
Bernholt, Thorsten; Fried, Roland; Gather, Ursula; Wegner, Ingo

Working Paper

Modified repeated median filters

Technical Report, No. 2004,46

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Bernholt, Thorsten; Fried, Roland; Gather, Ursula; Wegner, Ingo (2004) :
Modified repeated median filters, Technical Report, No. 2004,46, Universität Dortmund,
Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/22559

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/22559
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Modified repeated median filters

T. BERNHOLTa, R. FRIEDb,1, U. GATHERc and I. WEGENERa

a Department of Computer Science, University of Dortmund, 44221 Dortmund, Germany

Bernholt@ls2.cs.uni-dortmund.de

Wegener@ls2.cs.uni-dortmund.de
b Department of Statistics, University Carlos III de Madrid, 28903 Getafe, Spain

rfried@est-econ.uc3m.es
c Department of Statistics, University of Dortmund, 44221 Dortmund, Germany

gather@statistik.uni-dortmund.de

We discuss moving window techniques for fast extraction of a signal comprising monotonic

trends and abrupt shifts from a noisy time series with irrelevant spikes. Running medians

remove spikes and preserve shifts, but they deteriorate in trend periods. Modified trimmed

mean filters use a robust scale estimate such as the median absolute deviation about

the median (MAD) to select an adaptive amount of trimming. Application of robust

regression, particularly of the repeated median, has been suggested for improving upon

the median in trend periods. We combine these ideas and construct modified filters based

on the repeated median offering better shift preservation. All these filters are compared

w.r.t. fundamental analytical properties and in basic data situations. An algorithm for

the update of the MAD running in time O(log n) for window width n is presented as well.

Keywords: signal extraction, robust filtering, drifts, jumps, outliers, computational geom-

etry, update algorithm

1 Introduction

Signal extraction from high frequency data is a common technological task. To illustrate

the arising challenges we consider a time series representing the heart rate of a patient

in intensive care, see Fig. 1: We find time periods representing a steady state, mono-

tonic trends, abrupt level shifts as well as many, often one-sided outliers caused e.g. by

measurement problems. A filtering procedure for signal extraction from such data should

• track monotonic trends (also called drifts),

• preserve abrupt level shifts (steps or jumps),

• resist outliers (impulses or spikes),

• attenuate ‘normal’ observational noise,

• require short computation time.

1corresponding author

1 INTRODUCTION 2

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

time

he
ar

t r
at

e

Figure 1: Heart rate of a patient in intensive care, sampling frequency 1 per minute

Moving averages and other linear filters track trends and attenuate Gaussian noise effi-

ciently, but they are highly vulnerable to outliers and blur level shifts. Running medians

advocated by Tukey (1977) remove outliers and preserve shifts in a piecewise constant

signal, but they have shortcomings in trend periods. Lee and Kassam (1985) suggest

modified trimmed means as a compromise between moving averages and running medi-

ans. The amount of trimming is chosen adaptively using a robust scale estimator like the

median absolute deviation about the median (MAD). These filters are more efficient for

Gaussian noise, they also remove spikes and may preserve steps even better than running

medians (Himayat and Kassam 1993). Davies, Fried and Gather (2004) propose the re-

peated median, a robust regression estimator, to overcome the difficulties of the median

during trends.

Replacing the median by the repeated median, we construct modified repeated median

filters which trim observations with large regression residuals. The filter output is ob-

tained thereafter using either least squares regression to get high efficiency or another

repeated median for good robustness. Windows with different widths within these two

steps allow to dampen ordinary noise considerably along with the preservation of signal

details, particularly of abrupt shifts.

This paper is organized as follows: Section 2 introduces the filters mentioned above.

As computation time is often crucial, Section 3 presents fast algorithms for the filters,

especially an update algorithm for the MAD. Section 4 investigates analytic properties

which are important to meet the demands specified above. Section 5 describes a sim-

ulation study which compares the methods in basic data situations. Section 6 presents

applications to real and simulated data for further comparison. We finish of with some

conclusions.

2 ROBUST FILTERING PROCEDURES 3

2 Robust filtering procedures

The task of signal extraction from an observed time series (xt) can be formalized via a

components model for the data

xt = µt + ut + vt, t ∈ Z, (1)

where ut represents observational noise with median zero and variance σ2
t , such that the

signal (µt) is the time-varying level of the series, while vt is impulsive (spiky) noise from

an outlier generating mechanism. We assume (µt) to be smooth with a few abrupt shifts,

and the variance σ2
t is allowed to vary smoothly in time as well.

For robust filtering we move a time window (xt−k, . . . , xt+k) of width n = 2k+1 through

the series and approximate the signal value µt in the center of the window. This allows

signal extraction with a time delay of k observations. A small choice of k means a short

delay and brief computation time, but as we will see it reduces smoothness and robustness.

2.1 Location based filters

The running median simply calculates the median of the observations in the window,

MED(xt) = med(xt−k, . . . , xt+k), t ∈ Z.

The moving average uses the arithmetic mean instead of the median.

Filters based on trimmed means have been suggested as a compromise between moving

averages and running medians (Lee and Kassam 1985, Pitas and Venetsanopoulos 1992).

Modified trimmed mean (MTM-) filters choose the amount of trimming depending on

the current time window. Observations which are further than a certain distance qt away

from the local median are trimmed and the average of the remaining observations is taken

as filter output:

MTM(xt) =
1

|It|

∑

i∈It

xt+i, (2)

It = {i = −k, . . . , k : |xt+i − µ̃t| ≤ qt}

µ̃t = med(xt−k, . . . , xt+k), t ∈ Z .

For qt = 0 we get a running median, while for qt = ∞ we get a moving average. An

adaptive choice of qt is possible by using the median absolute deviation about the median

(MAD) for calculating a robust estimate of the local scale,

σ̃M
t = cn · med(|xt−k − µ̃t|, . . . , |xt+k − µ̃t|).

Here, cn is a correction factor depending on the window width n, which is usually chosen

to achieve unbiasedness under Gaussian noise. For very large n we set cn = 1.483, while

e.g. for n = 21 we have cn = 1.625. A reasonable choice of qt is e.g. qt = 2σ̃M
t (Lee and

Kassam 1985, Himayat and Kassam 1993).

2 ROBUST FILTERING PROCEDURES 4

Double window modified trimmed mean (DWMTM-) filters are a version of MTM-filters

using two windows with different widths. The median and the MAD are calculated from

a short signal window with width m = 2l + 1, l < k, to retain signal details. Then all

observations more deviant than qt from this median are trimmed from the larger window

with width n = 2k + 1, before the remaining values are averaged for better attenuation

of observational noise:

DWMTM(xt) =
1

|It|

∑

i∈It

xt+i (3)

It = {i = −k, . . . , k : |xt+i − µ̃t| ≤ qt}

µ̃t = med(xt−l, . . . , xt+l), t ∈ Z.

2.2 Regression based filters

Application of a running median means to regard the level of the time series as almost

constant within each window. This assumption is not appropriate in trend periods. Sim-

ilarly, MTM-filters rely on a location model for trimming. Instead, Davies et al. (2004)

suggest robust fitting of a linear trend µt+i = µt + iβt, i = −k, . . . , k, to the data within

each window. Based on a comparison of regression estimators with high breakdown point

they recommend Siegel’s (1982) repeated median (RM)

RM(xt) = med(xt−k + kβ̃RM
t , . . . , xt+k − kβ̃RM

t)

β̃RM
t = medi=−k,...,k

(

medj 6=i

xt+i − xt+j

i − j

)

.

In analogy to MTM-filters we can trim observations with large residuals in this regression

setting and perform a second step. A suitable trimming constant qt can be obtained by

estimating the local variability about the repeated median regression line via the MAD

of the regression residuals (Gather and Fried 2003). For the filter output, we can then

either apply least squares (LS) regression or another repeated median to the observations

with moderately large residuals. We call the resulting procedures TRM- and MRM-filters,

respectively:

TRM(xt) = xt − β̃TRM
t · it (4)

β̃TRM
t =

∑

i∈Jt

(i − it)(xt+i − xt)

∑

i∈Jt

(i − it)
2

xt =
1

|Jt|

∑

i∈Jt

xt+i, it =
1

|Jt|

∑

i∈Jt

i

Jt = {i = −k, . . . , k : |xt+i − µ̃RM
t − iβ̃RM

t | ≤ qt}

MRM(xt) = medi∈Jt
(xt+i − iβ̃MRM

t) (5)

β̃MRM
t = medi∈Jt

(

medj∈Jt,j 6=i

xt+i − xt+j

i − j

)

3 UPDATE ALGORITHMS 5

with (µ̃RM
t , β̃RM

t) being the repeated median level and slope calculated from

(xt−l, . . . , xt+l). If this inner window is shorter, l < k, we speak of DWTRM- and

DWMRM-filters.

A computationally cheap variant of the double window idea is to estimate only the slope

from a shorter window

DWRM(xt) = med(xt−k + kβ̃t, . . . , xt+k − kβ̃t) (6)

β̃t = medi=−l,...,l

(

medj=−l,...,l,j 6=i

xt+i − xt+j

i − j

)

.

We expect the slope estimate to be less affected when a shift intrudes into the outer

window then as it is obtained from observations which are not shifted yet. The intention

is that the resulting filter preserves shifts about as well as the median, but is independent

of a trend.

In the following discussions, we treat the RM, the TRM and the MRM as special cases

of the DWRM, the DWTRM and the DWMRM, respectively, with k = l.

3 Update algorithms

Computation time is often a limiting constraint for the application of computer intensive

methods. Signal extraction based on local estimations within a moving time window

can be sped up considerably by applying fast update algorithms which exploit the overlap

between subsequent windows instead of calculating the estimates every time from scratch:

When moving the window we just need to remove the oldest observation from it and

insert the incoming observation. This may be done quickly without loosing the temporal

ordering when using suitable data structures. Bernholt and Fried (2003) propose an

algorithm for updating the repeated median in linear time using quadratic space, which

improves the computational complexity of a straightforward implementation substantially

as the latter is of order n2.

3.1 Updating the MAD

In the following we propose an algorithm for the local MAD

σ̃M
t = med (|xt−k − µ̃t|, . . . , |xt+k − µ̃t|) , t ∈ Z,

where µ̃t = med(xt−k, . . . , xt+k), t ∈ Z, is the local median of an odd number n = 2k + 1

of real values xt−k, . . . , xt+k. To compute the MAD offline the following is known:

Theorem 1 Given n values xt−k, . . . , xt+k with xi ∈ R, the MAD can be computed in

time O(n).

Proof: The median can be computed in O(n) time (see e.g. Cormen et al. 2001) and,

therefore, the MAD can also be computed with two median operations in time O(n). 2

3 UPDATE ALGORITHMS 6

x π(k+2) , , b ,…, x π(n)

µ = xπ(k+1)

x π(k) ,…, a , , x π(1)

Elements left of a

count C

A:

B:

Figure 2: Let π be the permutation, such that the xi’s are sorted and val(a) < val(b). The

number of elements v with val(v) < val(a) is smaller than the count C, which counts the elements

with a smaller value than val(a) in the array A and val(b) in the array B.

As we assign to each xt+i a value based on its deviation from the median, we will

address the xt+i as ‘elements’ in the following. We mostly drop the index t for ease of

notation. To briefly explain the idea of the algorithm for updating the MAD, assume

that the median µ̃ is already computed and store the other elements in two arrays A and

B. We will later replace the arrays by other data structures. A value xi is stored in A if

xi < µ̃, and in B otherwise. Assume the elements in A and B are sorted, as displayed in

Fig. 2. Let val(xi) = (|xi − µ̃|, i) and define an ordering relation by val(xi) < val(xj) if

|xi−µ̃| < |xj−µ̃|, or in the case xi = xj if i < j. To compute the MAD, apply the function

val(xi) to each element and consider the merged sequence M of A, B and µ̃. The val-

function determines the ordering of two elements in M . The unknown element to be found

by the algorithm, for which the MAD takes its value, is denoted by MAD henceforth for

the reason of memorability. By definition, this MAD-element has the property that there

are k elements v with val(v) < val(MAD) and k elements v′ with val(v′) > val(MAD).

Instead of merging the two sequences we proceed in as follows: Suppose there are two

elements a ∈ A and b ∈ B given such that w.l.o.g. val(a) < val(b). The choice of a and

b will become clear later on. We now count the elements in A ∪ {µ̃} with a smaller value

than val(a) and the elements in B with a smaller value than val(b). Call this total count

C. The first case is C < k. Then we know that there are less than k elements left of a

in M and, therefore, a and all elements left of a in A cannot be the MAD and we can

exclude them from the further search (Lemma 1). The second case is C ≥ k. Then there

are n− 2−C < k values right of a or b and, therefore, we can exclude b and all elements

right of b in B from the further search (Lemma 2). Now we perform a binary search on

the remaining parts of A and B until the MAD is found.

This idea describes our method in the static case of a single time point t. We are more

interested in the dynamic case. Thus, we need a data structure such that we can perform

the following operations efficiently: exclude xt−k, include xt+k+1, increase t by 1, and

compute the new MAD.

This affords storing the data in a dynamic data structure, guaranteeing a run time of

O(log n) for the following operations: determine the largest and the smallest element in

3 UPDATE ALGORITHMS 7

the tree, insert and delete an element. Therefore, instead of the arrays A and B we use

binary search trees like AVL trees or red-black trees for storing the data (Cormen et al.

2001). Furthermore, these trees allow to perform the following operations in time O(1):

1. find the root of the tree (”rootof”) and

2. find the left/right child of a given element (”leftchildof”/”rightchildof”).

If a vertex does not exist the routines return a nil-pointer.

We use two binary search trees T< and T>. To deal with the degenerated case that

two elements xi and xj are equal, we store the pair (xi, i) in the tree. To simplify the

description we skip the index in the notation and refer to (xi, i) by xi. An element xi is

stored left of an element xj in the tree T>, if xi < xj or in the case xi = xj if i < j. The

elements in the tree T< are stored in the reverse order. An element xi is stored in T< if xi

is smaller than the current median µ, otherwise it is stored in T>. This MAD algorithm

works only for an odd number of elements n = 2k +1. In each tree k elements are stored,

while µ is not contained in any tree.

In the preprocessing phase we just insert elements into the trees. If the number of

inserted elements is odd and the numbers of elements in the two trees are no longer equal,

w.l.o.g. T< has less elements than T>, their sizes are balanced by inserting the old µ̃ into

T< and finding the leftmost element v in T>, deleting it from T> and using v as the new

median µ̃. In the update step we insert one element and delete one element and also

perform the balancing of the sizes of the trees, if necessary.

Consider the sorted order of the elements of one of both trees. Then, rank(xi) is the

position of the element xi in this sorted order, the leftmost element has rank 1. For two

elements xi and xj stored in the same tree, we have that rank(xi) < rank(xj) iff val(xi) <

val(xj) iff xi is stored left of xj. If two elements xi and xj are stored in different trees, we

also use the terms left of and right of. The element xi is left of xj iff val(xi) < val(xj).

In each vertex xi of the trees we additionally store the number sizeof(xi), which counts

the number of elements stored in the subtree of xi. During insertion, deletion and rotations

this information can be updated with asymptotically negligible costs. To avoid some case

distinctions define sizeof(nil) = 0.

Procedure 1 returns the root v of a tree and computes the rank of v by counting the

number of the elements in the left subtree and adding 1 for v itself.

Knowing rank(v) we design procedures to compute the rank of a child v′ of v. For this,

we have to subtract or add the number of elements between v and v′. In the case of a

branch to the left, these are all elements in the right subtree of v′, in the case of a branch

to the right, these are all elements in the left subtree of v′. This is described in detail in

the Procedures 2 and 3.

An element a 6= µ̃ is stored either in T< or T>. Let Ta ∈ {T<, T>} be the tree for which

a ∈ Ta. Define

leftof(a) = {v | v ∈ Ta and val(v) < val(a)}

3 UPDATE ALGORITHMS 8

Procedure 1 GetRootOf
Input:

A tree T .
Output:

The procedure computes the root v of the tree T and the rank of v.
begin

v ← rootof(T)
rank v ← 1+sizeof(leftchildof(v))
return (v, rank v)

end

Procedure 2 BranchLeft
Input:

A vertex v and rank v.
Output:

The procedure computes the left child of v and its rank.
begin

v′ ← leftchildof(v)
if v′ 6= nil then

rank v′ ← rank v − 1− sizeof(rightchildof(v′))
return (v′, rank v′)

end

Procedure 3 BranchRight
Input:

A vertex v and rank v

Output:
The procedure computes the right child of v and its rank.

begin
v′ ← rightchildof(v)
if v′ 6= nil then

rank v′ ← rank v + 1+ sizeof(leftchildof(v′))
return (v′, rank v′)

end

3 UPDATE ALGORITHMS 9

and

rightof(a) = {v | v ∈ Ta and val(v) > val(a)}.

Procedure 4 ComputeMAD
Input:
1: AVL trees T< and T> with k vertices each and the median µ̃.

Output:
2: The MAD-value.

begin
3: (a, rank a) ← GetRootOf(T<); (b, rank b) ← GetRootOf(T>)
4: while a 6= nil and b 6= nil do
5: if val(a) > val(b) then
6: swap (a, rank a) with (b, rank b)
7: if rank a + rank b ≤ k then
8: (w, rank w) ← (a, rank a)
9: (a, rank a) ← BranchRight(a, rank a)

10: else
11: (w, rank w) ← (b, rank b)
12: (b, rank b) ← BranchLeft(b, rank b)
13: end while
14: if a = nil then
15: rank MAD ← k − rank w

16: MAD ← SearchRank(b, rank b, rank MAD)
17: else
18: rank MAD ← k + 1 − rank w

19: MAD ← SearchRank(a, rank a, rank MAD)
20: return MAD
end

After inserting and deleting some elements and balancing the sizes of the trees, we can

execute the Procedure ComputeMAD. The algorithm starts with two pointers a and b at

the roots of both trees and in the Lines 5 and 6 it is ensured that val(a) < val(b). In Line 7

it is determined whether either val(a) < val(MAD) (Lemma 1) or val(b) > val(MAD)

(Lemma 2). It is essential that this can be checked without knowing the MAD-element.

If the algorithm branches to the right at a, all elements in the left subtree of a are excluded

from further considerations. Branching at b excludes all elements in the right subtree of

b. The algorithm branches in the appropriate direction such that the MAD-element and

the element w, which is defined in a moment, are always contained in the subtrees of a

or b (Lemma 3).

Assume that MAD ∈ T<. When the ‘while loop’ stops, the algorithm has found an

element w ∈ T> with the property that either w is the rightmost element in T> with

val(w) < val(MAD) (Lines 15,16) or w is the leftmost element in T> with val(w) >

val(MAD) (Lines 18,19). Using the rank of w the algorithm is able to determine the rank

of the MAD-element. With this information it is easy to find the MAD-element using

3 UPDATE ALGORITHMS 10

Procedure 5. These facts and the correctness of the algorithm are proven in Theorem 2.

Procedure 5 SearchRank
Input:

Vertex p, rank p and a rank number r.
Output:

The vertex v with rank r if v is contained in the subtree of p.
begin

while p 6= nil and rank p 6= r do
if rank p < r then

(p, rank p) ← BranchRight(p, rank p)
else

(p, rank p) ← BranchLeft(p, rank p)
end while
return p

end

Lemma 1 If the algorithm branches at vertex a, val(a) < val(MAD) and the algorithm

continues at the right child of a.

Proof: If the algorithm branches at a we know from Line 9 that the algorithm continues

at the right child of a and we know from Line 7 that rank(a) + rank(b) ≤ k. Moreover,

rank(a) + rank(b) ≤ k

⇔ rank(a) − 1 + rank(b) − 1 +1 ≤ k − 1

⇔ | leftof(a)| + | leftof(b)| +|{µ̃}| ≤ k − 1.

From the Lines 5 and 6 we know that val(a) < val(b) and, therefore, there are less than

k elements with a smaller value than val(a). Therefore, val(a) < val(MAD). 2

Lemma 2 If the algorithm branches at the vertex b, val(b) > val(MAD), and the algo-

rithm continues at the left child of b.

Proof: If the algorithm branches at b we know from Line 12 that the algorithm continues

at the left child of b and we know from Line 7 that rank(a) + rank(b) > k. Moreover,

rank(a) + rank(b) > k

⇔ k − rank(a) + k − rank(b) < 2k − k

⇔ | rightof(a)| + | rightof(b)| < k.

Note that | rightof(a)| = k − rank(a), since, by definition, each of the trees T< and T>

contains exactly k elements. From the Lines 5 and 6 we know that val(a) < val(b) and,

therefore, there are less than k elements with a greater value than val(b). Therefore,

val(b) > val(MAD). 2

Lemma 3 The MAD-element is not excluded by the algorithm.

3 UPDATE ALGORITHMS 11

Proof: There are k elements left of the MAD-element. The algorithm ensures in the

Lines 5 and 6 that val(a) < val(b).

• Case 1: a = MAD.

From val(a) < val(b) it follows that MAD is left of b and, therefore, there are at

least k + 1 elements left of b, namely the elements of the sets leftof(MAD), leftof(b)

and {MAD, µ̃}. Moreover,

| leftof(MAD)| + | leftof(b)| +|{MAD, µ̃}| ≥ k + 1

⇔ rank(MAD) − 1 + rank(b) − 1 +2 ≥ k + 1

⇔ rank(MAD) + rank(b) > k.

Therefore, the Lines 8 and 9 are not executed and the MAD-element is not excluded.

• Case 2: b = MAD.

From val(a) < val(b) it follows that MAD is right of a and, therefore, there are at

least k + 1 elements right of a. Moreover,

| rightof(a)| + | rightof(MAD)| +|{MAD}| ≥ k + 1

⇔ k − rank(a) + k − rank(MAD) +1 ≥ k + 1

⇔ − rank(a) − rank(MAD) ≥ −k

⇔ rank(a) + rank(MAD) ≤ k.

Therefore, the Lines 11 and 12 are not executed and the MAD-element is not ex-

cluded.

• Case 3: a 6= MAD and b 6= MAD.

If the algorithm branches at element a, then Lemma 1 ensures that the MAD-

element is not excluded. Lemma 2 ensures the same for branching at element b.

2

Theorem 2 For n values xt−k, . . . , xt+k with xi ∈ R and n odd, the MAD can be main-

tained in time O(log n) per update with O(n log n) preprocessing time.

Proof: To prove the correctness of the update-algorithm, we show that the rank of the

MAD is computed correctly. In Line 7, the algorithm branches either at a or b. Let w be

the last vertex the algorithm branched at, before the while loop stopped. W.l.o.g. assume

MAD ∈ T<. From Lemma 3 we know that the MAD is not excluded. Therefore, w ∈ T>.

Let

S< = {v | v ∈ T< and v is left of MAD} (7)

S> = {v | v ∈ T> and v is left of MAD}. (8)

Then the set of the k elements left of the MAD is split into the sets S<, S> and {µ̃}

implying that

|S<| + |S>| + |{µ̃}| = k.

3 UPDATE ALGORITHMS 12

• Case 1: w = a.

From Lemma 1 we know that val(w) < val(MAD) and that the algorithm continues

with the right child of w. Therefore, w is left of the MAD-element and as the while

loops stops, w does not have a right child. Hence w is the rightmost element in T<

left of the MAD. Therefore, S> = leftof(w) ∪ {w}:

⇔

⇔

⇔

|S<| + |S>| + |{µ̃}|

| leftof(MAD)| + | leftof(w) ∪ {w}| + |{µ̃}|

rank(MAD) − 1 + rank(w) + 1

rank(MAD)

= k

= k

= k

= k − rank(w).

• Case 2: w = b.

From Lemma 2 we know that val(w) > val(MAD) and that the algorithm continues

with the left child of w. Therefore, w is right of the MAD-element and as the while

loops stops, w does not has a left child. Hence w is the leftmost element in T< right

of the MAD. Therefore, S> = leftof(w):

⇔

⇔

⇔

|S<| + |S>| + |{µ̃}|

| leftof(MAD)| + | leftof(w)| + |{µ̃}|

rank(MAD) − 1 + rank(w) − 1 + 1

rank(MAD)

= k

= k

= k

= k + 1 − rank(w).

The two cases show that the rank is computed correctly in the Lines 15 and 18. Lemma 3

ensures that subtree(a) resp. subtree(b) contains the MAD and, therefore, the MAD is

found by Procedure 5.

The algorithm searches along two paths. As AVL or red-black trees guarantee a maximal

path length of O(log n), and each iteration of the while loop takes time O(1), the run time

is bounded by O(log n). The preprocessing needs n insertions into the trees and less than

n balancings of the sizes of the trees. Therefore, the preprocessing can be performed in

time O(n log n). 2

3.2 Updating the (DW)MTM filter

After using the routines from Section 3.1 to obtain the bound qt = 2σ̃M
t , we have to

compute the sum of the xi’s with val(xi) < qt to obtain the estimate of the (DW)MTM-

filter. As described before, we store the data in two AVL or red-black trees T< and T>

and keep the sizes of the trees balanced with respect to the median µ. In each vertex v

the sum S(v) of the xi contained in the subtree of v are stored. This information can

be updated during insertion, deletion and rotation with asymptotic no additional costs.

In the following, we will only describe the procedure for the tree T<. It is the same for

T>. Performing a search for qt in the tree results in a path P . It is easy to see that an

element xi with val(xi) < qt is either contained in a vertex v ∈ P or is contained in a

subtree whose root is a left child of v′ ∈ P with val(v′) < qt. Therefore, we inspect each

element xi on the path. For all xi with val(xi) < qt we compute the sum of xi and the

value S(leftchildof(xi)) stored in the root of the subtree mentioned above.

4 THEORETICAL ANALYSIS 13

Performing this procedure for both trees gives the estimates of the (DW)MTM-filters.

Since the path length in the trees is bounded by O(log n), each step can be computed

in time O(1), and the trees need no more than linear space, the bounds mentioned in

Table 1 are achieved.

3.3 Updating modified repeated median filters

In the following we describe how to obtain the set Jt from Section 2.2 in linear time.

We use the same data structure as Bernholt and Fried (2003) to update the RM- and

DWRM-filter in time O(n) and space O(n2). From the resulting estimates we get the

n regression residuals. Then we can compute the MAD of the residuals in linear time

(Theorem 1). Additionally, we can obtain the set Jt in the same time. To finally compute

the (DW)TRM-estimate we have to evaluate some sums. All steps can be performed in

O(n). Therefore, the (DW)TRM-filter can be updated in time O(n) and space O(n2) as

mentioned in Table 1.

For the (DW)MRM it is advisable to apply a fast offline algorithm for the repeated

median with an expected run time O(n log n) as described by Matoušek, Mount and

Netanyahu (1998).

Table 1: Run time and space needed to update the filters when one element in the window is

replaced by a new one.

MED (DW)MTM (DW)TRM (DW)RM (DW)MRM

Time O(log n) O(log n) O(n) O(n) O(n log n)

Space O(n) O(n) O(n2) O(n2) O(n)

4 Theoretical analysis

Now we analyse the filters presented in Section 2 within individual time windows. For

the ease of notation we drop the time index t and center the window at zero, i.e. we

approximate µ0 using x−k, . . . , x0, . . . , xk.

4.1 Equivariances and invariances

Equivariances and invariances guarantee sensible reactions of an estimate to systematic

changes in the data. Location equivariance means that a shift due to a constant added

to all observations changes the estimate accordingly. Scale equivariance means that mul-

tiplying all observations by a constant changes the extracted signal in the same way. All

filters described in Section 2 possess these properties. We note that the scale equivariance

of the trimming estimators is due to the scale equivariance of the MAD.

4 THEORETICAL ANALYSIS 14

A filter should moreover not be affected by trends. As we approximate the signal in

the center of the window, the estimate should not depend on a constant linear trend if

the central level is fixed. More precisely, Fried, Bernholt and Gather (2004) call a filter

trend invariant if the filter outcomes for x−k −kβ, . . . , x−1−β, x0, x1 +β, . . . , xk +kβ and

x−k, . . . , xk are the same. The regression based filters presented in Section 2.2 (DWRM,

DWTRM, DWMRM) are trend invariant, while the location based filters in Section 2.1

are not. The trend invariance of the RM follows directly from the regression equivariance

of the repeated median. The trend invariance of the DWTRM and the DWMRM can be

derived easily from the proof of Lemma 1 in Fried (2004). The lack of trend invariance

of trimmed mean filters with a percentage of trimming larger than zero is easy to see for

the running median with k = 1: The median of −1, 0, 3 is zero, while for β = −2 we get

the data 1, 0, 1 with median 1. Similar examples can be constructed for every choice of k

and for every positive amount of trimming.

4.2 Patterns in small observational noise

The removal of impulsive noise (outliers) and the preservation of shifts are essential prop-

erties of robust filters. We inspect the best possible performance of a procedure w.r.t.

this when there is no observational noise, i.e. ut ≡ 0. This analysis is analogous to the

exact fit investigated in linear regression, see Rousseeuw and Leroy (1987, Section 3.4).

A running median preserves a level shift in an otherwise constant signal exactly and it

removes up to k subsequent spikes completely in this idealized situation for n = 2k + 1.

However, it preserves a shift during a trend only if the shift and the trend go in the

same direction. The shift gets blurred otherwise, and a single spike within a trend may

cause smearing. Similarly, a DWMTM-filter can remove up to l subsequent large spikes

from a constant signal, where m = 2l + 1 is the window width used for calculation of

the MAD. This explains why m should be chosen depending on the minimal length of

relevant signal details. However, this property gets lost in trend periods, and a shift may

not be preserved exactly during a trend.

The DWRM, the DWTRM and the DWMRM can remove l − 1 spikes within a single

window completely as the median slope for each of the l + 2 clean data points out of the

total 2l +1 within the inner window is calculated from l +1 clean and l− 1 contaminated

pairs of observations. For the DWTRM and the DWMRM we note that the MAD of the

residuals is zero then and all spikes are trimmed before the second step. A shift causes

smearing at least at three time points. These numbers are slightly worse than those for

the location based methods in case of a constant signal, but they do not depend on a

trend at all.

The previous results hold for the idealized case with ut ≡ 0. Lipschitz continuity restricts

the influence of minor changes in the data due to small observational noise or rounding.

The running median and the DWRM are Lipschitz continuous: The median is Lipschitz

continuous with constant 1 as changing every observation by less than δ changes any

order statistic at most by δ. The repeated median slope changes at most by 2δ then, and

we get that the DWRM is Lipschitz continuous with constant 2k + 1 since none of the

4 THEORETICAL ANALYSIS 15

trend corrected observations can change more. Trimming filters such as the DWMTM,

the DWTRM and the DWMRM are not Lipschitz continuous, i.e. small changes in the

data can possibly have large effects.

4.3 Robustness against strong spiky noise

The previous analysis addressed the exact extraction of the signal value under (close to)

optimal conditions with no or little observational noise. Alternatively, we can inspect

worst-case conditions which can render the extracted value meaningless. As a starting

point we assume that there are some data generated from the components model without

spiky noise, i.e. vt ≡ 0. Such ‘clean’ data will typically provide useful information on

the underlying signal. How many spikes can now maximally be added to the clean data

until the estimate gets arbitrarily far away from the true signal value? To answer this

question we measure the minimal percentage of outliers within a window which can cause

an arbitrarily large spike in the extracted signal. This corresponds to the breakdown of the

estimators applied locally to the time window: The finite sample replacement breakdown

point measures the minimal fraction of data being set to arbitrary values which can drive

an estimate to infinity. The fractions derived in the following resemble the numbers of

spikes obtained in the previous section as there is a relationship between exact fit and

breakdown (Rousseeuw and Leroy 1987, pp. 122-124).

The breakdown point is (k + 1)/n for the median of n = 2k + 1 data points, telling us

that at least halve of the sample needs to be replaced to completely destroy the local level

approximation.

To cause an arbitrary spike in the MTM-output the same number of replacements is

needed as for the median since for explosion of the local MAD also at least k +1 observa-

tions need to be modified: If not more than k observations are replaced, the median is at

most ||x|| in absolute value, with ||x|| denoting the maximum norm of the window sample

vector x = (x−k, . . . , xk)
′. The MAD does not exceed 2cn||x|| since |xi−µ̃| ≤ 2||x|| for each

of the at least k+1 clean observations in the contaminated sample. Therefore, the trimmed

mean is taken using only observations which are less than |xi| ≤ |µ̃|+|xi−µ̃| ≤ (4cn+1)||x||

in absolute value. Analogously, destroying the DWMTM affords replacement of at least

l +1 out of the 2l +1 observations in the inner window, the same number as for the inner

median. We note that for the double window filters the worst case positions of outliers

are within the shorter window.

For causing a spike of any size in the DWRM at least l observations in the inner window

must be modified: Breakdown of the repeated median affords this number when being

calculated from 2l +1 observations, hence the DWRM resists l− 1 modifications. Setting

the observations at times 1, . . . , l in the inner window to (l+2)M , (l+3)M, . . . , (2l+2)M ,

with M > 8l · ||x|| being an arbitrarily large number, the median of the pairwise slopes

for the other l + 1 observations at times −l, . . . , 0 in the calculation of β̃DWRM and hence

β̃DWRM itself lies between M/4 and (2l + 3)M/(2l) ≤ 5M/2. Thus, the trend corrected

observations at times −k, . . . ,−1 increase at least by M/4 each, while that at time 1 is

at least (l − 1/2)M . The DWRM for the modified sample will be at least M/8, which

5 MONTE CARLO EXPERIMENTS 16

goes to infinity for increasing M .

The DWTRM and the DWMRM also resist arbitrary modification of l− 1 observations

in the inner window: When replacing less than l observations, the initial slope and level

estimate are bounded in absolute value by 2||x|| and (2l + 1)||x||, respectively, and the

MAD is bounded from above by (4l + 2)cm||x||. For the observations which are not

trimmed we derive the finite bound |xi| ≤ 2(4l + 2)cm||x|| + (2l + 1)||x|| + 2k||x|| from

this, and hence the filter outcome is also bounded as it lies within the convex hull of these

observations.

5 Monte Carlo experiments

For a comparison of the procedures we performed a Monte Carlo analysis. We chose

basic data situations in accordance to the demands stated in the introduction. We used

the components model (1) with an underlying linear trend, which is overlaid by possibly

autocorrelated observational noise generated from an autoregressive model of order one,

AR(1),

Xt = µt + ut + vt, t = −k, . . . , k, (9)

µt = βt

ut = φut−1 + ǫt

with the innovations ǫt forming Gaussian white noise with zero mean and unit variance.

AR(1) models are a convenient choice for autocorrelated data.

The suitable choice of the window width n = 2k + 1 depends on the application, i.e. on

the situations a filtering procedure needs to handle. In intensive care e.g., a medical rule

of thumb states that about five subsequent aberrant observations of about the same size

are often clinically relevant, while shorter patterns are typically irrelevant (Imhoff et al.

2002). In order to preserve a shift we would like a filter to remain stable at the former

level until halve of the observations in the window are shifted, if possible. In any case a

filter should not be significantly affected by five shifted observations since then we can

apply rules for shift detection (Fried 2004). These demands imply that k must be at least

five or larger, depending on the robustness of the filter. Upper limits for k are set by the

length of time periods in which trends can be assumed to be approximately linear and by

the time delay admissible.

We mostly considered windows of width n = 2k + 1 = 21, setting m = 11 for the

DWMTM since the inner median resists five subsequent outliers then, while for the

DWRM, the DWTRM and the DWMRM we used a larger m = 15 as outliers have a

stronger impact on the repeated median than on the median in a steady state. This

means a small difference between inner and outer window. Furthermore, we mostly set qt

to twice the MAD.

5 MONTE CARLO EXPERIMENTS 17

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

slope

ef
fic

ie
nc

y

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

slope

ef
fic

ie
nc

y

Figure 3: Relative efficiencies for Gaussian noise and autocorrelations φ = 0.0 (left) or φ = 0.6

(right): median (¥), RM (¤), MTM (△), DWMTM (∇), MRM (o), TRM (×), DWMRM (•),

DWTRM (+) and DWRM (·)

5.1 Efficiency for Gaussian noise

We firstly compared the attenuation of Gaussian noise. All the methods considered are

unbiased then because of symmetry. We simulated 20000 non-overlapping windows for

each combination of slope β ∈ {0, 0.05, . . . , 0.5} and autocorrelation φ ∈ {0, 0.6} and

calculated the efficiencies as measured by the percentage MSE relatively to the moving

average from the results, see Fig. 3.

The MTM is rather efficient in case of a constant signal and zero correlations, but for

positive correlations it looses efficiency when a trend occurs, similarly to the median.

Using a shorter inner window generally reduces efficiency. The repeated median is almost

as efficient as the median for a constant signal, and the same applies for the TRM and the

MTM, as well as for the DWTRM and the DWMTM. However, the regression based filters

are not affected by a trend due to their trend invariance. Positive correlations, which occur

in many applications, increase the relative efficiencies of the robust regression methods.

The second step in the TRM gains some efficiency, while that in the MRM reduces it

somewhat. The DWTRM is even more efficient than the RM for zero correlations, but it

is less efficient than the DWRM and the MRM in case of positive correlations φ = 0.6.

We note that the efficiency of the TRM (DWTRM) can be further improved by setting

qt to a larger multiple of the MAD. Increasing qt from two to three times the MAD e.g.

yields efficiencies of 92% (86%) for φ = 0 and 97% (86%) for φ = 0.6 instead of the 76%

(69%) and 90% (78%) found before. The same modification of the MRM and DWMRM

increases the efficiency only by about 4% in each case.

5 MONTE CARLO EXPERIMENTS 18

5.2 Preservation of shifts

Level shifts should be localized and tracked as exactly as possible. Outlying observations

of similar size at the end of the window, which may be due to a shift, should not influence

the output to avoid smearing. In order to investigate the preservation of a shift within

a trend we generated signals from model (9) which mimic the intrusion of a shift into

the window: We replaced an increasing number 1, 2, . . . , 10 of observations at the end of

the window by positive additive outliers of size s ∈ {1, 2, . . . , 10}. For each setting we

simulated 2000 windows to calculate the bias, the standard deviation and the root of the

mean square error RMSE.

Fig. 4 depicts the maximal (w.r.t. the outlier size) RMSE as a function of the number of

outliers for a constant signal (β = 0) and a steep upward or downward trend (β = ±0.5).

The closer a RMSE-curve stays to zero, the better shifts are preserved. From β = 0

the excellent preservation of shifts by the median in case of a constant signal becomes

visible. The MTM, and even more the DWMTM resist a shift very well up to eight (about

40%) affected observations. The DWMRM and the DWTRM, which both apply a shorter

inner window, also perform well up to six (about 30%) shifted observations. The other

regression based filters are slightly worse. Obviously, using a short inner window for an

initial fit improves the stability under shift. Application of another repeated median in

the second step improves the results only slightly, while application of least squares is not

much worse.

The results change substantially in case of a trend, particularly if the shift is in the

opposite direction of the trend. The location based filters worsen a lot and smooth a

level shift considerably then. The regression based procedures are not affected by a trend

because of their invariance, and only the DWMTM performs comparably to them.

We note that the RMSE of most methods is dominated by the bias. The variability

contributes substantially only for the median and the DWMTM, while for the MTM it

increases when almost half of the observations are shifted. Moreover, if there are less

than nine outliers we find the largest bias and RMSE of the trimming filters to occur

for outliers of moderate size: large shifts are better preserved than small shifts. This is

due to the fact that these filters are not positive, i.e. increasing some observations does

not necessarily increase the output. The other methods show the intuitive behavior that

larger outliers have stronger effects. Hence, trimming provides its main benefits if shifts

are large relative to the observational noise.

Here and in the following, we find the main effect of positive autocorrelations (φ = 0.6)

to be a slight increase of variance. The ranking of the methods imposed by the bias is

essentially the same as discussed before. Only the bias of the methods with a shorter

inner window increases somewhat earlier, and the same is true to some extent for the

RM.

5 MONTE CARLO EXPERIMENTS 19

2 4 6 8 10

0
1

2
3

4
5

number of outliers

R
M

S
E

2 4 6 8 10

0
1

2
3

4
5

number of outliers

R
M

S
E

2 4 6 8 10

0
1

2
3

4
5

number of outliers

R
M

S
E

2 4 6 8 10

0
2

4
6

8
10

number of outliers

R
M

S
E

2 4 6 8 10

0
2

4
6

8
10

number of outliers

R
M

S
E

2 4 6 8 10

0
2

4
6

8
10

number of outliers

R
M

S
E

Figure 4: RMSE for the intrusion of a level shift (left) and for an outlier patch in the center

(right), slope β = 0.5 (top), β = 0.0 (center) and β = −0.5 (bottom): median (¥), RM (¤),

MTM (△), DWMTM (∇), MRM (o), TRM (×), DWMRM (•) and DWTRM (+)

5 MONTE CARLO EXPERIMENTS 20

5.3 Removal of impulsive, patchy noise

In view of the clinical rule of thumb stated above we are interested in removing outlier

patches with up to five subsequent outliers, but we consider larger numbers as well since

more than one patch can occur within a short period.

For some of the methods the location of the outliers is essential for their effect on the

filter output. The double window filters resist outliers best when they are outside the inner

window. Since the window is moved through the series an outlier patch will be found at

any point in the window at some time. We considered several settings with either one

outlier patch in the center of the window or with two separated patches. The situation

with one patch at the start or the end of the window has been treated implicitly in the

previous subsection. We always replaced an increasing number 1, 2, . . . , 10 of observations

by additive outliers of size s ∈ {1, 2, . . . , 10} and calculated the RMSE for all numbers

and sizes of outliers from 2000 simulation runs each.

In the first situation there is one patch located in the center of the window, i.e. we

replaced the observations at times 5, 4, . . . ,−4 (in this order) by positive additive outliers,

see Fig. 4. In case of a constant signal, all methods resist up to about five (25%)

outliers as desired. The double window filters, especially the DWMTM and the DWTRM,

become increasingly biased thereafter. The DWMTM is the only filter showing a strongly

increasing variance, namely when there are about as many outliers in the inner window as

clean observations. In case of a steep trend (β = ±0.5), the location based filters worsen

a lot and become strongly biased. The MRM, the RM, and to a smaller extent the TRM

are the only filters resisting many outliers then.

Considering next a situation with two outlier patches occurring within half a window

width distance we replaced the observations at t = 0, 10,−1, 9,−2, 8,−3, 7,−4, 6 (in this

order) by positive additive outliers, see Fig. 5. All methods perform well if the signal is

constant as they are little affected by two patches with up to four outliers each. The TRM

and the MTM-filters are slightly worse than the others in case of at least eight outliers.

In case of a steep trend even the median becomes strongly biased and only the regression

based procedures resist two patches with between two and four outliers each (20% - 40%

altogether), with the DWMRM being slightly superior.

If the outlier patches have different signs (not shown here), application of least squares

in the second step after application of the RM gives even slightly better results than a

second RM, but the results are generally much better than if the patches have the same

sign.

Regarding situations with one patch at the start and another at the end of the window

we replaced the observations at t = −10, 10,−9, 9, . . . ,−6, 6 (in this order) by positive

additive outliers. In case of a constant signal all methods resist up to 6 (30%) outliers

then, see Fig. 5. The MTM shows an increasing bias thereafter, while the double window

filters perform better than the others. The median deteriorates substantially in case of

a trend showing the largest bias and MSE for a small to moderate number of outliers,

and the DWMTM also worsens slightly. The regression based procedures, particularly

the double window ones, are better then.

6 APPLICATION TO TIME SERIES 21

We find patches of different signs at the start and the end to cause minor problems

only. The MSE is dominated by the variance in this situation since the bias produced by

positive and by negative outliers cancels out.

5.4 Long time windows

For further investigation of the merits of a shorter inner window for the initial estimation

we now increase n to 61 and set m to 21. Although a delay of k = 30 observations may

sometimes be too long for online signal extraction, such choices are possible for retrospec-

tive analysis if the signal does not fluctuate too rapidly for a local linear approximation.

In particular, there should never be more than one shift or signal peak within a win-

dow. In view of the previous results we restrict to a comparison of the regression based

procedures. Hence, the results do not depend on a linear trend.

We reconsider the occurrence of a shift. We shift an increasing number of 3, 6, . . . , 30

observations at the end of the window and calculate the maximal RMSEs for outlier sizes

s ∈ {1, . . . , 10} from 2000 simulation runs as before. Fig. 6 shows the clear benefits

obtained from the inner window, while it does not seem to be important whether the

repeated median or least squares is applied in the second step. The DWRM, which

estimates the slope from the inner and the level from the whole window without trimming,

resists the shift also considerably better than the ordinary RM. This is different from the

combination n = 21 and m = 15, where we did not find significant advantages of the

DWRM because n and m were close to each other.

Now we treat the occurrence of an outlier patch in the center. Since the RM turns out

to be most vulnerable when an outlier patch is at an end of the window we replace an

increasing number 1, 2, . . . , 10 of observations at times 10, 9, . . . , 1 as this should damage

the double window filters most. The maximal RMSEs in Fig. 6 show that the double

window filters indeed run into problems if at least 6 out of the 21 (about 30%) observations

in the center are outlying with the DWMRM being the least and the DWRM the most

affected. The other filters are not affected at all by ten central outliers. However, as stated

before, patches of five or more subsequent outliers are often relevant in critical care, i.e.

protection against up to four subsequent outliers might be sufficient in this application.

6 Application to time series

As a last step we applied the procedures to time series with an underlying complex signal.

We chose the width n = 31 for all filters, and an inner window of m = 11 observations

for the DWMTM and m = 17 for the RM-based filters, respectively. At the start and

the end of the series we extrapolated the first and the last filtered value for the location

6 APPLICATION TO TIME SERIES 22

2 4 6 8 10

0
1

2
3

4
5

number of outliers

R
M

S
E

2 4 6 8 10

0
1

2
3

4
5

number of outliers

R
M

S
E

2 4 6 8 10

0
1

2
3

4
5

number of outliers

R
M

S
E

2 4 6 8 10

0
1

2
3

4
number of outliers

R
M

S
E

2 4 6 8 10

0
1

2
3

4

number of outliers

R
M

S
E

2 4 6 8 10

0
1

2
3

4

number of outliers

R
M

S
E

Figure 5: RMSE for outliers lagged by a half (left) and a full window width (right), slope

β = 0.5 (top), β = 0.0 (center) and β = −0.5 (bottom): median (¥), RM (¤), MTM (△),

DWMTM (∇), MRM (o), TRM (×), DWMRM (•) and DWTRM (+)

6 APPLICATION TO TIME SERIES 23

5 10 15 20 25 30

0
1

2
3

4
5

number of outliers

R
M

S
E

2 4 6 8 10

0
1

2
3

4
5

number of outliers

R
M

S
E

Figure 6: RMSE for the intrusion of a level shift (left) and for an outlier patch in the center

(right): RM (¤), MRM (o), TRM (×), DWMRM (•), DWTRM (+) and DWRM (·)

based filters, while we used the regression lines fitted in the first and the last window for

the RM-based filters.

6.1 Simulated time series

Fig. 7 shows a simulated time series of length 300 and results of signal extraction. The

underlying signal contains constant as well as trend periods and two shifts, and it is

overlaid by N(0,1) white noise. Twenty observations were replaced by negative additive

outliers of size 5 split into four isolated, three pairs, two tripels and one quadrupel of

outliers, which were inserted at time points chosen at random.

The RM is smoother than the median in trend periods and resists the outliers there

slightly better. Both filters smooth the second level shift considerably. The MTM behaves

similarly to the median, while the MRM and the TRM preserve the second shift much

better. The DWMTM behaves excellently at the first and similarly to the MRM at

the second shift, but the double window regression filters do even better, and they are

additionally more robust against outliers. The possibly better preservation of shifts by the

DWMTM as compared to the median has been noticed before (Pitas and Venetsanopoulos

1992, Himayat and Kassam 1993).

6.2 Real time series

We finally analysed a real time series representing the pulmonary arterial mean pressure

of an intensive care patient, see also Fig. 7. This series includes shifts, trends and outlier

patches. Again, the RM is smoother than the median during the trends. Both blur the

shift at about t = 100 and the local minimum there considerably. The MTM performs

6 APPLICATION TO TIME SERIES 24

0 50 100 150 200 250 300

−
5

0
5

10
15

time

si
gn

al

0 50 100 150 200 250 300

−
5

0
5

10
15

time

si
gn

al

0 50 100 150 200 250 300

−
5

0
5

10
15

time

si
gn

al

0 50 100 150 200 250 300

20
40

60
80

10
0

12
0

14
0

time

si
gn

al

0 50 100 150 200 250 300

20
40

60
80

10
0

12
0

14
0

time

si
gn

al

0 50 100 150 200 250 300

20
40

60
80

10
0

12
0

14
0

time

si
gn

al

Figure 7: Left: Simulated data (dotted), underlying signal (dashed) and estimates. Right:

Pulmonary arterial pressure (dotted) and signal estimates. Top: Median (thin solid) and RM

(bold solid). Center: MTM (thin solid) and MRM (bold solid). Bottom: DWMTM (thin solid)

and DWTRM (bold solid).

7 SUMMARY 25

similarly to the median, and the MRM to the RM. The DWMTM and the DWTRM

blur the shift only very slightly, with the DWTRM being smoother and somewhat less

influenced by long outlier patches.

7 Summary

We have compared robust filters for signal extraction from time series with trends, shifts

and outliers. Modified trimmed means perform well in case of constant signals and mod-

erate trends, but they deteriorate during steep trends, similarly to running medians.

Application of repeated median regression eliminates the influence of local linear trends

and allows to maintain considerable efficiency and a high degree of robustness. The main

disadvantage might be the increased smearing of shifts in case of a constant signal.

We have proposed two-stage procedures trimming observations with large regression

residuals to improve shift preservation. For this to be effective, we should choose a

considerably shorter width for the inner signal window. However, lower limits for the

length of the signal window are imposed by the need for robustness: As a rule of thumb,

the inner window should be chosen at least three or four times as long as outlier patches to

be removed. We have found that the repeated median resists this fraction of contamination

well. The trimming constant qt can be chosen according to the expected height of shifts,

similarly as discussed by Lee and Kassam (1985) for modified trimmed mean filters.

Instead of the repeated median, we could have used the least median of squares (LMS)

(Rousseeuw 1984) in the first step in combination with least squares regression. The

resulting procedure would resemble the popular reweighted least squares (Rousseeuw and

Leroy 1987, Gervini and Yohai 2002). However, the instability of the LMS is dangerous

in automatic applications (Davies et al. 2004), and weighting the observations according

to their distance from the LMS fit does not necessarily remove this instability when the

observations in the window are located close to two or more straight lines. When using the

repeated median for the initial fit as is done here we have not observed such instabilities

in spite of the lack of continuity. In view of the computational savings possible by the

fast update algorithm described in this paper, we find double window filters combining

the repeated median and least squares a promising alternative to established methods like

double window modified trimmed means.

Acknowledgements

The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, ”Reduction of

complexity in multivariate data structures”) is gratefully acknowledged. The authors

thank Eleni Mitropoulou for additional data analysis.

7 SUMMARY 26

References

Bernholt T. and Fried R. 2003. Computing the update of the repeated median regression

line in linear time. Information Processing Letters 88: 111-117.

Cormen T. H., Leiserson C. E., Rivest R. L. and Stein, C. (2001). Introduction to

Algorithms. Second edition. MIT Press, Cambridge, Massachusetts, and McGraw-Hill

Book Company, New York.

Davies P., Fried R. and Gather U. 2004. Robust signal extraction for on-line monitoring

data. Journal of Statistical Planning and Inference 122: 65-78.

Fried R. 2004. Robust filtering of time series with trends. Journal of Nonparametric

Statistics 16: 313-328.

Fried R., Bernholt T. and Gather U. 2004. Repeated median and hybrid filters. Compu-

tational Statistics & Data Analysis, to appear.

Gather U. and Fried R. 2003. Robust estimation of scale for local linear temporal trends.

Tatra Mountains Mathematical Publications 26: 87-101.

Gervini D. and Yohai V.J. (2002). A class of robust and fully efficient regression estima-

tors. Annals of Statistics 30: 583-616.

Himayat N. and Kassam S.A. 1993. Approximate performance analysis of edge preserving

filters. IEEE Transactions on Signal Processing 4: 2764-2776.

Imhoff M., Bauer M., Gather U. and Fried R. 2002. Pattern detection in intensive care

monitoring time series with autoregressive models: Influence of the model order. Biomet-

rical Journal 44: 746-761.

Lee Y. and Kassam S. 1985. Generalized median filtering and related nonlinear filtering

techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 33: 672-683.

Matoušek J., Mount D.M. and Netanyahu N. 1998. Efficient randomized algorithms for

the repeated median line estimator. Algorithmica 20: 136-150.

Pitas I. and Venetsanopoulos A. 1992. Order statistics in digital image processing. Pro-

ceedings of the IEEE 80: 1893-1921.

Rousseeuw P.J. (1984). Least median of squares regression. Journal of the American

Statistical Association 79: 871-880.

Rousseeuw P.J. and Leroy A.M. 1987. Robust Regression and Outlier Detection. Wiley,

New York.

Siegel A.F. 1982. Robust regression using repeated medians. Biometrika 69: 242-244.

Tukey J.W. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, Mass. (Prelim-

inary edition 1971).

