
Bernholt, Thorsten; Nunkesser, Robin; Schettlinger, Karen

Working Paper

Computing the Least Quartile Difference Estimator in
the Plane

Technical Report, No. 2005,51

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Bernholt, Thorsten; Nunkesser, Robin; Schettlinger, Karen (2005) :
Computing the Least Quartile Difference Estimator in the Plane, Technical Report, No. 2005,51,
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten
Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/22644

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/22644
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Computing the Least Quartile Difference Estimator

in the Plane⋆

Thorsten Bernholt1, Robin Nunkesser1, and Karen Schettlinger2

1 FB Informatik, LS2, Universität Dortmund, 44221 Dortmund, Germany
{thorsten.bernholt,robin.nunkesser}@udo.edu

2 FB Statistik, Universität Dortmund, 44221 Dortmund, Germany
schettlinger@statistik.uni-dortmund.de

Abstract. A common problem in linear regression is that largely aberrant
values can strongly influence the results. The least quartile difference (LQD) re-
gression estimator is highly robust, since it can resist up to almost 50% largely
deviant data values without becoming extremely biased. Additionally, it shows
good behavior on Gaussian data – in contrast to many other robust regression
methods. However, the LQD is not widely used yet due to the high computa-
tional effort needed when using common algorithms, e.g. the subset algorithm
of Rousseeuw and Leroy. For computing the LQD estimator for n data points
in the plane, we propose a randomized algorithm with expected running time
O(n2 log2 n) and an approximation algorithm with a running time of roughly
O(n2 log n). It can be expected that the practical relevance of the LQD estima-
tor will strongly increase thereby.

1 Introduction

Finding relationships between different variables is a common and multidis-
ciplinary problem. Assuming a linear dependence between two variables, this
relationship can be estimated by applying linear regression methods.

Least squares (LS) is one of the most popular regression methods since it is
computationally simple and it has minimal variance for Gaussian distributed
data. However, the LS estimator can be strongly influenced by outlying values.
The aim of robust regression in the plane is to fit a straight line through a set
of two-dimensional points in such a way that outliers do not affect the fit.

To quantify the robustness of an estimator, Donoho and Huber [4] define the
(finite sample) breakdown point as the smallest fraction of data points that
needs to be changed to have an unbounded effect on the estimate. Thus here,
the term ’robust’ stands for a high breakdown value. The LS estimator is not
robust, as its breakdown value is 1/n, i.e. a single outlier can have arbitrarily
large effects on the estimation.

The least quartile difference (LQD) estimator, introduced by Croux, Rousseeuw
and Hössjer [3], has a breakdown point of ⌊n/2⌋/n if the data fulfil certain
requirements. This means, that up to 50% of the data can be contaminated
without ruining the fit. Also, 50% represents an upper bound for the break-
down point in the class of regression-equivariant estimators. An example for
the importance of a high breakdown point is given in Fig. 1.

⋆ The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, Reduction of
complexity in multivariate data structures) is gratefully acknowledged.

LS

1955 1960 1965 1970

0
5

10
15

20

Year

N
u
m

b
er

of
C

al
ls

(i
n

te
n
s

of
m

ill
io

n
s)

LQD

1950

Fig. 1. An example for an LS and an LQD fit for data consisting of the number of international
phone calls originated in Belgium between 1950 and 1973 (see Rousseeuw and Leroy [11]).
Partly in 1963 and 1970 and from 1964 to 1969 the duration of the calls was recorded instead
of the number of calls.

Further, the LQD estimator shows a much better performance at Gaussian dis-
tributed errors than other maximum breakdown methods such as least median
of squares (LMS) [9] or least trimmed squares (LTS) regression [11]. Deepest re-
gression (DR) [10] shows similar behaviour as the LQD for normally distributed
samples but does not have a maximum breakdown value. As a drawback, ro-
bust regression methods generally need more computation time than non-robust
methods. To make the above mentioned methods feasible for practical appli-
cations, some research has been carried out for enhancing their computational
speed and for geometrical interpretations of the regression problem (see e.g. [6]
and [8] for LMS, [12] for LTS, and [7] for DR).
For the definition of the LQD estimator, consider a line L : y = βx + α with
slope β and intercept α, and let

ri (L) = yi − βxi − α

denote the residual of the point pi = (xi, yi) with respect to the line L. Further,
denote the residual difference of the points pi and pj by

ri,j (L) = ri (L) − rj (L) = (yi − yj) − β (xi − xj) .

For data in the plane, the least quartile difference (LQD) estimator, introduced
by Croux, Rousseeuw and Hössjer [3], is defined as follows:

Definition 1. Consider n points pi = (xi, yi) ∈ IR2, and let h = ⌊(n + 3)/2⌋.
The LQD solution to the regression problem is given by the slope of the line L
which minimizes the

(

h
2

)

th order statistic of {|ri,j (L) | | 1 ≤ i < j ≤ n}.

The intercept of the LQD regression fit with slope β̂ has to be estimated af-
terwards, e.g. by med{yi − β̂xi | 1 ≤ i ≤ n}. The exact algorithm Croux,
Rousseeuw and Hössjer propose needs time O(n5 log n). Another possibility to

2

compute the LQD regression fit is to adapt LMS or least quantile of squares
(LQS) algorithms. The adaption proposed by Croux, Rousseeuw and Hössjer
leads to a running time of O(n4), if the algorithm of Edelsbrunner and Souvaine
[6] for LMS is used. Agulló [1] proposes an approximation algorithm for LQD,
but only gives empirical running time results.
Due to the high computational effort needed when using common algorithms,
the LQD is not widely used, yet. However, Dryden and Walker [5] propose to
use it for object matching in biology and Mebane, Sekhon and Wand [13] use
the LQD fit to detect outliers in vote counts.
A presentation of the LQD problem from the geometric point of view is stated
in Sect. 2 while Sect. 3 and Sect. 4 give a more detailed description of the
single steps of the algorithms. Finally, Sect. 5 compares the running times of
the described algorithms.

2 Solving the LQD geometrically

In their article, introducing the LQD estimator, Croux, Rousseeuw and Hössjer
[3] propose to use the subset algorithm developed by Rousseeuw and Leroy
[11]. This algorithm is based on examining subsets of the data points that de-
termine local solutions. The

(

h
2

)

th order statistic of the absolute residual differ-
ences of a local solution can be computed in time O(n log n). Croux, Rousseeuw
and Hössjer propose to examine all O(n2) or alternatively just O(n) randomly
chosen 2-subsets of the data points which needs overall time O(n3 log n) or
O(n2 log n), respectively. However, the resulting algorithm is not exact because
the global solution is not necessarily determined by a 2-subset. The exact algo-
rithm they propose needs time O(n5 log n).
In contrast, we use the concept of geometric duality which Chazelle, Guibas and
Lee [2] propose for solving geometrical problems. Hence, we obtain an expected
running time of O(n2 log2 n) for our exact algorithm and a running time of
roughly O(n2 log n) for our approximation algorithm.
In order to solve the LQD problem geometrically, we redefine it:

Definition 2 (LQDgeom problem). Consider an input consisting of n points
(x1, y1), . . . , (xn, yn) in the plane and a positive integer h. Transforming the
points for 1 ≤ i < j ≤ n to 2

(

n
2

)

lines

L+
i,j : v = +(xi − xj)u − (yi − yj)

L−

i,j : v = −(xi − xj)u + (yi − yj) ,

leads to a new space with axes u and v, which we call modified dual space.
Now, the LQDgeom problem consists of finding a point (β, r), such that r ≥ 0 is
minimal and

(

n
2

)

+
(

h
2

)

lines are below (in relation to the v-axis) or intersecting
it.

Definition 3. Each point on a line with k lines below or intersecting it, is
called a point on the k-level. If k =

(

h
2

)

+
(

n
2

)

, such a point is also called a
local solution. Thus, the global solution of LQDgeom is the local solution with
the minimum v-value in modified dual space.

3

We will show in the next lemma, that an optimal LQD solution is obtained by
solving the LQDgeom problem. An example is given in Fig. 2.

1.2

0
0
.2

0
.4

0
.6

0
.8

v

u
0.6 0.7 0.8 0.9 1 1.3 1.41.1

-0
.2

Fig. 2. An example for the mapping of the points {(0, 0.15), (1, 0.8), (3, 2.7), (7, 7.4)} to the
corresponding 12 lines in the modified dual space. The LQD solution for h = 3 is determined
by the lowest point with nine lines below or intersecting, here: (0.85, 0.2) (marked with ⋄). The
bold lines show local solutions. The LQD regression line for a zero-intercept model in primal
space is therefore uy = 0.85x, and the corresponding third order statistic of the absolute
residual differences takes on its minimal value of 0.2.

Lemma 1. Let h = ⌊(n + 3)/2⌋. If (β, r) is an optimal solution of LQDgeom,
then the LQD regression fit has slope β and the minimal

(

h
2

)

th order statistic of
{|ri,j (βx + α) | | 1 ≤ i < j ≤ n} is r for arbitrary intercept α.

Proof. Let (β, r) be an optimal solution of LQDgeom and consider arbitrary i
and j with 1 ≤ i < j ≤ n and the corresponding lines L+

i,j and L−

i,j . Now,
consider the following three cases:

1. L+
i,j and L−

i,j are below or intersecting (β, r).

2. One line of L+
i,j and L−

i,j is above (β, r) and the other line is below or
intersecting (β, r).

3. L+
i,j and L−

i,j are above (β, r).

The third case does not occur, since r ≥ 0 and L+
i,j and L−

i,j intersect on the
u-axis. Recall, that a line v = au + b is below or intersecting a point (β, r),
iff aβ + b ≤ r. In the first case, the stated relations translate to the original
problem as follows:

L+
i,j and L−

i,j are below or intersecting (β, r)

⇔ (xi − xj)β − (yi − yj) ≤ r and − (xi − xj)β + (yi − yj) ≤ r
⇔ |(xi − xj)β − (yi − yj)| ≤ r
⇔ For all intercepts α : |ri,j (βx + α)| ≤ r .

(1)

4

Now, recall that there are
(

n
2

)

+
(

h
2

)

lines below or intersecting (β, r). Because

of counting arguments, there are at least
(

h
2

)

pairs (i, j) such that both lines
L+

i,j and L−

i,j are below or intersecting (β, r). Due to Equation 1, we obtain at

least
(

h
2

)

absolute residual differences smaller than or equal to r with respect
to an arbitrary line with slope β. In addition, r ≥ 0 is the minimal value,
such that (β, r) has

(

n
2

)

+
(

h
2

)

lines below or intersecting it. Therefore, at most
(

n
2

)

+
(

h
2

)

− 1 lines are strictly below (β, r) ((β, r) has to be located on a line)

and due to counting arguments at most
(

h
2

)

−1 absolute residual differences are

strictly smaller than r. Hence, r is the
(

h
2

)

th order statistic of {|ri,j (βx + α) | |
1 ≤ i < j ≤ n}.
We claim, that no other line y = β

′

x+α leads to a smaller
(

h
2

)

th order statistic

r
′

. Assume for the sake of contradiction, that there is a slope β
′

leading to a
smaller

(

h
2

)

th order statistic r
′

. Due to Equation 1, there are 2
(

h
2

)

lines L+
i,j and

L−

i,j below or intersecting (β
′

, r
′

). Of the remaining 2
(

n
2

)

− 2
(

h
2

)

lines at least

(2
(

n
2

)

−2
(

h
2

)

)/2 lines are also below or intersecting (β
′

, r
′

) (recall, that case three

does not occur). Thus, (β
′

, r
′

) is a solution to LQDgeom with r′ < r, which is a
contradiction, because (β, r) is the global solution to LQDgeom (and therefore
the local solution with the smallest v-coordinate). Hence, L : y = βx + α
minimizes the

(

h
2

)

th order statistic of {|ri,j (L) | | 1 ≤ i < j ≤ n}. ⊓⊔

Note, that the transformation of the input in LQDgeom needs time O(n2). The
transformed data lie in the modified dual space where the LQD solution of
the original regression problem is represented by a point. All local solutions
with the same value r are located on a horizontal line. Using this fact, the
transformation to the LQDgeom problem enables us to use a method that decides
in time O(n2 log n) whether a given value r belongs to a local solution. This
decision method is presented in the next section. Hereinafter, we refer to this
method as decideLQD and decideLQD(r) if r is the given value.
In a second step, we propose two algorithms that solve the LQDgeom problem
using decideLQD in Sect. 4.

3 Solving the Decision Problem

In the following, we give a more detailed description of the method decideLQD,
used in the next sections for solving the underlying decision problem. With the
term ’height’ we refer to the size of the v-coordinate in the modified dual space.
Given a height r, we need to decide whether there exists a point at this height
with

(

h
2

)

+
(

n
2

)

lines below or intersecting it.
Let H(r) denote the horizontal line at height r. Computing all intersections
of H(r) with the lines in the modified dual space and sorting them, costs
O

(

n2 log n
)

time. For the first intersection point in the sorted set of inter-
section points, the number of lines lying below or on it can be determined
quickly: unless there are other horizontal lines - a horizontal line in our con-
struction starts in level

(

n
2

)

. If there are other horizontal lines, we have to add
the number of horizontal lines below or on H(r) to this level. This is possible
in time O

(

n2
)

. We now sift through the intersection points from left to right

5

increasing or decreasing the count of subjacent lines, depending on whether the
intersecting line has negative or positive slope, in time O

(

n2
)

. In this way, it

is possible to decide whether a point with
(

h
2

)

+
(

n
2

)

subjacent or incident lines
exists for the given height, and, if it exists, to determine that point.

4 Searching for the Optimal Point

To search for the optimal point in the modified dual space we propose two
methods, which lead to two different algorithms:

1. A deterministic search based on the geometric mean to get an approximative
solution.

2. A randomized search.

In both proposed methods we denote the upper bound for the height of the
optimal solution by rmax and the lower bound by rmin.
We have shown in Sect. 3, that it is possible to decide with decideLQD whether
a local solution exists at a given height and to determine this solution, if it exists,
in time O

(

n2 log n
)

. If decideLQD decides for some height r in [rmin, rmax]
that there is a local solution, we update rmax to r. If decideLQD decides that
there is no local solution at height r, we update rmin to r.
First, it is tested with decideLQD(0) whether a trivial solution with residual
difference 0 exists to assure that rmin > 0 when we first determine it. If a trivial
solution exists, the algorithm stops and outputs the point determined in the
test.
Otherwise, we continue to search for the optimal solution. We propose two
algorithms for this, which are described in detail in the next two sections.

4.1 Approximative Search

For a solution with approximation ratio 1 + ε the inequation rmax/rmin ≤ 1 + ε
has to hold. If such a solution is found, the approximation algorithm outputs
the local solution determined by decideLQD(rmax). Our method to achieve
rmax/rmin ≤ 1 + ε is to iteratively calculate the geometric mean

√
rmaxrmin,

decide with decideLQD whether a local solution exists at this height in time
O

(

n2 log n
)

, and change rmin or rmax to
√

rmaxrmin, depending on the decision
of decideLQD until rmax/rmin ≤ 1+ε. However, this is not possible as long as
no values for rmax and rmin are known. To obtain an initial value for rmin > 0,
we test with decideLQD, whether a local solution at the heights 1/(1 + ε), 1
and 1 + ε exists. Therewith, we can decide, whether a solution in [1/(1 + ε), 1]
or [1, 1+ε] exists. In that case, we obtain a local solution at the height 1 or 1+ε
and the desired approximation ratio rmax/rmin ≤ 1+ε is reached. Otherwise we
either obtain an upper bound rmax = 1/(1 + ε) or a lower bound rmin = 1 + ε.
We only consider the case rmin = 1 + ε, because the calculations for the other
case are similar (mostly we have to use the reciprocals of the values in this case).
We determine rmax by iteratively squaring rmin, testing for local solutions with
decideLQD, and updating rmin until we find a height where a local solution
exists.

6

Let r∗ be the height of the optimal solution. After rmax is determined, rmax =
r2
min and therefore (r∗)2 > rmax. The maximum number of steps to obtain rmax

is determined by the smallest integer k1 that is a solution to (1 + ε)2
k1 ≥ (r∗)2.

Therefore, the maximum number of steps is ⌈2 log log r∗− log log (1 + ε)⌉. Since
rmax = r2

min, we obtain rmax/rmin = rmin. We now use the geometric mean as
described above to determine better values for rmin and rmax, respectively. In
each step, we obtain new bounds rmin and rmax. One is identical to the former
bound, the other is the geometric mean of the former bounds. For the case that
rmax is updated, the new ratio between rmax and rmin is

rmax

rmin
=

√

r′

maxrmin

rmin
=

√

r′

max

r
′

min

,

where r
′

min and r
′

max denote the old values of rmin and rmax, respectively. The
other case leads to the same ratio. Hence, the new ratio is the square root
of the old ratio. Since the ratio we begin with is less than r∗, the maximum
number of steps to reach a ratio of 1 + ε is determined by the smallest integer

k2 that is a solution to (r∗)(1/2)k2 ≤ 1 + ε. Therefore, the maximum number of
steps is ⌈log log r∗ − log log (1 + ε)⌉. All in all, the approximative search needs
O(log log r∗− log log(1+ ε)) steps in the considered case. As each of these steps
takes time O

(

n2 log n
)

, we obtain the following:

Theorem 1. The approximation algorithm finds the LQD fit with approxima-
tion ratio 1 + ε (0 < ε ≤ 1) on n points in the plane in worst case time

O(n2 log n(log log r∗ − log log(1 + ε))) , whenever r∗ > 1 + ε
O(n2 log n(log log 1

r∗ − log log(1 + ε))) , whenever 1
r∗ > 1 + ε

O(n2 log n) , otherwise
,

where r∗ is the
(

h
2

)

th order statistic of the absolute residual differences of the
LQD fit.

Additionally, it is useful to descend to a local solution after a new rmax is found.
To this end, we store the line that reaches the highest level in decideLQD. It
is possible to compute the lowest local solution on this line in time O(n2 log n).
This descent method does not need much additional time and has the advan-
tages that we may get faster over large gaps between local solutions and that
we have a local solution that is an intersection of two lines (which increases the
chance to reach the global solution).

4.2 Randomized Search

For the randomized search, we need initial values for rmax and rmin. We set
rmin to 0 and determine rmax by calculating a point on the

(

h
2

)

+
(

n
2

)

-level
in the transformed input for a randomly chosen fixed u-coordinate in time
O

(

n2 log n
)

. To do this, we have to calculate all intersections of the lines with
the chosen u-coordinate, sort them according to their v-coordinate, and sift
through the intersection points increasing the count of lines below until we

7

reach an intersection with
(

h
2

)

+
(

n
2

)

lines below or on it. It is convenient to
restrict the choice of the u-coordinate to intersections of the lines in modified
dual space with the u-axis.
We denote the horizontal lines that correspond to rmax and rmin by H(rmax)
and H(rmin). After determining rmax and rmin we calculate all intersections
of the lines in modified dual space with the two horizontal lines H(rmax) and
H(rmin). Assuming that no two lines in modified dual space intersect H(rmax)
or H(rmin) in the same point, we sort the intersections on H(rmax) according
to their horizontal position. Afterwards, we label the intersections from left
to right with {1, . . . ,

(

n
2

)

}. If there are intersections in the same point, they
get the same label. Intersection points on H(rmin) get the label ℓ, if they are
located on the same line as the intersection point on H(rmax) labelled with ℓ.
We now sort the intersections on H(rmin) according to their horizontal position
and obtain a permutation π of {1, . . . ,

(

n
2

)

}. An inversion in a permutation is
a pair of values where i > j and π (i) < π (j). An inversion table contains the
number of inversions for each element. We additionally count inversions where
i < j and π (i) > π (j). This inversion table uniquely determines how many
intersections each line has between H(rmax) and H(rmin) and it can be computed
in time O

(

n2 log n
)

, for example with an extended merge sort algorithm. Note
that the term ’between’ excludes intersections on H(rmax) and H(rmin). We
denote the set of intersections between to horizontal lines H(r1) and H(r2) by
I (H(r1),H(r2)).
Now, we randomly choose a number k between 1 and the number of intersections
between H(rmax) and H(rmin). We determine the “kth intersection” between
H(rmax) and H(rmin) by finding that label ℓ where the sum of intersections of all
smaller labels s is less than k and greater or equal to k if we add the intersections
of ℓ between H(rmax) and H(rmin). Afterwards, we determine the ith intersec-
tion on ℓ between H(rmax) and H(rmin) such that s + i = k and denote the
height of this intersection by rmid. Afterwards, we use decideLQD(rmid) and
obtain a new value for rmin or rmax (depending on the decision of decideLQD)
in time O

(

n2 log n
)

.

Lemma 2. The application of the above-described method assures

E(|I (H(rmin),H(rmid)) |) = E(|I (H(rmid),H(rmax)) |)

≤ 1

2
(|I (H(rmin),H(rmax)) | − 1) .

Proof. Let m be the number of intersections between H(rmax) and H(rmin).
Each of these intersections is chosen with the same probability. Assume that no
two intersections have the same v-coordinate. Then

E(|I (H(rmin),H(rmid)) |) =
m−1
∑

i=0

1

m
i =

1

2
(m − 1) .

Intersections with the same v-coordinate can only lead to a smaller value. ⊓⊔

Due to Lemma 2, we expect to have no intersection points between H(rmax) and
H(rmin) after O (log n) steps and therefore the optimal solution determined by

8

decideLQD(rmax). As each of these steps takes time O
(

n2 log n
)

, we obtain
the following result:

Theorem 2. The randomized algorithm finds the LQD fit on n points in the
plane in expected running time of O(n2 log2 n).

5 Experimental Results

While it is theoretically possible to choose ε in such a way, that the approxi-
mation algorithm is slower than the randomized algorithm, the approximative
version is generally faster in practice. For the conducted experiments, we used
64 bit floating point numbers according to IEEE 754-1985. If we choose ε suf-
ficiently small and wait until rmin and rmax are indistinguishable from their
geometric mean the approximative version computes the same results as the
randomized version (except for possible rounding errors).
The experiments show that even with such a precision, the approximative ver-
sion is faster than the randomized one. However, for greater ε it is of course
much faster. We compare the approximative version with maximal precision for
64 bit floating point numbers to the approximative version with ε = 0.01 and
to the randomized version on two types of data sets with n points. The first
type of data set is

{(xi, yi) | xi =
2 (i − 1)

n − 1
; yi = −xi + 1.2 + e1; 1 ≤ i ≤ n}

and the second is
{

{(xi, yi) | xi = 2(i−1)
n−1 ; yi = e2; 1 ≤ i ≤ n} , whenever i ≤

⌊

n
2

⌋

+ 1

{(xi, yi) | xi = 2(i−1)
n−1 ; yi = − 1

10xi + 3
2 + e2; 1 ≤ i ≤ n} , otherwise

where e1 is random noise from a normal distribution with mean 0 and standard
deviation 10−2, and e2 is random noise from a normal distribution with mean
0 and standard deviation 10−280. While the first type of data set represents
uncontaminated normal data, the second type contains ⌈n/2⌉−1 outliers. Thus,
data set number two can result in local solutions that are far from the optimum.
Below, computing times of these three versions of the algorithm are measured
for each n in {101, 201, . . . , 1001} for 100 different data sets. The results for the
first type of data set are shown in Fig. 3, the outcomes for the second type are
shown in Fig. 4. The figures show boxplots of the running times for each n and
each algorithm. These boxplots illustrate, the minimal and maximal running
time for each n as well as the quartiles and the median of the running times.
The medians are connected by additional lines.
It clearly shows, that the randomized version has a considerably larger variance
in its computational time, and needs much more time than the approximative
version. Another noticeable fact is that the two figures do not differ very much.
The high number of outliers and local solutions in the second data set does not
slow down the algorithms. On the contrary, the possibility to start at a local
solution that is far below other local solutions leads to better performance.

9

101

ti
m

e
[s

ec
]

0
20

0
40

0
60

0
80

0
10

00
rand.

m.p.appro.

ε=0.01

1001901801701601501401301201

number of data points

Fig. 3. Running time in seconds on a Pentium 4 CPU with 2, 56GHz and 1024MB of RAM
for the first type of data set.

101

ti
m

e
[s

ec
]

0
20

0
40

0
60

0
80

0

rand.

m.p.appro.

ε=0.01

1001901801701601501401301201

number of data points

Fig. 4. Running time in seconds on a Pentium 4 CPU with 2, 56GHz and 1024MB of RAM
for the second type of data set.

10

This is also the reason for the long lower whiskers of the boxplots for the
approximation algorithm with maximum precision.
In conclusion, the randomized version of the presented algorithms provides a
large improvement in computational time on currently available LQD algo-
rithms. However, the experiments show that the proposed approximation algo-
rithm yields even better results. Therefore, these algorithms might increase the
practical relevance of LQD regression in the future.

References

1. Agulló, J.: An exchange algorithm for computing the least quartile difference estimator.
Metrika 55 (2002) 3–16

2. Chazelle, B., Guibas, L.J., Lee, D.T.: The power of geometric duality. BIT 25 (1985)
76–90

3. Croux, C., Rousseeuw, P.J., Hössjer, O.: Generalized s-estimators. J. Amer. Statist.
Assoc. 89 (1994) 1271–1281

4. Donoho, D., Huber, P.: The notion of breakdown point. In Bickel, P., Doksum, K.,
Hodges, J.J., eds.: A Festschrift for Erich L. Lehmann. Wadsworth (1983) 157–184

5. Dryden, I.L., Walker, G.: Highly resistant regression and object matching. Biometrics 55

(1999) 820–825
6. Edelsbrunner, H., Souvaine, D.: Computing least median of squares regression and guided

topological sweep. J. Amer. Stat. Assoc. 85 (1990) 115–119
7. Langerman, S., Steiger, W.L.: The complexity of hyperplane depth in the plane. Discrete

& Computational Geometry 30 (2003) 299–309
8. Mount, D.M., Netanyahu, N.S., Romanik, K., Silverman, R., Wu, A.Y.: A practical

approximation algorithm for the LMS line estimator. In: SODA ’97, SIAM (1997) 473–
482

9. Rousseeuw, P.J.: Least median of squares regression. J. Amer. Statist. Assoc. 79 (1984)
871–880

10. Rousseeuw, P.J., Hubert, M.: Regression depth. J. Amer. Statist. Assoc. 94 (1999)
388–402

11. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. John Wiley &
Sons Inc., New York (1987)

12. Rousseeuw, P., Van Driessen, K.: Computing LTS regression for large data sets. Es-
tad́ıstica 54 (2002) 163–190

13. Wand, J.N.A., Sekhon, J.S., Mebane, Jr., W.R.: A comparative analysis of multinomial
voting irregularities: Canada 2000. In: Proceedings of the American Statistical Society.
(2001)

11

