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Abstract 
 

Banks could achieve substantial improvements of their portfolio credit risk assessment 
by estimating rating transition matrices within a time-continuous Markov model, 
thereby using continuous-time rating transitions provided by internal rating systems 
instead of discrete-time rating information. 
A non-parametric test for the hypothesis of time-homogeneity is developed. The alterna-
tive hypothesis is multiple structural change of transition intensities, i.e. time-varying 
transition probabilities. The partial-likelihood ratio for the multivariate counting process 
of rating transitions is shown to be asymptotically 2χ -distributed. A Monte Carlo simu-

lation finds both size and power to be adequate for our example. We analyze transitions 
in credit-ratings in a rating system with 8 rating states and 2743 transitions for 3699 
obligors observed over seven years. The test rejects the homogeneity hypothesis at all 
conventional levels of significance. 
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1. Introduction 

Among banks the interest in the estimation of rating transition matrices is rising. Sev-
eral applications in risk management, like portfolio models for internal bank steering or 
pricing of credit risky financial products like CDS and CDOs need improvement. Addi-
tionally, the Basel II accord (c.f. Basel Commitee on Banking Supervision(2004)) 
stimulates methodological advances in measuring credit risk. Planning to calculated 
regulatory capital with the internal ratings-based approach (IRB) within Basel II, banks 
have developed internal rating systems. By this means banks are provided with continu-
ous-time observations of rating transitions of their obligors leading to new facilities in 
analyzing rating transitions. This data allows for a more precise estimation of rating 
transition matrices than discrete-time rating migration information published by external 
rating agencies like Standard & Poor’s. 

For the estimation of transition matrices in discrete time the common ‘cohort method’ is 
used. It can be argued that transition probability estimates are only non-zero when direct 
rating transitions within the interesting time period have been observed. Defaults in the 
top ratings are likely to be considered impossible even though there clearly exists a risk 
of defaulting, at least through a series of successive downgrades. Transition probabili-
ties are underestimated. These drawbacks become obsolete within continuous-time 
modelling. 

Whereas Lando/Skødberg (2002) reject even the Markovian property for rating transi-
tions, an additional assumption for the Markov model is critical - in both, discrete and 
continuous modelling -, time-homogeneity, leading to time-independent transition prob-
abilities. Being exposed to two obligors over one year is the same as exposure in one of 
them over two years. The assumption not only has implications for the forecast of the 
default, and the consequent price of debt but also for the estimation of the actuarial 
probability using historical data. Assuming time-homogeneity in the continuous model 
implies that the intensity for changing the rating class does stay the same over time. In a 
time-homogeneous Markov model estimating transition matrices reduces to the estima-
tion of the generator. Due to the reduced parameter space much more efficient estimates 
are accomplished compared to the more complex inhomogeneous model. 

We address the two related topics: (i) Selecting the right Markov model for rating tran-
sitions. (ii) Choosing between two estimation procedures. Therefore, we develop a par-
tial-likelihood ratio test for the hypothesis of the homogeneity against the alternative of 
structural changes. 

Having a notion of time one needs an origin. Time since issuance of the debt is a natural 
choice for rating transitions, used e.g. by Calem/LaCour (2004) to assess portfolio credit 
risk. Any (other) influence of the transition probabilities by covariates - like business 
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cycle, industry or domicile of the obligor (see e.g. Nickel et al. (2000), Lando/Skødberg 
(2002)) - is ruled out, in order to not assume a specific regression model. Access to an 
internal rating system with 8 rating states was granted by WestLB. This data covers the 
rating histories of 3699 obligors over seven years. The  2743 observed rating transitions 
lead to a clear rejection of the homogeneity. We compare the estimation of transition 
matrices for the homogeneous, i.e. reduced model and the full model and find substan-
tial differences. 

The paper is structured as follows: Section 2 reviews the Markov model  and estimation 
techniques needed in the following. In Section 3 the test for homogeneity is constructed 
and asymptotic distribution is proven. Section 5 assesses the statistical properties of the 
homogeneity-test by simulation. In Section 6 real rating migrations are carefully ana-
lyzed using the derived results. Section 7 concludes the paper. 

 

2. Model 

We model rating transitions of obligors as time-continuous Markov Processes, denoted 
by { }tX : X , t= ∈T  and defined on a probability space ( , , P)Ω F  and adapted to the fil-

ration  ( )tIF : , t= ∈F T . Xt gives us the rating of the obligor at time t ∈  T = [0,T] 0
+⊂ �  

after the issuance of the credit. The possible rating states constitute the state space K = 
{1,..., k} where state 1 represents the highest rating and state k bankruptcy. A Markov 
process is determined by its transition matrix  

 ( ) k  x k
hj h, j 1,...,k

P(s, t) : p (s, t)
=

= ∈� ,s, t ,  s t∈ ≤T ,  (1) 

where the transition probabilities hj t sp (s, t) P(X j | X h) h, j K= = = ∀ ∈  give the prob-

ability for a transition from rating h to j within the time period s till t. A time-
homogeneous Markov processes additionally satisfies 

P t s t P u s uE (h(X ) | X ) E (h(X ) | X ) s, t, u+ += ∀ ∈T , where h : K → �  is an arbitrary func-

tion. The corresponding transition probabilities only depend on the lag t sψ = − .  

A quite useful property is stated by the Chapman-Kolmogorov-equation  

 P(s + t) = P(s)P(t) = P(t)P(s) s, t∀ ∈T .  (2) 

Thus, if you know the one year transition matrix P(1) you will be able to calculate P(2), 
P(3) etc. simply by successive multiplication of P(1). 

The link between time-homogeneous transition matrices P( ),ψ ψ ∈T  and the infini-

tesimal generator is derived by transition intensities defined, in general, by  

 hj hj
hj 0

p (t, t ) p (t, t)
q (t) : lim , t ;h, j K

ψ→ +

+ ψ −
= ∈ ∈

ψ
T ,  (3) 
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allowing for time-dependence, whereas, for the time-homogeneous case, the transition 
intensities become constant in time, i.e. hj hj 0q (t) q  t ;h, j K+≡ ∈ ∀ ∈ ∈T� , and are col-

lected in the infinitesimal generator ( ) k  x k
hj h, j 1,...,k

Q : q
=

= ∈� .  

Now, the transition matrices can be expressed as a function of Q,   
n

n 0

( Q)
P( ) exp( Q) :

n!

∞

=

ψψ = ψ = ∀ψ ∈� T . 

Thus, every transition matrix P( ψ ) can be estimated by the estimation of Q. Albert 

(1962) derives 

 hjn
hj T

h0

N (T)
q̂ , h j

Y (s)ds

•

•

= ≠
�

  (4) 

 as maximum-likelihood estimator for the time-invariant transition intensities hjq ,h j≠  

if 
T

h0
Y (s)ds 0• >�  and sets n

hjq̂ : 0= , otherwise. 

It is common practice to assume that an obligor, once defaulted, cannot recover his 
business activity. Thus, default k is modelled as an absorbing state where 

t sP(X k | X k) 1 s, t ,  s t= = = ∀ ∈ ≤T . This implies kjq 0 j K= ∀ ∈ . 

The relationship between intensities and transition matrices can be generalized to the 
inhomogeneous Markov process. P(s,t) may be expressed in terms of the cumulative 

transition intensities 
t

hj hj
0

A (t) : q (s)ds  h, j K : j h= ∈ ≠�  , hh hj
j h

A (t) : A (t)
≠

= −�  by  

 ( )
i i 1

i 0 ,....,n

k k i i 1max |t t | 0
i

(s,t ]
P(s, t) (I dA) : lim I A(t ) A(t )

−=

−− →
= + = + −∏π , (5) 

where 0 1 2 ns t t t ... t t= ≤ ≤ ≤ ≤ =  is a partition of the finite time interval [s,t] and π  

denotes the so-called product integral (see Andersen et al.(1993), p.93). 

Now we consider modelling rating transition histories X1,…,Xn of a portfolio of i = 
1,…, n obligors, where the lengths of the individual histories potentially differ. A suffi-
cient statistics is the vector of original ratings 1 nX (0),...,X (0)  and the multivariate 
counting process N = ( hjN ( ),h j• ⋅ ≠ ), where its components 

 ( )
n n

hj hji i i
i 1 i 1

N (t) : N (t) : #{s [0, t] : X (s ) h, X (s) j} ,  t , h j•
= =

= = ∈ − = = ∈ ≠� � T   (6) 

count the number of transitions from rating h to j until time t  in the whole portfolio and  
hjiN (t)  for obligor i, respectively. For large portfolios this is a clear reduction regarding 

the number of random processes.  
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The individual counting processes hjiN (t)  are related to the corresponding cumulative 

transition intensities for transitions from rating h to j via their compensators hj(t)Λ , 
t

hji hi hj0
(t) Y (s)dA (s)Λ = � , where { }ihi X (t ) hY (t) : I − ==  (see Andersen et al.(1993), p.93). 

Throughout the paper, we will assume absolutely continuous transition intensities 
hjq (t) 0 t j h> ∀ ∈ ≠T, , h ≠ k, implying a permanent risk of migrating from rating h to j. 

This yields a multiplicative intensity process of hjiN (t) : hji hj hi(t) q (t)Y (t)λ = . For the 

portfolio based multivariate counting processes one gets the intensity process 

hj hj h(t) q (t)Y (t)λ = , where 
n

h hi
i 1

Y (t) : Y (t) n•
=

= ≤�  gives the number of obligors in rating 

h just before time t.  

An estimator for the time-depending transition matrices P(s,t) can be constructed via 
equation (5) by just estimating the cumulative transition intensities hjA (t), j h≠ . This is 

done by the Nelson-Aalen-estimator (see Nelson (1969)) 

 h

t
{Y (s) 0}

hj hj
h0

I
Â (t) : dN (s), j h

Y (s)
• >

•
•

= ≠� , hh hj
j h

ˆ ˆA (t) A (t)
≠

= −�   (7) 

which Johansen (1978) proves to be the nonparametric maximum likelihood estimator 
for the cumulative transition intensities hjA (t), j h≠ . This results in the non-parametric 

maximum likelihood estimator for P(s,t), the Aalen-Johansen estimator,  

 ( )
i i 1

i 0 ,....,n

k k i i 1max |t t | 0
i

u (s,t ]
ˆ ˆ ˆP̂(s, t) (I dA(u)) lim I A(t ) A(t )

−
=

−− →∈
= + = + −∏π , (8) 

where 0 1 2 ns t t t ... t t= ≤ ≤ ≤ ≤ =  denotes a partition of [s,t] (see Aalen/Johansen(1978), 

p.143). Expression (8) reduces to the discrete product 

( )k m m
m

ˆ ˆP̂(s, t) I A( ) A( )= + µ − µ −∏ , where mµ ∈  T denotes the random time for the m-

th of any rating transitions observed in the portfolio the rating state. The structure of the 
k x k-dimensional matrices m m

ˆ ˆA( ) A( )µ − µ −  is described in detail by Lando/Skødberg 

(2002) (see p. 430-431). 
 

3. Testing for Homogeneity 

Our goal is to check if rating transition histories may be adequately modelled by a ho-
mogeneous Markov model and transition probabilities, thus, exhibit time-invariant be-
haviour. As shown in chapter 2, this is equivalent to constant transition intensities yield-
ing a sparse parametrization of the Markov model by its generator. Therefore, the null 
hypothesis of time-homogeneity can be stated in terms of  

 hj hj hj:  h,j K: c : q (t) c  t [0,T] +∀ ∈ ∃ ∈ = ∀ ∈0H � . (9) 
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We are interested in the alternative that transition probabilities are time-dependent 
which can be approximated by structural breaks of the transition intensities, i.e. 

 
i 1 i 1 2

bb
hj hji [ t ,t ) 1 2 hji hjii 1

: h,j K: q (t) q I (t) : i , i 1,..., b : q q
−=

∃ ∈ = ∃ = ≠�1H   (10) 

where 0 1 b0 t t ... t T= ≤ ≤ ≤ =  is a partition of T  consisting of b intervals. The follow-

ing test is based on likelihood theory and mimics already known homogeneity-tests in a  

discrete modelling framework (see Anderson/Goodman (1957), Kiefer/Larson (2004)). 

First of all, following Andersen et al.(1993, p.296), we have to derive the partial-
likelihood for n independent observations X1,…, Xn  of a time-continuous Markov 
process under the assumption of absolutely continuous transition intensities. Let the 
transition data for the portfolio be given by an observation of the multivariate counting 
process N with components defined in (6). Again, equation (5) allows to parametrize the 
model of a general Markov Process either by the transition matrices P(s,t) in (1) or the 
cumulative transition intensities hjA (t)  in the preceding section.  

Given t−F  and a transition, the increments ( )*
*

h j
dN (t), j h

•
≠  of N with fixed  *h  at time 

t are multinomially distributed with parameters ( )* *
*

h h j
Y (t),dA (t), j h≠ and independent 

over h = 1,..., k. Thereby the likelihood gets 

 

( )
hj h h

hhhj

hj hj

dN ( t) Y (t ) dN (t )

h hj hh
h K j h q (t )dtq (t )dt

t [0,T]

L A (t) | N (t), j h;h,j K;t [0,T]

Y (t)dA (t) 1 d A (t)

• ••

•

−

∈ ≠∈

≠ ∈ ∈

� �� � � �� �	 
 	 
= +� �	 
 	 
	 
� �� �� �
 �

∏ ∏π
� � �� � �

  (11) 

where 
k n

h hji
j 1 i 1
j h

N (t) : N (t)••
= =
≠

=�� . To ensure the likelihood is valued greater than zero, even 

when hY (t) 0=  meaning that no obligor is left in a rating state h , we define 00 : 1= . 

The test statistic of the likelihood ratio test for the preceding test problem is 

 ( )0 1: 2 ln(LR) 2 ln L ln LΦ = − = − − , (12) 

and incorporates the likelihood ratio, 

 

( )
( )

0
hj

hji

H hj hj
q , j h0

1 hj hj
q ,i 0,...,b 1; j h

sup L q | N (t), j h;h,j K;t [0,T]
L

LR :
L sup L A (t) | N (t), j h;h,j K;t [0,T]

•
≠

•
= − ≠

≠ ∈ ∈
= =

≠ ∈ ∈
, (13) 

which compares the maximized likelihood under the null of time homogeneity versus 
the likelihood when maximizing under the alternative of structural breaks of hjq (t) . 

Using standard theorems of likelihood testing, as layed out in Serfling (1980), for in-
stance, Φ  is, under the null, asymptotically 2χ -distributed with d = D1 – D0 degrees of 
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freedom where D0 and D1 are the dimensions of the parameter space under the null and 
the alternative, respectively. Modelling an absorbing default state the degrees of free-
dom are 2d (b 1) (k 1)= − ⋅ − . 

The actual value of the likelihood ratio LR in (13) can be calculated by inserting in the 
likelihood in (11) the ML-estimators for the transition intensities hjq (t)  under the null 

and the alternative, if they exist. Assuming time homogeneity, the ML-estimator for the 
constant transition intensities is n

hjq̂  in (4) (see last section) and thus determines L0.  

With respect to the fact that transition intensities 
i i 1

bb
hj hji [ t ,t )i 1

q (t) q I (t), h j
+=

= ≠�  are par-

tially constant under the alternative we could also apply this estimator to derive the ML-
estimator for b

hjq (t) . Therefore, we only have to find ML-estimators for the b parameters 

hjiq ,i ,..., b=  of the step functions b
hjq (t) . This could be accomplished by confining the  

considered time interval, where rating transitions are observed, from [0,T] to the i-th 
time interval (i 1) (i)[t , t )−  of the partition of [0,T]. Thereby, the ML-estimator of 

hjiq ,i ,..., b=  is given by 

i

i i 1

i 1

thj i hj i 1n
hji ht t

ht

N (t ) N (t )
q̂ ,  for Y (t)dt 0

Y (t)dt −

−

−• • −
•− −

•−

− − −
= >�

�
  

It could be regarded as the ML-estimator n
hjq̂   for a time homogeneous Markov process 

on this restricted time interval, and thus only takes into account rating transitions that 
occur within (i 1) (i)[t , t )− .   

Finally, we want to point out that the likelihood ratio LR in (13) could be computed 
efficiently by using the ‘Poisson likelihood’,  

( ) ( ) hj
T

dN (t)

hj hj h hj h hj
j ht [0,T] h K j h 0

L A (t) | N (t) Y (t)dA (t) exp Y (t)dA (t)•

•
≠∈ ∈ ≠

� � � �
≈ −	 
� �

� �
 �
�∏ ∏∏ � , 

as an approximation for the likelihood in (11), as suggested by Andersen et al.(1993), p. 
297. Therefore, LR in (13) could be approximately calculated by  

 �
hj

i 1 i

dN (t )nb
hj
n

i 1 t [ t ,t ] h K j h hji

q̂
LR : LR

q̂

•

−= ∈ ∈ ≠

� �� �
� �≈ =	 
	 
� �� �
 �

∏ ∏ ∏∏   (14) 

where no product integral has to be calculated. �LR  is well defined, because the estimate 
n
hjiq̂  is only zero when no transition from rating h to j occurs within (i 1) (i)[t , t )− . Then 

there is clearly no jump in the counting process hjN •  yielding hj i 1 idN (t) 0 t [t , t )• −= ∀ ∈ , 

so that the inner factor becomes 
( )
( )

( )
( )

hj

hj

dN (t) 0n n
hj hj

dN (t) 0n
hji

ˆ ˆq q 1
1

10q̂

•

•
= = =  for i 1 it [t , t )−∈ . 
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By restricting the class of alternatives to structural breaks in transition intensities the 
power of the test for homogeneity has been increased. We are able to get better feeling 
of this special term structure which captures a lot of other possible functional forms, 
even then when only a few rating transitions are observed, as is usual in practice. 
Whereas, testing against a broad class of inhomogeneous models as alternative would 
require a considerable large amount of observed rating transitions. 

 

4. Some Monte Carlo Simulations 

As the test for homogeneity of time-continuous rating transitions presented in chapter 4 
is an asymptotical test we carry out a Monte Carlo simulation to assess its finite sample 
properties. Therefore, we determine the probabilities for the type I and type II errors for 
the test based on the test statistic Φ  defined in (12). To reduce complexity we simulate 
from a time-homogeneous Markov model on a binary state space *K  = {0, 1} where 0 
denotes any non default-rating and 1 denotes bankruptcy, thus only accounting for de-
faults of obligors. When modelling an absorbing default state 10q (t) 0 t [0,T]= ∀ ∈  
holds and the default model is parametrized by only one transition intensity, 01q (t) . The 
null of time homogeneity becomes 01 0: q (t) c  t [0,T]+= ∈ ∀ ∈0H � . Here, it should be 
tested against the specific alternative that 01q (t)  exhibits a structural break at T/2, for-

mally 

0

1 01 0 1

1 0

T
c ,0 t

2: q (t) ,c ,c
T

c c , t T
2

+

� ≤ <��= ∈�
� ≠ ≤ ≤
��

H �  . 

We use the following technique to simulate a portfolio of n obligors whose transition 
histories are assumed to be generated by the same Markov process X on the state space 

*K  with given transition intensities 01q (t) . It is sufficient to know the default times 

i [0,T]τ ∈  of each obligor i = 1,…, n, because that is the point in time when Xi  jumps to 
one before it was constantly zero. We have to simulate a sample 1 n( ,..., )τ = τ τ�  of de-

fault times with the distribution function  

 ( )t 0
010

F(t) 1 exp q (s)ds , t += − − ∈� � .  (15) 

To analyze the actual size of the homogeneity test based on Φ  we simulate 
simn 20,000=  such samples τ�  of default times under the null of homogeneous rating 

transition histories corresponding to a one year probability of default 1PD F(1)=  of 1 
percent – or 0c = -ln(0.99) –, i.e. a mediocre rating class of ‘BB’ in the Standard & 

Poor’s system.  
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The power of the LR-test is studied by simulating simn 20.000= such samples τ�  under 

the special alternative where the transition intensity is given by 
01 [0,T / 2) [T / 2,1]q (t) ln(0.99)I (t) 2 ln(0.99)I (t)= − − , the intensity doubles half way.  

Table 1 shows the actual size under the null and the power under the alternative, respec-
tively for different sample sizes n. In each iteration step of the simulation the homoge-
neity test on significance level α = 0.05 is carried out by calculating the LR test statistic 

Φ  approximately using �LR  in (14).  

Sample size n Size *
�  Power �  

30 0.00560 0.01705 
300 0.08865 0.20375 

3,000 0.05265 0.89505 
30,000 0.05025 1.00000 

Table 1: Simulation of actual size *α and power β of approximate likelihood ratio test for the 
null of constant hazard rate versus structural break at T/2 (nsim = 20,000 simulation 
runs, significance level α = 0.05) 

 

The approximate LR test based on �: 2 ln(LR)Φ = −�  shows, to some extent, an anticon-

servative behaviour because of the values of the size which are slightly higher than the 
significance level 0.05. This means that the LR-tests tends to reject the null of time-
homogeneity a bit too often. But when the sample size n → ∞ , α * seems to converge 
to α , as the difference between *α  and α  gets negligibly small. Moreover, the test 

seems to be consistent against the tested alternative because apparently the power in-
creases when the sample size n gets larger. Already in the case of n = 3000 obligors the 
null of time homogeneity is rejected correctly in nearly 90 percent of all cases, even 
though the true hazard rate has only one structural break and thus only shows somewhat 
moderate deviations from the null. Bearing also in mind that a one-year 1PD  of 1 per-
cent and a two-year 2PD 1 exp( 0.03) 0.0297= − − =  is definitely not unrealistic, but is a 

valid value for ratings ranging from mediocre to poor. 

Summing up, this simulation study clearly provides no evidence that undermines the 
appropriateness of the approximate LR-test on time-homogeneity of time-continuous 
rating transition histories. These results can be transferred to a general model for rating 
transitions with more than one parameter under test when there are enough transition 
intensities which are not constant, what is a likely scenario. 
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5. Empirical Results 

We now show how to analyze time-continuous rating transitions as observed by banks 
within their internal rating systems using the methodological results derived in chapter 2 
till 4. Our main objective is to accurately estimate rating transition matrices. Therefore, 
we answer the question whether rating transitions could be modelled by a time-
homogeneous Markov model or dependence on the time since issuance of a credit has to 
be taken into account by applying the approximate LR-test for homogeneity presented 
in chapter 4. After selecting the ‘right’ model we present the results of the subsequent 
estimation procedure described in chapter 3, either estimating the generator Q which 
parametrizes the less complex homogeneous model or estimating the time-dependent 
transition matrices P(s,t) of the general inhomogeneous model directly by the Aalen-
Johansen-estimator. Then we compare it with the other estimation procedure, poten-
tially in question when not testing beforehand. 

 

The data 

WestLB AG granted access to an internal rating system with 8 rating states where 1 
denotes the internal top rating and 8 the poorest rating of an obligor, and a default state 
9. Rating histories were observed over seven years from 1.1.1997 until 31.12.2003. To 
use the time since issuance we restricted our analysis to a portfolio comprising 3699 
global obligors of WestLB that entered the portfolio after the start date of the observa-
tion. In this portfolio 2743 rating transitions, including transitions to default, occurred 
within that period. When a rating change took place exact dates were recorded. Figure 1 
gives insight to what extent obligors tend to change their ratings.  

 
Figure 1: Empirical distribution of the number of rating transitions per obligor during the indi-

vidual rating history over maximal seven years 
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This simple statistic underpins that rating transitions are quite rare credit events. The 
creditworthiness of even a half of the analyzed counterparties does not change anyway. 
Per year an obligor changes his rating on the average only 2743/10641.6 = 0.26 times. 

 
Results of test for homogeneity  

Now we focus on the question whether a time-homogeneous Markov model is suitable 
for the rating transitions histories of the 3699 obligors in the analyzed portfolio. The 
actual test statistic Φ  is approximated by �: 2 ln(LR)Φ = −�  as done before in the simula-

tion in chapter 5. We are interested in testing the null of time-homogeneity set out in (9) 
at the significance level 0.05 against the alternative of transition intensities with struc-
tural breaks, given in (10). We consider different equidistant partitions 

0 1 2 b0 t t t ... t 7= ≤ ≤ ≤ ≤ =  of the time interval [0,7] containing all times since issuance 

when ratings of any obligor in the portfolio changed. The maximal number b of breaks 
is set to seven yielding seven one-year intervals where transition intensities could vary. 
The test results in this setting are given below in Table 2. 

Number b of structural 
breaks 

2 3 4 5 6 7 

Test statistic ��  93.8513 125.9231 289.2518 345.8185 447.2865 626.1497 

p-Value 0.0089 0.5354 < 0.0001 0.0002 < 0.0001 < 0.0001 

Table 2: Results of approximate LR-test for homogeneity using �: 2 ln(LR)Φ = −�  as test statistic 
analyzing a WestLB-portfolio of 3699 obligors with rating histories observed within 
maximal seven years since issuance of credit 

 
These strikingly small p-values show that the time since issuance does influence rating 
transition probabilities significantly. More granular partitions do not necessarily give 
smaller p-values, as the number of parameters to be estimated increases but the gain of 
precision in the approximation of continuous transition intensities declines.  

Additionally, we could also reveal time-varying transition probabilities by analyzing the 
term structure of the Nelson-Aalen-estimator hjÂ (t), h j≠  in (7) for the cumulative tran-

sition intensities hjA (t) . If rating transition histories of the WestLB-portfolio really are 

homogeneous hjA (t)  would show a linear relationship with the time since issuance. 

Thereby, in figure 2 we graphically check for deviations of hjÂ (t), h j≠  from a charac-

teristic linear curve. 
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Figure 2: Nelson-Aalen-estimator hjÂ (t), h j≠  for cumulative transition intensities for various 

rating combinations plotted against time t since issuance of credit 

 

It is evident that patterns of cumulative transition intensities differ substantially when 
analyzing transitions out of ratings with different quality, here ratings 2, 4, and 7. The 
more pronounced slope for transitions in neighbouring ratings, e.g. for transitions from 
rating 2 to 3, means that the risk of migrating instantly to a rating nearby is all the time 
much higher than migrating to distant ratings. With 2090 transitions, indeed the vast 
majority of a total 2743 transitions are targeted to a direct neighbour rating. 

There seems to be no global trend in the transition intensities since the hjÂ (t), h j≠  

have no gradient which increases over the whole period [0,7]. Rather, there are local 
different slopes for all analyzed cumulative rating transition intensities. Especially the 
flat curve at the beginning points to a reduced risk of migrating since only a few transi-
tions occur up to one year after the issuance, even though the number of obligors in the 
starting phase is higher than in other periods. Thus, the rejection of homogeneous transi-
tions as a result of the LR-test is confirmed by the non-linear term structure of the esti-
mated cumulative transition intensities. 

This term-structure gives an explanation for the p-value of 0.0089 when b = 2 which is 
somewhat greater than for b 4≥  and that the test for b = 3 even fails to reject the null 
(p-value = 0.5354). These partitions are too rough to detect these deviations from the 
null of homogeneity, because the average of transition intensities over longer periods 
smoothes the different levels.  

These findings point out the main drawback of the LR-Test to detect structural breaks: 
The test results depend on the choice of the number b of structural breaks.  Since the 

  
 21A (t)   

23A (t)   
27A (t)   

43A (t)  
48A (t)   

76A (t)   
78A (t)   

72A (t)  
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number of parameters hjiq ,i 1,..., b=  under the alternative increases by 
2k(k 1) (k 1) (k 1)− − − = − , here by 64, each time when dividing [0,T] by one more in-

terval we recommend to choose b with respect to the size of the portfolio and the length 
of the partition intervals. Because the number of transitions could fall below the number 
of parameters to estimate under the alternative very fast, resulting in highly inefficient 
estimators n

hjiq̂  for the parameters of the transition intensities 

i i 1

bb
hj hji [ t ,t )i 1

q (t) q I (t), h j
+=

= ≠� .  

In our example we find it doubtable to estimate more than 588 parameters with 2743 
observed rating transitions, since transitions into ratings far away from the current rat-
ing, say from rating 1 to default, are expected to be fairly unlikely. Moreover, dividing 
the observation horizon [0,T] into seven one-year intervals seems to be appropriate as 
we intend to analyze long-term changes in the transition probabilities instead of short-
term variations, i.e. how much changes the one-year probability for a transition from 
rating h to j if an obligor is already three years in our portfolio in contrast to the period 
immediately after issuance. 

Surely one can argue that the influence of the time since issuance of a credit stated here 
is in fact induced by other covariables like domicile or industry of the obligor as figured 
out in other empirical studies like Nickell et al. (2000). Indeed, a bias could appear if 
the structure of the portfolio concerning these variables changes over time. For instance, 
the proportion of obligors in a certain rating that are in the telecommunications industry 
is in the period up to one year after issuance small and then rises, because the deals of 
the bank with these obligors last longer than in other industries. If there really is an in-
dustry effect which causes different migration risks over the same time horizon in dif-
ferent industries this could induce time-varying transition intensities. 

To preclude this undesirable effect we checked the structure of the portfolio in different 
time periods for the covariables domicile and industry and found no such striking im-
balance which undermines this analysis and its results. Since we only observed transi-
tions over a time period of seven years rating changes for obligors that are already 
longer in the portfolio, necessarily, all took place in a recessive phase of the business 
cycle, whereas ratings for obligors, that have been only for a short time in the portfolio 
of WestLB, are also observed in other business environments before the millennium.  

 

Analyzing rating transition probabilities 

The clear rejection of the null of homogeneous rating transitions points to estimate tran-
sition matrices by the Aalen-Johansen-estimator to account for the term structure of 
transition probabilities. This shows up when analyzing transition probabilities for a 
fixed period, say one year, graphically in figure 3. 
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Figure 3: One-year transition probabilities hjp (s,s 1), h, j K+ ∈  for various rating  

combinations h,j plotted against time s since issuance of credit  

 

Probabilities P(s,s 1)+  for transitions within one year vary more or less pronounced 

when time s since issuance evolves. All analyzed transitions have in common that prob-
abilities rise sharply during the first year. For instance, probabilities for transitions from 
rating 2 to 3 double from 10 to 18 percent. But their levels depend heavily on the qual-
ity of the rating and the distance between start- and end-rating, because transitions into 
the direct neighbour rating are much likelier than those into distant ratings.  

Furthermore, there are only local and no global trends which is in line with the term 
structure of the cumulative transition intensities in figure 2. Nevertheless, the transition 
probability  23p (s,s 1)+  from rating 2 to 3 tends to increase up to s = 5 years and then 

immediately drops from a high level of 30 percent. The high jumps in the probabilities 
for transitions out of rating 7 came from the fact that there are less obligors in this rat-
ing. Similar results could be found for transition probabilities for other rating combina-
tions and other time-horizons. 

Tables 3 and 4 present the estimation results for the one-year transition matrices P(0,1) 
and P(1,2) using the Aalen-Johansen-estimator P̂(0,1)  and P̂(1,2) , respectively, given 

in (8). Due to the security policy of WestLB we have to omit the PD-column and the 
diagonal-elements of the transition matrices. But the results of the analysis also apply to 
the PDs. 
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Rating 1 2 3 4 5 6 7 8 
1  0.00 0.00 0.01 3.20 0.00 0.01 0.00 
2 0.00  9.90 2.59 0.11 0.01 0.01 0.00 
3 0.00 1.88  7.58 0.65 0.15 0.08 0.01 
4 0.00 0.60 6.68  5.67 0.41 0.13 0.03 
5 0.18 0.05 2.76 11.42  2.97 1.20 0.68 
6 0.00 0.03 0.36 4.83 6.06  2.65 0.80 
7 0.00 0.01 0.16 3.23 3.98 2.00  1.86 
8 0.00 0.00 0.01 0.20 3.03 1.50 3.89  

Table 3: Aalen-Johansen-estimator P̂(0,1)  for one-year rating transition matrix P(0,1) at time 
of issuance of credit (in percent) 

 
Most of the estimated probabilities for transitions within one year after time of issuance 
in table 3 are positive, even though neither every rating transition was observed directly 
nor indirect rating changes by the same obligor necessarily took place. The Aalen-
Johansen-estimator P(s,t) captures migration risk for transitions from 1r  to mr , as long as 
there exists a sequence of ratings 1 2 m 1 mr , r ,..., r , r−  where at least one of the n obligors 

migrates from the preceding to the subsequent rating within the regarded time period 
[s,t], i.e. 

i i 1 i i 1r ,r r ,rN (t) N (s) 1 i 1,...,m 1
+ +

− ≥ ∀ = − . The concentration of zero-estimates for 

transitions into and out of rating 1 stem from the fact that there were no such transitions 
in the portfolio up to one year, i.e. Nh1(1)  = 0 and  N1j(1)  = 0 for h, j = 2, 3, 6, 7, 8.  

Since the transition probabilities almost never exceed 10 percent and the PDs, in most 
ratings, could be expected to be quite smaller there is a chance of about 80 percent to 
stay in the same rating for one year after the issuance. If albeit a rating change occurs it 
is very unlikely to migrate in a distant rating since the transition probability for migrat-
ing in a neighbour rating is the highest one, except for ratings 1 and 7. As the distance 
between current and target rating increases the transition probabilities decreases very 
fast. For instance, obligors in rating 5 have a chance of 11.4 percent to be upgraded by 
one rating category, but only a chance of 2.8 percent for an upgrade to rating 3. This 
structure of the one-year transition matrix reflects the rating policy of banks that adapt 
ratings rather in small steps within short time periods than with one rating change of 
more categories after some time. 

Moreover, the quality of the current rating influences the direction of the migration. We 
have to distinguish between a pronounced downgrade risk in the ratings 1, 2, 3 with 
high quality and an upgrade tendency in the ratings 4, 5, and 6. In these ratings always 
transitions into the next rating in the direction, pointed out before, are most likely. 
WestLB’s rating system is calibrated in such way that in the poor ratings 7 and 8 default 
risk is predominant.  

Comparing the estimated one-year transition matrices P(0,1) at time of issuance in table 
3 and P(1,2) after one year in the portfolio in table 4, it could be stated that the transi-
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tion probabilities for changing the rating within one year differ considerably when an 
obligor was already one year in the portfolio. 

Rating 1 2 3 4 5 6 7 8 
1  0.15 3.81 4.69 2.71 0.13 0.18 0.05 
2 0.33  15.93 5.56 2.93 0.75 0.81 0.06 
3 0.21 3.04  14.23 3.30 0.49 0.52 0.09 
4 0.32 0.82 11.12  8.83 1.18 1.30 0.45 
5 0.42 0.54 2.72 14.97  3.16 4.39 0.73 
6 0.06 0.20 0.52 6.67 13.05  11.13 1.28 
7 0.05 2.26 1.91 6.37 4.98 4.55  5.07 
8 0.01 0.04 0.04 0.24 2.18 2.17 2.33  

Table 4: Aalen-Johansen-estimator P̂(1,2)  for one-year rating transition matrix P(1,2) at one 
year since issuance of credit (in percent) 

 
Foremost, the difference arises because nearly all transition probabilities hjp (1,2),  h j≠  

are remarkably higher than the counterparts hjp (0,1)  at time of issuance where the 

maximum difference of 0.084 is observed for a downgrade from rating 6 to 7. This 
means that in general there is a higher migration activity in the second year after enter-
ing the portfolio. This leads to even higher downgrade risks in the high ratings 1, 2, and 
3 and likewise to more pronounced upgrade chances in the ratings 4,5, and 6, as transi-
tions to more distant ratings become more likely after obligors have spent one year in 
the portfolio. But downgrade risk in rating 7 is not any longer predominant. Moreover, 
no transition probability is estimated with zero. 

We emphasize that it makes a difference still presuming time-homogeneity erroneously 
since estimation results of homogeneous matrices via the generator differ substantially. 
The estimation ( )n

hj h, j 1,...,k
ˆ ˆQ : q

=
=  of the generator Q is given below in Table 5, where its 

components are estimated by (4). 

Rating 1 2 3 4 5 6 7 8 
1  0.00 2.12 1.06 5.30 0.00 0.00 0.00 
2 0.19  18.83 4.29 1.21 0.47 0.28 0.00 
3 0.11 3.18  15.37 2.40 0.62 0.43 0.05 
4 0.09 0.62 11.11  9.75 1.51 0.77 0.33 
5 0.19 0.25 3.11 16.50  5.08 3.24 0.70 
6 0.00 0.31 0.31 5.29 13.39  12.45 0.93 
7 0.00 0.98 0.33 3.60 5.90 4.26  5.90 
8 0.00 0.58 0.00 0.00 1.74 2.31 4.63  

Table 5: Maximum-likelihood-estimation Q̂  for the infinitesimal generator Q (in percent) 

 
The resulting estimation P̂(1)  of the homogeneous transition matrix P(1), presented in 

table 6, for ratings within one year at any time after the issuance are calculated via the 
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Taylor-type expansion mentioned in section 2. All entries hjq ,h, j K∈  of Q̂ , estimated 

with zero, are caused by the fact that no obligor migrated from rating h to j over the 
whole observation period, i.e. Nhj(T)  = 0. Even though, all transition probabilities in 
P̂(1)  are positive.  

Rating 1 2 3 4 5 6 7 8 
1  0.04 1.95 1.40 4.45 0.12 0.08 0.02 
2 0.17  15.06 4.58 1.33 0.45 0.31 0.03 
3 0.10 2.55  12.35 2.49 0.62 0.46 0.09 
4 0.09 0.64 8.93  7.61 1.34 0.82 0.31 
5 0.17 0.30 3.14 12.86  3.81 2.73 0.65 
6 0.01 0.31 0.70 4.95 10.12  9.27 1.01 
7 0.01 0.80 0.58 3.30 4.82 3.29  4.55 
8 0.00 0.47 0.09 0.25 1.54 1.81 3.67  

Table 6: Estimated homogeneous one-year transition matrix P̂(1) derived by estimated  

generator  Q̂ (in percent) 

 
The homogeneous one-year transition matrix shows differences to both inhomogeneous 
matrices P(0,1) and P(1,2), analyzed before. It is not surprising that the homogeneous 
transition probabilities hjp (1), h, j K∈  are higher than the probabilities hjp (0,1)  for the 

same transitions at issuance and also lower than the one-year probabilities hjp (1,2)  at 

one year. Since P(1) is based on the generator all migration information is incorporated 
in the estimation. As pointed out before, the generator averages the time-varying transi-
tion intensities therefore generating a transition matrix which also neglects the discrep-
ancies in time-depending transition matrices for the same time-horizon ψ . Although the 

level of transition probabilities is different, the structure of the matrix P̂(1) , concerning 

the predominant up- and downgrade tendencies in ratings 4, 5, 6 and ratings 1, 2, 3 re-
spectively, remains stable. 

Finally, we analyze graphically how rating transition probabilities change when looking 
at different time-horizons within which rating changes occur. Homogenous transition 
probabilities hjp ( ), h, j Kψ ∈ , plotted in figure 4, increase as time-horizon ψ  is ex-

tended, at least up to a six-year horizon. This empirical result is theoretically backed by 
the Chapman-Kolmogorov-equation P(s + t) = P(s)P(t) = P(t)P(s) s, t∀ ∈T  in (2). 

Thereby, with rising time-horizon it gets more likely that obligors arrive at a certain 
rating through a sequence of rating changes. 
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Figure 4: Homogeneous transition probabilities hjp ( ) h, j Kψ ∈  for various rating  

combinations h,j plotted against time horizon ψ  

 
Again, rating transition probabilities into direct neighbouring ratings, i.e. 2 to 3, 4 to 3, 
7 to 8 and 7 to 6, excepting ratings from 2 to 1, clearly dominate probabilities for transi-
tions in ratings far away like 4 to 8. Within that group transitions from 2 into 3 and 4 to 
3 are much likely since the probabilities for periods of more than one year permanently 
exceed 10 percent and even rise up to 20 and 30 percent, respectively. Whereas, prob-
abilities for transitions from 7 to 8 reach its maximum of only 8.5 percent for ψ = 4.9 

years. Probabilities for transitions into distant ratings here never exceed the 2.6 percent. 

The stylized, smooth evolution comes from the calculation via the generator Q. Here the 
grouping of the transition probabilities remains stable as the time-horizon increases.  

Time-inhomogeneous transition probabilities hjp (s,s )+ ψ  also increase with rising 

time-horizon ψ  when starting date s is fixed as seen in figure 5. But there could be lo-
cal downturns due to statistical variations in the estimations since every hjp (s,s )+ ψ  are 

estimated separately for each point t s= + ψ  in time using the rating transition which 

recently occurred. 

The largest differences between transition probabilities at time s = 0 and s  = 1 could be 
observed for short periods up to 1.5 years where for instance the probabilities for transi-
tions from 2 to 3 at s = 1 year in the portfolio increase sharply and reaches the level of 
nearly 8 percent for time-horizons of ψ  = 4 month, whereas the same probabilities at 

issuance are only that high for time horizons of one year. For larger time-horizons tran-
sition probabilities at different points in time behave rather similar. 
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Figure 5: Transition probabilities hjp (s,s ) h, j K+ ψ ∈  for various rating combinations h,j 

and starting times s = 0, 1 after time of issuance  plotted against time horizon ψ  

 
An interesting result is that the inhomogeneous transition probabilities approach the 
level of their homogeneous counterparts as the time-horizon increases. This is feasible 
since both estimation techniques use in the end completely the same migration data. 

 

6. Conclusion 

Homogeneity of rating transitions simplifies the application of transitions matrices to 
credit risk valuation. Moreover, estimating the parameters for the Markov model is effi-
cient. Statistical inference allows to discriminate the homogeneity from the converse on 
basis of a representative historical sample. Our rating history rejects the homogeneity 
hypothesis in favour of level changes of the (constant) transition intensities at prede-
fined breaking times. In the homogeneous model, observing the debt from the origin of 
time is not necessary. The deeper reason is the lack of memory of the exponential distri-
bution, the univariate provenience of the homogeneous Markov process. Measuring 
time with respect to a calendar is possible. The inhomogeneous model calls for a differ-
ent origin of time. We propose to measure time since issuance of the debt, e.g. the be-
ginning of a loan contract in commercial lending and adopt hereby the view of a portfo-
lio owner, a bank, forecasting its (portfolio) credit risk.  

We find e.g. that transitions in the first year (of lending commitment) are less frequent 
than in the second, and that the one-year estimate based on homogeneity ranges in be-
tween. As a consequence, forecasting portfolio credit risk with rating-transition prob-
abilities for a one-year horizon with the homogeneity assumption overestimates the risk, 
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e.g. the economic capital, for a portfolio of `̀fresh’’ exposures and underestimates the 
risk if all exposure have been originated one year ago. The portfolio composition with 
respect to the age of debt needs to be taken into account, not only for the internal portfo-
lio model but also for regulatory capital under Basel II. The study confirms a significant 
covariable for credit risk also found in discrete modelling by Calem/LaCour (2004).  

However, the detection of the right model for rating transitions is beyond the scope of 
this study. Inhomogeneity is not sharp, modelling the transition mechanism in accor-
dance with the historical evidence needs careful selection of transition-intensity models. 
Our nonparametric estimate is only the least restrictive approach and does e.g. not fit the 
need for forecasts of transitions in the distant future. 
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