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that the relationship between many socioeconomic variables and voting outcomes is not uniform 
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economic performance, unemployment, poverty, educational attainment, house price changes, 
urban-rural scores, and international competitiveness. Our results corroborate evidence of 
‘short-memory’ among voters: economic fluctuations realized a few months prior to the election 
are indeed powerful predictors of voting outcomes as compared to their longer- term analogues. 
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available at the end of July 2020 which are then updated based on data available as of mid-
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1 Introduction

The U.S. Presidential election of 2016 caught many by surprise. Most models and polls

predicted a victory for the Democratic candidate, Hillary Clinton. She lost to Donald Trump,

the Republican candidate, who won an overwhelming majority of electoral votes (304 out of

538) despite coming short on popular votes by around 2.9 million votes. Not only did many

come to realize the inherent unpredictability of elections, it revealed that investigating the

drivers of election cycles remains an open and important area of research.

The 2016 election highlighted one important reason why popular and electoral vote out-

comes may not align – namely voter heterogeneity resulting from increased regional political

polarization. In U.S. elections since 1828, there have been only four (out of forty eight) elec-

tion cycles where the popular votes did not align with the electoral college outcomes. These

were: 1876 (Rutherford versus Tilden), 1888 (Harrison versus Cleveland), 2000 (Bush versus

Gore), 2016 (Trump versus Clinton).1 The 1876 and 1888 elections occurred soon after the

American Civil War when the country was still highly divided politically. It is particularly

interesting that two out of four non-aligned election outcomes have occurred during the past

five election cycles, partly reflecting the heightened divisions in the U.S. political landscape

in the 21st century.

In the presence of growing political polarization, incorporating heterogeneity in presiden-

tial election models becomes even more necessary than ever for better understanding regional

disparities in election outcomes, and for more reliable forecasting. This paper studies the

determinants of election outcomes and their predictive content at the level of U.S. counties

in a model which admits such heterogeneity. We rely on high-dimensional statistical mod-

eling and consider many socioeconomic and demographic indicators at national, state and

county levels, and in particular do not make use of polling data that are likely to be volatile

and subject to sudden change. We build upon the earlier work of Fair [1978], and more

recent developments of Zandi et al. [2020], also referred to as Moody’s election model. While

an advantage of the polling approach is that it theoretically elicits current electoral prefer-

ences directly, it is subject to a variety of sampling issues with survey outcomes contributing

to significant total survey error (Kou and Sobel [2004], Biemer [2010], Shirani-Mehr et al.

[2018], Graefe [2018]). In the presence of increased political polarization, polling approaches

may become even less reliable due increased voter heterogeneity and the added difficulties

of eliciting true voter intentions due to “socially desirable responding”. Hence, forecasting

performance based on polls has been mixed.

11960 (Kennedy versus Nixon) was very close but did not produce conflicting outcomes. In all four cases
the Republican candidate lost the popular vote but won the electoral college vote.
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Most statistical/econometric models of U.S. Presidential elections rely on relatively long

time series data and primarily use aggregate socioeconomic and demographic indicators as

potential predictors. However, time series models estimated over long time periods are

generally subject to structural breaks. Certainly the factors influencing voting behavior and

the make-up of the voting body changed since the 1950’s and continues to evolve. We focus

on more recent election cycles and consider the five completed election cycles since 2000.

To compensate for lack of time series variations we use county level data and rely on cross-

sectional variation to identify the key determinants of voter turnout and election outcomes.

Variation at the level of U.S. counties admits an additional novel feature – it allows for

modeling regional heterogeneity. If factors influencing voting behavior differ geographically

across the U.S., then heterogeneity will capture this crucial feature of the data. Surprisingly,

regional heterogeneity has received limited attention in the literature. Zandi et al. [2020] does

allow for fixed effects in a state-level model, but assumes that all time-varying determinants

of election outcomes have equal effects across states. The implicit assumption of such pooled

models is that over time, voters across the U.S. are similarly affected by socioeconomic and

political factors. Recent history suggests that this assumption could be too restrictive.

In view of the above considerations, our model allows for heterogeneity in the effects of

socioeconomic and demographic factors on voter turnout and election outcomes across the

eight U.S. regions, as defined by the Bureau of Economic Analysis (BEA). With county-level

data we could have allowed for a greater degree of heterogeneity, allowing the socioeconomic

indicators to have differential effects even at the individual state level. But such a fully

heterogeneous approach is subject to its own drawbacks. First, some states do not have

enough counties to consistently estimate state-specific models. To compensate, one could

increase the time dimension by collecting historical data on states with a small number of

counties, but this would increase the risk of structural breaks, and require county-level data

to be available further back in time, which is not so in the case of many socioeconomic

factors. Second, counties across state borders tend to share similar features, and pooling

their data into regions is likely to result in more efficient estimates.

In addition to allowing for heterogeneity, we also address the issue of simultaneous de-

termination of voter turnout and election outcomes, by modeling them together at the level

of counties. A large and growing literature on voter turnout tends to study the phenomenon

separately to voting, despite the intimate link that exists between the two choices. Zandi

et al. [2020] cites that ignoring unexpected voter turnout was a key contributor to their

incorrect 2016 election prediction. We adopt a recursive approach to deal with this simul-

taneity by first modeling voter turnout, and then condition the election outcomes on the

fitted (predicted) values of voter turnout. We allow for regional heterogeneity by estimating
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separate county-level panel regressions for the eight BEA regions, and compare the results

to the estimates and predictions we obtain from pooled homogeneous models. We also

apply high-dimensional variable selection algorithms to guide our selection and estimation

procedure over a large set of potential covariates. We consider both penalized regression

and high-dimensional variable selection techniques, and use the ‘Least Absolute Shrinkage

and Selection Operator’ (Lasso, Tibshirani [1996]) as an example of the former, and ‘One

Covariate at a time Multiple Testing’ (OCMT, Chudik et al. [2018]) as an example of the

latter. Our collection of socioeconomic and demographic data across states and counties is

largely motivated by the literature on election modeling. We consider economic variables

such as local unemployment, income, house prices, government employment and healthcare

expenditures. We also consider demographic and geographic indicators such as population

density, urban-rural classification, poverty rates, education and religiosity. Inspired by recent

evidence from Autor et al. [2016] and Jensen et al. [2017], we also test the effects of being

economically ‘left behind’ and international competition on voting outcomes. In addition,

our model is sufficiently flexible to allow for interactions intended to capture presidential

and party incumbency effects on voter turnout and election outcomes.

We show that the relationship between many economic variables and voting outcomes

are not uniform across U.S. regions. First using only data available prior to the 2016 Presi-

dential election, we estimate a model allowing for such regional heterogeneity and show that

it forecasts correctly the unexpected 2016 Republican candidate victory. By contrast, we

find that a standard model which pools information across counties at the national level

would have predicted a presidential victory for the Democratic candidate – in line with a

majority of 2016 presidential forecasts leading up to the election. The two regional mod-

els we estimated using Lasso and OCMT, respectively, forecast 308 and 307 electoral votes

for the Republican candidate, compared to the actual 304 won by Donald Trump in 2016.

These results support the view that political polarization across regions contributed to the

surprise 2016 presidential election (Sides et al. [2017], Gelman and Azari [2017]). Moreover,

models incorporating regional heterogeneity and variable selection vastly improves electoral

predictions among key swing states which drive the resulting Republican victory in 2016.

Meanwhile, models which pool all of the data more accurately predicted overall popular vote

outcomes, which the Democratic party won in 2016.

We then further investigate regional heterogeneity in the determinants of election cycles

by estimating the recursive model over the full sample from 2000 to 2016. Our analysis

corroborates the usefulness of several variables identified in the literature as important in

explaining voting outcomes. At the same time, we highlight the extent of geographical vari-

ation in the estimates and their importance for our forecasting analysis. Important factors
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explaining voting behavior include voter turnout, local economic performance, unemploy-

ment, poverty rates, education, house price changes, urban-rural scores. Our results also

corroborate evidence supporting incumbency effects and evidence of ‘short-memory’ among

voters: economic fluctuations realized a few months prior to the election are indeed more

powerful predictors of voting outcomes as compared to their longer-run analogues.

Based on available data at the time of forecasting (early September 2020) we have also

updated the 2016 model specification to generate predictions for the 2020 U.S. Presidential

election under different regional model specifications. Our predictions suggest the outcomes

to be very close. The Lasso-regional model forecasts Republicans winning 260 electoral votes,

while the OCMT-regional model forecasts Republicans winning 290 electoral votes, recalling

that 270 electoral votes are need for a win. Averaging the county-level predictions of these

two models we predict 269 electoral votes for the Republican candidate. All models point to

a popular vote favoring the Democratic candidate.

The rest of this paper is organized as follows: Section 2 presents our modeling approach

and its relation to the literature. Section 3 characterizes our two-stage model of voter

turnouts and election outcomes. Section 4 discusses our identification procedure to consis-

tently estimate the model. Section 5 goes over the data used in the analysis. Section 6

discusses how we consolidate the data into ‘active sets’ prior to estimation and Section 7

covers variable selection techniques applied during estimation. Section 8 describes the U.S.

Electoral College process from which we generate election forecasts using county level predic-

tions. Section 9 evaluates the 2016 U.S. presidential election outcome under our framework,

generating 2016 election forecasts only using data available prior to the election. Then Sec-

tion 10 more broadly investigates key determinants of U.S. election cycles using data over

the full sample from 2000 to 2016. Section 11 provides and discusses the forecasts for the

2020 U.S. Presidential election. Section 12 concludes.

2 Our Modeling Approach and its Relation to the Lit-

erature

Generally speaking, two approaches are considered in modeling and predicting U.S. presi-

dential elections: statistical (econometric/machine learning) and polling, or a combination

of the two (Leigh and Wolfers [2006]). Political opinion polls exclusively rely on survey re-

sponses and aim to elicit the voting intentions of respondents (Wang et al. [2015]). Opinion

polls provide timely information on possible election outcomes, but have a number of well

known shortcomings, including sample selection bias which tends to become accentuated
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due to voter heterogeneity, and the phenomenon known as socially desirable responding,

which is believed to have biased the polling outcomes in favor of Hillary Clinton during the

2016 election.2 See, for example, Kou and Sobel [2004], Biemer [2010], Shirani-Mehr et al.

[2018], Graefe [2018].3 The statistical approach primarily relies on demographic and socioe-

conomic indicators to predict election outcomes believing that voting intentions are formed

largely by voters’ personal experiences and their counterfactual evaluation of socioeconomic

outcomes under alternative candidates. Among the statistical approach, time-series models

have historically dominated, starting from the seminal work of Kramer [1971], Fair [1978],

Fair [1996], and Arcelus and Meltzer [1975]. More recently, Kahane [2009], Hummel and

Rothschild [2014]. Zandi et al. [2020] extend time-series models using panel data, estimating

state-level models for U.S. elections. Zandi et al. [2020] employs fixed effects panel regres-

sions which allow for some state-level heterogeneity through the intercepts, but otherwise

all time-varying determinants of election outcomes are assumed to have homogenous effects

across all states. The aggregate time series and the state-level panel data models both rely

on time series dimension of the panel, T , to be sufficiently large to obtain reasonably precise

estimates of the relationship between socioeconomic variables and the election outcomes.

This in turn requires model stability which is unlikely to hold over long time spans, partic-

ularly considering that the socioeconomic determinants of election cycles in the 1950’s are

unlikely to apply in the 21st century.

To deal with the heterogeneity and possible model instability, we exploit variations across

3,107 mainland U.S. counties and consider only the last five election cycles starting with

2000 (Bush-Gore election) to avoid possible model instability. In principle, we could allow

for the effects of socioeconomic factors to differ across all the 48 mainland states.4 However,

some states have only a few counties, and with the time dimension being quite small (with

T = 4, noting the data for the 2000 election must be used for construction of lagged values),

the state level estimates are unlikely to be reliable and could introduce unexpectedly large

sampling errors into the analysis. Furthermore, counties across state borders often share

similar features such that estimation could be made more efficient by pooling information

from such neighboring states. We address these challenges by grouping the states into eight

regions defined by the Bureau of Economic Analysis (BEA), and estimate eight separate

regional panel regressions. In this way we hope to strike a balance between allowing for

2Stratified sampling is required for reliable polling which could be quite costly to implement properly,
especially in a vast country with sizeable political heterogeneity such as the U.S..

3Opinion polls are to be distinguished from exit polls that are a kind of ”nowcasting” and are not of
concern in this paper.

4We do not model turnout and election outcomes for Alaska and Hawaii, and with some justification
assume that the election results for these states in 2012 carry over to the 2016 and 2020 elections.
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heterogeneity and achieving reasonable estimation precision. A pre-determined regional

classification ensures against data mining and provides a level of heterogeneity suitable for the

data.5 We can, therefore, capture possible regional differences in voting preferences and, more

generally, differences in demographic, social, and economic heterogeneity across the United

States. Our modeling framework allows for intercept and slope heterogeneity across regions,

while assuming homogeneity within regions. Our model generates predictions for 3,107

counties for a given election year. We further aggregate these predictions to generate state

level and national level popular vote predictions, as well as electoral college vote predictions.

Several recent papers have studied the geographical determinants of election outcomes,

focusing on cross-county variation. Economic performance linked to international competi-

tiveness has been shown to influence county-level voting preferences in Autor et al. [2016] and

Jensen et al. [2017]. Scala and Johnson [2017] identify large differences in voting preferences

across the rural-urban spectrum in elections from 2000 to 2016. In a cross-sectional study,

Kahane [2020] shows that the rural-urban spectrum, poverty rates, education, among several

other demographic factors, shaped 2012 and 2016 election outcomes. Like these studies, we

investigate U.S. election cycles, specifically exploiting variation at the U.S. county level while

also allowing for regional heterogeneity. However, the scope of our work not only allows for

ex-post evaluation, it can also be used for forecasting election outcomes, as we show by

reporting predictions for the 2020 U.S. Presidential Election. Moreover, we rely on recent

advances in high-dimensional data analytic techniques to guide our analysis both for select-

ing important determinants of voting outcomes and also for evaluating elections. Modeling

elections is a high dimensional, mixed-frequency problem. Many potential economic and

demographic explanatory variables have been documented in the literature. These variables

are observed at different frequencies, and their long-term versus short-term impact on voting

outcomes is not necessarily the same. We consider both penalized regression and variable

selection adjusting for multiple testing. Specifically, we apply Lasso (Tibshirani [1996]) and

the One, One-Covariate-at-a-time-Multiple-Testing (OCMT) procedure proposed in Chudik

et al. [2018], respectively. See Section S3 of the Online Supplement for further details.

5We do not follow the alternative statistical grouping strategy whereby the number and the membership
of the groups are determined by machine learning techniques. This could be the subject of future research.
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3 Modeling Turnout and Election Outcomes

3.1 Voter turnout

One novel departure of our modeling strategy from the prevailing literature is the joint

consideration of voter turnout and election outcomes. Voter turnout and election outcomes

have traditionally been studied separately. Zandi et al. [2020] discusses election scenarios

based on low, medium and high turnouts, but does not explicitly model the turnout process.6

By contrast, we impose a recursive strategy to consistently model the simultaneous voter

turnout and election outcomes.

Understanding voter turnout, like voting behavior itself, is a topic of interest among many

political scientists and economists. Despite its importance, there is no consensus on what

best explains, causes, and/or predicts turnout. As a result, researchers have approached the

question from several different angles. Early research on understanding voter turnout can be

traced back to Powell [1986] and Jackman [1987]. Both studies look at cross-country voting

patterns and uncover a similar theme where countries with greater institutional quality

also have higher voter turnouts.7 More recent research, however, argues that the role of

institutional quality is much less clear-cut (see Blais [2006]), highlighting the challenges

faced by researchers attempting to understand voter turnout.

Given its long and active history, a wide variety of theories and research approaches have

led to many interesting findings. For example, survey-based approaches - where survey-

takers are simply asked whether they will vote - have been used for predicting voter turnout.

Despite their drawbacks (e.g. Social Desirability Bias) survey data used directly or fed into

a statistical model have both been shown to predict turnouts with mixed results (Rogers and

Aida [2014], Keeter et al. [2016]). Alternatively, several empirical studies show significant

associations between voter turnout and socioeconomic factors, including campaign spending,

voting history, contact with campaign workers, sector of employment, marital status, educa-

tion, gender, age and income. See, for example, (Wolfinger and Rosenstone [1980], Matsusaka

[1995], Rogers and Aida [2014]).8 The likelihood of voting has even been linked to genetics.

See (Fowler and Dawes [2008] and Fowler et al. [2008]).

Cancela and Geys [2016] conduct a meta-analysis of 185 articles focused on voter turnout

in the U.S., finding that campaign expenditures, election closeness and registration require-

6Zandi et al. [2020] find that their predictions errors for 2016 are largely explained by unexpected turnout,
and their 2020 election prediction crucially depends on which scenario is adopted for turnout.

7These qualities include: competitive districts, electoral disproportionality, multipartyism, unicameralism,
and compulsory voting.

8In contrast, Matsusaka and Palda [1999] show that, despite statistical significance, explanatory power
for predictive purposes is not much better than if one were to guess randomly.
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ments have more explanatory power in national elections, whereas population size and com-

position, concurrent elections, and the electoral system play a more important role for ex-

plaining turnout at subnational elections. More recently, machine learning methods, trained

on individual-level socio-demographic data have been applied by campaigns to micro-target

potential voters (Rusch et al. [2013]). A recent research on voter turnout which is particu-

larly relevant to our analysis is the paper by Biesiada [2018],who analyzes county-level voter

turnout and finds that inequality, education, past voter turnout, gender proportion and me-

dian age are significantly associated with turnout at the county-level. We shall make use

of these insights in arriving at the set of potential covariates that we will be using for our

regional models of voter turnout.

3.2 Log-odds ratio of Republican to Democrat votes

Consider county c located in region r for the election years t = 2000, 2004, 2008, 2012, 2016,

and denote the log-odds ratio of Republican to Democrat votes for this county by LROcr,t.

Specifically, let

LROcr,t = ln

(
Rcr,t

Dcr,t

)
= ln

(
Vcr,t

1− Vcr,t

)
, (1)

where Rcr,t and Dcr,t denote Republican and Democratic votes, respectively, and Vcr,t =

Rcr,t/(Rcr,t +Dcr,t) is the Republican vote share in year t.9 The BEA regional classification

groups the 48 mainland states and the District of Columbia into eight regions: New England,

Mideast, Southeast, Great Lakes, Plains, Rocky Mountain, Southwest, and Far West.

While the literature tends to study the two-party vote share, Vcr,t, we have chosen to

consider the log-odds ratio variable, LROcr,t. Our preference for the log-odds ratio is its

wider range of variations (−∞,+∞) as compared to (0, 1) for Vct,t, and the fact that its use

as the dependent variable universally provides better in-sample fits as compared to using

Vcr,t.
10 The use of LROcr,t is also more likely to support the linearity assumption made in

the panel regressions specified below. Also to deal with the highly persistent nature of the

LRO variable we use the transformation DLROcr,t+4 = LROcr,t+4 − LROcr,t, namely the

change in the log-odds ratio from one election cycle to the next, for county c in region r. For

9The use of LRO as a measure of election outcome assumes that the effect of third party independent
candidate(s) on the two-party race outcome is negligible. This assumption seems reasonable for the election
cycles 2016 and 2020 that are the focus of this paper.

10We empirically validate our choice of the functional form by comparing model fit across both dependent
variables: the log-odds ratio and the traditional vote share measure. We find that the log-odds ratio indeed
improves the model fit over the vote share. Details can be found in Section S2 of the Online Supplement.
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each region r = 1, 2, ..., 8 we consider the following separate panel regressions

DLROcr,t+4 = aDLRO,r + φ′rzDLRO,cr + βrV Tcr,t+4 + γ′rxDLRO,cr,t+3 + εcr,t+4, (2)

where aDLRO,r is the region-specific fixed effects, time-invariant county-specific covariates are

represented by zDLRO,cr, and state or county level time-varying covariates from the year pre-

ceding the election are included in xDLRO,cr,t+3. In our application, t ∈ {2000, 2004, 2012, 2016}
and therefore t + 4 denotes the upcoming election (four years after the year t election, and

t+3 denotes the year preceding the upcoming election. The voting outcome is also a function

of the voter turnout variable, V Tcr,t+4.

We define voter turnout of county c in region r in election year t as

V Tcr,t =
Rcr,t +Dcr,t

V APcr
, (3)

which is equal to the total two-party votes as a proportion of the voting age population

(V APcr) of county c in region r for election year t. VAP is considered time-invariant due

to its persistent, slow-moving nature. Specifically, our measure of VAP is reported as a 5-

year average. Due to data availability, we use 2012-2016 VAP estimates for 2016, 2008-2012

estimates for 2012, and 2005-2009 estimates for 2008 and 2004 elections.

In the year of the election, V Tcr,t+4, voter turnout, like DLROcr,t+4, is determined by a

variety of demographic and economic factors:

V Tcr,t+4 = aV T,r + ψ′rzV T,cr + λrV Tcr,t + δrDLROcr,t+4 + θ′rxV T,cr,t+3,+ vcr,t+4, (4)

such that turnout is a function of time-invariant and time-varying variables, along with the

turnout from the previous election, and also the change in the log-odds ratio, DLROcr,t+4. We

allow the innovations to theDLROcr,t+4 and V Tcr,t+4 equations to be correlated, cov(εcr,t+4, vcr,t+4) 6=
0, which reflects the simultaneity of the decision to vote and for which candidate to cast one’s

vote.

In both voter and turnout equations, time-invariant factors can include slow-moving

socioeconomic and demographic factors like education, migration, religiosity, and urban-

rural classification. Time-varying factors include local unemployment rate, poverty rate,

household median income, changes in house prices, government and private employment,

among others.

Notice that Equations 2 and 4 represent a system of simultaneous equations. Voting is a

function of voter turnout (one can only vote if one shows up), and voter turnout is (in general)

a function of the voting outcome. This introduces endogeneity into the voting process and
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biases the least squares estimates of βr and δr when εcr,t+4 and vcr,t+4 are correlated. Non-

zero correlations between εcr,t+4 and vcr,t+4 could arise due to common beliefs about the

election outcomes. For example, strongly held beliefs about the election outcome in a given

state might adversely impact the decision to vote, whilst the decision to vote clearly does

affect election outcomes no matter which way the voter decides to cast his/her vote.

4 Recursive Identification

The estimation of DLROcr,t+4 and V Tcr,t+4 equations clearly encounters an identification

problem very much akin to the identification of demand and supply shocks in standard

supply-demand models in economics. However, if one is concerned with prediction, a reduced

form model of DLROcr,t+4 can be used where the turnout variable V Tcr,t+4 is solved out and

DLROcr,t+4 is defined only in terms of the union of predetermined variables included in

the two equations. Such an approach ignores the possible contemporaneous effect of voter

turnout on election outcomes and could lead to inefficient predictions. In this paper we

follow the alternative structural approach, and identify the model by imposing a triangular

restriction on the contemporaneous dependence between DLROcr,t+4 and V Tcr,t+4, namely

by setting δr = 0. The intuition behind this restriction is that the individual decision to vote

is not affected by his/her expected state-level collective outcome. This type of restriction is

inspired by the pioneering work of Wold [1960], and is known as recursive causal ordering

and often adopted in empirical macroeconomic analysis of simultaneous equation systems.

But note that we do allow for contemporaneous dependence between the innovations to the

voter turnout and the election outcome. In this sense the identification scheme adopted can

be viewed causal with V T causing DLRO and not vice versa.

We believe the recursive ordering, with V Tcr,t+4 included first, is a plausible a priori

restriction, especially in the U.S. context where presidential elections are held simultaneously

with other local and state-level elections, covering the election for the Senate and all the

House seats. These additional elections influence turnout regardless of expected presidential

ballot outcome. Second, the data and the literature suggest that turnout is highly persistent.

Moreover, the existence of ‘blue’ states and ‘red’ states – states which consistently and

predictably vote for one of two parties – suggests that turnout does not collapse when

collectively there are strong expectations for a particular party to win the state.

Subject to the identifying restriction, δr = 0, consistent estimation of the remaining

parameters of the V Tcr,t+4 and DLROcr,t+4 equations can be carried out recursively using a

two-stage estimation procedure. In the first step the turnout equation (V Tcr,t+4) is estimated

by least squares, and then the fitted values of voter turnout (denoted by V̂ T cr,t+4) is used as
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a regressor in the election outcome equation (DLROcr,t+4).
11 The estimating equations can

now be written as

V̂ T cr,t+4 = âV T,r + ψ̂′rzV T,cr + λ̂rV Tcr,t + θ̂′rxV T,cr,t+3, (5)

and

D̂LROcr,t+4 = âDLRO,r + φ̂′rzDLRO,cr + β̂rV̂ T cr,t+4 + γ̂′rxDLRO,cr,t+3. (6)

We allow for regional heterogeneity in both equations – all coefficients are specific to region

r. In addition to the eight region-specific panel regressions, we also consider a pooled model

for comparison purposes. The pooled model is a restricted version of the heterogeneous

model such that all coefficients in the turnout and voting equations are restricted to be the

same across all the regions, namely aTO,r = aTO, λr = λ, aDLRO,r = aDLRO, βr = β, and so

on. The regional and pooled models are estimated by least squares, subject to the variable

selection problem that will be addressed below.

5 Electoral and Socioeconomic Data and Their Sources

We use data from county-level presidential votes and turnouts for five U.S. elections: 2000,

2004, 2008, 2012, and 2016. Because we model the change in the log-odds ratio of Republican

vote, our regression estimates are based on four election cycles: 2000-2004, 2004-2008, 2008-

2012, and 2012-2016. Our data set is composed of a total of 3,107 counties over the mainland

48 states plus Washington D.C. for a total of 12,428 county-election cycles.12 Each state, and

therefore each county, falls into to one of the eight BEA regions. The list of states included

in these regions is given in Table 1. Figures S.2 and S.3 of the Online Supplement show

the histograms of the voter turnout variable, V T, and the change in Republican log-odds

ratio, DLRO, respectively, both for the mainland US, as well as for the eight BEA regions.13

These histograms provide a visual account of the degree of regional heterogeneity in V T

and DLRO variables which, as we shall see, play an important role in understanding and

predicting U.S. presidential election outcomes.

As predictors of voter turnout and election outcomes we consider two categories of co-

variates: time-invariant and time-varying. Data on time-invariant covariates tend to be

collected at low frequencies and either do not vary or show very little variation over the four

11A formal proof of consistency is provided in Section S4 of the Online Supplement.
12The number and composition of some of the counties have undergone some changes over the past two

decades. The procedure we followed to deal with these changes is explained in the Online Supplement.
13To save space additional summary and result tables, and and figures are provided in the Online Supple-

ment and designated with the prefix letter S.
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Table 1: Bureau of Economic Analysis regional classification with Swing States designated
in bold

BEA Region States

1 New England ME, NH, VM, MA, RI, CT
2 Mideast NY, NJ, PA, DE, MD, DC
3 Southeast VA, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, WV
4 Great Lakes MI, OH, IN, IL, WI
5 Plains MN, MO, KS, NE, IA, SD, ND
6 Rocky Mountains MT, ID, WY, UT, CO
7 Southwest TX, OK, NM, AZ
8 Far West CA, NV, WA, OR, AK, HI

election cycles that we are considering - we treat all such variables as time-invariant and use

their time averages if needed. These include measures on county demographics, education,

religiosity, migration, population density, urban-rural classification scores, and vote-by-mail

policy of the state. Time-varying measures vary at state or county levels. These include

economic data on unemployment rates, house prices, poverty rates, and median incomes.

Moreover, we consider data on export-weighted real exchange rates by U.S. state (as a proxy

for international competition) , government size, healthcare costs, inflation, and Midterm

elections, that vary across states but do not vary across counties within a given state.

The choice of the covariates is guided by the literature. But we also include a new

covariate that measures relative economic performance to gauge the degree a county has

been ‘left-behind’. This is measured as county c’s annual real GDP growth relative to the

national and/or the regional average real GDP growth. We find that being economically left

behind over the past several years is significantly correlated with changes in the Republican

vote share, and we therefore incorporate this novel measure as a covariate to explore its

implications further. See Section S1 of the Online Supplement for further details.

To capture spatial effects, we compute and incorporate local average measures of several

county-level covariates. The local variables corresponding to county c are the average of

individual county measures of all counties within 100 miles of county c. We consider both

individual and local measures for many county-level variables including migration and edu-

cation, while unemployment and house prices are computed as local measures only. Local

variables are denoted with a ‘*’. Hence, “edu2000” and “edu2000*” correspond to individual

and local education rates, respectively. County house prices and unemployment rates are

always local averages.

The dynamic nature of election cycles admits additional complexity into the prediction

problem. Dynamics matter, and voters may place differential weight on determinants of
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their vote depending on not just what was realized, but when it was realized relative to

the election. The literature, for example, documents a strong short-lived memory among

voters, who typically consider only the past year’s economic performance when evaluating

the incumbent party’s overall performance. To embed these features in our model, we take

a mixed-frequency approach and include both short-term and longer-term measures of our

time-varying covariates which have data reported at high (monthly) frequencies. This in-

cludes three variables: county house price changes, county unemployment rates, and state

export-weighted real effective exchange rates. For example, we include annual average house

price changes as well as house price changes three months in the election year but prior to

the election held in November. We do similarly for unemployment rates and exchange rates,

to capture both shorter-term and longer-term effects of economic conditions on the voting

behavior. 1-year and 3-month average unemployment rates will be denoted by “ump L1”

and “ump M3”, respectively. The 1-year average is computed over the 12 months from June

in the election year to July of the previous year, and the 3-month average is computed using

data for July, August and September of the election year.

Finally, to capture the incumbency effects on voter turnout and election outcome we

consider two types of indicators, and distinguish between presidential and party incumbency

indicators. The “incumbent party indicator” takes the value of 1 if on the election day the

president in power is Republican and -1 if he/she is a Democrat. The “incumbent president

indicator” takes the value of 1 if the president who is running for re-election is a Republican,

takes the value of -1 if he/she is a Democrat, and takes the value of 0 if neither of the two

candidates is incumbent. These indicators are considered on their own, as well as interacted

with a number of other covariates. In this way we allow for a wide variety of incumbency

effects (positive or negative) discussed in the literature, without biasing the results in favor

of or against the incumbent president or party.

Additional information on data sources, the transformations used to construct the co-

variates and data cleaning carried out to deal with changes in county boundaries and other

variable definitions, are provided in Section S1 of the Online Supplement.

6 Active Sets for V T and DLRO Panel Regressions

As is clear from the above account, there are many covariates that can be considered as

potential predictors of V T and DLRO variables, and some variable selection is required to

avoid over-fitting. Variables for the voter turnout regression, zV T,cr and xV T,cr,t+3, are taken

from a set of covariates designated to turnout. Similarly, covariates for the voting odds

ratio regression, zDLRO,cr and xDLRO,cr,t+3, are selected from a different set designated to the
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voting equation. We refer to these sets as ‘Active Sets’ for V T and DLRO, respectively.

First, we construct a single data set which includes many individual and local measures,

temporal lags, incumbency indicators and their interactions. The result is a large set of

potential predictors which reflect changes in social, economic, or demographic conditions

across both space and time. Many of these variables are highly correlated with each other.

Therefore, to discipline our estimation procedure, active sets contain exclusively the set of

covariates to be considered by the regression model. The choice of potential covariates is

largely inspired by the literature. We also account for the temporal effects, again inspired

by the literature, documenting a strong short-memory among voters such that they tend to

disproportionately overweight economic progress or deterioration made within the several

months preceding the election (and ignore longer-lived developments over the entire 4-year

election cycle) .

Table 2: Summary statistics for the covariates in the active set for V T panel regressions over
the period 2000-2016

Covariate Description Mean St. Dev. Regional Coverage

r incu pa indicator taking 1 if incumbent party is Republican, 0.000 1.000 National
-1 if incumbent party is Democrat

r incu pr indicator taking 1 if Republican re-election, 0.000 0.707 National
-1 if Democratic re-election, 0 if no re-election

VT L1 voter turnout proportion 0.564 0.097 County
VT L1 x r incu pa. Lagged VT interacted with incumbency indicator 0.015 0.583 County
hlt L1 change in log healthcare expenditures, year preceding election 0.046 0.016 State
gov L1 change in log government employment, year preceding election −0.012 0.015 State
ump L1 unemployment rate avg., year preceding election 0.061 0.020 County
hpret L1 change in log house prices avg., year preceding election 0.022 0.043 County
rp L1 change in log rental expenditure, year preceding election 0.032 0.012 State
religion religiosity rate 0.511 0.170 County
religion x r incu pa. religion interacted with incumbency indicator 0.000 0.539 County
migrate net migration (time-invariant) 0.005 0.009 County
migrate x r incu pa. migrate interacted with incumbency indicator 0.000 0.010 County
edu2000 proportion with bachelor’s degree or higher (time-invariant) 0.165 0.078 County
edu2000 x r incu pa. edu2000 interacted with incumbency indicator 0.000 0.183 County
ln(m.inc) log median household income 10.633 0.254 County
ln(m.inc) x r incu pa. ln(m.inc) interacted with incumbency dummy −0.075 10.636 County
povr poverty rate 0.155 0.062 County
povr x r incu pa. povr interacted with incumbency dummy −0.013 0.167 County
rural urban-rural score (-4 to 4, time-invariant) 0.111 2.680 County
rural x r incu pa. rural interacted with incumbency dummy 0.111 2.680 County
vmail d indicator whether state mandates mail-in voting (1), −0.301 0.564 State

optional (0), no mail-in voting (-1)

Among time-varying factors (xDLRO,cr,t+3 and , xV T,cr,t+3) we include both short-run (3-

months before the election) and medium-term (1-year preceding the election) changes in

those measures which are observed at high frequency, like house price changes and local
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unemployment rates. This allows economic changes which occur just prior to an election to

have a different, potentially more powerful, impact on voting behavior compared to longer

term changes in economic conditions. Time-invariant covariates (zV T,cr and zDLRO,cr) include

slow-evolving socioeconomic and demographic factors like migration, urban-rural score, ed-

ucation and religiosity.

Table 2 lists and describes the active set for the voter turnout (V T ) variable. The active

set contains a variety of national, county, and state-varying covariates. Voter turnout is

a highly persistent process, and as such lagged turnout is also included in the active set.

To account for covariates having effects which are party-agnostic, and rather go in favor or

against incumbent parties, we interact several variables with an incumbent party indicator

which indicates whether the current president is Democratic or Republican.

Table 3 lists and describes the active set for the change in log-odds (DLRO) variable. As

with the model for voter turnout, this active set contains national, state, and county-level

covariates. The number of regressors in the active set exceeds 30. Time-invariant active set

regressors include population density, rural-urban score, education rates and migration rates.

Covariates which vary over time include house election results, economic ‘left-behind’ variable

(not included in the voter turnout regressions), healthcare costs, government employment

share, export-weighted state-level real exchange rate changes, local unemployment, house

price changes, rent costs and inflation. Notice also that this active set includes the fitted

values of voter turnout variable, V̂ T , which is obtained from the application of variable

selection algorithms to the V T panel regressions. As a result the particular fitted values, V̂ T ,

included in the active set for the DLRO variable will depend on the outcome of the variable

selection algorithm applied to the panel regressions for the V T variable (which mimic the

recursive nature of our identification scheme). In a sense high-dimensional variable selection

algorithms are applied twice, but recursively. With this in mind the summary statistics given

for the V T variable in Table 3 refer to the realized voter turnout values, and not the fitted

ones used for variable selection in the case of DLRO regressions.

Finally, in the case of the regional models, we exclude state-level covariates (that do not

vary across counties within a given state) listed in the active set because they do not provide

sufficient variation and become collinear. The national or pooled model includes state-level

covariates listed in the active sets as well.

7 Estimation and Variable Selection Algorithms

Given the high-dimensional nature of the problem, we consider two estimation/selection

algorithms that address the over-fitting problem, namely cross-validated Least Absolute
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Table 3: Summary statistics for the covariates in the active set for DLRO panel regressions
over the period 2000-2016

Covariate Description Mean St. Dev. Regional Coverage

r incu pa indicator taking 1 if incumbent party is Republican, 0.000 1.000 National
-1 if incumbent party is Democrat

dLRO hous change in log Republican odds from preceding House election 0.087 0.346 State
VT voter turnout proportion from the first-stage VT regression 0.576 0.090 County
VT x r incu pa. VT interacted with incumbency indicator 0.015 0.583 County
LBCG L1 county ’Left-Behind’ measure, year preceding election −0.005 0.087 County
LBCG L1 x r incu pa. LBCG L1 interacted with incumbency indicator −0.002 0.087 County
hlt L1 change in log healthcare expenditures, year preceding election 0.046 0.016 State
gov L1 change in log government employment, year preceding election −0.012 0.015 State
rusd L1 change in log real effective USD, year preceding election 0.009 0.055 State
rusd L1 x r incu pa. rusd L1 interacted with incumbency indicator −0.047 0.031 State
rusd M3 Change in log real effective USD, 3 months preceding election −0.012 0.114 State
rusd M3 x r incu pa. rusd M3 interacted with incumbency indicator 0.046 0.105 State
ump L1 unemployment rate avg., year preceding election 0.061 0.020 County
ump L1 x r incu pa. ump L1 interacted with incumbency indicator −0.007 0.064 County
ump M3 unemployment rate avg., 3 months preceding election 0.060 0.019 County
ump M3 x r incu pa. ump M3 interacted with incumbency indicator −0.004 0.063 County
hpret L1 change in log house prices avg., year preceding election 0.022 0.043 County
hpret L1 x r incu pa. hpret L1 interacted with incumbency indicator 0.001 0.048 County
hpret M3 change in log house prices avg., 3 months preceding election 0.025 0.055 County
hpret M3 x r incu pa. hpret M3 interacted with incumbency indicator −0.007 0.060 County
rp L1 change in log rental expenditure, year preceding election 0.032 0.012 State
inf L1 inflation, year preceding election 0.021 0.022 State
migrate net migration (time-invariant) 0.005 0.009 County
migrate* local net migration (time-invariant) 0.010 0.006 County
edu2000 proportion with bachelor’s degree or higher (time-invariant) 0.165 0.078 County
edu2000* local proportion with bachelor’s degree or higher (time-invariant) 0.165 0.040 County
ln(popdens) log population density (time-invariant) 3.727 1.668 County
ln(m.inc) log median household income 10.633 0.254 County
ln(m.inc) x r incu pa. ln(m.inc) interacted with incumbency indicator −0.075 10.636 County
povr poverty rate 0.155 0.062 County
rural urban-rural score (-4 to 4, time-invariant) 0.111 2.680 County

Mean and standard deviation for actual, not model-fitted voter turnout “VT” reported. In actual model
estimation the active set for DLRO contains V̂ T , the fitted value of V T obtained from estimating Equation
5. Because V̂ T is model-specific, the mean and standard deviation of the fitted voter turnout V̂ T differs
from actual V T and also varies across models.

Shrinkage and Selection Operator (Lasso) originally introduced by Tibshirani [1996]), and

the One Covariate at a Time (OCMT) recently proposed by Chudik et al. [2018]. We

estimate both nationally pooled and regional models, the latter allowing for heterogeneity

across BEA regions. At the regional level, Lasso and OCMT is applied to the region-specific

covariates, by pooling the observations over the four election cycles under consideration.

The main difference between Lasso and OCMT is in the way they deal with the over-

fitting problem. Lasso introduces a penalty term in the minimand used for estimation, and

calibrates the extent of penalization by cross-validation (typically 10-fold cross-validation).

The use of cross-validation is supported by Monte Carlo evidence for standard models with

homoscedastic and cross-sectionally independent errors. But both of these assumptions are
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likely to be violated in the case of the panel regressions on U.S. counties.

By contrast, OCMT is a multi-step algorithm which allows for multiple testing in variable

selection. In the first stage, OCMT runs univariate regressions, one at a time, selecting

significant covariates after adjusting the critical value of for multiple testing. In subsequent

stages, OCMT includes all selected variables in the first stage in a multiple regression, and

then re-tests those covariates which were not selected in the first stage, and so on. The

critical values adjusted for multiple-testing given by cp(k, δ) = Φ−1
(
1− p

2kδ

)
, where Φ−1 (.)

is the inverse of the cumulative distribution function of the standard normal, p is the nominal

size of the individual tests (not allowing for multiple testing), k is the number of covariates

in the active set, δ captures the degree to which the critical values are adjusted for multiple

testing. Extensive Monte Carlo experiments carried out by Chudik et al. [2018], suggest

setting δ = 1 in the first stage of OCMT and δ = 2 in subsequent stages. We set p = 0.05

and note that the results are reasonably robust to setting p = 0.01 or 0.10.

We also adjust the standard errors of the individual tests used in the OCMT procedure

for possible error variance heterogeneity and spatial dependence across counties, assuming

that equation errors within the same state are correlated due to political boundaries and the

state-level governing nature of the U.S., but rule out residual serial correlation. Accordingly,

we base our computation of individual t-tests using standard errors clustered by state-year

for the pooled model. This yields a reasonably large number of 196 clusters (49 states × 4

years). For the regional model, we cluster standard errors by state.14

Details of the selection and estimation procedures for Lasso and OCMT are provided in

Section S3 of the Online Supplement.

8 U.S. Electoral College

U.S. elections are determined by the number of Electoral College votes obtained. The Elec-

toral College consists of 538 electors and an absolute majority of 270 electoral votes is

required to win the election. Each state is assigned a fraction of total delegates for the

electoral vote. For example, the share of California in 2016 was 55/538. This share is to

be compared to the share of popular votes by state, given bywst = (Rst +Dst) / (Rt +Dt),

where Rst is the number of Republican votes in state s, and Rt is the total number of Re-

publican votes across all states (including DC): Rt =
∑51

s=1Rst. Similarly, for Dst and Dt.

Let Vst = Rst/(Rst + Dst) and Vt = Rt/(Rt + Dt), denote state-specific and national level

shares of Republican votes, respectively. Then Vt =
∑51

s=1wstVst, where wst is defined above.

14Similar results are obtained if clustering is done at either the state-year or state level.

17



We can distinguish between an aggregate predictor of Vt and then declare the Republican

candidate as the winner if Vt > 0.5. But if we follow the US Electoral College rule, we can

only declare the Republican candidate as the winner if:

51∑
s=1

w(ds)1(Vst − 0.5) > 0.5 (7)

where 1 (a) = 1 if a > 0, and zero otherwise, and w(ds) = ds/d, with ds the number

of delegates allocated to state s, and d = 538 is the total number of delegates. Clearly∑51
s=1w(ds) = 1. Hence the aggregate (popular) and delegate outcomes need not coincide.

Note that Vt > 0.5 can also be written equivalently as

51∑
s=1

wstVst > 0.5. (8)

Clearly, (8) does not necessarily imply (7). The key assumption here is that all electoral

votes go towards the party that wins the state’s popular vote. Looking at recent history, this

holds generally as many states have implicit commitments to allocate electoral votes to the

candidate who wins the state by the popular vote. In 2016, all but seven electors followed

this rule.15

8.1 Forecasting turnout and election outcomes

From the previous section it is clear that we require state level Republican (Democratic) vote

shares to predict the overall outcome of the election. To this end we first note that V Tcr,t+4 =

(Rcr,t+4 +Dcr,t+4) /V APcr,t+4, where V APcr,t+4 is the eligible voting population in county c

of region r in the election year t+4. Also recall that LROcr,t+4 = DLROcr,t+4+LROcr,t, and

ln (Rcr,t+4/Dcr,t+4) = LROcr,t+4. Suppose that we have forecasts for V Tcr,t+4 and LROcr,t+4.

Then using these identities we have

Rcr,t+4 =
V APcr,t+4V Tcr,t+4

1 + exp (−LROcr,t+4)
= V APcr,t+4V Tcr,t+4

(
exp (LROcr,t+4)

1 + exp (LROcr,t+4)

)
. (9)

15In Maine, the popular vote was won by the Democratic candidate. Three of the four electoral votes
were given to the Democratic candidate, while one electoral vote was cast for the Republican candidate. In
Washington State, four out of eight electoral votes were cast in favor of candidates other than the popular
vote winner (which was the Democratic candidate). In Texas, despite the popular vote favoring Republicans,
two electoral votes were cast for non-Republican candidates.
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Similarly

Dcr,t+4 = V APcr,t+4V Tcr,t+4

(
1

1 + exp (LROcr,t+4)

)
. (10)

These county-specific votes can now be aggregated to the state level. Let Cs denote the set

of all counties in state s. Then state popular votes are computed as

Rs,t+4 =
∑
cr∈Cs

Rcr,t+4, and Ds,t+4 =
∑
cr∈Cs

Dcr,t+4, (11)

with Rcr,t+4 and Dcr,t+4 given by (9) and (10), respectively. Hence the Republican vote

share for state s is given by

Vs,t+4 =

∑
cr∈Cs Rcr,t+4∑

cr∈Cs (Rcr,t+4 +Dcr,t+4)
=

∑
cr∈Cs V APcr,t+4V Tcr,t+4

(
exp(LROcr,t+4)

1+exp(LROcr,t+4)

)
∑

cr∈Cs V APcr,t+4V Tcr,t+4

. (12)

With state-level Republican vote shares in hand, state-level popular vote outcomes, Electoral

College vote outcomes, and national popular vote outcomes can be predicted.

9 2016 Presidential Election: Prediction and evalua-

tion

We first generate ex ante forecasts of the 2016 Presidential Election using the active sets

tabulated above, and the Lasso and OCMT selection algorithms. Using data from 2000

through 2012 only, we recursively estimate the panel regressions (4) and (2) subject to the

identifying restrictions, δr = 0 and after variable selection. These selected regressions are

then used to generate out-of-sample 2016 election forecasts at the county level. We consider

both a national pooled model and a model which allows for heterogeneity across BEA regions.

We refer to these as pooled and regional model/forecasts, respectively. Importantly, we only

model the 48 U.S. mainland states plus the District of Columbia. We do not model Hawaii

or Alaska. There are multiple reasons for this. The first reason is because the two states are

not in close geographical proximity to other states, hence they are likely to be comprised of

relatively unique characteristics such that a regional model would be inadequate. Moreover,

the two states cannot be modeled individually because of the relatively small number of

counties within each state. Hawaii has five counties and Alaska has 19 boroughs. That

Alaska is composed of boroughs rather than counties further complicates modeling county-

level voting outcomes for the state. Fortunately, both Alaska and Hawaii are non-swing

states, historically voting Republican and Democrat, respectively. Therefore, in our electoral
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and national predictions we assume Alaska votes Republican and Hawaii votes Democrat.

Comparing predicted state and national popular vote and electoral votes with actual out-

comes is a natural way to evaluate the forecasting performance of our models. Alternatively,

we also provide evaluations of state and overall predictions based on traditional statistical

measures. We compute state-specific and national level root mean squared forecast errors

(RMSFE). State-specific RMSFE are defined by

RMSFEs =

√∑
cr∈Cs

wcs,t

(
DLROcr,t+4 − D̂LROcr,t+4

)2
, (13)

where wcs,t = (Rcs,t+4 +Dcs,t+4) / (Rs,t+4 +Ds,t+4) , with Rs,t+4 and Ds,t+4 computed as in

(11). The national RMSFE measure is given by

RMSFE =

√√√√ 49∑
s=1

ws,tRMSFE2
s , (14)

where ws,t = (Rs,t+4 +Ds,t+4) / (Rt+4 +Dt+4), withRt+4 =
∑49

s=1Rs,t+4, andDt+4 =
∑49

s=1Ds,t+4.

Our out-of-sample forecast and corresponding evaluations correspond to the 2016 election.

9.1 Pooled and regional forecasts

To produce 2016 out-of-sample forecasts, we use data from 2000 up to but preceding the

November election of 2016. The contenders were Democratic candidate Hillary Clinton and

Republican candidate Donald Trump. Forecast results are provided for: state-level popular

votes, electoral votes, and the overall national popular votes. Tables with electoral outcomes

for a subset of notable swing states are also included.

State level forecast results for 2016 are reported in Tables 7 and 8. These include state

election outcomes and forecasts for the Republican vote share, Vs s = 1, 2, ..., 49, along with

the forecasts of Electoral College votes for the Republican candidate. Both tables report the

pooled and regional forecasts, with Table 7 giving the results using Lasso and Table 8 giving

the results for OCMT.

It is clear that, irrespective of which algorithm is used for variable selection, the pri-

mary difference between the forecasts is whether we allow for regional heterogeneity or not.

Pooled forecasts predict a Democratic victory whilst the regional forecasts correctly predict

a Republican victory. For example, the pooled model using Lasso algorithm predicts Re-

publican winning 253 electoral college votes, whilst if we allow for regional heterogeneity the

number of electoral votes won by the Republican candidate is predicted to be 308. Based on
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Figure 1: Absolute Prediction Errors for changes in 2016 Log Republican Odds (DLROcr,2016)
across Counties using the Lasso Estimation Algorithm
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Absolute prediction errors for changes in log Republican odds by county, computed as |DLROcr,2016 −
D̂LROcr,2016| (See Equation 13).

Figure 2: Absolute Prediction Errors for changes in 2016 Log Republican Odds (DLROcr,2016)
across Counties using the OCMT Estimation Algorithm

[0,0.067]

(0.067,0.106]

(0.106,0.146]

(0.146,0.191]

(0.191,0.244]

(0.244,0.308]

(0.308,0.375]

(0.375,0.462]

(0.462,1.14]

      OCMT Pooled Model

[0,0.067]

(0.067,0.106]

(0.106,0.146]

(0.146,0.191]

(0.191,0.244]

(0.244,0.308]

(0.308,0.375]

(0.375,0.462]

(0.462,1.14]

      OCMT Regional Model

Absolute prediction errors for changes in log Republican odds by county, computed as |DLROcr,2016 −
D̂LROcr,2016| (See Equation 13).

21



the realized vote shares, Trump would have won 305 electoral college votes - although as it

turned out he received 304 electoral votes since some electors did not follow the state level

popular vote outcomes.16 A very similar conclusion emerges if we use OCMT algorithm.

Pooled OCMT would have predicted 265 electoral votes for Trump, as compared to 307 elec-

toral votes under if we allow for regional heterogeneity. These results clearly highlight the

importance of heterogeneity and could explain the failure of many professional forecasters

to correctly predict the outcome of the 2016 election.

Statistical forecast comparisons based on county-level forecasts provide a similar picture.

Figures 1 and 2 present the spatial distribution of absolute prediction errors across main-

land U.S. counties for the change in the Republican log-odds ratio, namely |DLROcr,2016 −
D̂LROcr,2016|. Clearly, some counties, regions and states were more difficult to forecast than

others. The Midwest exhibits particularly high prediction errors as seen by its generally

darker shade. However, the reduction in forecast errors is noticeable when comparing the

pooled forecasts against the regional forecasts. On average across counties, absolute predic-

tion errors are about 10 percent lower under the regional model for both Lasso and OCMT. It

is worth noting, however, that some county predictions fare better under the pooled model,

specifically those located in the southwestern part of the U.S.

9.2 Swing state forecasts

U.S. presidential elections usually come down to the results from key swing states. Therefore

a model that predicts the swing states well is likely to go a long way in correctly forecasting

the election. We consider the following 12 states as key swing states: Colorado, Florida,

Iowa, Michigan, Minnesota, Nevada, New Hampshire, North Carolina, Ohio, Pennsylvania,

Virginia, and Wisconsin. Figures 3 and 4 focus on the county-level prediction errors for

these swing states. Both Lasso and OCMT regional models improve upon Lasso and OCMT

pooled predictions across swing states broadly noted by the visually apparent reduction in

absolute prediction errors.

The improvement in county-level predictions also have important implications for the na-

tional outcomes. Table 4 shows the realized and predicted electoral college votes among the

key swing states. The Republican candidate won 114 electoral votes from the swing states in

2016 out of the possible number of 156. Comparing the pooled and regional models, the re-

gional models markedly outperform the pooled models in terms of swing state forecasts. The

Lasso-regional and OCMT-regional models predicted the Republican candidate winning 117

and 109 electoral votes in the swing states, respectively. By contrast, the pooled Lasso and

16See https://en.wikipedia.org/wiki/2016 United States presidential election
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Figure 3: Absolute Prediction Errors for changes in 2016 Log Republican Odds (DLROcr,2016)
across Counties in Swing States using the Lasso Estimation Algorithm

      Lasso Pooled Model       Lasso Regional Model

Absolute prediction errors for changes in log Republican odds by county, computed as |DLROcr,2016 −
D̂LROcr,2016| (See Equation 13).

Figure 4: Absolute Prediction Errors for changes in 2016 Log Republican Odds (DLROcr,2016)
across Counties in Swing States using the OCMT Estimation Algorithm

      OCMT Pooled Model       OCMT Regional Model

Absolute prediction errors for changes in log Republican odds by county, computed as |DLROcr,2016 −
D̂LROcr,2016| (See Equation 13).
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OCMT models predicted 62 and 74 Republican electoral votes, respectively, which resulted

the pooled models to forecast an overall presidential victory for the Democratic candidate

in 2016.

Table 4: 2016 Swing State Pooled and Regional Republican Electoral College Vote Forecasts

Pooled Forecasts Regional Forecasts
State ds Realized Lasso OCMT Lasso OCMT

CO 9 0 0 0 9 9
FL 29 29 29 29 29 29
IA 6 6 0 6 6 6
MI 16 16 0 0 0 16
MN 10 0 0 0 10 0
NC 15 15 15 15 15 15
NH 4 0 0 0 0 0
NV 6 0 0 6 0 6
OH 18 18 18 18 18 18
PA 20 20 0 0 20 0
VA 13 0 0 0 0 0
WI 10 10 0 0 10 10

All Swing Votes 156 114 62 74 117 109

Column ds refers to total number of electoral votes per state (Equation 7). Forecasts are the model implied
number of Republican electoral college votes. Regional forecasts are generated using the eight separate panel
regressions for the eight BEA regions.

Figure 5 compares swing state predicted Republican vote shares (Vs) obtained using the

Lasso algorithm. The Lasso-regional model correctly predicted 9 of the 12 swing states out-

comes, namely Florida, Iowa, Nevada, New Hampshire, North Carolina, Ohio, Pennsylvania,

Virginia and Wisconsin. The OCMT-regional model also correctly predicted 9 of 12 swing

states, namely Florida, Iowa, Michigan, Minnesota, New Hampshire, North Carolina, Ohio,

Virginia, Wisconsin (see Figure 6). One swing state mis-predicted by both Lasso and OCMT

regional models but correctly predicted by both pooled models was Colorado. Meanwhile

the most noticeable improvement from using the regional models over pooled models can be

seen with Wisconsin, a Midwest swing state. The state voted Republican in 2016, allocating

10 electoral votes to the Republican candidate. Both the Lasso and OCMT pooled models

predicted a Democratic winner in Wisconsin. By contrast, both regional Lasso and OCMT

models predicted a Republican win in Wisconsin.

The pooled models also failed to correctly predict Pennsylvania, a major swing state

with 20 electoral votes. The Lasso-regional model correctly predicted the Republican win

in Pennsylvania. The Republican victory in Michigan was also mis-predicted under both
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Figure 5: Swing State Forecasts and Realized Republican Vote Share (Vs) for 2016 using the
Lasso Estimation Algorithm
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Figure 6: Swing State Forecasts and Realized Republican Vote Share (Vs) for 2016 using the
OCMT Estimation Algorithm
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pooled model specifications, but correctly predicted by the OCMT-regional model.

9.3 U.S. Mainland Popular Vote Forecasts

The U.S. mainland popular Republican vote share forecasts (Vt) are reported in Table 9. It

is interesting that the pooled forecasts do better than the regional forecasts at predicting

the aggregate outcomes, irrespective of whether the OCMT or the Lasso algorithm is used.

The RMSFE of pooled forecasts using Lasso (OCMT) is 0.078 (0.077) as compared to 0.090

(0.102) for the regional models. Also the pooled models predicted a Republican vote share

of 0.494 (0.499) which is closer to the realized value of 0.489, as compared to 0.510 (0.514)

predicted using the regional Lasso (OCMT) model. The main advantage of the regional

models lies in their ability to deliver better popular forecasts at state level which matters
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for correctly predicting presidential election outcomes. Once again the failure of the pooled

models to accurately forecast the outcome of U.S. presidential elections points toward the

essential heterogeneity that exists across US states and regions which is responsible for the

misalignment of the popular and electoral vote outcomes that occurs, albeit rarely. Our

results suggest that political polarization is not evenly distributed across the U.S. Rather,

voter preferences vary systematically across regions. For example, California may have the

largest population, and on average voters within the state share similar preferences, reflecting

its historical favor towards Democratic candidates. By contrast, in the Midwest, voters

share similar preferences, but those preferences may contrast starkly with those of voters

in California, and may change more rapidly at the same time. It is not surprising that

voter heterogeneity varies across regions given that industry composition, social values, and

demographics are also shown to vary across regions. Taken along with the disproportional

electoral vote allocation of some states relative to their population, regional heterogeneity

can drive deviations between popular and electoral presidential vote outcomes.

To summarize, allowing for parameter heterogeneity across regions considerably improves

2016 out-of-sample forecasts of both state popular and electoral outcomes when compared

to pooling approaches. These results are consistent with regional heterogeneity being an

important feature of the U.S. electoral landscape. Homogeneity within regions but hetero-

geneity across regions can arise when people with similar preferences geographically cluster

despite the presence of considerable diversity at the national level. Our findings are con-

sistent with that idea, as our regional model’s implicit assumption is that parameters vary

across U.S. geographical regions, but are constant within regions. While the regional models

help forecast the electoral college victory of the Republican party in 2016, the pooled models

are better at forecasting the overall popular vote. Political polarization across regions cou-

pled with disproportionate allocation of electoral votes relative to state populations may be

one reason for such deviations. For robustness, we report 2016 forecasts under a Lasso and

OCMT averaged model in the Online Supplement Section S4. The averaged model takes

Lasso and OCMT county-level predictions of Republican and Democratic votes and averages

them together before aggregating to state-level results. The 2016 forecasts remain largely

unchanged under this averaging approach.
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10 Key Determinants of U.S. Presidential Elections

Over the Period 2000-2016

In the previous section, to evaluate the 2016 U.S. Presidential Election we used data up to

2012 to estimate the panel regressions (4) and (2) subject to the recursive order restriction,

βr = 0, and then generated out-of-sample forecasts for 2016. In this section, we present

estimates of the same model based on the full 2000-2016 sample and, to further understand

the key factors behind regional heterogeneity, we present both pooled and regional estimates.

We begin with pooled estimates. The pooled model estimates for voter turnout and the

Republican log-odds ratio equations are summarized in Tables 11 and 12, respectively.17

Several time-invariant covariates are statistically significant, regardless of whether esti-

mated using OCMT or Lasso algorithms. These include rural-urban score, migration, and

the education covariates. Time-varying covariates are also important. Specifically, short-run

economic variables exhibit the strongest overall explanatory power relative to their longer

term counterparts. This evidence is consistent with voters having ‘short memories’. Specifi-

cally, changes in the real effective USD exchange rate (a barometer for international compe-

tition), unemployment rates, and house prices over the three months preceding the election

are significantly associated with voting outcomes, and their inclusion renders 1-year changes

in these variables mostly insignificant. While 3-month house price appreciation unambigu-

ously favors the Republican candidate, higher unemployment rates preceding the election

somewhat surprisingly favor the incumbent party. By contrast, real export-weighted USD

appreciation 3-months preceding the election significantly punishes the incumbent party. In

case of the pooled model we also find that being economically ‘left behind’ is significantly

associated with voting against the incumbent party in the upcoming election.

We now consider estimates that allow for regional differences and discuss the differences

in selected covariates and their estimates across the eight BEA regions. Tables 13 and

14 summarize the estimates for voter turnout V T under the Lasso and OCMT estimation

algorithms, respectively. Similarly, Tables 15 and 16 report estimates for DLRO using the

Lasso and OCMT algorithms. As can be seen, the variation in both the selected covariates

and the magnitude of the estimates vary substantially across the BEA regions, and suggest

pooling might result in mis-leading inference. The estimates also show how heterogeneous

U.S. regions can be. Consider Table 15, the Lasso-regional estimates for DLRO. The

education variable (edu2000) was selected for 8 out of 8 regions, hence this variable was

17For the OCMT estimates we provide standard errors clustered at the state-year level. Lasso estimates
that are used for forecasting are computed using cross-validation and there are no associated standard errors
to report. However, for completeness we provide OLS estimates for the covariates selected by Lasso together
with their state-year clustered standard errors.
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identified as informative on a national scale. Moreover, coefficient estimates are negative in

all regions suggesting that more educated counties tend to favor the Democratic candidate,

regardless of the region in which the county is located. However, the estimates of this

variable differ quite a bit regionally: a one percentage point increase in the education rate

in the Mideast region (Southwest region) is associated with a change in the Republican odds

ratio of -0.246 (-0.845) percent.. Short-run house price appreciation (3 months preceding the

election, denoted by hpret M3) is never associated with greater Democrat vote share – across

any BEA region (coefficients are either zero or positive across regional panel regressions).

Most covariates from the active set are not selected across every region. Again, this points

to the existence of substantial cross-regional differences in the U.S. Larger voter turnout is

associated with votes towards Democrats in 5 of the 8 regions (V̂ T ). By contrast, Zandi

et al. [2020] pools information nationally, which implicitly assumes that greater turnout

is unambiguously associated with lower Republican vote share. Being economically left

behind tends to punish the incumbent party in 5 of the 8 regions (the covariate LBCG L1×
r incu pa). Higher local short-run unemployment favors Democrats in 4 of the 8 regions, has

no effect on voting in 3 regions, and favors the Republican candidate in the Plains region.

11 Forecasts of the 2020 U.S. Presidential Election

In the first publicly released version of this paper, distributed as Cambridge Economics and

CESifo working papers18, we reported forecasts of the 2020 election using data available

through July 2020. In this version we also provide updated forecasts using more more recent

data.19 We thought it is useful to present both sets of forecasts showing how the results

respond to data updates.

Starting with the forecats based on July 2020 data, we report state-level forecasts of

Republican vote share Vs and corresponding electoral college outcomes in Tables S.1 and S.2

for estimates under the Lasso and OCMT algorithms, respectively. U.S. Mainland popular

vote predictions are reported in Table 10. Figures 7 and 8 in the Online Supplement chart

forecasts of U.S. electoral college outcomes by state.

All pooled models forecast an electoral victory for the Democratic candidate, but we saw

in our evaluation of the 2016 election that pooled models ignore crucial regional heterogeneity

18See CWPE 2029, http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2092.pdf
and CESifo WP 8615, https://www.cesifo.org/en/publikationen/2020/working-paper/regional-

heterogeneity-and-us-presidential-elections
19As of mid July 2020, data on unemployment and house prices were available through June 2020, while

real exchange rates were available through May 2020. Data on inflation was available as of 2020Q1 , and the
remaining annual frequency data were available through 2018. The missing data were forward-filled with
the most recently available values.
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Figure 7: 2020 State Electoral College Forecast under the Lasso-Regional Model

Red indicates Republican electoral victory. Blue indicates Democratic electoral victory.

and could lead to inaccurate forecasts. By contrast, forecasts from the regional models imply

a very close electoral college outcome. The Lasso-regional model forecasts a Democratic

victory – the Republican candidate is expected to win 260 electoral college votes (recall

that 270 is needed to win). Meanwhile, the OCMT-regional model forecasts a Republican

candidate victory – the Republican candidate is predicted to win 290 electoral college votes.

Perhaps it is worth noting that the inherent nonlinearity of election outcomes due to the

design of the electoral college. Namely, a swing in just one or two state outcomes could

swing the entire election. This point re-emphasizes why the aptly named swing states are

such crucial political battlegrounds.

Specifically looking towards swing states explains the divergence between the Lasso-

regional and OCMT-regional model forecasts (Table 5). The Lasso-regional model forecasts

that Republicans take 54 out of 156 electoral votes available across the 12 swing states.

Meanwhile, the OCMT-regional model forecasts that the Republican candidate will win 99

electoral votes in the swing states. Both Lasso-regional and OCMT-regional models forecast

Iowa, Michigan, New Hampshire, Ohio, and Wisconsin to vote Republican in the electoral

college, for a total of 54 Republican electoral votes. In fact, in every swing state that the

Lasso-regional model forecasts a Republican victory the OCMT-regional model does also.
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Figure 8: 2020 State Electoral College Forecasts under the OCMT-Regional Model

Red indicates Republican electoral victory. Blue indicates Democratic electoral victory.

In addition to those swing states, the OCMT-regional model also forecasts a Republican

electoral win in Minnesota, North Carolina, and Pennsylvania. Moreover, the electoral

college maps show how winning many states does not imply victory in terms of electoral

college votes. This becomes even more apparent at the county level as shown in Figure

S.4 and Figure S.5 in the Online Supplement. In 2016, a majority of counties voted for

the Republican candidate, yet the Democratic candidate won the popular election. Both

models forecast that most counties will vote for the Republican candidate in 2020, yet all

four models (Lasso-pooled, OCMT-pooled, Lasso-regional and OCMT-regional) predict the

Democratic candidate will win the popular vote. See Table 10.

For robustness, we also report 2020 predictions under a Lasso and OCMT averaged model

in Section S4 of the Online Supplement. The average model takes Lasso and OCMT county-

level predictions of Republican and Democratic votes and averages them together before

aggregating to state-level results. For 2020, the averaged model predicts 269 Republican

electoral votes – one shy from winning the presidential election. For comparison, as of

September 2020 the Zandi et al. [2020] model is forecasting a Republican victory with the

candidate winning between 298 to 351 electoral votes.
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Table 5: 2020 Swing State Pooled and Regional Republican Electoral College Vote Forecasts

Pooled Forecasts Regional Forecasts
State ds Lasso OCMT Lasso OCMT

CO 9 0 0 0 0
FL 29 0 0 0 0
IA 6 6 6 6 6
MI 16 0 0 16 16
MN 10 0 0 0 10
NC 15 0 0 0 15
NH 4 0 0 4 4
NV 6 0 6 0 0
OH 18 18 18 18 18
PA 20 0 0 0 20
VA 13 0 0 0 0
WI 10 0 0 10 10

All Swing Votes 156 24 30 54 99

Column ds refers to total number of electoral votes per state (Equation 7). Forecasts are the model implied
number of Republican electoral college votes. Regional forecasts are generated using the eight separate panel
regressions for the eight BEA regions.

11.1 Updated forecasts using data available as of October 14, 2020

The updated forecasts are based on the same model specifications which are not affected by

data updates. What is changed are the observations on some of the fast moving covariates

included in the forecasting models as predictors. Amongst these covariates the most impor-

tant are the monthly data on the unemployment rate, the rate of change of house prices,

changes in the real exchange rate, and the rate of inflation. For these we update the series

to June/July of 2020. We have also updated some of the data with annual frequency to 2019

on state-level healthcare expenditures, government employment, and expenditure on rents.

Tables S.5, S.6, and S.7 of the Online Supplement report updated state-by-state fore-

casts using Lasso, OCMT, and Lasso-OCMT averaging algorithms. Both Lasso-regional and

OCMT-regional forecasts move marginally against the Republican candidate. Lasso-regional

is now forecasting 249 Republican electoral votes (previously 260). The forecasts based on

the OCMT-regional model are now very much borderline, forecasting 270 (previously 290)

electoral votes for the republican candidate. The Lasso-OCMT average regional model is now

forecasting 265 republican electoral votes (compared to 269 previously). Notable changes

are for the OCMT-regional model, which previously predicted Michigan as a win for the

Republican candidate (16 electoral votes), now predicts a Democratic state victory. The

same goes for New Hampshire (4 electoral votes now in favor of the Democratic candidate,
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Table 6: 2020 Swing State Pooled and Regional Republican Electoral College Vote Forecasts
using Data Available as of October 2020

Pooled Forecasts Regional Forecasts
State ds Lasso OCMT Lasso OCMT

CO 9 0 0 0 0
FL 29 0 0 0 0
IA 6 6 6 6 6
MI 16 0 0 16 0
MN 10 0 0 0 10
NC 15 0 15 0 15
NH 4 0 0 4 0
NV 6 0 6 0 0
OH 18 18 18 18 18
PA 20 0 0 0 20
VA 13 0 0 0 0
WI 10 0 0 10 10

All Swing Votes 156 24 45 54 79

Column ds refers to total number of electoral votes per state (Equation 7). Forecasts are the model implied
number of Republican electoral college votes. Regional forecasts are generated using the eight separate panel
regressions for the eight BEA regions. Using data available as of October 14, 2020.

previously favoring the Republican candidate). Forecast updates for these two swing states

explain the 20 electoral vote shift away from the Republican candidate in the OCMT model.

The updated forecasts across swing states are reported in Table 6.

12 Concluding Remarks

An increasingly divided political landscape means that regional heterogeneity is crucial for

understanding recent voting behavior and presidential election outcomes. We develop a joint

model of voter turnout and voting outcomes and exploit county-level variation and regional

heterogeneity to identify factors which explain county-level voting outcomes of the 2016 U.S.

Presidential Election. While many forecasts failed to predict the outcome of 2016, our out-

of-sample forecasts that allow for regional heterogeneity would have correctly predicted the

unexpected Republican victory.

It is worth noting that many of the forecasts that were predicting a Democratic 2016

victory were based on polls. However, in a world of increased political division, the biases

inherent in poll-based forecasts may become magnified, requiring highly stratified sampling

techniques that are very expensive to implement to ensure such poll-based forecasts are
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sufficiently reliable. In contrast, we show that the statistical approach using fundamental

socioeconomic and demographic data can take us far in understanding presidential election

cycle dynamics. We point out that regional heterogeneity is particularly important for

modeling swing states. Variable selection techniques, such as Lasso and OCMT, further

improve model performance

Incorporating regional heterogeneity reveals that the extent to which several socioeco-

nomic determinants help explain voter turnout and election outcomes which vary substan-

tially across regions. Significant indicators which help explain voting behavior at the county

level include: which party is the incumbent, a county’s relative economic performance, local

short-run unemployment rate, house price changes, education, poverty rate, among others.

Some determinants exhibit consistently robust associations with turnout or voting across

regions. For example, house price appreciation generally favors the Republican candidate

while counties with higher rates of poverty and educational attainment help the Democratic

candidate. The influence of most other variables on turnout and voting outcomes, however,

is far from uniform, substantially varying across regions.

We also use the selected models to generate forecasts of 2020 U.S. Presidential Election.

We report two sets of forecasts, both based on the same selected models, but with different

data updates. For data available through July 2020, the regional models, which predicted

a Republican victory in 2016, predict a close electoral college outcome for 2020. The pre-

dictions are split: the Lasso-regional model forecasts a Democratic electoral victory (260

electoral votes for the Republican candidate) while the OCMT-regional model forecasts a

Republican victory (290 electoral votes for the Republican candidate). However, once we use

more recent data, available as of mid October 2020, both Lasso and OCMT regional fore-

casts shift in favor of the Democratic candidate, with updated forecasts predicting 249, 270,

and 265 electoral votes for the Republican candidate using Lasso, OCMT, and Lasso-OCMT

average regional model forecasts, respectively. All models point towards the Democratic

candidate winning the popular vote. We emphasize, however, that the non-linear nature of

the U.S. voting process makes these forecasts fragile and subject to a high degree of un-

certainty. In addition, unforeseeable events which cannot be modeled using historical data

(e.g. nation-wide protests, pandemics) which have been prevalent in 2020 cast additional

uncertainty over our forecasts.
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Table 7: State Level Forecasts and Realized Republican Vote Shares (Vs) and Electoral Votes
using Lasso Algorithm for 2016 Elections

Pooled Forecasts Regional Forecasts

State ds Realized V̂s RMSFE EC Votes V̂s RMSFE EC Votes

AK 3 - - - 3 - - 3
AL 9 0.64 0.63 0.16 9 0.65 0.15 9
AR 6 0.64 0.65 0.20 6 0.68 0.21 6
AZ 11 0.52 0.56 0.28 11 0.54 0.43 11
CA 55 0.34 0.39 0.27 0 0.40 0.29 0
CO 9 0.47 0.47 0.14 0 0.54 0.32 9
CT 7 0.43 0.40 0.19 0 0.44 0.22 0
DC 3 0.04 0.08 0.25 0 0.08 0.12 0
DE 3 0.44 0.39 0.33 0 0.43 0.34 0
FL 29 0.51 0.52 0.12 29 0.52 0.12 29
GA 16 0.53 0.56 0.23 16 0.57 0.26 16
HI 4 - - - 0 - - 0
IA 6 0.55 0.50 0.38 0 0.51 0.38 6
ID 4 0.68 0.69 0.28 4 0.73 0.23 4
IL 20 0.41 0.43 0.41 0 0.45 0.42 0
IN 11 0.60 0.58 0.41 11 0.59 0.39 11
KS 6 0.61 0.62 0.21 6 0.66 0.29 6
KY 8 0.66 0.64 0.25 8 0.67 0.20 8
LA 8 0.60 0.60 0.11 8 0.62 0.13 8
MA 11 0.35 0.36 0.37 0 0.43 0.26 0
MD 10 0.36 0.36 0.19 0 0.40 0.20 0
ME 4 0.49 0.43 0.14 0 0.43 0.18 0
MI 16 0.50 0.47 0.22 0 0.49 0.19 0
MN 10 0.49 0.48 0.26 0 0.51 0.29 10
MO 10 0.62 0.58 0.21 10 0.62 0.19 10
MS 6 0.59 0.58 0.47 6 0.59 0.46 6
MT 3 0.61 0.58 0.22 3 0.63 0.18 3
NC 15 0.52 0.53 0.30 15 0.54 0.37 15
ND 3 0.70 0.64 0.17 3 0.63 0.17 3
NE 5 0.64 0.64 0.30 5 0.65 0.21 5
NH 4 0.50 0.47 0.13 0 0.50 0.17 0
NJ 14 0.43 0.40 0.17 0 0.45 0.18 0
NM 5 0.45 0.45 0.11 0 0.44 0.21 0
NV 6 0.49 0.50 0.11 0 0.49 0.14 0
NY 29 0.38 0.34 0.45 0 0.37 0.53 0
OH 18 0.54 0.51 0.28 18 0.54 0.24 18
OK 7 0.69 0.69 0.21 7 0.68 0.21 7
OR 7 0.44 0.46 0.20 0 0.46 0.21 0
PA 20 0.50 0.48 0.22 0 0.52 0.22 20
RI 4 0.42 0.35 0.31 0 0.39 0.13 0
SC 9 0.57 0.58 0.10 9 0.59 0.12 9
SD 3 0.66 0.62 0.23 3 0.64 0.20 3
TN 11 0.64 0.62 0.22 11 0.66 0.24 11
TX 38 0.55 0.60 0.26 38 0.56 0.14 38
UT 6 0.62 0.75 0.68 6 0.80 0.99 6
VA 13 0.47 0.48 0.23 0 0.48 0.35 0
VT 3 0.35 0.32 0.16 0 0.29 0.28 0
WA 12 0.41 0.44 0.21 0 0.45 0.25 0
WI 10 0.50 0.48 0.36 0 0.50 0.36 10
WV 5 0.72 0.67 0.28 5 0.68 0.22 5
WY 3 0.76 0.73 0.25 3 0.76 0.20 3

All Votes 538 253 308

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). Root mean square forecast error (RMSFE) is calculated as in Equation 13. EC Votes refer to the predicted number
of Republican electoral college votes. All Votes accumulates U.S. Mainland electoral college votes, and assumes Hawaii casts
her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the Republican candidate. Regional
forecasts are generated using the eight separate panel regressions for the eight BEA regions.
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Table 8: State Level Forecasts and Realized Republican Vote Shares (Vs) and Electoral Votes
using OCMT Algorithm for 2016 Elections

Pooled Forecasts Regional Forecasts

State ds Realized V̂s RMSFE EC Votes V̂s RMSFE EC Votes

AK 3 - - - 3 - - 3
AL 9 0.64 0.64 0.17 9 0.64 0.14 9
AR 6 0.64 0.65 0.20 6 0.66 0.22 6
AZ 11 0.52 0.56 0.27 11 0.54 0.44 11
CA 55 0.34 0.39 0.26 0 0.42 0.41 0
CO 9 0.47 0.48 0.15 0 0.52 0.25 9
CT 7 0.43 0.41 0.18 0 0.43 0.19 0
DC 3 0.04 0.07 0.18 0 0.08 0.18 0
DE 3 0.44 0.41 0.29 0 0.41 0.32 0
FL 29 0.51 0.51 0.11 29 0.51 0.11 29
GA 16 0.53 0.56 0.26 16 0.57 0.26 16
HI 4 - - - 0 - - 0
IA 6 0.55 0.51 0.37 6 0.51 0.40 6
ID 4 0.68 0.70 0.28 4 0.71 0.25 4
IL 20 0.41 0.44 0.39 0 0.48 0.30 0
IN 11 0.60 0.58 0.39 11 0.62 0.30 11
KS 6 0.61 0.63 0.22 6 0.67 0.30 6
KY 8 0.66 0.65 0.24 8 0.66 0.18 8
LA 8 0.60 0.61 0.11 8 0.61 0.11 8
MA 11 0.35 0.38 0.32 0 0.42 0.29 0
MD 10 0.36 0.38 0.20 0 0.37 0.22 0
ME 4 0.49 0.44 0.15 0 0.44 0.20 0
MI 16 0.50 0.48 0.21 0 0.53 0.24 16
MN 10 0.49 0.49 0.27 0 0.49 0.27 0
MO 10 0.62 0.59 0.20 10 0.62 0.20 10
MS 6 0.59 0.58 0.46 6 0.58 0.47 6
MT 3 0.61 0.59 0.18 3 0.63 0.17 3
NC 15 0.52 0.53 0.28 15 0.52 0.42 15
ND 3 0.70 0.63 0.15 3 0.62 0.20 3
NE 5 0.64 0.65 0.29 5 0.66 0.21 5
NH 4 0.50 0.49 0.13 0 0.49 0.16 0
NJ 14 0.43 0.41 0.17 0 0.41 0.23 0
NM 5 0.45 0.45 0.12 0 0.44 0.20 0
NV 6 0.49 0.50 0.11 6 0.53 0.08 6
NY 29 0.38 0.35 0.48 0 0.35 0.62 0
OH 18 0.54 0.51 0.27 18 0.57 0.26 18
OK 7 0.69 0.69 0.21 7 0.68 0.19 7
OR 7 0.44 0.46 0.21 0 0.51 0.36 7
PA 20 0.50 0.49 0.21 0 0.49 0.22 0
RI 4 0.42 0.36 0.27 0 0.39 0.15 0
SC 9 0.57 0.58 0.11 9 0.58 0.11 9
SD 3 0.66 0.63 0.21 3 0.64 0.20 3
TN 11 0.64 0.63 0.23 11 0.65 0.22 11
TX 38 0.55 0.60 0.28 38 0.57 0.15 38
UT 6 0.62 0.76 0.76 6 0.78 0.89 6
VA 13 0.47 0.50 0.24 0 0.47 0.36 0
VT 3 0.35 0.33 0.17 0 0.32 0.20 0
WA 12 0.41 0.44 0.21 0 0.50 0.41 0
WI 10 0.50 0.50 0.37 0 0.53 0.29 10
WV 5 0.72 0.66 0.24 5 0.68 0.23 5
WY 3 0.76 0.74 0.24 3 0.75 0.22 3

All Votes 538 265 307

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). Root mean square forecast error (RMSFE) is calculated as in Equation 13. EC Votes refer to the predicted number
of Republican electoral college votes. All Votes accumulates U.S. Mainland electoral college votes, and assumes Hawaii casts
her electoral votes for the Democratic candidate and Alaska casts her electoral votes for the Republican candidate. Regional
forecasts are generated using the eight separate panel regressions for the eight BEA regions.
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Table 9: 2016 U.S. Mainland Republican Vote Share Forecasts

Model Realized Pooled Pooled RMSFE Regional Regional RMSFE

OCMT 0.489 0.499 0.077 0.514 0.102
Lasso 0.489 0.494 0.078 0.510 0.090

To produce popular vote share forecasts, Equation 12 is applied to the sum of predicted Republican and
Democrat votes across U.S. mainland states plus Washington D.C. RMSFE calculations based on Equation
14. Regional forecasts are generated using the eight separate panel regressions for the eight BEA regions.

Table 10: 2020 US. Mainland Republican Vote Share Forecasts

Model Pooled Regional

OCMT 0.471 0.498
Lasso 0.445 0.477

To produce popular vote share forecasts, Equation 12 is applied to the sum of predicted Republican and
Democrat votes across U.S. mainland states plus Washington D.C. Regional forecasts are generated using
the eight separate panel regressions for the eight BEA regions.
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Table 11: Pooled Panel Regression with Variable Selection for Voter Turnout (V T ) as the
Dependent Variable Estimated over the 2000-2016 Election Cycles

Covariate OCMT SE-OCMT Lasso Lasso(OLS) SE-Lasso(OLS)

1 (Intercept) 0.0886 (0.1239) 0.1432 0.1412*** (0.0192) )
2 r incu pa -0.2179** (0.1085)
3 r incu pr 0.0314*** (0.0053) 0.0289 0.0337*** (0.0051)
4 VT L1 0.7977*** (0.0172) 0.7789 0.7973*** (0.0169)
5 VT L1 x r incu pa. -0.0461*** (0.0166)
6 hlt L1 -0.1294 -0.2453 (0.1844)
7 gov L1 0.1557 (0.187) 0.1449 0.1915 (0.2077)
8 ump L1 0.4034*** (0.1044) 0.2964 0.3408*** (0.1132)
9 hpret L1

10 rp L1 -0.0576 -0.1889 (0.1898)
11 religion -0.005 -0.0096 (0.0071)
12 religion x r incu pa. -0.0116* (0.0066)
13 migrate10 -0.3548*** (0.1023) -0.249 -0.4002*** (0.1056)
14 migrate10 x r incu pa. -0.2233** (0.1025)
15 edu2000 0.0978*** (0.0163) 0.0955 0.1067*** (0.014)
16 edu2000 x r incu pa. 0.0907*** (0.0158) 0.0835 0.0818*** (0.0133)
17 log.m.inc 0.0026 (0.0109)
18 log.m.inc x r incu pa. 0.0231** (0.0096)
19 povr -0.1517*** (0.0495) -0.1596 -0.1555*** (0.0329)
20 povr x r incu pa. 0.0277 (0.0472)
21 rural -4e-04 (4e-04) -4e-04 -7e-04 (4e-04)
22 rural x r incu pa. -8e-04** (4e-04) -0.0014 -0.002*** (4e-04)
23 vmail d 0.0065** (0.0032) 0.0063 0.0075** (0.0034)
24
25 Covariates Selected 19 15 15
26 Adj. R2 0.8058 0.8034 0.8048
27 Reg SE 0.0397 0.0399 0.0398

Reported standard errors are clustered at the State-Year level. For Lasso, 10-fold cross validation is used
for model selection, with the random number generator seed is set to: 123. The model selected is the one
with CV-MSE 1-SD away from the minimum MSE. Lasso-OLS corresponds to results taking the selected
covariates and then subsequently estimating OLS regression in a second-stage. Adjusted R2 reported for
OLS estimates, Deviance ratio reported for Lasso. The list of variables in the active set for V T is given in
Table 2.
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Table 12: Pooled Panel Regression with Variable Selection for changes in Log Republican
Odds (DLRO) as the Dependent Variable Estimated over the 2000-2016 Election Cycles

Covariate OCMT SE-OCMT Lasso Lasso (OLS) SE-Lasso (OLS)

1 (Intercept) 0.6955*** (0.0907) 0.6828 0.6763*** (0.0995)
2 r incu pa -0.8364** (0.3566) -0.1478 -0.2725*** (0.0645)
3 dLRO hous 0.025 (0.0281) 0.0186 0.0218 (0.0258)

4 V̂ T -0.3735*** (0.1069) -0.2839 -0.2894** (0.1126)

5 V̂ T x r incu pa. -0.1786* (0.0938) -0.1094 -0.0166 (0.0921)
6 LBCG L1 0.0051 0.0235 (0.0375)
7 LBCG L1 x r incu pa. -0.1118 -0.1119*** (0.0364)
8 hlt L1
9 gov L1 2.4752 2.7807*** (1.0024)

10 rusd L1 -0.0198 (0.8802)
11 rusd L1 x r incu pa. 0.0737 (0.8872)
12 rusd M3 -0.0389 (0.2468)
13 rusd M3 x r incu pa. -0.7329*** (0.2311) -0.5045 -0.4768*** (0.1479)
14 ump L1 -0.9088 -0.5727 (0.4429)
15 ump L1 x r incu pa. -2.6836* (1.5928)
16 ump M3
17 ump M3 x r incu pa. 4.8527*** (1.6454) 0.9323 2.0594*** (0.4623)
18 hpret L1 -0.3884 (0.405)
19 hpret L1 x r incu pa.
20 hpret M3 0.7047** (0.3133) 0.3722 0.4541*** (0.1613)
21 hpret M3 x r incu pa.
22 rp L1 -0.8429 -1.4238* (0.7286)
23 inf L1 1.0148 1.3794*** (0.5128)
24 migrate10 -1.7827*** (0.4813) -1.4525 -1.716*** (0.4533)
25 migrateL 0.79 (1.1803) 0.2324 0.872 (1.1734)
26 edu2000 -0.6296*** (0.0962) -0.6864 -0.7094*** (0.1029)
27 edu2000L -0.7883*** (0.2045) -0.7032 -0.7402*** (0.2108)
28 log.popdens. -0.001 (0.0056) 4e-04 0.0058 (0.0054)
29 log.m.inc
30 log.m.inc x r incu pa. 0.0649* (0.0336)
31 povr -0.6909*** (0.1486) -0.5167 -0.5939*** (0.1385)
32 rural 0.0089*** (0.0021) 0.005 0.0081*** (0.002)
33
34 Covariates Selected 21 21 21
35 Adj. R2 0.5071 0.5185 0.5232
36 Reg SE 0.1788 0.1768 0.1758

Reported standard errors are clustered at the State-Year level. For Lasso, 10-fold cross validation is used
for model selection, with the random number generator seed is set to: 123. The model selected is the one
with CV-MSE 1-SD away from the minimum MSE. Lasso-OLS corresponds to results taking the selected
covariates and then subsequently estimating OLS regression in a second-stage. Adjusted R2 reported for
OLS estimates, Deviance ratio reported for Lasso. The list of variables in the active set for DLRO is given
in Table 3.
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Table 13: Regional Panel Regressions with Dependent Variable as Voter Turnout (V T ) over
the 2000-2016 Election Cycles using Lasso Algorithm

Southeast Southwest Far West Rocky Mountain New England Mideast Great Lakes Plains

(Intercept) 0.063 0.169 0.454 0.201 0.278 0.277 0.121 0.203
r incu pa 0.021
r incu pr 0.010 0.030 0.023 0.002 0.021 0.028 0.020

VT L1 0.796 0.714 0.708 0.677 0.606 0.654 0.761 0.676
VT L1 x r incu pa

ump L1 0.100 0.269 -1.081 0.667 0.630
hpret L1 0.090 0.163 0.268

religion -0.005 -0.041 -0.026 0.034
religion x r incu pa 0.007

migrate -0.175 -0.056
migrate x r incu pa

edu2000 0.062 0.116 0.103 0.120 0.019 0.069 0.113 0.008
edu2000 x r incu pa 0.093 0.061 0.077 0.069 0.011 0.075 0.075

log(m.inc) 0.008 -0.021
log(m.inc) x r incu pa 0.001 0.001

povr -0.125 -0.214 -0.345 -0.167 -0.218 -0.327 -0.269 -0.301
povr x r incu pa

rural -0.001
rural x r incu pa -0.001 -0.001 -0.001 -

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T
is used in the active set for estimation of Equation 6. Estimates presented here are for the voter turnout
equation, Equation 5. The list of variables in the active set for V T is given in Table 2.

Table 14: Regional Panel Regressions with Dependent Variable as Voter Turnout (V T )
Estimated over the 2000-2016 Election Cycles using OCMT Algorithm

Southeast Southwest FW RM NE Mideast GL Plains

(Intercept) -0.254* (0.154) -0.037 (0.236) 0.166*** (0.018) 1.069*** (0.245) 0.072* (0.043) 0.98*** (0.297) 0.903* (0.524) 0.195*** (0.04)
r incu pa -0.38* (0.196) -0.208 (0.346) 0.963*** (0.314) -0.315***(0.12) 0.842** (0.392) 0.002 (0.179) -0.023 (0.223)
r incu pr 0.02 (0.013) 0.047*** (0.006) 0.003 (0.006) 0.011 (0.016) 0.026*** (0.009) 0.032*** (0.009)

VT L1 0.857***(0.02) 0.775*** (0.024) 0.739*** (0.034) 0.704*** (0.022) 0.887*** (0.058) 0.629*** (0.048) 0.805*** (0.054) 0.739*** (0.054)
VT L1 x r incu pa -0.024 (0.018) 0.041** (0.018) -0.114***(0.036) -0.026 (0.024) -0.083 (0.101) -0.089** (0.039) -0.152***(0.046)

ump L1 0.163 (0.197) 0.482*** (0.155) -1.975***(0.606)
hpret L1 0.063 (0.107) -0.157***(0.041) 0.117 (0.116)

religion -0.022***(0.006) 0.056** (0.026)
religion x r incu pa -0.007 (0.011) -0.023***(0.007) -0.001 (0.012) 0.013** (0.006) -0.014 (0.011) 0.005 (0.011)

migrate10 -0.484***(0.087) -1.06*** (0.263) -0.498***(0.126)
migrate10 x r incu pa -0.181 (0.151) -0.015 (0.094) -0.367 (0.234) -0.108 (0.152) -0.157 (0.169)

edu2000 0.047** (0.022) 0.132*** (0.029) 0.166*** (0.04) 0.227*** (0.029) 0.15*** (0.055) 0.216*** (0.067)
edu2000 x r incu pa 0.073***(0.02) 0.113*** (0.035) 0.195*** (0.016) 0.062** (0.025) 0.068 (0.055) 0.129*** (0.024) 0.093*** (0.022)

log(m.inc) 0.033** (0.013) 0.016 (0.02) -0.082***(0.023) -0.059** (0.027) -0.071 (0.045)
log(m.inc) x r incu pa 0.038** (0.018) 0.016 (0.031) -0.078***(0.027) 0.031*** (0.011) -0.067** (0.03) 0.006 (0.014) 0.011 (0.02)

povr -0.07 (0.051) -0.193***(0.053) -0.306***(0.038) -0.412***(0.061) -0.569***(0.093) -0.428** (0.176) -0.25*** (0.062)
povr x r incu pa 0.05 (0.066) 0.089 (0.087) -0.464***(0.168) -0.435***(0.167) -0.013 (0.031) -0.143 (0.096) -0.063 (0.052)

rural 0.001 (0.001) -0.002** (0.001)
rural x r incu pa -0.001 (0.001) -0.002** (0.001) (0.001) -0.001 (0.001)

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T is used in the active
set for estimation of Equation 6. Estimates presented here are for the voter turnout equation, Equation 5. The list of variables
in the active set for V T is given in Table 2. Standard errors are clustered at the state level, in parenthesis to the right of the
corresponding column of estimates. FW, NE, RM and GL refer to Far West, New England, Rocky Mountain and Great Lakes
regions, respectively.
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Table 15: Regional Panel Regressions with Dependent Variable as Changes in Log Republican
Odds (DLRO) over the 2000-2016 Election Cycles using Lasso Algorithm

Southeast Southwest Far West Rocky Mountain New England Mideast Great Lakes Plains

(Intercept) 1.222 3.831 0.454 0.401 -0.272 0.911 0.788 0.436
r incu pa -0.043 -0.020 -0.902 -0.124 -0.524 -0.332 -0.428 -0.108

V̂ T -0.597 0.312 0.116 -0.318 -0.120 -0.607 -0.002

V̂ T x r incu pa -0.189 -0.147 0.215 0.190 -0.087
LBCG L1 0.008 -0.012 -0.051 -0.309 -0.166 -0.025

LBCG L1 x r incu pa -0.089 -0.011 -0.154 0.526 -0.243 0.001 -0.086
ump L1 -1.770 2.100 3.666 -0.890 -1.649 2.253 -1.061

ump L1 x r incu pa 0.001 0.263 -2.168 1.613 3.893 0.380
ump M3 -0.499 -1.536 -4.135 -1.047 4.108

ump M3 x r incu pa 0.187 3.290 7.901 -1.917
hpret L1 -0.976 -0.104 -2.261 0.500 2.071 4.000

hpret L1 x r incu pa -0.716 -0.696 0.175 -1.306 -2.235 -2.995
hpret M3 1.689 0.561 0.682 0.128 2.062 1.271

hpret M3 x r incu pa 0.301 0.717 -0.223 0.921 3.176 1.807 1.055
migrate -1.335 -3.022 0.994 -0.043 -3.364 -0.008 -0.998

migrate* 1.078 -0.878 0.169 3.976
edu2000 -0.606 -0.845 -0.646 -0.586 -0.729 -0.295 -0.854 -0.753

edu2000* -2.301 -0.489 0.204 -0.246 -0.928 -0.442
log(popdens) -0.010 0.008 -0.009 -0.005 -0.003 0.014 -0.004

log(m.inc) -0.322 -0.032 0.055 -0.028 -0.045 -0.025
log(m.inc) x r incu pa -0.004 -0.008 0.079

povr -0.943 -1.656 -0.392 -0.239 -0.599 -0.339 -0.592
rural 0.009 0.008 -0.001 -0.014 -0.001

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T is used in the active
set for estimation of Equation 6. Estimates presented here are for the log Republican odds equation, Equation 6. The list of
variables in the active set for DLRO is given in Table 3.

Table 16: Regional Panel Regressions with Dependent Variable as Changes in Log Republican
Odds (DLRO) Estimated over the 2000-2016 Election Cycles using OCMT Algorithm

Southeast Southwest FW RM NE Mideast GL Plains

(Intercept) -2.354***(0.55) 0.438*** (0.01) 0.128** (0.062) 0.533*** (0.071) 0.507*** (0.123) 0.346*** (0.036) 0.543*** (0.083) -0.267 (0.175)
r incu pa -2.545***(0.392) -1.534** (0.752) -3.68*** (0.235) -1.494***(0.508) -1.539***(0.383) -1.022** (0.409)

V̂ T -0.588***(0.186) 0.115 (0.129) -0.383***(0.098) -0.566*** (0.185) -0.308***(0.11) -0.033 (0.094) 0.453*** (0.118)

V̂ T x r incu pa -0.285 (0.179) -0.207 (0.19) -0.209** (0.098) 0.417*** (0.094) 0.223* (0.132) -0.004 (0.098)
LBCG L1 -0.078* (0.042)

LBCG L1 x r incu pa 0.055 (0.303) -0.277***(0.066)
ump L1 3.932*** (0.341)

ump L1 x r incu pa -1.845** (0.89) 3.958 (3.645) 14.579*** (4.054) 9.201** (4.627) 1.094 (4.152)
ump M3 -4.152***(1.069) 4.141*** (0.914)

ump M3 x r incu pa 3.432*** (1.226) -3.961 (4.949) -10.078***(3.881) 5.528* (3.049) -7.281 (5.613) 2.592 (4.906)
hpret L1 -0.866 (0.724) -0.069 (0.529) 0.85 (0.86) 0.41 (1.416) 4.06*** (0.917)

hpret L1 x r incu pa -1.227***(0.388) -4.248***(1.095)
hpret M3 2.595*** (0.706) 0.727* (0.387) 0.748* (0.41) 1.264 (0.786) 2.14* (1.158) -0.026 (0.949)

hpret M3 x r incu pa 2.708** (1.118)
migrate10 -1.62*** (0.586) -3.549***(0.649) 1.359* (0.82) -0.812 (1.079) -4.107***(0.308) 0.333 (1.016) -0.807 (0.522)
migrateL -1.001 (1.653) 2.808* (1.609)
edu2000 -0.828***(0.159) -1.023***(0.13) -0.683***(0.102) -0.666***(0.089) -0.295 (0.194) -0.331***(0.11) -0.964***(0.129) -0.809***(0.135)

edu2000L -1.698***(0.379) 0.041 (0.507) -0.01 (0.136) -0.669** (0.295) -1.467***(0.354) -0.144 (0.48)
log(popdens) -0.006 (0.005) 0.01 (0.015) -0.011 (0.01) -0.016***(0.003) 0.015*** (0.005)

log(m.inc) 0.299*** (0.057)
log(m.inc) x r incu pa 0.234*** (0.05) 0.136* (0.082) 0.316*** (0.023) 0.075* (0.044) 0.1*** (0.029) 0.065 (0.044)

povr -0.902***(0.077) -0.44* (0.237) -0.669***(0.147) -0.331***(0.06)
rural 0.013*** (0.002) 0.02*** (0.006) -0.001 (0.004) (0.004) -0.001 (0.002) (0.001) -0.001 (0.004)

Estimates from recursive voter turnout and voting outcome model. First, Equation 5 is estimated, then V̂ T is used in the active
set for estimation of Equation 6. Estimates presented here are for the log Republican odds equation, Equation 6. The list of
variables in the active set for DLRO is given in Table 3. Standard errors are clustered at the state level, in parenthesis to the
right of the corresponding column of estimates. FW, NE, RM and GL refer to Far West, New England, Rocky Mountain and
Great Lakes regions, respectively.
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This Online Supplement is organized in four sections. Section S1 provides detail on

relevant data and sources. Section S2 describes selecting the functional form of the election

outcome variable. Section S3 gives an account of Lasso and OCMT forecasting algorithms.

S4 reports additional results.

S1 Data

Descriptions, Frequency, Sources

Data has been cleaned and merged from several different publicly available sources. County-

level voting outcomes are taken from the MIT Election Data and Science Lab. County

GDP measures are obtained from the Bureau of Economic Analysis. Education, population,

migration, and urban-rural county classifications are from the USDA. Annual median house-

hold income and poverty estimates are from the U.S. Census and typically update with a

lag ranging from one to two years. Information on religiosity across counties comes from

the 2010 survey provided by the Association of Religion Data Archives. Data on voting age

population (VAP) are from the American Community 5-year surveys. County-level unem-

ployment rates are provided by the BLS and county-level house price indices are taken from

Zillow. State-level inflation is computed from indices reported by the Bureau of Economic

Analysis (BEA). State level export-weighted real exchange rates are from the Federal Re-

serve Bank of Dallas. Government employment growth, healthcare expenditures and rent

expenditures at the state level are taken from the BEA. In total, we analyze 3,107 counties

from 48 of the U.S. Mainland states plus Washington D.C. The number of counties by state

is found in Table S.9.
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County classifications change over time, and different data sets rely on different vintage

classifications. For these reasons, cleaning and merging the data required manual adjust-

ments for some of the observations. We describe data series and cleaning procedures for the

main variables of interest in more detail below.

County FIPS Changes: Some counties changed FIPS codes over the period 2000-2016.

For these counties, we made adjustments to ensure different data sets can be merged prop-

erly. County 08014 (Colorado) did not exist until 2001 (it was created from 4 other Colorado

counties). We add 08014’s post-2000 election votes to county 08059, Jefferson County, the

largest of the counties which contributed to 08014’s creation. The state of Virginia decided

to merge County 51515 (“Bedford”) into county 51019 (“Bedford County”) in 2013, therefore

County 51515 no longer existed afterward. 2013. To account for this we allocate votes of

County 51515 from 2004, 2008 and 2012 to those of county 51019, effectively combining the

two counties over the entire sample. County 46113 (South Dakota) was renamed to Oglala

Lakota county in 2015 and given a new FIPs code: 46102.

County U.S. Presidential Votes, every 4 years: Data from the MIT election lab

provides election results at the county level for years 2000, 2004, 2008, 2012, and 2016. We

focus on two-party vote share, hence rely on Republican and Democrat vote statistics across

counties. We also focus on the 48 mainland states, excluding Alaska and Hawaii from our

analysis.

Annual County GDP, annual: Data from the U.S. Bureau of Economic Analysis

covers annual real (chained 2012 U.S. Dollars) GDP across over 3,000 counties from 2001

to 2018. This yields annual growth rates from 2002 to 2018. We interpolate 1999-2000 and

2000-2001 GDP growth rates with the 2001-2002 growth rate, for all counties. County GDP

data has historically been updated with a one-year lag every October. However for 2020,

the 2019 GDP data is not expected to be released until December 2020.

Virginia County GDP, annual: For the State of Virginia, the BEA consolidates real

GDP data for 52 of the smaller counties into 23 groups of two to three counties each. In order

to match GDP to voting data, these consolidated GDP measures need to be matched back

to individual counties. To do so, for aggregated GDP assigned to a given group of counties,

we assign all counties within that group the GDP values given to the group. Therefore, we

assume counties within a group have the same real GDP growth rate.
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Voter Turnout, every 4 years: We estimate voter turnout (V T ) as the total votes

(Republican and Democrat) divided by the VAP, voting age population, which we take

from the 5-year ACS. To compute V T , we rely on the 90% upper confidence interval of the

VAP estimate. The VAP measure is an estimate over a 5-year period while the number

of votes is a single snapshot in time. We use 2012-2016 VAP estimates to compute 2016

voter turnout, 2008-2012 estimates for 2012 voter turnout, and 2005-2009 estimates for 2008

voter turnout. Because we do not have VAP estimates earlier than 2008, we back-fill 2004

turnout values using 2008 turnouts. Four county-year observations (from over 12,000) re-

port V T values of greater than 1, likely because of measurement error. For these cases, we

use the average V T of adjacent countiesS1 For counties with a VAP/population ratio larger

than 1, we replace VAP for these counties with the product of the county population with

the average of VAP/population ratio of surrounding counties (within 100 miles) which have

VAP/population ratios less than 1.

Midterm Elections, every 2 years: We collect data on U.S. house votes for biennuial

elections by state from MIT election lab. Because the House votes every two years, it may

be a useful indicator for political momentum running up to the presidential election, which

occurs every four years. For the state of Vermont, where Bernard Sanders (an independent)

has received consistent and significant vote share, we consolidate his political affiliation with

those of Democrats in order to remain consistent with the two-party framework of this study.

In order to merge with the remaining data, we impute vote results of Maryland into Wash-

ington DC because the latter does not have voting rights during these elections. We use this

data to compute Republican vote share variables using House election data, analogous to

county presidential Republican vote share data.

Religiosity, time-invariant: Data is from the Association of Religion Data Archives.

Religiosity measures the proportion of county population adhering to a religion. Rates of

religious adherence can exceed 1 for some counties because survey participants can report

adherence to multiple religions or denominations. While this does not pose any serious issues,

in order to keep the rate variable bounded between 0 and 1, for counties with greater than

100 percent religiosity rate, we replace county i’s religiosity rate with the local religiosity

rate, taken as the average religiosity rate of all counties within 100 miles of i.

County House Prices, monthly: We take monthly house price indices at the county

level from Zillow. These go back to the 90’s, but not for every county or every year-month.

S1The observations are: Harding County, NM 2004/2008/2012, and Hanson County, SD 2012.
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We therefore estimate local county house price returns based on the average of counties

within 100 miles of county i, inclusive of county i. For counties with no data available, we

impute values using the cross-section average of all available local returns over the same time

period. For the year 2016, logged annual house price changes are computed as the average

monthly change from July 2015 to June 2016. This is then annualized. For each election

year, the annualized return is computed similarly. This guarantees that the data used are

always available prior to the election. Along with annual house price changes, we also com-

pute short-term averages over the 3-month period of July-September of each election year.

The monthly house price data typically update with a two month lag.

State-level Rent Expenditures, annual: We compute annual log growth rates in

state-level rents using per capita personal consumption expenditures on housing and util-

ities. These data are taken from the BEA and are typically updated with a one-year lag

every October.

Unemployment Rates, monthly: We take monthly unemployment rates at the county

level from the BLS. we also estimate local averages using all counties within 100 miles of

county i. For the year 2016, we calculate annual average unemployment based on July 2015

to June 2016. For each election year, the annual average unemployment rate is computed

over July of year t−1 to June of year t. This guarantees that the data used are available prior

to the actual year t election. Along with annual unemployment averages, we also compute

short-term averages over the 3-month period of July-September of each election year. The

monthly unemployment data typically update with a two month lag.

State-level Inflation, quarterly: From the BEA, we take quarterly real GDP and

nominal GDP by state to compute a state-level annual GDP deflator as

GDP Deflator =
Nominal GDP

Real GDP
× 100.

Inflation is calculated as the logged change form the previous quarter’s GDP Deflator, by

state. Because Elections are held every November, we use state-level inflation rate from year

Q3 2015 - Q2 2016 for 2016, and so on to guarantee data availability prior to each election.

These data are taken from the BEA and typically released with a 2-quarter lag.

State-level USD Real Effective Exchange Rates, monthly: USD state-level real

exchange rates are taken from the Federal Reserve Bank of Dallas. Monthly state-level ex-

change rates are computed using a trade-weighted average of USD exchange rates via the
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primary export partners of the state. We compute logged monthly changes using monthly

REERs over July of year t − 1 to June of year t, averaging monthly changes to compute

a monthly average over the year, which is then annualized. Along with annual average

exchange rate changes, we also compute short-term averages over the 3-month period of

July-September of each election year. The monthly exchange rate data typically updates

with a three month lag.

State-level Healthcare Expenditures, annual: We compute annual log growth rates

in state-level cost of healthcare using per capita personal consumption expenditures on

healthcare by state. These data are taken from the BEA and are typically updated with a

one year lag every October.

State-level Government Employment, annual: We compute annual growth rates

in the size of local government by state, by computing the share of the state’s labor force

allocated to the local and state government sector. Annual Growth rates are computed using

log changes. These data are taken from the BEA and are typically with a one year lag every

September or October.

Population Density, time-invariant: We compute county population densities using

2000 and 2010 population estimates, divided by the total land area (based on 2000) of the

county.

State Mail-in Vote Policies, time-invariant: We also collect data at the state level

measuring the ease with which one can cast a vote by mail. Policies vary at the state level.

In fact, some states, namely Oregon, Utah, Colorado and Hawaii only accept votes by mail.

We construct a state-level time-invariant indicator variable which takes values of (1,0,-1)

depending on whether mail-in voting is: 1: The default voting method, 0: Optional but

open to everyone or -1: An excuse is required to cast a mail-in vote. Underlying source for

these data is FiveThirtyEight.com and The National Conference of State Legislatures.

Incumbent Party and Incumbent President indicators, every 4 years: To cap-

ture the incumbency effects on voter turnout and election outcome we consider two incum-

bency indicators, and distinguish between presidential and party incumbency indicators.

The “incumbent party indicator” takes the value of 1 if on election day the president in

power is Republican, and -1 if he/she is a Democrat. The “incumbent president indicator”

takes the value of 1 if the president who is running for re-election is a Republican, takes
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the value of -1 if he/she is a Democrat, and takes the value of 0 if neither of the two can-

didates is incumbent. These indicators are considered on their own, as well as interacted

with a number of other covariates. In this way we allow for a wide variety of incumbency

effects (positive or negative) discussed in the literature, without biasing the results in favor

or against the incumbent president or party.

Being Economically ‘Left-Behind’

We take real GDP levels and compute annual log growth rates, denoted by

∆ycr,t = ln
Ycr,t
Ycr,t−1

, (S.1)

where Ycr,t is the real GDP of county c in region r during year t. County-level real GDP

growth is the main source of data used to construct a new measure representing the degree

to which resident of a particular county are, on average, economically ‘left behind’ (LB).

Consider an individual outcome variable of interest, in our case, real GDP Ycr,t for county c

in year t and its “local” (or “regional”) counterpart, defined by:

Y ∗cr,t =
N∑
c′=1

wc,c′Yc′r,t, (S.2)

whereN denotes the number of counties in the country as a whole, wc,c′ ≥ 0, and
∑N

c′=1wc,c′ =

1. Note that Y ∗cr,t is inclusive of c, but we can also compute Y ∗cr,t exclusive of c by setting

wc,c = 0. In practice, wc,c′ could be the neighborhood weights, within a given radius around

the cth location.

To consider a measure of “Left Behind”, an obvious reference measure is to compare

Ycr,t or Y ∗cr,t to is the national (“global”) measure where wc,c′ = wc′ ∀ i. In practice the

national measure could be based on population weights. In what follows we denote national

(global) reference measure by Yt, the local/regional measure by Y ∗cr,t, and the individual

county measure by Ycr,t.

The extent to which county c is left behind relative to the nation, Yt, also depends on the

time horizon over which the individual/local measure is compared to the reference (national)

group. For example, county c can be left behind either individually, or locally, relative to

the national group over a period of h years. Accordingly, we consider the change from

ln(Ycr,t−h/Yt−h) to ln(Ycr,t/Yt), for a given horizon h. The extent to which c is individually

”left behind” is measured by
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Gcr,t(h) =
1

h
∆h ln(Ycr,t/Yt) =

1

h
∆h ln(Ycr,t)−

1

h
∆h ln(Yt) = (S.3)

ln(Ycr,t)− ln(Ycr,t−h)

h
− ln(Yt)− ln(Yt−h)

h

if Gcr,t(h) < 0. County c is not left behind if Gcr,t(h) > 0. A measure of being left behind

locally can be similarly defined as

G∗cr,t(h) =
1

h
∆h ln(Y ∗cr,t/Yt). (S.4)

It is clear that c can be left behind relative to the country as a whole, but not at the local

level and vice versa. Moreover, c could be left behind relative to local as well as national

measures.

To study the degree of left-behindedness at a relatively disaggregated level, we consider

annual real economic output across U.S. counties (excluding counties in Alaska and Hawaii)

as our outcome variable, Ycr,t. Our national measure Yt is simply the aggregate national U.S.

real output.S2 To compute local measures Y ∗cr,t, we consider a radius of 100 miles around

each county c (R = 100). In measuring Y ∗cr,t, all counties outside of 100 miles receive a weight

of 0, while the real output measures of all counties within 100 miles are equally weighted,

specifically

wc,c′ =

 1
NR
, if c′ is within 100 miles of c

0, otherwise

where the number of counties within 100 miles of c, inclusive of c, is NR.S3

S2 Functional Form of the Outcome Variable

The standard two-party voting outcome in the literature is given by party vote share

Vcr,t =
Rcr,t

Rcr,t +Dcr,t

, (S.5)

where Rcr,t is the number of Republican votes by county c of region r in election year t,

and Dcr,t is the number of Democratic votes. The outcome Vcr,t is equal to the Republican

S2We do not compute Yt; rather we take the data directly from the BEA.
S3Between-county distances are taken from the NBER database, specifically these are great-circle distances

calculated using the Haversine formula based on internal points in the geographic area.
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share of the two-party vote. However, despite Vcr,t being the target variable, whether better

predictions are produced using Vcr,t or a transformation of Vcr,t (which is ultimately re-

transformed back) is an issue that needs to be addressed prior to forecasting. In this context,

we evaluate three different functional forms of the outcome variable summarized by V ′cr,t:

V ′c,rt =

{
Vc,rt, ln(Vc,rt), ln

(
Vc,rt

1− Vcr,t

)}
, (S.6)

where the latter term is the main dependent variable we chose to use in our analysis – the

Republican log-odds of the two-party vote:

LROcr,t = ln

(
Vcr,t

1− Vcr,t

)
= ln

(
Rc,rt

Dc,rt

)
. (S.7)

Despite using LROcr,t in the regression, the target variable we wish to forecast remains the

Republican vote share over an election cycle, Vcr,t. If we rely on a model with a transformed

dependent variable, then its predictions must be re-transformed to match the units of the

actual target. While the adjusted R2 across models may suggest which specification best

explains the dependent variable, this accounts for re-transforming the prediction back to the

target variable. Therefore, to appropriately compare models under transformed dependent

variables, regression standard errors must be adjusted to be comparable across specifications.

We follow the likelihood approach discussed in Section 11.7 of Pesaran (2015).

The conventional dependent variable in the political science literature is the (change

in) Republican vote share, Vcr,t, or the dependent variable corresponding to column 2 of

Table S.8. To select the best functional form for the dependent variable, standard errors

from the active set regression on, say, changes in the standard dependent variable Vcs,t can

be compared to the adjusted standard errors from the active set regressions under other

functional forms (columns 1 and 3). Adjustment factors must be applied for comparison.

For the column 1 dependent variable, ∆4

(
Vcr,t

1−Vcr,t

)
, we have the following log adjustment

factor:

ln z̄1 = − 1

NT

T∑
t=1

N∑
i=1

lnVcr,t −
1

NT

T∑
t=1

N∑
i=1

ln(1− Vcr,t), (S.8)

and for the column 3, with ∆4 lnVcr,t, the log adjustment factor is:

ln z̄3 = − 1

NT

T∑
t=1

N∑
i=1

lnVcr,t. (S.9)

The “Adjusted SE” in Table S.8 compares post-adjustment regression SEs. The results

show that regression performance under the traditional functional form using simple vote
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shares (column 2) may be improved by using instead the change in log odds ratio variable

(column 1). The former has a regression standard error of 0.037, compared to the adjusted

standard error of 0.036 under the model where we transform the vote share into a log-odds

ratio, ∆4 ln
(

Vcs,t
1−Vcr,t

)
. The log vote share, ∆4 lnVcr,t has the largest adjusted SEs. Motivated

by these results, we use changes in log-odds ratios as our dependent variable.

S3 Forecasting Algorithms

OCMT

One set of forecasts implement the OCMT algorithm presented in Chudik et al. (2018).

We apply OCMT on both the pooled sample and on regional sub-samples, in both turnout

and voting regressions on their respective active sets. OCMT selects variables based on

multiple-testing corrected statistical significance. We define the critical value threshold as

cp(k, δ) = Φ−1
(

1− p

2kδ

)
,

where k is the number of covariate in the active set, Φ−1(.) is the inverse of the cumulative

distribution of the standard normal variate, p is the nominal; size of the test, and δ measures

the degree to which multiple testing is taken into account. We set δ = 1 in the first stage, and

δ∗ = 2 in subsequent stages, and a p-value p = 0.05. Under the pooled model, the p-values

are derived from state-year clustered standard errors. For the regional model, p-values are

derived from state-clustered standard errors. This approach is taken for both regressions of

turnout and voting. We refer to the original paper for further technical details.

Lasso

Our second set of forecasts are generated using the Lasso algorithm. Because we rely on

cross-validation to calibrate the trade-off between fit and parsimony, it is important to set the

numeric seed before running simulations - this ensures our results from Lasso algorithm are

replicable When running the program, we always set our seed equal to “123”. All covariates

are standardized to mean zero and unit standard deviation prior to estimation. In n-fold

cross-validation, we set n = 10 and our loss criteria is based on mean-squared error. The

model we select is that which has the smallest regularization penalty parameter yet which

still falls within 1-standard deviation of the model yielding the minimum MSE. The Online

Supplement of Chudik et al. (2020) contains further technical details providing computer

codes for implementation of OCMT and Lasso algorithms used in this paper.
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S4 Additional Results

S4.1 Consistency proof of the two-stage estimation

Here we establish consistency of the two-stage estimation of the recursive model, which we

write compactly as

y1 = X1β1 + u1,

y2 = γy1 + X2β2 + u2,

where X1 and X2 are T × k1 and T × k2 matrices of exogenous variables, coefficients β1 and

β2 are k1 × 1 and k2 × 1 vectors, and u1 and u2 are T × 1 vectors of errors. For instance,

let y1 and y2 represent voter turnout and the log odds ratio, respectively (y1 = V T and

y2 = DLRO). Notice that our recursive structure imposes that y2 does not enter the y1

equation. We assume that X1 and X2 are weakly exogenous such that

X′1u1

T

p→ 0,
X′1u2

T

p→ 0,
X′2u1

T

p→ 0,
X′2u2

T

p→ 0.

It then follows that β1 is consistently estimated by β̂1 = (X′1X1)
−1X′1y1. Using this esti-

mate, we obtained the fitted values, ŷ1 = X1β̂1 which can be used in the second stage to

consistently estimate θ = (γ1,β
′
2)
′ by

θ̂ = (Ẑ′Ẑ)−1Ẑ′y2, Ẑ = (ŷ1,X2).

To establish consistency of θ̂, we note that

y2 = γŷ1 + X2β2 + u2 + γ(y1 − ŷ1)︸ ︷︷ ︸
ξ

y2 = Ẑθ + ξ,

such that θ̂ = (Ẑ′Ẑ)−1Ẑ′(Ẑθ + ξ). Hence

θ̂ − θ =

(
Ẑ′Ẑ

T

)−1
Ẑ′ξ

T
.

But,
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Ẑ′ξ

T
=

Ẑ′u2

T
+ γ

Ẑ′e1

T
,

e1 = y1 − ŷ1 = y1 −X1(X
′
1X1)

−1X′1y1,

= M1y1, M1 = I−X1(X
′
1X1)

−1X′1,

and

Ẑ′e1

T
=

(
ŷ′1e1/T

X′2e1/T

)
.

Also, it readily follows that ŷ′1e1 = β̂
′
1X
′
1[M1y1] = 0, since X′1M1 = 0. Then, we have

T−1X′2e1 = T−1X′2M1(X1β1 + u1),

= T−1X′2M1u1

=
X′2u1

T
− X′2X1

T

(
X′1X1

T

)−1
X′1u1

T
p→ 0 .

Therefore, Ẑ′e1
T

p→ 0. Also,

Ẑ′u2

T
=

(
ŷ′1u2/T

X′2u2/T

)
,

and

ŷ′1u2

T
=

β̂
′
X′1u2

T

p→ 0,
X′1u2

T

p→ 0.

Hence, overall we have ˆT−1Z
′
ξ

p→ 0, and hence θ̂
p→ θ.

S4.2 Additional panel regression results

As a robustness test, we average county-level Republican and Democrat predicted votes

across OCMT and Lasso approaches to produce model averaged predictions. Table S.3 re-

ports 2016 vote share and electoral college forecasts under the OCMT + Lasso averaging

approach. Table S.4 similarly reports 2020 vote share and electoral predictions across states.

For 2016, the predicted outcomes largely coincide with outcomes produced from individual
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models. Averaging the regional models also predicts a Republican victory in 2016. The

regional-average prediction of Republican electoral votes was higher than individual models:

330 (2016 actual was 304). By contrast, individual regional models predicted 308 (Lasso)

and 307 (OCMT), for 2016 respectively. The higher vote count of the average model is driven

by switched electoral votes for some swing states. For example, OCMT-regional predicted

0 republican electoral votes for Minnesota, 7 from Oregon, and 0 from Pennsylvania. The

regional-averaged model flipped these predictions (10 from Minnesota, 0 from Oregon, 20

from Pennsylvania). Hence a difference of 13 electoral votes between the OCMT-regional pre-

diction and the regional-average prediction. For 2020, the regional-averaged model predicts

a Democratic electoral victory by a single vote. This reflects the different forecasts under the

individual OCMT-regional (which predicts Republican) and Lasso-regional (which predicts

Democrat) models.
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Figure S.1: Bureau of Economic Analysis Regions
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Figure S.2: Histogram of Voter Turnout (V T ) over the period 2004-2016 at Mainland U.S.
and Regional Levels
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Figure S.3: Histogram of changes in Log Republican Odds Ratio (DLRO) over 2004-2016
at Mainland U.S. and Regional Levels
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Figure S.4: 2020 Popular Vote Forecasts by County, Lasso-regional

Red indicates Republican electoral victory. Blue indicates Democratic popular victory.
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Figure S.5: 2020 Popular vote Forecasts by County, OCMT-regional

Red indicates Republican electoral victory. Blue indicates Democratic popular victory.
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Table S.1: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes using
Lasso Algorithm for 2020 Elections

Pooled Forecasts Regional Forecasts

State ds V̂s EC Votes V̂s EC Votes

AK 3 - 3 - 3
AL 9 0.62 9 0.63 9
AR 6 0.62 6 0.65 6
AZ 11 0.47 0 0.55 11
CA 55 0.29 0 0.31 0
CO 9 0.40 0 0.41 0
CT 7 0.36 0 0.50 7
DC 3 0.03 0 0.04 0
DE 3 0.39 0 0.42 0
FL 29 0.46 0 0.46 0
GA 16 0.49 0 0.50 16
HI 4 - 0 - 0
IA 6 0.52 6 0.57 6
ID 4 0.66 4 0.65 4
IL 20 0.37 0 0.43 0
IN 11 0.58 11 0.58 11
KS 6 0.57 6 0.58 6
KY 8 0.63 8 0.64 8
LA 8 0.57 8 0.58 8
MA 11 0.29 0 0.43 0
MD 10 0.32 0 0.34 0
ME 4 0.44 0 0.53 4
MI 16 0.46 0 0.54 16
MN 10 0.44 0 0.47 0
MO 10 0.58 10 0.63 10
MS 6 0.57 6 0.58 6
MT 3 0.56 3 0.57 3
NC 15 0.48 0 0.48 0
ND 3 0.66 3 0.70 3
NE 5 0.60 5 0.64 5
NH 4 0.44 0 0.55 4
NJ 14 0.36 0 0.42 0
NM 5 0.40 0 0.47 0
NV 6 0.45 0 0.46 0
NY 29 0.35 0 0.35 0
OH 18 0.51 18 0.56 18
OK 7 0.65 7 0.68 7
OR 7 0.40 0 0.41 0
PA 20 0.46 0 0.50 0
RI 4 0.36 0 0.51 4
SC 9 0.54 9 0.55 9
SD 3 0.63 3 0.64 3
TN 11 0.62 11 0.63 11
TX 38 0.49 0 0.51 38
UT 6 0.59 6 0.60 6
VA 13 0.42 0 0.41 0
VT 3 0.31 0 0.39 0
WA 12 0.37 0 0.39 0
WI 10 0.47 0 0.52 10
WV 5 0.70 5 0.71 5
WY 3 0.71 3 0.73 3

All Votes 538 150 260

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions.
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Table S.2: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes using
OCMT Algorithm for 2020 Elections

Pooled Forecasts Regional Forecasts

State ds V̂s EC Votes V̂s EC Votes

AK 3 - 3 - 3
AL 9 0.64 9 0.65 9
AR 6 0.64 6 0.67 6
AZ 11 0.50 11 0.57 11
CA 55 0.33 0 0.34 0
CO 9 0.42 0 0.42 0
CT 7 0.39 0 0.49 0
DC 3 0.03 0 0.04 0
DE 3 0.41 0 0.48 0
FL 29 0.48 0 0.48 0
GA 16 0.51 16 0.52 16
HI 4 - 0 - 0
IA 6 0.53 6 0.61 6
ID 4 0.68 4 0.65 4
IL 20 0.39 0 0.43 0
IN 11 0.60 11 0.59 11
KS 6 0.57 6 0.60 6
KY 8 0.65 8 0.67 8
LA 8 0.59 8 0.61 8
MA 11 0.32 0 0.41 0
MD 10 0.33 0 0.38 0
ME 4 0.46 0 0.50 0
MI 16 0.50 0 0.52 16
MN 10 0.46 0 0.52 10
MO 10 0.60 10 0.66 10
MS 6 0.60 6 0.61 6
MT 3 0.59 3 0.57 3
NC 15 0.50 0 0.51 15
ND 3 0.68 3 0.75 3
NE 5 0.60 5 0.70 5
NH 4 0.47 0 0.51 4
NJ 14 0.40 0 0.46 0
NM 5 0.42 0 0.48 0
NV 6 0.50 6 0.47 0
NY 29 0.36 0 0.35 0
OH 18 0.54 18 0.55 18
OK 7 0.68 7 0.70 7
OR 7 0.42 0 0.43 0
PA 20 0.49 0 0.56 20
RI 4 0.38 0 0.48 0
SC 9 0.57 9 0.58 9
SD 3 0.64 3 0.66 3
TN 11 0.64 11 0.65 11
TX 38 0.52 38 0.54 38
UT 6 0.61 6 0.60 6
VA 13 0.43 0 0.44 0
VT 3 0.33 0 0.37 0
WA 12 0.40 0 0.42 0
WI 10 0.49 0 0.51 10
WV 5 0.73 5 0.74 5
WY 3 0.74 3 0.74 3

All Votes 538 221 290

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions.
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Table S.3: State Level Forecasts and Realized Republican Vote Shares (Vs) and Electoral
Votes using Lasso-OCMT Average for 2016 Elections

Pooled Forecasts Regional Forecasts

State ds Realized V̂s EC Votes V̂s EC Votes

AK 3 - - 3 - 3
AL 9 0.64 0.63 9 0.65 9
AR 6 0.64 0.65 6 0.67 6
AZ 11 0.52 0.56 11 0.54 11
CA 55 0.34 0.39 0 0.41 0
CO 9 0.47 0.48 0 0.53 9
CT 7 0.43 0.41 0 0.44 0
DC 3 0.04 0.07 0 0.08 0
DE 3 0.44 0.40 0 0.42 0
FL 29 0.51 0.51 29 0.52 29
GA 16 0.53 0.56 16 0.57 16
HI 4 - - 0 - 0
IA 6 0.55 0.50 6 0.51 6
ID 4 0.68 0.69 4 0.72 4
IL 20 0.41 0.43 0 0.47 0
IN 11 0.60 0.58 11 0.61 11
KS 6 0.61 0.63 6 0.66 6
KY 8 0.66 0.64 8 0.66 8
LA 8 0.60 0.61 8 0.62 8
MA 11 0.35 0.37 0 0.42 0
MD 10 0.36 0.37 0 0.38 0
ME 4 0.49 0.44 0 0.43 0
MI 16 0.50 0.47 0 0.51 16
MN 10 0.49 0.49 0 0.50 10
MO 10 0.62 0.59 10 0.62 10
MS 6 0.59 0.58 6 0.59 6
MT 3 0.61 0.59 3 0.63 3
NC 15 0.52 0.53 15 0.53 15
ND 3 0.70 0.64 3 0.63 3
NE 5 0.64 0.64 5 0.65 5
NH 4 0.50 0.48 0 0.50 0
NJ 14 0.43 0.41 0 0.43 0
NM 5 0.45 0.45 0 0.44 0
NV 6 0.49 0.50 0 0.51 6
NY 29 0.38 0.34 0 0.36 0
OH 18 0.54 0.51 18 0.55 18
OK 7 0.69 0.69 7 0.68 7
OR 7 0.44 0.46 0 0.48 0
PA 20 0.50 0.48 0 0.51 20
RI 4 0.42 0.35 0 0.39 0
SC 9 0.57 0.58 9 0.58 9
SD 3 0.66 0.62 3 0.64 3
TN 11 0.64 0.63 11 0.66 11
TX 38 0.55 0.60 38 0.57 38
UT 6 0.62 0.76 6 0.79 6
VA 13 0.47 0.49 0 0.47 0
VT 3 0.35 0.33 0 0.30 0
WA 12 0.41 0.44 0 0.47 0
WI 10 0.50 0.49 0 0.51 10
WV 5 0.72 0.66 5 0.68 5
WY 3 0.76 0.73 3 0.75 3

All Votes 538 259 330

The average forecast takes the predicted number of Democrat and Republican votes under OCMT and Lasso for each county and
averages them. Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes
per state (Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions.
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Table S.4: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes using
Lasso-OCMT Average for 2020 Elections

Pooled Forecasts Regional Forecasts

State ds V̂s EC Votes V̂s EC Votes

AK 3 - 3 - 3
AL 9 0.63 9 0.64 9
AR 6 0.63 6 0.66 6
AZ 11 0.49 0 0.56 11
CA 55 0.31 0 0.32 0
CO 9 0.41 0 0.41 0
CT 7 0.37 0 0.49 0
DC 3 0.03 0 0.04 0
DE 3 0.40 0 0.45 0
FL 29 0.47 0 0.47 0
GA 16 0.50 0 0.51 16
HI 4 - 0 - 0
IA 6 0.52 6 0.59 6
ID 4 0.67 4 0.65 4
IL 20 0.38 0 0.43 0
IN 11 0.59 11 0.59 11
KS 6 0.57 6 0.59 6
KY 8 0.64 8 0.66 8
LA 8 0.58 8 0.59 8
MA 11 0.30 0 0.42 0
MD 10 0.32 0 0.36 0
ME 4 0.45 0 0.51 4
MI 16 0.48 0 0.53 16
MN 10 0.45 0 0.50 0
MO 10 0.59 10 0.65 10
MS 6 0.58 6 0.59 6
MT 3 0.58 3 0.57 3
NC 15 0.49 0 0.50 0
ND 3 0.67 3 0.72 3
NE 5 0.60 5 0.67 5
NH 4 0.45 0 0.53 4
NJ 14 0.38 0 0.44 0
NM 5 0.41 0 0.47 0
NV 6 0.48 0 0.47 0
NY 29 0.35 0 0.35 0
OH 18 0.52 18 0.55 18
OK 7 0.67 7 0.69 7
OR 7 0.41 0 0.42 0
PA 20 0.48 0 0.53 20
RI 4 0.37 0 0.50 0
SC 9 0.56 9 0.57 9
SD 3 0.64 3 0.65 3
TN 11 0.63 11 0.64 11
TX 38 0.51 38 0.53 38
UT 6 0.60 6 0.60 6
VA 13 0.43 0 0.43 0
VT 3 0.32 0 0.38 0
WA 12 0.38 0 0.40 0
WI 10 0.48 0 0.52 10
WV 5 0.72 5 0.73 5
WY 3 0.73 3 0.73 3

All Votes 538 188 269

The average forecast takes the predicted number of Democrat and Republican votes under OCMT and Lasso for each county and
averages them. Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes
per state (Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions.
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Table S.5: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes using
Lasso Algorithm for 2020 Elections with Data Available as of October 2020

Pooled Forecasts Regional Forecasts

State ds V̂s EC Votes V̂s EC Votes

AK 3 - 3 - 3
AL 9 0.63 9 0.64 9
AR 6 0.63 6 0.65 6
AZ 11 0.49 0 0.55 11
CA 55 0.30 0 0.31 0
CO 9 0.41 0 0.41 0
CT 7 0.37 0 0.50 0
DC 3 0.03 0 0.04 0
DE 3 0.40 0 0.42 0
FL 29 0.46 0 0.46 0
GA 16 0.49 0 0.51 16
HI 4 - 0 - 0
IA 6 0.52 6 0.55 6
ID 4 0.67 4 0.65 4
IL 20 0.38 0 0.42 0
IN 11 0.58 11 0.58 11
KS 6 0.58 6 0.58 6
KY 8 0.64 8 0.65 8
LA 8 0.58 8 0.58 8
MA 11 0.29 0 0.41 0
MD 10 0.31 0 0.35 0
ME 4 0.45 0 0.51 4
MI 16 0.47 0 0.51 16
MN 10 0.45 0 0.47 0
MO 10 0.59 10 0.62 10
MS 6 0.58 6 0.58 6
MT 3 0.57 3 0.57 3
NC 15 0.49 0 0.49 0
ND 3 0.66 3 0.69 3
NE 5 0.60 5 0.64 5
NH 4 0.44 0 0.53 4
NJ 14 0.37 0 0.41 0
NM 5 0.41 0 0.47 0
NV 6 0.47 0 0.46 0
NY 29 0.34 0 0.34 0
OH 18 0.52 18 0.54 18
OK 7 0.67 7 0.68 7
OR 7 0.40 0 0.41 0
PA 20 0.47 0 0.50 0
RI 4 0.38 0 0.49 0
SC 9 0.56 9 0.56 9
SD 3 0.64 3 0.63 3
TN 11 0.62 11 0.64 11
TX 38 0.50 38 0.51 38
UT 6 0.60 6 0.60 6
VA 13 0.42 0 0.41 0
VT 3 0.32 0 0.38 0
WA 12 0.37 0 0.38 0
WI 10 0.47 0 0.51 10
WV 5 0.71 5 0.72 5
WY 3 0.73 3 0.73 3

All Votes 538 188 249

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions. Using data available as of October 14, 2020.
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Table S.6: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes using
OCMT Algorithm for 2020 Elections with Data Available as of October 2020

Pooled Forecasts Regional Forecasts

State ds V̂s EC Votes V̂s EC Votes

AK 3 - 3 - 3
AL 9 0.64 9 0.65 9
AR 6 0.65 6 0.67 6
AZ 11 0.52 11 0.57 11
CA 55 0.34 0 0.34 0
CO 9 0.42 0 0.42 0
CT 7 0.40 0 0.48 0
DC 3 0.03 0 0.04 0
DE 3 0.42 0 0.47 0
FL 29 0.49 0 0.48 0
GA 16 0.51 16 0.52 16
HI 4 - 0 - 0
IA 6 0.54 6 0.58 6
ID 4 0.68 4 0.66 4
IL 20 0.40 0 0.42 0
IN 11 0.60 11 0.58 11
KS 6 0.58 6 0.59 6
KY 8 0.66 8 0.67 8
LA 8 0.60 8 0.61 8
MA 11 0.32 0 0.39 0
MD 10 0.33 0 0.37 0
ME 4 0.47 0 0.48 0
MI 16 0.50 0 0.50 0
MN 10 0.47 0 0.50 10
MO 10 0.61 10 0.65 10
MS 6 0.60 6 0.61 6
MT 3 0.59 3 0.57 3
NC 15 0.50 15 0.51 15
ND 3 0.69 3 0.73 3
NE 5 0.61 5 0.69 5
NH 4 0.47 0 0.50 0
NJ 14 0.41 0 0.45 0
NM 5 0.44 0 0.48 0
NV 6 0.50 6 0.46 0
NY 29 0.37 0 0.34 0
OH 18 0.54 18 0.54 18
OK 7 0.69 7 0.70 7
OR 7 0.42 0 0.42 0
PA 20 0.50 0 0.55 20
RI 4 0.39 0 0.46 0
SC 9 0.57 9 0.58 9
SD 3 0.65 3 0.64 3
TN 11 0.64 11 0.65 11
TX 38 0.53 38 0.54 38
UT 6 0.61 6 0.61 6
VA 13 0.44 0 0.44 0
VT 3 0.33 0 0.36 0
WA 12 0.40 0 0.41 0
WI 10 0.50 0 0.51 10
WV 5 0.74 5 0.74 5
WY 3 0.75 3 0.74 3

All Votes 538 236 270

Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes per state
(Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions. Using data available as of October 14, 2020.
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Table S.7: State Level Forecasts of Republican Vote Shares (Vs) and Electoral Votes using
Lasso-OCMT Average for 2020 Elections using Data Available as of October 2020

Pooled Forecasts Regional Forecasts

State ds V̂s EC Votes V̂s EC Votes

AK 3 - 3 - 3
AL 9 0.63 9 0.65 9
AR 6 0.64 6 0.66 6
AZ 11 0.51 11 0.56 11
CA 55 0.32 0 0.33 0
CO 9 0.41 0 0.41 0
CT 7 0.38 0 0.49 0
DC 3 0.03 0 0.04 0
DE 3 0.41 0 0.45 0
FL 29 0.48 0 0.47 0
GA 16 0.50 16 0.52 16
HI 4 - 0 - 0
IA 6 0.53 6 0.56 6
ID 4 0.67 4 0.65 4
IL 20 0.39 0 0.42 0
IN 11 0.59 11 0.58 11
KS 6 0.58 6 0.58 6
KY 8 0.65 8 0.66 8
LA 8 0.59 8 0.60 8
MA 11 0.30 0 0.40 0
MD 10 0.32 0 0.36 0
ME 4 0.46 0 0.49 0
MI 16 0.49 0 0.50 16
MN 10 0.46 0 0.48 0
MO 10 0.60 10 0.64 10
MS 6 0.59 6 0.60 6
MT 3 0.58 3 0.57 3
NC 15 0.49 0 0.50 0
ND 3 0.67 3 0.71 3
NE 5 0.61 5 0.67 5
NH 4 0.46 0 0.51 4
NJ 14 0.39 0 0.43 0
NM 5 0.43 0 0.47 0
NV 6 0.48 0 0.46 0
NY 29 0.35 0 0.34 0
OH 18 0.53 18 0.54 18
OK 7 0.68 7 0.69 7
OR 7 0.41 0 0.42 0
PA 20 0.48 0 0.52 20
RI 4 0.38 0 0.48 0
SC 9 0.57 9 0.57 9
SD 3 0.65 3 0.64 3
TN 11 0.63 11 0.65 11
TX 38 0.52 38 0.53 38
UT 6 0.61 6 0.60 6
VA 13 0.43 0 0.43 0
VT 3 0.33 0 0.37 0
WA 12 0.38 0 0.40 0
WI 10 0.48 0 0.51 10
WV 5 0.72 5 0.73 5
WY 3 0.74 3 0.73 3

All Votes 538 215 265

The average forecast takes the predicted number of Democrat and Republican votes under OCMT and Lasso for each county and
averages them. Republican vote shares are calculated as in Equation 12. Column ds refers to the total number of electoral votes
per state (Equation 7). EC Votes refer to the predicted number of Republican electoral college votes. All Votes accumulates U.S.
Mainland electoral college votes, and assumes Hawaii casts her electoral votes for the Democratic candidate and Alaska casts
her electoral votes for the Republican candidate. Regional forecasts are generated using the eight separate panel regressions for
the eight BEA regions. Using data available as of October 14, 2020.
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Table S.8: Functional Form of Voting Outcome Variable Regressed on Active Set

Dependent variable:

∆4 ln Vcr,t
1−Vcr,t ∆4Vcr,t ∆4 lnVcr,t

(1) (2) (3)

Adjusted SE 0.036 0.037 0.042
Observations 12,428 12,428 12,428
Adjusted R2 0.537 0.530 0.492

County Republican vote share, Vcr,t is defined as in Equation S.5. Regression fits under different dependent
variable transformations are compared using adjusted regression standard errors reported in the row named
Adjusted SE. Adjustments made based on different functional forms are described in Section S2.
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Table S.9: State and County Sample

State Counties

1 AK -
2 AL 67
3 AR 75
4 AZ 15
5 CA 58
6 CO 63
7 CT 8
8 DC 1
9 DE 3

10 FL 67
11 GA 159
12 HI -
13 IA 99
14 ID 44
15 IL 102
16 IN 92
17 KS 105
18 KY 120
19 LA 64
20 MA 14
21 MD 24
22 ME 16
23 MI 83
24 MN 87
25 MO 115
26 MS 82
27 MT 56
28 NC 100
29 ND 53
30 NE 93
31 NH 10
32 NJ 21
33 NM 33
34 NV 17
35 NY 62
36 OH 88
37 OK 77
38 OR 36
39 PA 67
40 RI 5
41 SC 46
42 SD 66
43 TN 95
44 TX 254
45 UT 29
46 VA 133
47 VT 14
48 WA 39
49 WI 72
50 WV 55
51 WY 23

Total 3107

We do not consider Alaska and Hawaii, non U.S. mainland states, in our sample. “DC” refers to Washington
D.C.
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