43, x ≈ 0.57
and minimal for x = 0.5 (note that m′′

2(0.5) = 0). The PAVA estimate m̂IS yields the smallest
variance except at the boundary of the interval [0, 1], but usually has a substantially larger bias
compared to the estimators m̂I and m̂(·, p). The latter estimates behave similar with respect to
bias criterion, but the density regression estimate m̂I yields a smaller squared bias at the boundary
and at points where the second derivative of the regression function is large. The tilting estimate
m̂(·, p) tends to produce slightly smaller variances in the interval [0, 1]. A comparison of the mse
curves shows that the PAVA estimate yields the largest error over a broad range of the interval
[0, 1], while the estimates m̂I and m̂(·, p) behave very similar with slight advantages of m̂I , espe-
cially at points, where the second derivative of the regression function is large. It is interesting to
note that except for the boundary regions the simulations reflect the expected properties from the
asymptotic theory. The simulated variance is nearly constant in most parts of the interval [0, 1],
while the limit theorem (3.1) yields the asymptotic variance σ2

∫

K2(u)du. Because all estimates
are first order asymptotically equivalent to the unconstrained estimate m̂, the asymptotic squared
bias at the point x is proportional to (m′′(x))2, which is also reflected in our simulation results
presented in Figure 2.

We now discuss the upper and lower panel in Figure 3 corresponding to the regression functions
(3.7) and (3.8), respectively. For model (3.7) we observe that the estimate m̂I leads the smallest
squared bias, while the PAVA estimate is the worst with respect to this criterion. The estimate
m̂IS obtained from the PAVA method and the tilting estimate m̂(·, p) have the smallest variance in
this case but m̂I yields only slightly larger values for the variance. The mse comparison shows not
too substantial differences between the three estimates m̂IS, m̂I and m̂(·, p) in regions where the
bias of the two estimates is similar (thus in these regions the different performance with respect
to bias and variance is compensated in the mse). However, there are two intervals (approximately
[0.1, 0.25] and [0.7, 0.9]) where the mse of m̂IS is larger than that of m̂(·, p) and m̂I . This difference
is mainly caused by the bias of the PAVA estimator. For model (3.8) we observe exactly the
opposite behaviour, the PAVA estimate yields the smallest mse’s except at the right boundary of
the interval [0, 1], but m̂I and m̂(·, p) are not much worse. There are also no substantial differences
between the estimates m̂I and m̂(·, p). The differences are mainly caused by the variances of the
estimators and no clear pattern can be obtained for the squared bias which is substantially smaller
compared to the variance. Finally, the bias, variance and mse curves corresponding to the cases
(3.9) and (3.10) are presented in the upper and lower panel of Figure 4. In these cases we also do
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not observe substantial differences between the three estimators. For the model (3.9) all estimates
yield a very small squared bias and the mse is mainly dominated by the variance of the estimators.
This confirms asymptotic theory, because |m′′

4(x)| = π2

4
| sin π

2
x| ≤ π2

4
≤ 2.5 for all x ∈ [0, 1]. The

PAVA estimate appears to be slightly better with respect to the mse compared to the estimates
m̂I and m̂(·, p), provided that estimation is not performed at the left boundary of the interval
[0, 1]. The other estimates m̂I and m̂(·, p) behave very similar with slight advantages for density
regression method at the right boundary of the interval [0, 1]. The situation is similar for the
regression model (3.10), the PAVA estimate yields the smallest variances, but larger squared bias
than the density regression estimate m̂I near the boundaries. The estimate m̂(·, p) obtained by
the tilting method has larger bias than m̂I and slightly smaller variance. The mse-curves of the
three estimates are very similar, except at the regions, where the bias of m̂IS or m̂(·, p) is large
compared to m̂I .

These results indicate that a superiority of one estimator in general cannot be established. The
estimators obtained by the tilting method and by the inversion of the density-regression estimate
behave very similar, but the application of the PAVA method can produce a larger mse in some
cases. In order to investigate if these cases are representative with respect to the choice of the
variance and sample size we have listed in Table 1 the simulated mean integrated squared error,
squared bias and variance for the six regression functions corresponding to the remaining cases
n = 50, σ = 1; n = 80, σ = 0.2 and n = 80, σ = 1. The integrated squared error was calculated
for the interval [0.05, 0.95] in order to avoid a domination by boundary effects. We observe that
in our study the estimate m̂I has the smallest integrated squared bias in nearly all cases, while
the PAVA estimate yields the largest values. On the other hand the integrated variances of the
estimate m̂I are larger than the corresponding values for m̂IS and m̂(·, p), where the estimate
m̂(·, p) obtained by the tilting method usually produces the smallest variances. A comparison of
the three estimation techniques with respect to the mean integrated squared error criterion yields
the largest values for the PAVA estimate in most cases (75% of the considered scenarios), while
there is no clear winner between the estimates m̂I and m̂(·, p). The superiority of one particular
monotone estimation procedure depends on the regression model under consideration, but the
differences between the estimates m̂I and m̂(·, p) are usually very small. For example in model
(3.9) with n = 80 and σ2 = 1 the estimator m̂(·, p) obtained by the tilting method is the best,
but the estimator m̂I has only a 0.9% larger mean integrated squared error. The worst difference
between the integrated mean squared errors of m̂I and m̂(·, p) that we have observed in our study
was 30.7% and corresponds to the regression model (3.5) with n = 80, σ = 0.2, where m̂I yields
a substantially smaller integrated mse. The differences between the PAVA estimate and m̂I and
m̂(·, p) can be larger and vary between 1% and 43%. Consider as a typical example the regression
function m3 where the integrated mse of the PAVA estimate is 10% (n = 50, σ = 0.2), 43% (n =
50, σ = 1), 10% (n = 80, σ = 0.2) and 43% (n = 80, σ = 1) larger compared to the best case.
Note also that there is only one case, (3.9) with n = 50 and σ = 0.2, where the PAVA estimate
is the best with respect to the mean integrated squared error criterion. However, in this case
the estimates m̂I and m̂(·, p) produce only 4.2% and 7.6% larger values for the integrated mean
squared error, respectively.
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4 Conclusions

In this note we presented a finite sample comparison between three estimation techniques of a
monotone regression function. All methods monotonize a nonparametric curve estimate and are
first order asymptotically equivalent to a local linear or kernel estimate, if this type of estimate
is used in the step of smoothing. It is demonstrateted that the PAVA estimate (obtained by
smoothing of a monotone estimate) usually yields a larger mean squared error than the estimates
of Hall and Huang (2001) and Dette, Neumeyer and Pilz (2003), which are based on the concept
of tilting and the combination of density and regression estimation techniques. The lastnamed
two estimates behave very similar with respect to the mean squared error criterion in our study.
On the other hand the estimate of Dette, Neumeyer and Pilz (2003) has substantial computa-
tional advantages, because it does not rely on constrained optimization methods. Therefore this
estimate is recommended for the kernel estimation of a smooth monotone regression curve. It is
particularly attractive to users of conventional kernel methods, because of its simplicity and is at
least competitive to the estimation techniques which have been proposed so far for the smooth
estimation of an isotone regression function (in many cases of our study it was even better than
the estimates obtained by the PAVA and tilting method).
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Figure 2: Simulated mean squared error, bias and variance of the PAVA estimator m̂IS (dashed
line), the estimator m̂(·, p) obtained by the tilting method (dotted line) and the estimator m̂I

obtained by the combination of a density and regression estimate (solid line). The sample size is
n = 50, the standard deviation is σ = 0.2 while the regression functions are given by (3.5) (upper
panel) and (3.6) (lower panel), respectively.
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Figure 3: Simulated mean squared error, bias and variance of the PAVA estimator m̂IS (dashed
line), the estimator m̂(·, p) obtained by the tilting method (dotted line) and the estimator m̂I

obtained by the combination of a density and regression estimate (solid line). The sample size is
n = 50, the standard deviation is σ = 0.2 , while the regression functions are given by (3.7) (upper
panel) and (3.8) (lower panel), respectively.
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Figure 4: Simulated mean squared error, bias and variance of the PAVA estimator m̂IS (dashed
line), the estimator m̂(·, p) obtained by the tilting method (dotted line) and the estimator m̂I

obtained by the combination of a density and regression estimate (solid line). The sample size is
n = 50, the standard deviation is σ = 0.2 , while the regression functions are given by (3.9) (upper
panel) and (3.10) (lower panel), respectively.
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