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Abstract

The issue of suitable similarity measures for a joint consideration of so called SNP

data and epidemiological variables arises from the GENICA (Interdisciplinary Study

Group on Gene Environment Interaction and Breast Cancer in Germany) case-

control study of sporadic breast cancer. The GENICA study aims to investigate the

influence and interaction of single nucleotide polymorphic (SNP) loci and exogenous

risk factors. A single nucleotide polymorphism is a point mutation that is present in

at least 1 % of a population. SNPs are the most common form of human genetic

variations.

In particular, we consider 43 SNP loci in genes involved in the metabolism of

hormones, xenobiotics and drugs as well as in the repair of DNA.

Assuming that these single nucleotide changes may lead, for instance, to altered

enzymes or to a reduced or enhanced amount of the original enzymes – with each

alteration alone having minor effects – the aim is to detect combinations of SNPs that

under certain environmental conditions increase the risk of sporadic breast cancer.

The search for patterns in the present data set may be performed by a variety of

clustering and classification approaches. I consider here the problem of suitable
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measures of proximity of two variables or subjects as an indispensable basis for a

further cluster analysis. In the present data situation these measures have to be able

to handle different numbers and meaning of categories of nominal scaled data as well

as data of different scales.

Generally, clustering approaches are a useful tool to detect structures and to generate

hypothesis about potential relationships in complex data situations. Searching for

patterns in the data there are two possible objectives: the identification of groups of

similar objects or subjects or the identification of groups of similar variables within

the whole or within subpopulations. The different objectives imply different

requirements on the measures of similarity. Comparing the individual genetic

profiles as well as comparing the genetic information across subpopulations I discuss

possible choices of similarity measures suitable for genetic and epidemiological data,

in particular, measures based on the χ2-statistic, Flexible Matching Coefficients and

combinations of similarity measures.

KEY WORDS: GENICA, single nucleotide polymorphism (SNP), sporadic breast

cancer, similarity, cluster analysis, Flexible Matching Coefficient, Pearson's

Corrected Coefficient of Contingency, mixed similarity coefficient
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1. Introduction

The issue of the appropriate choice of measures of proximity arises from the

GENICA (Interdisciplinary Study Group on Gene Environment Interaction and

Breast Cancer in Germany) case-control study of sporadic breast cancer. In Germany

almost 50 000 women develop breast cancer each year, that are 7 to 10 % of all

women developing this disease during their life-time. Though genetic factors have

been discovered for hereditary breast cancer – variations of the genes BRCA1 and

BRCA2 in about 3 % of all cases – for the majority of the breast cancer cases such

understanding of the genetic mechanisms and potential interactions with exogenous

risk factors remains unclear. It is supposed that combinations of a number of low

penetrant susceptibility genes may augment the risk of breast cancer in presence of

certain exogenous risk factors. One of these factors seems to be the long term use of

the Hormone Replacement Therapy as it was confirmed by the British Million

Woman Study (Beral, 2003). Identification of interacting sequence variants and

exogenous risk factors which affect the individual susceptibility is a major challenge

for understanding the mechanisms contributing to the development of sporadic breast

cancer (see also Garte, 2001).

The GENICA study aims to investigate these supposed genetic and gene-

environment interactions associated with sporadic breast cancer. With respect to the

genetic data the GENICA study group considers in particular single nucleotide

polymorphisms (SNPs) – the most common genetic variation – in genes involved, for

instance, in the metabolism of hormones and of xenobiotics and drugs, as well as of

signal transductors. Besides the genetic traits the GENICA study considers a number

of epidemiological variables which encompass a broad range of potential risk and

beneficial factors such as age, physical activity, hormone use etc.

The search for patterns in the present data set may be performed by a variety of

clustering and classification approaches. I consider here the problem of suitable

measures of proximity of two variables or subjects as an indispensable basis for a

further cluster analysis. This is also important for several classification approaches

such as k Nearest Neighbours for non-metric dissimilarity measures (Zhang &

Srihari, 2002).
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The appropriate choice of measures of similarity requires a consideration of the

concept of similarity and dissimilarity in the context of the particular data situation.

That means to ascertain that candidate measures correspond to the scale of the data,

that they are able to handle the specific difficulties of the data set, and, moreover,

that the chosen measures reflect our believe about the nature of our data. For

instance, measures based on the χ²-statistic regard objects as dissimilar if they are

independent and similar if they are dependent in the sense that certain combinations

of categories occur more often than expected under the hypothesis of independence.

These prominent combinations need not to be those of equal entries for each of the

two objects. The latter is the concept of similarity underlying the matching

coefficients.

This group of measures is particularly suitable for a comparison of SNP data and for

a comparison of subjects, especially the Flexible Matching Coefficients, which may

account for biological background knowledge and for the problem of the huge

amount of homozygous reference sequences (Selinski & Ickstadt, 2005). This is a

typical problem of SNP data and leads to a masking effect of the jointly occurring

homozygous references with respect to the comparably small fraction of other jointly

occurring genotypes and of dissimilar genotypes.

A further difficulty of the present data set is the diversity of the considered

exogenous factors. Though the genetic data owns mainly the same structure – three

categories with each category having a similar meaning – this is obviously not true

for epidemiological variables such as smoking habits and family history of cancer.

First of all we have to account for the different scale of the data. Moreover, within

the categorial variables it is usually not possible to consider certain categories as

similar. Furthermore, different concepts of similarity might be appropriate for

subgroups of variables.

Hence, the question is, how to assign a numerical value measuring the proximity –

similarity or dissimilarity – of two SNP loci, of two variables of different numbers of

categories and different meaning or of different scale and how to measure the

proximity of the genetic and epidemiologic profiles of two persons based on such a

set of variables?

After a short introduction to the data the third section considers measures of

proximity in general and particular measures for different scales and concepts of
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similarity. Flexible Matching-Coefficients and combinations of measures are

presented followed by some first results and conclusions in section four.

2. Data

Single Nucleotide Polymorphisms

SNP data are qualitative data providing information about the genotype at a specific

locus of a gene. To be more precisely, a SNP (single nucleotide polymorphism) is a

point mutation present in at least 1 % of a population. A point mutation is a

substitution of one base pair or a deletion, which means, the respective base pair is

missing, or an addition of one base pair. Though several different sequence variants

may occur at each considered locus usually one specific variant of the most common

sequence is found, an exchange from adenine (A) to guanine (G), for instance. Thus,

information is basically given in form of categories denoting the combinations of

base pairs for the two chromosomes, e.g. A/A, A/G, G/G, if the most frequent variant

is adenine and the single nucleotide polymorphism is an exchange from adenine to

guanine.

The result of such a variation of one base pair may be, for instance, a change of one

amino acid in the amino acid chain of an enzyme or the switch from an amino acid

coding triplet to a stop codon leading to a shortened amino acid chain. So, what we

have to compare with respect to their similarity are present or absent alterations of

certain base pairs of the DNA and the consequences of the altered genetic code with

respect to the related metabolic processes and with respect to certain exogenous

factors (see Selinski & Ickstadt, 2005, for more details).

GENICA case-control study

The present data set consists of a selection of SNP loci and epidemiological variables

of the GENICA study of sporadic breast cancer. The GENICA study is a population-

based age-matched case-control study assessing genotypes of over 100 SNP loci and

exogenous risk factors of the reproductive history, hormone use, life style factors,
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occupational history, family history of cancer, etc. of > 1000 cases and > 1000

healthy controls.

The GENICA network is a cooperation between researchers from the Research

Institute for Occupational Medicine of the Institutions for Satutory Accident

Insurance and Prevention (BGFA) in Bochum, the Dr.-Margarete-Fischer-Bosch

Institute for Clinical Pharmacology (IKP) in Stuttgart, the German Cancer Research

Center (DKFZ) in Heidelberg, the Medical Polyclinic at the University of Bonn, and

the Institute for Occupational Physiology at the University of Dortmund (IfADo).

The study is part of the German Human Genome Project (DHGP).

Actually the available data set comprises 43 SNP loci of 610 cases of sporadic breast

cancer and of 650 age-matched healthy controls from the first phase of recruitment.

The main part of the SNP data are given in form of both detected bases at a specific

locus, specifying the reference base and the variant, and are transformed to denote

the single or double absence of the reference base pair at a defined point of a certain

gene. In particular, we denote 0 as the homozygous reference sequence

(reference/reference, no SNP), 1 as the heterozygous genotype (reference/variant, 1

SNP) and 2 as the homozygous variant sequence (variant/variant, 2 SNPs).

Furthermore, we know which loci belong to the same gene and to which pathways

the genes belong to. Additionally, we know for most loci if they are located in a

coding or in a non-coding region and in case of the coding SNP loci if they cause a

change in the amino acid chain. Several genes are observed at more than one SNP

locus and the pathway information is given for all genes (Selinski & Ickstadt, 2005).

Pathway means the field where a gene-product plays a role within the human

metabolism, e.g. the pathway of xenobiotics and drug metabolism. Note, that a gene

may participate in more than one pathway.

Additionally, a selection of 49 categorial and 8 quantitative epidemiological

variables is considered.
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3. Methods

Searching for patterns in the data there are two possible objectives: a comparison of

variables and a comparison of subjects. In the first case the aim is to detect major

differences in the clustering of two variables between cases and controls as well as a

general structure of genetic and or exogenous variables. A different point of view is

the comparison of subjects. Here the objective is to find high and low risk groups

with similar profiles of genetic variables and exogenous risk factors. Depending on

the different objectives we have to define a measure of proximity suitable for the

hypothised concept of similarity and the scale of the data.

A detailed introduction into the special issue of measures for SNP data is given by

Selinski & Ickstadt (2005).

3.1 Concepts of proximity

Similarity may be considered in terms of agreement or in terms of dependence.

Agreement means to consider two variables as similar if the majority of the subjects

own a combination of similar traits. Two variables would be considered as dissimilar

if the majority of subjects have a combination of dissimilar traits. Similar traits may

be equal categories in case of categorial data or the common occurrence of high or

low values in case of quantitative data. Matching coefficients and measures of

correlation, for instance, would correspond to this concept of similarity. Application

of this concept requires

 i. equal numbers of categories and assignment of similar categories or

 ii. at least ordinal scale with a sufficient number of categories and similar

meaning of high and low values

The concept of dependence encompasses the first in so far as a frequent occurrence

of similar traits would also be regarded as similarity. But it also allows, in case of

categorial data, generally for further combinations of – perhaps a priori judged as

dissimilar – to contribute to the label ‘similar’ for two variables or subjects if they

occur more frequent than expected. So, dependence would be regarded as similarity

and independence as dissimilarity. This concept is represented, for instance, by

squared correlation coefficients in case of quantitative or ordinal scaled data and

measures based on the χ²-statistics in case of categorial data.
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Focusing on the similarity of the genetic and epidemiological variables the basic

questions are: What does similarity of two SNP loci mean, what does similarity of

variables of different interpretation and scale mean and how to measure it?

With respect to SNP loci we may regard the common occurrence or absence of

sequence alterations as similarity – and apply matching coefficients – or we may

regard dependence as similarity – and apply measures based on the χ²-statistic. For a

comparison of epidemiologic variables and for a joint comparison of genetic and

epidemiologic variables we have to consider the following cases:

 i. All variables are categorial but with different numbers of categories. Equally

denoted categories may have a different interpretation.

 ii. Most variables are categorial, some of them are ordinal scaled, the remaining

variables are quantitative. Equally denoted categories may have a different

interpretation.

In the first case we can use measures based on the concept of dependence suitable for

categorial data, e.g. Pearson's Corrected Coefficient of Contingency, for the

comparison of variables. For the comparison of subject we may additionally use

Matching Coefficients. In the second case there are two possibilities. The

quantitative variables may be transformed to categorial variables with a sufficient

low number of categories to avoid empty cells. Hence, we can proceed as in the

categorial case. The second option is to use different measures of similarity for the

different scales and to combine them to a coefficient for different scales.

Focussing on the comparison of objects or subjects – the observed persons in this

case – means to assess the similarity of each trait of the two subjects separately and

to draw conclusions about the overall similarity of the considered genetic and

epidemiologic profiles. Generally, two subjects can be considered as similar if they

share mainly similar traits. They are dissimilar if most considered variables show

dissimilar combinations of traits. Thus similarity means here accordance or

agreement. The concept of dependence is less adequate. Imagine that the genotypes

of two persons are compared by means of a measure based on the χ²-statistic. Then

they would be regarded as similar if the observed cell counts deviate from the

expected ones. This means not necessarily that they share the same genotype at most

loci. We would obtain the same result if they share the same genotype at notably few



9

loci - in contrast to our believe about similarity in this situation. So, in this particular

situation measures based on the concept of agreement should be preferred to those

based on dependence.

A general problem of SNP data is the huge amount of common occurrence of

homozygous reference types which is supposed to mask the relevant information of

combinations of genetic alterations. Especially the Flexible Matching Coefficients

introduced in section 3.3 are able to handle this specific problem of such data sets.

3.2 Similarity and distance

Measures of similarity or distance may be defined as functions of variables or as

functions of objects or subjects. We introduce here functions of variables. For the

corresponding notations of the functions of objects replace IRVVS →×: , with V

being the set of variables by IROOS →×: , with O being the set of objects.

DEFINITION 1. Similarity

Let O = {O1, …, On} be a set of n objects observed at a set of m variables

V = {V1, ..., Vm}. Then a measure of similarity of two variables Vk ∈ V and Vl ∈ V, is

given by IRVVS →×:  with

(A1) ( ) ( )mklk VVSVVS ,, > , ∀ Vk, Vl, Vm ∈ V, with Vk

being more similar to Vl

than to Vm and Vl ≠Vm

comparability

(A2) ( ) ( )kllk VVSVVS ,, = , ∀ Vk, Vl ∈ V symmetry

(A3) ( ) ( )lkkk VVSVVS ,, ≥ , ∀ Vk, Vl ∈ V natural order

REMARK 1. Restriction to [0,1]

Often it is useful to assume that S ∈ [0,1], i.e.,

(A4) ( ) 0, ≥lk VVS , ∀ Vk, Vl ∈ V positivity

(A5) ( ) 1, =kk VVS , ∀ Vk, ∈ V normality

Measures of distance or dissimilarity can be defined similarly.



10

DEFINITION 2. Distance

Let O = {O1, . . ., On} be a set a set of n objects observed at a set of m variables

V = {V1, . . ., Vm}. Then a measure of distance of two variables Vk ∈ V and Vl ∈ V, is

given by IRVVD →×:  with

(B1) ( ) ( ),,, mklk VVDVVD > , ∀ Vk, Vl, Vm ∈ V, with

Vk being more dissimilar

to Vl than to Vm and Vl

≠Vm

comparability

(B2) ( ) ( )kllk VVDVVD ,, = , ∀ Vk, Vl ∈ V symmetry

(B3) ( ) ( )lkkk VVDVVD ,, ≤ , ∀ Vk, Vl ∈ V. natural order

REMARK 3. Restriction to [0,1]

Often it is useful to assume that D ∈ [0,1], i.e.,

(B4) ( ) 1, ≤lk VVD , ∀ Vk, Vl ∈ V positivity

(B5) ( ) 0, =kk VVD , ∀ Vk ∈ V. normalit

y

REMARK 4. Metric

If D satisfies (B2),

(B6) ( ) 0, =lk VVD , if and only if k = l, ∀ Vk,

Vl ∈ V

normality

(B7) ( ) ( )
( ),,

,,

mk

mllk

VVD
VVDVVD

≥
+ ∀ Vk, Vl, Vm ∈ V and Vl ≠Vm triangle

inequalit

y

then D is a metric.

Note, that (B6) is a stronger assumption than (B5). Furthermore, D is not restricted to

[0, 1].

In practice, the interest is focussed more on distances, especially on metric measures

of distances. If S ∈ [0, 1] then D = 1 – S otherwise S can be converted into a distance

as follows:
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TRANSFORMATION 1.

Let S be a similarity measure satisfying (A1)-(A3) and let ( ) 0,min <lk VVS . Then

the transformation

(T1) ( ) ( )
( )lk

lk
lk VVS

VVS
VVD

,max
,

1, *
''

*

'' −= , ∀ Vk’, Vl’ ∈ V and ∀Vk, Vl ∈ V,

where ( ) ( ) ( )lklklk VVSVVSVVS ,min,, ''''
* += , ∀ Vk’, Vl’ ∈ V and ∀Vk, Vl ∈ V,

yields the corresponding measure of distance [ ]1,0: →×VVD .

If S also satisfies (A4) the transformation from S to S* can be skipped and

(T1) can be performed directly with S.

If S in addition satisfies (A5) the transformation

(T2) ( ) ( )lklk VVSVVD ,1, −= , ∀ Vk, Vl ∈ V,

yields the corresponding measure of distance [ ]1,0: →×VVD .

3.3 Measures of proximity

Choosing appropriate measures of proximity for a particular problem does not only

mean to regard the nature of similarity and dissimilarity but also to consider the scale

of the data and special characteristics of the data set. This section considers the

different scales of data and gives an overview over the corresponding measures of

proximity focussing on the particular situation of SNP and epidemiologic data.

Nominal scale

Considering the similarity of nominal scaled data in terms of agreement the

corresponding measures of agreement relate the numbers of pairs of similar traits to

the number of pairs of dissimilar traits. There is a plethora of similarity measures

based on this concept. We concentrate here on Flexible Matching Coefficients that

encompass most of the common matching coefficients (Selinski & Ickstadt, 2005).

For further matching coefficients that may not be derived from the following

Definition 3 see, for instance, Anderberg (1973), Cox & Cox (2001), Steinhausen &

Langer (1977).

Measures of dependence are usually based on the χ²-statistic and differ in their way

of handling the dependence of the χ²-statistic on the table size.
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Measures of agreement

Consider the case of Vk and Vl with categories k, l = 0, 1, …, p being two variables

that should be compared with respect to their similarity. The case of Ok and Ol is

analogous. It is reasonable to assume that the matching categories are all

combinations i-j with i = j, i, j = 0, 1, …, p.

In the particular situation of SNP data this means that we compare either loci or

persons with the matching combinations

0-0 homozygous reference- homozygous reference,

1-1 heterozygous-heterozygous and

2-2 homozygous variant- homozygous variant.

where extensions to further combinations are possible.

So, let Vk and Vl with categories i, j =0, 1, …, p being two variables and let m'ij as

given in Table 1.

Table 1. Contingency table of Vk and Vl.

For convenience and to assure the symmetry of the corresponding similarity matrix

for all variables or subjects the indices kl and lk are pooled together to one index kl,

k≤l. Note that lkklkl mmm '' += , ∀k, l = 1, …, p, k≤l, is the sum over all numbers of

categories k and l.

DEFINITION 3. Flexible Matching Coefficient

Let O = {O1, …, On} be a set n objects observed at a set of m variables

V = {V1, …, Vm}. Then Sflex-IJ,λ,δ: V×V → IR, and Sflex-IJ,λ,δ: O×O → IR, respectively,

is given by

∆+Λ
Λ

=− :,, δλIJflexS , (1)

     Vl

Vk
0 1 2 … p

0 m00 m'01 m'02 … m'0p

1 m'10 m11 m'12 … m'1p

2 m'20 m'21 m22 … m'2p

… … … … … …

p m'p0 m'p1 m'p2 … mpp
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with ∑
∈

=Λ
Ii

ii mλ: , ∑
∈

=∆
Jj

jj mδ: ,

I = {i=kl, k≤l, k, l = 0, 1, …, p|all combinations of category k and l are similar},

J = {j=kl, k≤l, k, l = 0, 1, …, p|all combinations of category k and l are dissimilar}.

We denote by λ the vector of weights λi, i ∈ I, of the matches and by δ  the vector of

weights δj, j ∈ J, of the mismatches. Furthermore, Iii ∈∀≥ ,0λ , ∑
∈

>
Ii

i 0λ ,

Jjj ∈∀≥ ,0δ , 0>∑
∈Jj

jδ , and Iimi ∈∀≥ ,0 , Jjm j ∈∀≥ ,0 , 0>+∑∑
∈∈ Jj

j
Ii

i mm

with mi denoting the number of entries of all combinations of matching categories

contributing to i and mj denoting the number of entries of all combinations of

dissimilar categories contributing to j. In particular, lkklkl mmm '' +=  is the sum of the

number of (k, l) and (l, k) pairs.

REMARK 5. Measure of Similarity

∆+Λ
Λ

=− δλ ,,IJflexS  is a measure of similarity satisfying (A1)-(A5).

PROOF: see Selinski & Ickstadt (2005).

REMARK 6. Special cases for SNP data

For the comparison of SNP data as described in section 2 the following special cases

of (1) can be applied:

i. With I = {0, 1, 2} and J = {02, 01, 12} we obtain

( ) ( ) ( )211212100101200202000111222

000111222,,

mmmmmmmmm
mmm

S iiflex

++++++++
++

=−

δδδλλλ
λλλδλ  (2)

λi ≥ 0, i = 0, 1, 2, δj ≥ 0, j = 02, 01, 12, ∑ >
i

i 0λ , ∑ >
j

j 0δ .

It might be reasonable to assume that 0012 ≥≥≥ λλλ  stressing the importance of

the common occurrence of homozygous variants, that 00102 >≥ δδ  and

01202 >≥ δδ  so that homozygous variants and references are set to be most

dissimilar.

ii. With I = {0, 1, 2, 12} and J = {02, 01} we obtain

( )
( ) ( ) ( )100101200202211212000111222

211212000111222,,12

mmmmmmmmm
mmmmm

S flex

++++++++
++++

=−

δδλλλλ
λλλλδλ  (3)
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λi ≥ 0, i = 0, 1, 2, 12, δj ≥ 0, j = 02, 01, ∑ >
i

i 0λ , ∑ >
j

j 0δ .

It might be reasonable to assume that 0012 ≥≥≥ λλλ , 01212 ≥≥≥ λλλ and

00102 >≥ δδ .

iii. With I = {0, 1, 2, 01} and J = {02, 12} we obtain

( )
( ) ( ) ( )211212200202100101000111222

100101000111222,,01

mmmmmmmmm
mmmmm

S flex

++++++++
++++

=−

δδλλλλ
λλλλδλ (4)

with λi ≥ 0, i = 0, 1, 2, 01, δj ≥ 0, j = 02, 12, ∑ >
i

i 0λ , ∑ >
j

j 0δ .

It might be reasonable to assume that 0012 ≥≥≥ λλλ , 00112 ≥≥≥ λλλ and

01202 >≥ δδ .

For the properties of δλ ,,IJflexS −  and the relationship between Flexible and

conventional Matching Coefficients, see Selinski & Ickstadt (2005).

The flexibility of the sets of similar and dissimilar indices enables an incorporation

of biological assumptions about dominance. Equation (3) corresponds to the

dominance of the variant sequence, Equation (4) to the dominance of the reference.

The Flexible Matching-Coefficients are especially suitable for the comparison of

SNP data. For a comparison of subjects based on SNP and epidemiological data it is

not possible to take advantage of the flexibility of the measure. The categories of the

epidemiological variables are so different from each other and from the SNP data,

that we cannot a priori judge certain categories as more or less important for the

similarity of two subjects neither we can define other combinations than those of

equal entries to contribute rather to the similarity than to the dissimilarity. So, in this

case the we require Iiiii ∈∀= *, ,*λλ  and Jjjjj ∈∀= *, ,*δδ .

In case of a comparison of genetic and epidemiological variables there is generally

the problem that equally denoted categories do not necessarily have the same

meaning. For instance, let X be a SNP locus and Y be categories of the numbers of

mammograms in categories of 'never', '1-9' and '10+' by '0', '1' and '2', respectively.

Hence, it is clear that the number of equal entries does not reveal anything about the

similarity of these two variables. The concept of similarity that is more appropriate

in this situation is the concept of dependence as similarity as introduced in the next

section.
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Measures of dependence

In case of nominal scaled data most measures based on the concept of dependence

are functions of the χ²-statistic and handle the problem of the dependence of this

statistic on the table size differentially (Anderberg, 1973, Hartung, 1991) as, for

instance, Pearson’s Corrected Coefficient of Contingency

mqp
qpSPC +

⋅
−

=
²

²
1),min(

),min(
χ
χ , (5)

where p and q are the numbers of categories of the variables or objects which should

be compared, ∑∑
= =

=
p

i

p

j
ijmm

1 1
 is the number of observations contributing to χ²,

1
),min(

1),min(
²

²0 <
−

≤
+

=≤
qp

qp
m

C
χ
χ  is Pearson’s Contingency Coefficient and the

factor 
1),min(

),min(
−qp

qp is used to eliminate the dependence of C from the table size.

A further member of this class of measures, Cramèr’s C, is considered in Müller et

al. (2005).

Pearson’s Corrected Coefficient of Contingency seems to be a useful tool to compare

categorial variables. In particular, SPC allows for different numbers of categories and

we do not have to specify similar categories of two variables previous to an analysis.

So, we are able to compare variables which are so different from each other that we

don’t have an idea which might be similar categories and which ones are dissimilar,

e.g. the genotypes at a SNP locus in a gene coding for NAT2 and the number of

children recorded in categories '0', '1', '2', '3-4', '>4'. Thus, SPC seems to be a useful

tool for a comparison of genetic and exogenous risk factors.

Generally it is possible to use SPC for the comparison of subjects. Note, that two

objects would also be regarded as similar if they have notably few equal entries for

the same variables. So the use of SPC seems to be not the best choice to cluster

subjects.
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Ordinal scale

In case of ordinal scaled data we can assess the proximity of two variables or

subjects using measures based on the concept of correlation or on the concept of

dependence. The latter can be obtained from correlation coefficients by squaring

them. Coefficients of correlation have to be suitable for ordinal scaled data,

Spearman's rank correlation coefficient or Kendall’s τ, for instance, and it would be

reasonable to account for ties.

Considering proximity in terms of correlation means to regard a positive correlation

as similarity and a negative correlation as dissimilarity. Correlation coefficients are

restricted to [-1, 1], so transforming them into a measure of distance Transformation

(T1) has to be applied, i.e. to obtain the corresponding measure of similarity from

Kendall's τ

2
1+

= corrS τ
τ , (6)

where τcorr denotes the correlation coefficient corrected for ties (Hollander & Wolfe,

1999). Considering correlation – positive or negative – as similarity and

independence as dissimilarity suitable measures of proximity may easily be derived

from correlation coefficients for ordinal data by using the square of these

coefficients. Hence, the resulting measures of proximity are already standardised to

[0, 1]. Note, that the applied coefficients of correlation should also be corrected for

ties.

In the present case part of the epidemiological variables can be considered as ordinal

scaled, categories of the years of oral contraceptive use, for instance. In case of SNP

data it is possible to define an order in the determined genotypes in terms of the

amount of the original gene dose: To interpret the homozygous reference type as

double presence of the reference sequence (set to 2 or 1), the heterozygous type as

single presence of the reference sequence (set to 1 or 0.5) and the homozygous

variant type as absence of the reference sequence (set to 0).

Hence, coefficients of correlation may be used as a measure of similarity comparing

subjects or variables and squared coefficients of correlation may be used additionally

for a comparison of variables. The difficulty with this approach is that in case of SNP

data we have only three possible categories for 1200 observations comparing the

variables or three possible categories for over 60 observations for a comparison of

subjects. This means that we have three tied groups that are quite large at the best.
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So, this approach would be useful only in case of more than 3 categories that can be

ordered and if the size of the tied groups is not too big. In particular this approach

might be useful for a subset of epidemiological variables.

Quantitative data

Generally, there are three possibilities to consider the proximity of quantitative data:

Association or rather correlation, dependence and a geometric interpretation of

distance. The first concept leads to coefficients of correlation, Spearman’s rank

correlation coefficient or Kendall’s τ, for instance, and is often applied in the

analysis of gene expression data (see, for instance, Eisen et al., 1998). Similarity in

terms of dependence and independence can be obtained applying squared correlation

coefficients. The use of metric measures, Minkowski-r-metrics, for instance, is

appropriate if the proximity or distance of two objects has a geometric interpretation,

i.e. it is reasonable to require that the applied measure of proximity satisfies the

triangle inequality (B7). Note that coefficients of correlation as well as metric

measures are not necessarily restricted to [0, 1].

In the special case of SNP data it is clear that we actually don’t have quantitative

data. But some of the epidemiologic variables, such as the body mass index, are

quantitative.

Mixtures of similarity coefficients

Since there seems to be no single measure of proximity that is suitable for all

considered variables it is reasonable to apply the most suitable ones for parts of the

variables and to form a joint similarity coefficient, for instance, as a weighted

average.

The general idea is to split the set of m variables V = {V1, …, Vm} into G subsets

{ } { }
GG mmmm

G
m VVVVVV +++++ −

== KK KKK
1111

,, , ,,, 11
1  of variables so that within each

subset a particular similarity measure can be applied.

Clustering of subjects

In case of a comparison of subjects this approach can be implemented quite easily.

For instance, let

g = 1: all SNP loci with p = 3 categories and apply δλ ,,IJflexS − ,
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g = 2: all SNP loci with p ≠ 3 categories and all categorial epidemiological variables

and apply δλ ,,IJflexS −  with I = {ij, i = j}, J = {ij, i ≠ j}, Iiiii ∈∀= *, ,*λλ  and

Jjjjj ∈∀= *, ,*δδ .

g = 3: all ordinal scaled variables with a sufficient number of categories and all

quantitative variables and apply Kendall's τ corrected for ties and

standardised according to Equation (6), denoted further by Sτ or its square,

denoted by Sτ² within V3.

Calculate then the overall similarity matrix as a weighted average of the G subset

similarity matrices.

There are generally two possibilities for weighting schemes: Equal weights for each

entry of the respective subset similarity matrix or different weights for each entry of

the respective subset matrix. The weights may be chosen, for instance, according to

the assumed importance of the subsets of variables for the overall similarity, they

may be chosen according to the number of variables in each subset or according to

the numbers of observations contributing to each entry of the respective group

matrix.

DEFINITION 4. Similarity Coefficient for clustering subjects

Let O = {O1, …, On} be a set n objects observed at a set of m variables

V = {V1, …, Vm}. Suppose that V can be divided into G subsets { }  , ,,,
11

1 KK mVVV =

{ }
GG mmmm

G VVV +++++ −
= KK K

111
,,1  of variables, with mmm G =++K1 , so that within

each subset Vg, g = 1, …, G, there exists a measure of similarity Sg which can be

applied to measure the similarity of all subjects Ok and Ol ∈ O, k, l = 1, …, n, based

on this particular subset of variables Vg. Assume that Sg, g = 1, …, G, satisfies (A1) –

(A5). Let g
klω  be the weight for ),( lk

g OOS . Hence, IROOS mixed →×:  is given by

( )
( )

∑

∑

=

=

⋅
= G

g

g
kl

G

g
lk

gg
kl

lk
mixed

OOS
OOS

1

1
,

,
ω

ω
. (7)
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The weights g
klω  may be chosen as the number of observations contributing to

),( lk
g OOS . This seems to be particularly useful in case of many missing

observations. A further possibility is to choose g
klω  as the number of variables mg in

subset g or to determine a fixed weight gω  to each subset according to the assumed

importance of the respective subset. Hence Equation (7) can be simplified to

( )
( )

∑

∑

=

=

⋅
= G

g

g

G

g
lk

gg

lk
mixed

OOS
OOS

1

1
,

,
ω

ω
. (8)

From Definition 4 it is obvious that Smixed satisfies (A2) – (A5). To assure the

comparability (A1) the weights have to reflect the importance of the groups of

variables for the overall similarity. In case of equal weights for all pairs of objects it

is reasonable to make sure, that the pairs of subjects do not differ remarkably from

each other in the number of observations per group Vg available for a comparison.

Imagine the situation where a pair of subjects Ok and Ol  has notably few common

observations in those groups Vg that are most important for a comparison of subjects

and by chance the remaining observations indicate a high similarity. Hence, Ok and

Ol  may have a higher similarity coefficient as another pair Ok and Om  of subjects

though there is no information about their similarity with respect to a remarkably

high number of variables.

Clustering variables

Defining a coefficient for clustering variables analogous to Definition 4 is more

difficult. Assume, that two variables belonging to the same group g may be

compared using the respective measure of similarity Sg. Comparing two variables of

different groups the similarity might either be set equal to zero or a further measure

of similarity might be applied for a comparison. For instance, let

g = 1: all SNP loci with p = 3 categories and apply δλ ,,IJflexS −  or SPC within V1,

g = 2: all SNP loci with p ≠ 3 categories and all categorial epidemiological variables

and apply SPC within V2,

g = 3: all ordinal scaled variables with a sufficient number of categories and all

quantitative variables and apply Sτ or Sτ² within V3.
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For a comparison two variables Vk and Vl belonging to different groups of variables

Vg and Vg*, respectively, apply
[ ]

PCSS =2,1 in case of V1 and V2,

[ ]3,1S = 0 or [ ]3,1S = SKW, in case of V1 and V3,

[ ]3,2S = 0 or [ ]3,2S = SKW, in case of V2 and V3,

with SKW = 1-pKruskal-Wallis, pKruskal-Wallis being the p-value of the Kruskal-Wallis test.

The resulting similarity matrix has the form of a block matrix with blocks of

similarity coefficients for variables of the same group on the main diagonal and with

blocks of zero or further coefficients of similarity for variables of different groups. A

coefficient of similarity for a comparison of variables of different scales can then be

defined as follows.

DEFINITION 5. Similarity Coefficient for clustering variables

Let O = {O1, …, On} be a set n objects observed at a set of m variables

V = {V1, ..., Vm}. Suppose that V can be divided into G subsets { }  , ,,,
11

1 KK mVVV =

{ }
GG mmmm

G VVV +++++ −
= KK K

111
,, 1 of variables, with mmm G =++K1 , so that within

each subset Vg, g = 1, …, G, there exists a measure of similarity S[g,g] which can be

applied to measure the similarity of all variables Vk and Vl ∈ Vg, k, l = 1, …, m. Let

S[g,g*], g, g* = 1, …, G, *gg ≠ , be a measure of similarity that can be applied to

compare Vk ∈ Vg and Vl ∈ Vg*, ∀ Vk ∈ Vg and Vl ∈ Vg*.

Assume that S[g,g*], g, g* = 1, …, G,, satisfies (A1) – (A5). Let gV
I  be the indicator

function.

Hence, IRVVS block →×:  is given by

( ) ( ) ( ) ( )lV

G

g

G

g
kVlk

gg
lk

block VIVIVVSVVS gg *

1 1*

*],[ ,, ⋅⋅= ∑∑
= =

. (9)

From Definition 5 follows that Sblock satisfies (A2) – (A5). Within each group of

variables it is also obvious that Sblock satisfies (A1). This is not necessarily the case if

Vl and Vm belong to different groups of variables. So the choice of measures of

similarity S[g,g*] has to be handled with care.
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4. Results

The calculation of the similarity matrices as well as the cluster analysis were

performed using the software packages R.2.0.1 and R.1.8.0. For the cluster analysis

the average linkage algorithm was applied (Kornrumpf, 1986, see also Sitterberg,

1978, and Ostermann & Degens, 1984, for properties of the average linkage

algorithm).

A detailed comparison of the conventional matching coefficients and measures based

on the χ²-statistic is given in Müller et al. (2005) and Müller (2004), Flexible

Matching Coefficients are considered by Selinski & Ickstadt (2005).

Results are shown for the clustering of SNP and categorial epidemiological variables

for both: cases and controls. First, the dendrograms resulting from the application of

SPC are shown for the group of SNP loci and the categorial epidemiological variables

separately as well as combined (Figures 1 to 6).

Figure 1. Dendrogram of SPC of the SNP loci of the control group.
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Figure 2. Dendrogram of SPC of the SNP loci of the case group.

Figure 3. Dendrogram of SPC of the categorial epidemiological variables of the

control group.
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Figure 4. Dendrogram of SPC of the categorial epidemiological variables of the case

group.

Figure 5. Dendrogram of SPC of the SNP loci and the categorial epidemiological

variables of the control group.
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Figure 6. Dendrogram of SPC of the SNP loci and the categorial epidemiological

variables of the case group.

Figures 1 to 6 show that structures within subgroups of variables remain in a joint

consideration. For instance, the cluster of the loci Gen41, Gen24.1, Gen24.2 and

Gen24.3 in Figure 1 remains in Figure 5 as well as the cluster of Epi1, Epi3 – Epi5,

Epi31 – Epi34, Epi37 – Epi44 and Epi46 – Epi49 in Figure 3. Single SNP loci and

epidemiological variables can be found in common clusters. Here, main differences

between cases and controls can be detected as, for example, the cluster Epi9, Epi20,

Epi21, Gen42.1 and Gen42.2 in the control group (Figure 5) that cannot be found in

the case group (Figure 6). In the case group Epi9 is clustered together with Epi6,

Epi10, Epi11, Gen5 and Gen9, whereas Epi11 is clustered together with Epi8, Epi12

– Epi14, Gen3.2 and Gen20 in the control group, Gen5 is clustered together with

Gen23 and Epi7. Gen9 is clustered together with Epi45, Epi6 and Epi10 are also

joined together in the control group.

In the case group Epi20 is clustered together with Gen13 and Epi21 is clustered

together with Gen3.1. The loci Gen42.1 and Gen42.2 are clustered together with the

loci Gen3.2 and Del1.1 in the case group.
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Applying Sblock with g = 1 being the group of SNP loci, g = 2 being the group of

categorial epidemiological variables and g = 3 being the group of the quantitative

variables and using S[1,1] = δλ ,,IJflexS − , S[2,2] = SPC, S[3,3] = Sτ² as well as S[3,3] = Sτ ,

S[1,2] = SPC  and S[1,3] = S[2,3] = SKW as similarity coefficients separately for cases and

controls results in Figures 7 to 14. Three different specifications for δλ ,,IJflexS −  are

used:

Figure 7. Dendrogram of Sblock of the SNP loci and the epidemiological variables of

the control group according to i and using Sτ².

i. I = {2, 1, 0}, J = {12, 01, 02}, λ = (2, 1, 1/3), δ = (2/3, 1, 2),

ii. I = {2, 1, 0, 12}, J = {01, 02}, λ = (2, 1, 1/3, 2/3), δ = (1, 2),

iii. I = {2, 1, 0, 01}, J = {12, 02}, λ = (2, 1, 1/3, 2/3), δ = (1, 2).
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Figure 8. Dendrogram of Sblock of the SNP loci and the epidemiological variables of

the control group according to i and using Sτ.

Figure 9. Dendrogram of Sblock of the SNP loci and the epidemiological variables of

the case group according to i and using Sτ².
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Figure 10. Dendrogram of Sblock of the SNP loci and the epidemiological variables of

the control group according to ii and using Sτ².

Figure 11. Dendrogram of Sblock of the SNP loci and the epidemiological variables of

the control group according to iii and using Sτ².
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Figure 12. Dendrogram of Sblock of the SNP loci and the epidemiological variables of

the control group using SPC for all categorial variables and Sτ².

Figure 13. Dendrogram of Sblock of the SNP loci and the epidemiological variables of

the control group using SPC for all categorial variables and S².
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Figure 14. Dendrogram of Sblock of the SNP loci and the epidemiological variables of

the case group using SPC for all categorial variables and Sτ².

In the present case the application of Sτ² and Sτ results in almost equal dendrograms

(see Figures 7 and 8) with maximal differences applying SPC for all categorial

variables (Figures 12 and 13). Note that variables of V3 are not clustered together but

joined together on a high level of similarity to an epidemiologic or genetic variable,

Stet1/Gen32 and Stet7/Epi7 in Figure 7, for instance. Generally, the main body of the

genetic variables are clustered together in one or two big groups using the Flexible

Matching Coefficients for V1 (Figures 7 – 11). There are no apparent differences

between cases and controls concerning small groups of variables, for instance the

epidemiologic variables Epi4, Epi37, Epi38, Epi40 and Epi49 as well as Epi32, 47,

48 and Epi3, Epi33  and Epi34 or the genetic variables Gen24.1, Gen24.2 and

Gen24.3 (Figures 7 and 9, 12 and 13). Note that loci of the same gene are often

clustered together.

Furthermore, the definition of heterozygous and homozygous variants as matches

yields mainly the same results here (Figures 7 and 10). The definition of

homozygous references and heterozygous loci as matches yields a similar structure

with respect to the main body of the epidemiologic variables and with respect to

small subgroups (Figures 7 and 11). The genetic variables of V1 are clustered
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together in one poorly structured group (Figure 11). Using SPC for all categorial

variables yields a partially different structure though small subgroups of variables

remain together, for instance Del1.1, Stet4 and Gen5 (Figures 7 and 12). Generally,

differences between cases and controls can mainly be detected in small groups of

genetic and epidemiologic variables. Most prominent are the combinations of

quantitative and categorial – genetic or epidemiologic – variables. These

combinations are consistent within cases and controls, respectively, for all

considered combinations of similarity coefficients. For instance, in the control group

Epi7 and Stet7 are joined together and form a small cluster with Gen17.2 and Gen41.

In the case group Epi7 is clustered together with Stet2 whereas Stet7 is joined

together with Epi36 and Epi35 on a similar level of distance. In the control group

Stet2 is grouped together with Epi8. In the control group Gen14.2 and Stet6 are

clustered together whereas in the case group Stet6 is clustered together with Epi19

and Gen14.2 is clustered together with Stet5. In the control group Stet5 is clustered

together with Epi11 which is clustered together with Epi14 in the case group

(Figures 7 and 9, Figures 12 and 14).

Clustering of subjects using Smixed with the groups Vg of variables as specified above

and S1 = δλ ,,IJflexS −  as specified above, S2 = δλ ,,IJflexS − , with I = {ii, i = 0, 1, 2, ...},

J = {ij, i, j = 0, 1, 2, ...}, λi = 1, i = 0, 1, 2, ..., and δij = 1, i, j = 0, 1, 2, ..., S3 = Sτ  and

the weights gω  being the number of variables mg in subset g yields better structured

dendrograms as the use of standard similarity measures for SNP loci only or for

SNPs and epidemiologic variables (Figure 15). Due to the large number of subjects

interesting clusters can hardly be detected by view, so an automatic search for

clusters of a defined minimum size and proportion of cases or controls has to be

conducted. Actually, only small groups of cases or control (about 40 – 50) with a

slightly elevated proportion of 55 – 60 % cases or controls can be detected.
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Figure 15. Dendrogram of Smixed of the SNP loci and the epidemiological variables

according to i.

5. Discussion

The present approach yields interesting hints for potentially relevant combinations of

epidemiologic and genetic risk or beneficial factors for sporadic breast cancer.

Furthermore, it provides a general insight into relationships between the considered

variables that may also be useful for the generation of biological hypotheses. A

number of epidemiologic variables can be detected that do not contribute to

differences between cases and controls and might be omitted in a further step of the

analysis of the data.

Considering the results of the different combinations of similarity coefficients needs

further investigation by the use of simulation studies. Especially the impact of

standardised or squared correlation coefficients for clustering quantitative variables

and the use of the p-value of the Kruskal-Wallis test as coefficient of distance of

quantitative and categorial variables have to be examined. A further interesting

aspect is the impact of the often used categorisation of quantitative variables.

With respect to the clustering of subjects no relevant high or low risk groups have

been detected actually. Using Self-Organising Maps several interesting groups with
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elevated proportion of cases or controls have been detected (Ittermann, 2006) though

it seems to be generally difficult to obtain satisfying results searching for high or low

risk groups. Hence, further approaches for clustering subjects have to be examined,

for instance the clustering in subspaces (see for instance, Friedman and Meulman,

2004; Parson et al., 2004). The general idea is that different subgroups of objects can

be characterised by different subgroups of variables. So, calculating the similarity of

two or more objects based on the complete vectors of variables, containing relevant

and irrelevant information about their similarity, may hide the "true" structure of the

data.

In general, cluster analysis can help to gain more insight into the data but especially

in complex data situations it is reasonably combined with further approaches. For the

detection of interactions between several gene loci as well as between gene loci and

exogenous factors there are a plethora of further approaches. Classification

approaches as, for instance, classification trees, ensemble methods, SVM

(Schwender et al., 2004), multi-dimensionality reduction (MDR) and logic

regression (Rabe, 2004) aim to identify those combinations of traits which yield the

"best" prediction of the case-control status. The difficulty with these approaches is

generally a high misclassification rate due to the heterogeneity of the case-group, the

low penetrance of the relevant genetic variants and, hence, the amount of competing

models.

So combining cluster and classification approaches – for instance, by a pre-selection

of variables or by joint hints towards of potential impact factors by several

approaches – may help to gain more insight and to develop new biological

hypothesis.
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