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Abstract

Multivariate equivalence testing becomes necessary whenever the similarity rather than

a difference between several treatment groups with multiple endpoints has to be shown.

This problem occurs in various applications, including bioequivalence or the comparison

of dissolution profiles. Therefore, several tests have been suggested during the last decade

for the assessment of multivariate equivalence. Recently Munk & Pflüger (1999) proposed

to test ellipsoidal instead of rectangular hypotheses as it is current practice in many ap-

plications. In this paper we provide several asymptotic tests for ellipsoidal equivalence

which are compared numerically with competitors suggested by Brown, Cassella & Hwang

(1995) and Munk & Pflüger (1999). We find that the proposed tests are superior (up to

90%) to both tests with respect to power. In addition, a simulation study reveals the sug-

gested tests as robust against violation of normality. These tests are very simple to apply,

because inversion of confidence regions is avoided. Asymptotic formulas for the power

function and sample size determination are given. Finally, all procedures are compared

in two data examples.
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1 Introduction

Recently, testing of multivariate equivalence hypotheses has become a field of certain

interest, mainly motivated by the problem of assessing multivariate bioequivalence, i.e. the

assessment of a similar rate and extend of absorption in the blood circulation (cf. Chow

& Liu (1992) for a survey) of several pharmacokinetic characteristics of two different

formulations of a drug. We refer to Brown, Cassella & Hwang (1995), Hsu, Lu

& Chan (1995), Chinchilli & Elswick (1997) or Wang, DasGupta & Hwang

(1999) for a discussion and several tests for the multivariate bioequivalence problem.

However, the multivariate equivalence problem is not solely restricted to bioequivalence

assessment as the following example from neurophysiology shows. For further applications

in environmental or managerial science cf. Erickson & McDonald (1995), Dixon

(1998) or McBride (1999).

Example 1. Exteroceptive suppression (cf. Schoenen (1993)), ES, of temporalis mus-

cle activity is the electrophysiological correlate of the jaw-opening reflex. ES consists

itself in two further components ESM and ESP, the monosynaptic and polysynaptic sup-

pression. Steinhoff et al. (1996) investigated the influence of epilepsy on ES in a

study with 20 healthy volunteers and 31 patients with epilepsy. The conjecture, that ES

could be possibly influenced by epilepsy was essentially based on the observation that

Parkinson’s disease and chronic headache seem to cause an effect on ES (Nakashima

et al. (1990)). This analogy, however, was never based on solid physiological grounds.

Therefore, it was the aim of Steinhoff et al.’s (1996) study to show that this con-

jecture cannot be supported by the data. To this end several two sided t tests for the

null hypotheses of no difference were performed, each resulting in p-values larger than
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0.8. However, this does not imply the rigorous assessment of similarity at a controlled

error rate between the control and epileptic group as pointed out by Steinhoff et al.

(1996). An explorative data analysis suggests to assume a bivariate (ESM, ESP) normal

model with the same covariance structure for the epileptic (E) and control group (C),

respectively (cf. Munk & Pflüger (1999) for the raw data)

Xij ∼ N2(θi, Σ̃) i = C,E and j = 1, . . . , ni with nC = 19, nE = 31.

The following (with pooled variance estimator for the ESP and ESM values, respectively)

estimators for the mean difference and covariance matrix are obtained

X := X̄C − X̄E =





−0.0586

−0.3325



 and Σ̂ =





0.8526 0.0188

0.0188 1.3525



 .

In the following we present tests in order to assess that there is no ’relevant difference’

of the means between the reference group and the epilepsy group, for ESM and ESP ,

respectively. Hence, it follows that ES is not an appropriate diagnostic tool for epilepsy

or the success of a particular therapeutic method as conjectured by Steinhoff et al.

(1996). To this end it is required to show at a controlled error rate that θE ≈ θC .

According to various definitions of similarity several tests for multivariate equivalence

were suggested in the literature during the last 5 years. Most of these tests are designed

for rectangular hypotheses under a normal assumption (cf. Berger (1982), Berger &

Hsu (1996), Roy (1996) or Wang, DasGupta & Hwang (1999)). These authors

provide several tests in order to assess that a multivariate mean θ = (θ1, . . . , θp) ∈ R
p is

contained in a hyperrectangle, i.e. for the hypotheses

H : θ ∈ ΘH = {θ : ∃i : |θi| > ∆} vs. K : θ ∈ ΘK = {θ : max
i=1,...,p

|θi| ≤ ∆}. (1)
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The most popular tests for (1) are based on the intersection union principle applied to

confidence interval inclusion rules (Berger & Hsu (1996)). These tests are simple

to perform and well established in applications. They may have the disadvantage to be

rather conservative (resulting in a low power) when the number of endpoints p increases

as pointed out by Hwang (1996) and Munk & Pflüger (1999). The definition

of equivalence in terms of the maximum norm is, of course, not the only possibility

to formalize similarity. Therefore, Munk & Pflüger (1999) suggested to consider

ellipsoidal hypotheses

H : θ′Aθ > ∆ vs. K : θ′Aθ ≤ ∆, (2)

for a positive defintite matrix A > 0. This is, e.g., in accordance with a measure of

equivalence recommended by the FDA (1997) for testing equivalence of dissolution pro-

files, i.e. the proportion of a tablet dissolved against time. For a discussion of recent

methodology in dissolution profile testing we refer to O’Hara et al. (1997), Shah et

al. (1998) or Sierra-Cavazos & Berger (1999). Because these hypotheses cannot

be represented as the intersection resp. union of several one-dimensional hypotheses the

intersection union principle (cf. Berger & Hsu (1996)) or related methods cannot be

applied and different testing methodology is required. Here, the general testing princi-

ple of Aitchison (1964) by inverting 1 − α confidence regions is applicable. This leads,

however, in general to very conservative tests (Munk (1994), Berger & Hsu (1996)).

For general hypotheses this technique was improved by Brown et al. (1995) and for

convex alternatives by Munk & Pflüger (1999).

This paper is organized as follows. In Section 2 we state the precise model for the test. In

Section 3 we review on existing methods for the assessment of multivariate equivalence and

discuss various new tests for the hypotheses (2). Our approach is based on the asymptotic

normality of the centered quadratic form X ′AX − θ′Aθ (after normalizing by the sample

size). In Section 4 we present the results of a Monte Carlo study on size and power which

4



shows that the normal approximation yields rather liberal tests, i.e. the nominal level is

exceeded. In order to improve the accuracy of the normal approximation several finite

sample approximations are investigated including various Box - type χ2 approximations

and bootstrap tests. We found that the bias corrected accelerated boostrap method

(Efron & Tibshirani, 1993) represents a good compromise between a very powerful

method and a method which maintains its nominal level with high accuracy. In particular,

differences in power up to 90% compared to Brown, Casella & Hwang’s (1995) and

Munk & Pflüger’s (1999) test were observed. Furthermore, simulations show that

the new test is very robust against violation of normality.

Finally, in Section 5 we compare all methods by reanalyzing the data set in Example 1

and an example from Chinchilli & Elswick (1997), who investigated the multivariate

bioequivalence of two different formulations of Ibuprofen.

The paper closes with a discussion and summary section where also formulae for comput-

ing sample size and power are given.

2 Model and testing problem

We restrict ourselves for the moment to i.i.d. observations coming from a normal model.

Generalizations to the two sample comparison and other designs will be discussed later.

We mention also that our results are asymptotically valid under very weak assumptions

on the error distribution which is in contrast to existing methods for testing multivariate

equivalence. This will be made precise in the next section.

Let throughout the followingX1, · · · , Xn ∼ Np(θ, Σ̃) independent random variables, which

follow a p-variate normal distribution with mean θ ∈ R
p and covariance Σ̃ ∈ R

p×p which is

assumed to be positive definite, Σ̃ > 0. Sufficient statistics are the mean 1
n

∑n
i=1Xi =: X

and the covariance estimator Σ̂ = 1
n

∑n
i=1(Xi−X)(Xi−X)t. It follows that X ∼ Np(θ,Σ),

and Σ̂ ∼ Wd(Σ) (here Σ = 1
n
Σ̃ and d = n − 1 ≥ p) are independently distributed
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according to a multivariate normal distribution with unknown mean θ ∈ R
p and unknown

covariance structure Σ and a Wishart distribution with d degrees of freedom, respectively

(Anderson (1984)). Throughout the following we may consider w.l.o.g. instead of the

testing problem in (2) the standardized problem

H : θtθ > 1 vs. K : θtθ ≤ 1. (3)

This can be achieved in (2) for any A > 0 by a transformation of the data Xi into

X∗
i =

1√
∆
A

1

2Xi (4)

because A > 0 allows a unique decomposition as A
1

2A
1

2 = A, A1/2 a symmetric matrix.

In order to keep notation simple we will write in the following Xi instead of X∗
i .

Before we consider the construction of several tests for (3), we find it pertinent to recall

briefly the discussion in (Munk & Pflüger (1999)) concerning the choice of ellipsoidal

hypotheses instead of rectangular hypotheses as in (1). In most applications θ will be

the difference of two means θ = θ1 − θ2 which have to be shown to be equivalent (cf.

Example 1). For example, drug authorities, such as the FDA, currently require that

in a single dose bioequivalence study of oral drug formulation average bioequivalence is

shown with respect to both, AUC and Cmax. We mention that the criterion of aver-

age bioequivalence which focuses on the comparison of means solely, has been criticised

by various authors (cf. Hauck & Anderson (1992) or Schall (1995) among many

others) and different bioequivalence criteria (various types of population and individ-

ual bioequivalence) have been suggested. This is highlighted in a recent draft guidance

for industry entitled ”Average, Population and Individual Approaches to Establishing

Bioequivalence” (U.S. Dep. of Health and Human Services, Food and Drug

Administration, CDER, Rockville, MD (1999)). In the present paper, however,
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we focus only on average bioequivalence, simply denoted as bioequivalence. According to

the FDA guidance, bioequivalence may be claimed if every univariate comparison of the

pharmacokinatic parameters AUC, Tmax, or Cmax allows one to declare bioequivalence

at level of significance α = 0.05 (e.g. Guidance for Industry: In Vivo Pharma-

cokinetics and Bioavailability Studies and in Vitro Dissolution Testing

for Levothyroxine Sodium Tablets, U.S. Department of Health and Hu-

man Services, CDER (1999)). To our knowledge up to now all approaches focus on

hypotheses as in (1), i.e. bioequivalence is declared if each of the components of the

difference of the mean vector is close to zero. We believe, however, that often the con-

sideration of quadratic forms QA(θ) = θtAθ as a distance measure is more appropriate

(cf. Munk & Pflüger (1999) for a discussion). Here the region of equivalence is the

ellipsoid Q∆ = {θ : QA(θ) ≤ ∆} where ∆ denotes a fixed tolerance bound (cf. Figure 1).

Γ
Q

∆

∆

∆

1

2

C

AUC

max

Figure 0: Ellipsoidal (Q∆) and rectangular hypotheses (Γ�) in the case p = 2

Interestingly, for the anaylsis of dissolution profiles, the FDA (1997), recommends ellip-

soidal hypotheses completely analogous to (3). Methods for this problem are discussed

in Moore & Flanner (1996), O’Hara et al. (1997) and Shah, Tsong, Sathe

& Mia (1998). For example, the f2 method proposed in Moore & Flanner (1996)

requires weights ωk which corresponds to the eigenvalues of the matrix A in (2). Ma

et al. (2000) performed a simulation study for bootstrapping the f2-statistic with the
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percentile method and found quite reasonable performance of the resulting test.

3 Tests

In this Section we will discuss several testing procedures for the multivariate equivalence

problem (3). This includes tests already suggested in the literature and various new tests.

We restrict our representation to the case of an i.i.d. sample X1, · · · , Xn. Generalizations

to the two sample comparison with independent samples, such as required in Example 1,

are straight forward and discussed in Example 1 in Section 5.

3.1 Confidence inclusion rules

A classical principle due to Aitchison (1964) states that for any confidence set C1−α(X, Σ̂)

for θ at level 1 − α the region

A(ΘH) = {X : ΘH ∩ C1−α(X, Σ̂) 6= ∅}

defines the acceptance region of a test for H : θ ∈ ΘH against K : θ ∈ ΘK , ΘH ∩ΘK = ∅,

at level α because

Pθ(θ /∈ C1−α(X, Σ̂)) ≤ α.

Hence, if ΘK := {θ ∈ R
p : θtθ ≤ 1}, the p-dimensional sphere, the following rule

constitutes a test at level α for the hypothesis (3):

ψα(X, Σ̂)) =







1 : C1−α(X, Σ̂) ⊂ ΓK

0 : else
.
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Munk & Pflüger (1999) showed, that if the confidence set obeys certain equivariance

properties and the alternative K is convex (which is, of course, the case in the present

setting) it is possible to improve Aitchison’s (1964) result because then the resulting

level of the test is α/2. The level α/2 is sharp, i.e. it cannot be improved in general. This

leads to the following test which results from inverting Hotelling’s confidence set.

3.1.1 Hotelling’s T 2confidence set

In a first step we invert Hotelling’s T 2 test (cf. Anderson, (1984)) for H : θ = θ0

with test statistic

T 2
θ0

:= d(X − θ0)
tΣ̂−1(X − θ0) (5)

which yields the (1 − α) confidence set

CT 2

1−α := {θ0 : T 2
θ0
≤ f 2

α,p,d}, (6)

where f 2
α,p,d = dp

d−p+1
F−1

p,d−p+1(α) and Fµ,ν denotes a central F -distribution with µ and ν

degrees of freedom. Theorem 2.1 in Munk & Pflüger (1999) yields that

ψT 2

α (X, Σ̂) =







1 : CT 2

1−2α(X, Σ̂) ⊂ ΘK

0 : else

constitutes a test at level α. Observe, that the confidence region required for the test ψT 2

α

has confidence coefficient 1 − 2α and not 1 − α.
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3.1.2 Brown-Casella-Hwang’s confidence set

Another candidate for the confidence inclusion rule is the confidence set constructed by

Brown et al. (1995). The reasoning behind their approach is to minimise the expected

volume at a preassigned parameter point θ0, which can be assumed w.l.o.g. as θ0 = 0.

Originally, this confidence set was constructed for the case of know variance Σ, resulting

in the confidence set

CBCH
1−α (X,Σ) := {θ : (θtΣ−1θ)

1

2 ≤ z1−α +
XΣ−1θ

(θtΣ−1θ)
1

2

},

where z1−α is the upper α quantile from a univariate standard normal distribution. For

the case of unknown covariance we will throughout the following simply replace Σ by the

estimator 1
n
Σ̂. Hence denote

ψBCH
α (X, Σ̂) =







1 : CBCH
1−α (X, 1

n
Σ̂) ⊂ ΘK

0 : else

as the according equivalence test. Note, that the BCH-confidence set does not share the

equivariance property (like the Hotelling’s T2 confidence set) required for application of

Munk & Pflügers (1999) Theorem 2.1 and hence the 1− 2α-adjustment is not valid.

Other confidence regions and generalizations of this approach to nonnormal errors can be

found in DasGupta, Gosh & Zen (1995), Wang, DasGupta & Hwang (1999) or

Roy (1996).

3.2 Testing with quadratic forms

3.2.1 The δ-method

The most direct way to construct a test for (3) is to estimate in a first step θtθ by

||X||2p = X tX and then reject the hypothesis for ||X||2p too small. The main difficulty
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encountered with this approach is the effective determination of the distribution of ||X||2p.

Observe, that (cf. Mathai & Provost (1992))

||X||2p
D
=

p
∑

j=1

λj(Uj + bj)
2 (7)

equals in distribution a sum of weighted noncentral χ2
1 random variables where Uj ∼

N1(0, 1) are i.i.d., j = 1, . . . , p. The weights λj, j = 1, · · · , p, are the eigenvalues of Σ and

b = (b1, · · · , bd)t =

(

1√
n
P tΣ

1

2 θ

)t

, (8)

where P denotes an orthogonal matrix such that 1
n
P tΣ̃P = diag(λ1, . . . , λp). Here

diag(λ1, . . . , λp) denotes a p× p diagonal matrix with diagonal elements λ1, . . . , λp. This

representation highlights the difficulty to determine the exact distribution of ||X||2p be-

cause particularly the estimation of the eigenvalues of Σ causes serious problems. There-

fore, we investigate in the following various approximations of the distribution of ||X||2p.

The simplest method of approximation is the C.L.T.

Theorem 1. Let X1, · · · , Xn ∼ F be an i.i.d. sample from a p-variate distribution F , s.t.

EX1 = θ ∈ R
p, Σ̃ = Cov[X1] > 0 and E||X1||2p < ∞. Then we have for any consistent

estimator Σ̂ of the covariance Σ̃

T δ
n :=

√
n
X tX − θtθ
√

4X tΣ̂X

D
=⇒ N(0, 1) for θ 6= 0, as n→ ∞.

Proof. Apply the δ-method and the multivariate C.L.T. (cf. Serfling (1980)) in order to

conclude that

√
n(X tX − θtθ)

D
=⇒ N(0, 4θtΣ̃θ) for θ 6= 0.
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Observe, that from Kolmogorov’s strong law of large numbers it follows that X tΣ̂X
a.s.−→

θtΣ̃θ. Now the assertion follows from Slutzky’s Lemma (Chow & Teicher (1997)).
2

From Theorem 1 we obtain the following asymptotic test

ψδ
α(X, Σ̂) =







1 :
√
n(X tX − 1)/

√

4X tΣ̂X ≤ zα

0 : else

for the problem (3), where zα denotes the lower α-quantile of the standard normal distri-

bution. In the next section we will demonstrate in a Monte Carlo study that this tests

improves essentially on the power of the confidence region inclusion rules discussed in the

last subsection. However, it turns also out that the normal approximation yields a rather

liberal test (i.e. the nominal level is exceeded) and hence we investigate in the following

various finite sample approximations.

Remark 1. In particular, when θ is close to zero, the distribution of T δ
n is skewed. For

θ = 0 the asymptotic normality in Theorem 1 even fails to hold. Instead, the distribution,

after multiplication by n1/2 once more, is a sum of weighted χ2 distributions (cf. (7)

again). To account for this skewness we used an idea dating back to Box (1954) where

the approximation by a scaled χ2-distribution gχ2
f with random degrees of freedom f and

scaling parameter g is suggested. However, simulations for the approach revealed sizes of

up to three times the level for small sample sizes as 10. As a consequence, we refrain from

displaying the results. Increasing the number of fitted moments by using a non-central

χ2-distribution did not show to improve the size.
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3.2.2 The bootstrap

Another option is, of course, to work with bootstrap approximations. The bias corrected

and accelerated bootstrap (BCa) is investigated with

ψbootbca
α (X1, · · · , Xn) =







1 : (X∗tX∗)[nboot×α2]+1 ≤ 1

0 : else

where α2 = Ψ(ẑ0 +
Ψ−1(1−α

2
)

1−â(ẑ0+Ψ−1(1−α

2
))
) with ẑ0 = ]{X∗tX∗≤XtX

nboot } and the acceleration â =
∑

n

i=1
(ϑi−ϑ·)2

(
∑

n

i=1
(ϑi−ϑ·)3)

3

2

. Here ϑi is a jackknifed version of X tX, s.t. Xi omitted. Further ϑ· denotes

the empirical mean of the ϑi’s i = 1, . . . , n and Ψ the c.d.f. of a standard normal r.v..

For more details see Efron & Tibshirani (1993).

Remark 2. Additional to the bias corrected and accelerated bootstrap we used the per-

centile bootstrap (Efron & Tibshirani (1993)). As in the case of the χ2-approximations

we found a sizes for our small sample situation of 10 observations which are clearly - up

two-and-a-half times - above the level. Again, we refrain from displaying the results.

4 Simulation study

In this section we report on a Monte-Carlo study for the testing problem (3) which was

conducted using the random generator of SAS/IML, internal programming language of

the statistical software SAS, Version 6.12 and 8.03. In each scenario 10000 Monte-Carlo

simulations were performed. The nominal level is always chosen as α = 0.05. In our first

scenario 20 bivariate normal random variables were generated where the covariance was

assumed as

Σ̃ =





1
8

− 3
16

− 3
16

17
16



 .
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The power curve was obtained by cubic B-spline interpolation (in the alternative K)

between the grid points







θ : θ =





θ1

θ2



 =





i
10

0



 , i = 1, . . . , 10







.

The number of bootstrap replications for the BCa bootstrap was nboot = 300, respectively.

Power curves for all tests discussed in the last section are shown in Figure 1. Note, that

θ1 = 1 corresponds to the point (1, 0)t on the boundary of the null hypotheses (3), whereas

smaller values of θ1 are in the alternative of equivalence. If for the BCa bootstrap the

argument of Ψ−1(·) in the calculation of ẑ0 was zero, we have dropped this value. This

occurred in less that 1% of all cases.

Figure 1: Power curves of the δ-method (CRAMTEST), Munk & Pflüger’s (1999) test

(EQUITEST), the Brown et al. (1995) test (BCWTEST), and the BCA bootstrap (BCA-

BOOT) for n = 20, normal error and 10.000 simulations. The nominal level was α = 0.05.

The next simulation study was performed in order to investigate the actual size of all

tests more detailed. Therefore in Figure 2 the actual level of all tests is displayed for the
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following boundary points of the hypothesis H in (3)







θ : θ =





θ1

θ2



 =





i
10

√

1 − ( i
10

)2



 , i = −10, . . . , 10







.

under the same distributional assumptions as in Figure 1. Again cubic B-spline interpo-

lation is used to interpolate between these grid points.

Figure 2: Actual size of the tests where ||θ|| = 1 and θ2 > 0.
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Σ̃ n T-Hot Brown-CH delta BCa

10 0.0005 0.0000 0.0364 0.0314




1
8

− 3
16

− 3
16

17
16



 20 0.0045 0.0000 0.0405 0.0293

(ρ ≈ −0.50) 50 0.0200 0.0010 0.0431 0.0254

10 0.0144 0.0385 0.0908 0.0505




1
2

0

0 1
4



 20 0.033 0.0500 0.0752 0.0382

(ρ = 0) 50 0.0492 0.0486 0.0586 0.0306

10 0.0136 0.0241 0.0984 0.0607




1
2

1
4

1
4

1
2



 20 0.0267 0.026 0.08 0.0409

(ρ = 0.5) 50 0.0507 0.0292 0.1514 0.0332

Table 1: Size of all tests for various correlations and sample sizes where θ′ = (0, 1).

The numerical values can be found in In Table 1 where also additional sample sizes and

covariance structures were investigated.

From these Figures the following results can be drawn: The normal approximation (δ-

method) is anti conservative in some of scenarios investigated. The BCa bootstrap keeps

its nominal level with high accuracy, even under the assumption of strong correlation.

Note, that the actual level of Brown, Casella & Hwang’s (1995) test may fall far

below the nominal level, particularly when negative correlation is present. A similar

observation holds for the test of Munk & Pflüger (1999). As a main conclusion from

Figure 1 we may draw that the BCa bootstrap outperforms all the other competitors,

having reasonable size and power.

In what follows we would like to address briefly some robustness aspects of the above

discussed tests. To this end we considered outcomes generated by two independent (χ2 −
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1)/4 distributions with additive location θ. Note, that the expectation of these r.v.’s is θ

and the variance of each component equals 1
8

which reflects the first normal component

in the previous normal simulation scenario.

In Table 2 we have displayed a selection of numerical values for the boundary point

θ = (0, 1). The corresponding curves of the actual level can be found in Figure 3.

Test T-Hot Brown-CH delta BCa

size 0.1428 0.0334 0.1453 0.0732

Table 2: Size of tests for (χ2 − 1)/4 error

Figure 3: Size of the tests on the boundary of the hypotheses, where ||θ|| = 1 and

θ2 > 0 for (χ2 − 1)/4 error.
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Figure 4: Power curves of the tests for n = 20, (χ2 − 1)/4 error and 10.000 simulations.

The nominal level was α = 0.05.

In Figure 4 the resulting power functions are displayed. In summary we may draw the

following conclusions. The actual level is drastically exceeded by Munk & Pflüger’s

(1999) test as well as for the δ-method. Brown, Casella & Hwang’s (1995) method

performs rather accurate albeit very conservative for negative values of θ1. In contrast

the BCa method yields a very accurate approximation of the nominal level α = 0.05

over abroad range of θ1 values. The differences in power between the two last named

tests are rather small. Note the the superior power of the other tests does not yield a

fair comparison due to its exceedance of the nominal level. In summary, only Brown,

Casella & Hwang’s (1995) method and the BCa-bootstrap are able to maintain the

given level under skewed errors. Interestingly, the power of the BCH test is significantly

increased by the χ2-error.
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5 Examples

To demonstrate the practical relevance of the proposed methods we reanalyse the epilepsy

data from the Introduction and an example of a multivariate bioavailability study from

Chinchilli & Elswick (1997).

5.1 Example from neurology

In order to transfer the suggested methodology to the situation of Example 1 in the

Introduction we require a generalization of Theorem 1 in Section 3 to the two sample

case.

Theorem 2. Let X1, · · · , Xm ∼ F be an i.i.d. sample from a p-variate distribution F ,

and independently Y1, · · · , Yn ∼ G an i.i.d. sample from a p-variate distribution G, s.t.

EX1 −EY1 = θ1 − θ2 = θ ∈ R
p, Σ̃1 = Cov[X1], Σ̃2 = Cov[Y1] > 0 and E||X1||2p, E||Y1||2p <

∞. Then we have for X = X̄−Ȳ and Σ̂ = (1+λ−1)Σ̂1+(1+λ)Σ̂2 with m/n→ λ ∈ (0,∞),

that

T δ
(m,n) :=

√
m+ n(X tX − θtθ)
√

4X tΣ̂X

D
=⇒ N(0, 1) for θ 6= 0.

Proof. The proof is similar to Theorem 1, where we take into account that

√
m+ n

{

X̄ − Ȳ − θ
} D

=⇒ (1 + λ−1)1/2Z1 + (1 + λ)1/2Z2 ,

where Z1 and Z2 are independent p-variate normal r.v.s with covariances Σ̃1 and Σ̃2, re-

spectively.
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Observe, that for the case of equal covariances Σ1 = Σ2 (which we have assumed in

this example) the asymptotic variance Σ = (λ + 1)2/λΣ1. Observe further, that a BCa

bootstrap test can be immediately obtained by drawing separately subsamples from the

samples X1, · · · , Xm and Y1, · · · , Yn.

In order to apply the afore mentioned equivalence tests we have to specify a bound ∆. Here

we have chosen 20% of the range of the control group, for ESM and ESP , respectively.

Hence we end up with the testing problem

H :

∥

∥

∥

∥

∥

∥





1
4
θESM

1
8
θESP





∥

∥

∥

∥

∥

∥

2

2

> 1 versus K :

∥

∥

∥

∥

∥

∥





1
4
θESM

1
8
θESP





∥

∥

∥

∥

∥

∥

2

2

≤ 1 .

Test T-Hot Brown-CH delta BCa

p-value 0.0101 0.0045 7.610−9 0.00989

Table 3: p-values for the epilepsy data

We mention that for the inversion of Hotelling’s confidence interval the pooled estimator

Σ̂ =
1

n+m− 2

(

∑

i=1,...,n

(Xi − X̄)t(Xi − X̄) +
∑

j=1,...,m

(Yj − Ȳ )t(Yj − Ȳ )

)

has been used where the degrees of freedom of the F -distribution are now 2 and n+m−2.

In summary we find that all tests decide significantly in favour of equivalence.

5.2 Bioequivalence study

The equivalence of availability of Ibuprofen in the blood of two drugs will be reinvestigated

for data presented by Chinchilli & Elswick (1997). Following these authors it is to be
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tested whether the ratio of the expected AUC’s (Area under the Curve) and the expected

Cmax’s (maximal concentration) are between 0.8 and 1.25.

In detail, it is assumed that independent bivariate r.v.’s are observed in a 2× 2 crossover

design without period effects. After a logarithmic transformation it is to assess whether

H1 : |ηT
A − ηR

A | ≤ log 1.25 and |ηT
C − ηR

C | ≤ log 1.25 (9)

where η
(·)
A and η

(·)
C denotes the corresponding expectation of logAUC (·) and logC

(·)
max.

Taking

X1i :=
1

log 1.25
(logAUCT

i − logAUCR
i ) , X2i :=

1

log 1.25
(logCT

max,i − logCR
max,i)

yields the model from Theorem 1 with p = 2. After dividing the logarithms of raw data

by 1
log 1.25

in order to transform the problem into the standardized form of the hypothesis

in (3) we obtain the following summary statistics

(Mean difference) X̄ =





−0.121332

0.190746



, (Covariance) Σ̂ =





0.1300518 0.1368549

0.1368549 0.8743755



 .

For the complete data see Chinchilli & Elswick (1997). In our previous notation,

we have θ = (
ηT

A
−ηR

A

log 1.25
,

ηT

C
−ηR

C

log 1.25
). In Table 2 we display the resulting p-values for the hypoth-

esis (3). We find that all tests under consideration lead to a significant rejection of H,

showing bivariate bioequivalence of the two ibuprofen formulations. Note, however, that

the ordering of the p-values nicely reflects the superior power as found in the last section

of the tests based on quadratic forms compared to the inclusion rules.

Test T-Hot BCH delta BCa

p-value 0.00050 0.00021 ≤ 10−15 9.97710−11

Table 4: p-values for the Ibuprofen data.
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6 Further Remarks and Extensions

Remark 3. Some readers may find it unsuitable for many purposes to choose ellipsoidal

hypotheses instead of the more common rectangular ones. Nevertheless, we would like to

mention, that even for the case of testing a hyperrectangle as in (9) our tests for ellipsoidal

alternatives could be used. To this end, the largest sphere within the rectangle has to be

chosen as the alternative (cf. again Figure 0). Throughout the following we have always

chosen ∆ = 1 and p = 2.

In the following we investigate briefly how the ellipsoidal tests behave in comparison to

the intersection union methods if they are used for rectangular hypotheses. Here, the

intersection-union-test (TOST-test) has rejection region

p
⋂

i=1







|Xi| < ∆i − t1−α,d

√

Σ̂ii

α







where Xi denotes the i-th coordinate of X and t1−α,d the 1−α quantile of a t-distribution

with d degrees of freedom.

In Figure 5 the power curves of all tests are displayed under normal error assumption.

As it was expected the IU-test TOST is most powerful due to its property to be exactly

designed for a rectangular hypotheses. Note, that the BCH-test is significantly inferior

with respect to power whereas all the other tests have reasonable power.
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Figure 5: Power curves of the tost procedure (TOST), δ-method (CRAMTEST), Munk

& Pflüger’s (1999) test (EQUITEST), the Brown et al. (1995) test (BCWTEST), and

the BCA bootstrap (BCABOOT) for n = 20, normal error and 10.000 simulations. The

nominal level was α = 0.05.
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Figure 6: Size of the tests on the boundary of the hypotheses, where θ2 = 1 for normal

error.

Figure 7: Power curves of the tests for n = 20, (χ2 − 1)/4 error and 10.000 simulations.

The nominal level was α = 0.05.

In Figure 6 the nominal level is investigated where θ1 ∈ [−1, 1] and θ2 = 1. It can be

seen that again the BCa-test keeps the nominal level albeit rather conservative. The IU-

method has size close to α = 0.05 over the entire range of θ1 values besides those values

of the hypothesis where θ1 is close to -1 or 1.

In Figure 7 and Table 5 a similar scenario is investigated for skewed error. Observe, that

from Table 5 it follows that the IU-method now exceeds the nominal level whereas the

BCa method again keeps the nominal level rather accurate.
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Test TOST T-Hot Brown-CH delta BCa

size 0.1330 0.1390 0.0379 0.1516 0.0702

Table 5: Size of tests for (χ2 − 1)/4 error

We mention that further simulations have shown (not displayed) that for increasing di-

mension p the difference in power between both tests becomes smaller. When p = 10, the

power of the BCa test is nearly the same as for the IU-method.

Remark 4. In practical applications often it is important to determine the required sam-

ple size to achieve a preassigned power of the asymptotic tests for ellipsoidal hypotheses.

We will assume that X1, · · · , Xn are independently normally distributed with expectation

θ and covariance matrix Σ̃. The most interesting case occurs if exact equivalence holds,

i.e. where θ = 0. In this case the power of the test ψδ
α (and hence asymptotically also of

its BCa bootstrap version) is given as

Pθ=0

(

√
n
||X||2p − 1

2
√

X ′Σ̂X
< uα

)

= Pθ=0

(

n||X||2p < n1/2uα2
√

X ′Σ̂X + n
)

.

Observe, that n||X||2p is distributed as
∑p

j=1 λ̃jU
2
j where λ̃j are the eigenvalues of Σ̃ and Uj

are i.i.d. standard normal r.v.’s. This is asymptotically a nondegenerate law whereas the

r.h.s. expression n1/2uα2
√

X ′Σ̂X = 2uα

√

(n1/2X)′Σ̂(n1/2X) is asymptotically distributed

as the square root of
∑p

j=1 ζjU
2
j with ζj being the eigenvalues of Σ̃2 and the same r.v.’s

Uj as before. The resulting law is rather complicated and hence we suggest to simulate

the resulting power for given Σ̃ in order to obtain the required sample size. The case of

independent components is particularly simple and we give in Table 6 some values of the

required sample size in order to achieve a power of 0.8 and 0.9, respectively.
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dimension p σ2 = 0.25 σ2 = 0.5 σ2 = 1 σ2 = 2

p = 2 3(4) 6(8) 11(14) 20(26)

p = 3 4(5) 6(8) 13(16) 24(27)

Table 6: BCa-Bootstrap simulated sample sizes to achieve 0.8 (0.9) power for perfect

equivalence θ = 0 for two and three dimensions for various variances of the independent

univariate normal variables (300 bootstrap replications)

We mention finally, that the above formula can be generalized of course to the two sample

case, as treated in Theorem 4.2.

7 Conclusions

We have compared several tests for ellipsoidal hypothesis H : θ′Aθ ≥ ∆ versus K : θ′Aθ ≤

∆. It was shown that the BCa-bootstrap version of the test based on the statistic X ′AX

yields satisfactory results with respect to power and size. Even when this test is applied to

rectangular hypotheses its power comes close to the intersection union test (which is only

applicable for rectangular hypotheses), particularly as the dimension p of the parameter

θ increases. Moreover, the suggested BCa bootstrap test is very robust against violation

of the normality assumption of the error.

Finally we have proved asymptotic normality of the test statistic X ′AX and the validity

of the bootstrap principle for testing multivariate equivalence. This gives a theoretical

justification for recent approaches suggested for dissolution profile testing where a similar

test statistic was suggested and numerically investigated.
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