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Abstract

In this article, the problem of constructing efficient discriminating designs in a Fourier
regression model is considered. We propose designs which maximize the efficiency for
the estimation of the coefficient corresponding to the highest frequency subject to the
constraints that the coefficients of the lower frequencies are estimated with at least some
given efficiency. A complete solution is presented using the theory of canonical moments,
and for the special case of equal constraints the optimal designs can be found analytically.

AMS Subject classification: 62K05, 62J05
Keywords and Phrases: Constrained optimal designs, trigonometric regression, D1-optimal de-
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1 Introduction

The Fourier regression or trigonometric regression model

g2d(x) = a0 +
d∑

j=1

aj sin(jx) +
d∑

j=1

bj cos(jx) x ∈ [−π, π](1.1)

g2d−1(x) = a0 +
d∑

j=1

aj sin(jx) +
d−1∑
j=1

bj cos(jx) x ∈ [−π, π](1.2)
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is widely used to describe periodic phenomena [see, e.g., Mardia (1972), Kitsos, Titterington and
Torsney (1988) or the recent collection of research papers in biology edited by Lestrel (1997)].
The value 2d in (1.1) or 2d − 1 (1.2) is usually denoted as the degree of the Fourier regression
model and a0, a1, . . . , ad, b1, . . . , bd denote unknown parameters, which have to be estimated from
the data. The problem of designing experiments for models of the form (1.1) has been discussed
by several authors; see, e.g., Karlin and Studden (1966), page 347, Fedorov (1972), page 94,
Hill (1978), Lau and Studden (1985) for optimal designs on the full circle, and some recent
contributions by Dette, Melas and Biedermann (2002) and Dette, Melas and Pepelyshev (2002)
for optimal designs on a partial circle. Most authors concentrate on the problem of determining
optimal designs for the estimation of the full vector of unknown parameters, whereas the problem
of constructing optimal designs for model discriminating has only recently been considered in the
literature [see Dette and Haller (1998), Dette and Melas (2003) and Zen and Tsai (2004)]. The
present paper is devoted to the problem of constructing optimal discriminating designs using
constrained optimality criteria.
Constrained optimal designs have primarily been considered by Stigler (1971), Studden (1982b)
and Lee (1988a, b), whereas the more recent work by Cook and Wong (1994), Dette (1995)
and Clyde and Chaloner (1996) investigates the relation between this approach and compound
optimality criteria. Although these results are interesting from a theoretical point of view con-
strained optimal designs have to be found numerically and explicit results can only be inferred in
rare cases. Recently, Dette and Franke (2000) characterized constrained optimal discriminating
designs for polynomial regression models utilizing the theory of canonical moments, which was
introduced by Skibinsky (1967) and applied by Studden (1980, 1982a, 1982b, 1989) for deter-
mining optimal designs in polynomial regression models. The problem of finding constrained
optimal discriminating designs for Fourier regression models, however, has not been considered
yet.
The present paper is devoted to this problem. For the construction of constrained optimal de-
signs we assume that the highest frequency of the model has been fixed and determine the design
such that the coefficient corresponding to this frequency is estimated with maximal efficiency
subject to the constraints that the coefficients corresponding to the highest frequencies in the
models of lower degree can be estimated with some guaranteed efficiency. The optimality crite-
rion is carefully described in Section 2. In Section 3 we briefly review some facts from the theory
of canonical moments [see Dette and Studden (1997)], which is the basic tool for the construc-
tion of optimal discriminating designs. A complete characterization of the constrained optimal
descriminating designs is given, and in the special case of equal bounds the optimal designs can
be found explicitly. Finally, in Section 4 we illustrate the method by several examples.

2 Constrained optimal designs in Fourier regression mod-

els

For k = 0, . . . , 2d we define

fk(x) =

{
(1, sin(x), cos(x), . . . , sin(jx), cos(jx))T , if k = 2j

(1, sin(x), cos(x), . . . , sin((j−1)x), cos((j−1)x), sin(jx))T , if k = 2j − 1

2



and

θk =

{
(a0, a1, b1, . . . , aj , bj)

T if k = 2j

(a0, a1, b1, . . . , aj−1, bj−1, aj)
T if k = 2j − 1

then the models in (1.1) and (1.2) can be written as gk(x) = fk(x)T θk where k = 2d or k = 2d−1,
respectively. An approximate design is a probability measure σ with finite support on the interval
[−π, π] with the interpretation that observations are taken at the support points in proportion
to the corresponding masses. The analogue of the matrix XT X in the Fourier regression model
gk(x) is the information matrix

Mk(σ) =

∫ π

−π

fk(x)fT
k (x)dσ(x).(2.1)

An optimal design maximizes an appropriate real-valued function of the information matrix [see
Pukelsheim (1993)], and there are numerous criteria which can be used for the characterization
of efficient designs. Our optimality criterion for constructing discriminating designs is motivated
by a multiple testing procedure [see e.g. Anderson (1994)], where, starting with the given

regression g2d(x) or g2d−1(x) in (1.1) or(1.2), respectively, one tests the hypotheses H
(2d)
0 : θ2d =

0, H
(2d−1)
0 : θ2d−1 = 0, . . . , H

(1)
0 : θ1 = 0 successively, and decides for the model gk0 where k0

is the first index for which the hypothesis H
(k0)
0 : θk0 = 0 is rejected. (Note that this sequence of

tests can be stopped earlier if the minimal degree of the Fourier regression model is pre-specified.)
The quantities corresponding to the noncentrality parameter of the F -test for the hypothesis
H

(k)
0 are given by

δk(σ) = (eT
k M−1

k (σ)ek)
−1 k = 1, . . . , 2d,(2.2)

where ek denotes the (k + 1)th unit vector in R
k+1 and the design σ is assumed to have at least

(2d + 1) support points [see Pukelsheim (1993), p. 70]. A design σ∗
k is called D1-optimal if it

maximizes δk, and the expression

effk(σ) :=
δk(σ)

δk(σ∗
k)

, k = 1, . . . , 2d(2.3)

is called the D1-efficiency of the design σ in the Fourier regression model gk(x). Recall that a
design maximizing δk is optimal for discriminating between the trigonometric regression models
gk−1 and gk. Dette and Haller (1998) proposed to maximize a weighted p-mean of the quanti-
ties δ1, . . . , δ2d for the construction of an optimal design for discriminating between the models
{g1, . . . g2d}. In the present paper, we propose an alternative optimality criterion to obtain effi-
cient discriminating designs. This approach is attractive if the main interest of the experimenter
is in estimating the coefficient corresponding to the highest frequency, but the design should also
allow an efficient discriminating between the models of lower degree.
We consider two cases for determining a constrained optimal discriminating design for the Fourier
regression model. The first approach considers the highest cosine frequency as most important
and a constrained optimal discriminating design σ∗ maximizes

eff2d(σ) subject to effl(σ) ≥ cl, l = 2d − 1, 2d − 2, . . . , 2d − 2j − 1(2.4)
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for some j ∈ {0, . . . , d−1}, whereas the second criterion determines the design which maximizes

eff2d−1(σ) subject to the constraints effl(σ) ≥ cl, l = 2d, 2d − 2, . . . , 2d − 2j − 1(2.5)

where j ∈ {1, . . . , d − 1}, and the quantities c2d−2j−1, . . . , c2d ∈ (0, 1) are given by the ex-
perimenter and reflect the desired precision for the estimation of the coefficient corresponding
to the highest frequency in the models g2d−2j−1, . . . , g2d. For the solution of this constrained
optimization problem we need several tools, which will be explained in what follows.
It follows by standard arguments [see Pukelsheim (1993), Chap. 4, 5] that effl is a concave
function on the set of designs on the interval [−π, π] and invariant with respect to a reflection
of the design σ at the origin. Consequently, if there exists an optimal constrained optimal
discriminating design, then there also exists an optimal design in the set Σ of all symmetric
designs on the interval [−π, π]. We note that these symmetric designs induce designs ξσ on the
interval [−1, 1] by the projection

ξσ(cosx) =

{
2σ(x) = 2σ(−x) if 0 < x ≤ π

σ(0) if x = 0
(2.6)

for any symmetric design σ ∈ Σ. The corresponding set of the measures ξσ on [−1, 1] will be
denoted by Σ[−1,1]. It was shown in Dette and Haller (1998) that for any σ ∈ Σ

δk(σ) =

{
22(j−1) |Aj(ξσ)|

|Aj−1(ξσ)| if k = 2j

22(j−1) |Bj(ξσ)|
|Bj−1(ξσ)| if k = 2j − 1.

(2.7)

where B0(ξσ) = A0(ξσ) = 1, and

Ak(ξσ) =
(∫ 1

−1

zi+jdξσ(z)
)k

i,j=0
(2.8)

Bk(ξσ) =
(∫ 1

−1

(1 − z2)zi+jdξσ(z)
)k−1

i,j=0
(2.9)

denote the information matrices of the design ξσ on the interval [−1, 1] for a homoscedastic
and a heteroscedastic polynomial regression model with efficiency function λ(z) = (1 − z2) [see
Karlin and Studden (1966)], respectively. Consequently, the problem of determining constrained
optimal discriminating designs for the Fourier regression model can be solved by maximizing a
certain function over the set of probability measures on the interval [−1, 1] and transforming the
maximizing measure back via (2.6).
The problem of maximizing the right hand side of (2.7) over the set Σ[−1,1] if k = 2j is in fact
the D1-optimal design for the ordinary polynomial regression model, while for odd values of k
the right hand side of (2.7) corresponds to the weighted polynomial regression with efficiency
function σ2(x) = σ2/(1 − x2), x ∈ (−1, 1). The solutions of these problems are well known [see
Studden (1968, 1982b)] and yield δk(σ

∗
k) = max

σ
δk(σ) = 1 (k = 1, . . . , 2d), and therefore the

efficiency of a symmetric design σ defined in (2.3) can be rewritten as

effk(σ) =

{
22(j−1) |Aj(ξσ)|

|Aj−1(ξσ)| if k = 2j

22(j−1) |Bj(ξσ)|
|Bj−1(ξσ)| if k = 2j − 1.

(2.10)
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3 The solution of the constrained optimal design problem

For the characterization of the measure ξσ∗ ∈ Σ[−1,1] corresponding to the constrained optimal
discriminating design σ∗ by the relation (2.6) we require some basic facts about the theory
of canonical moments which has been introduced by Studden (1980, 1982a,b) in the context of
optimal design. We will only give a very brief heuristical introduction and refer to the monograph
of Dette and Studden (1997) for more details.
It is well known that a probability measure on the interval [−1, 1], say ξ, is determined by its
sequence of moments (m1, m2, . . .). Skibinsky (1967) defined a one to one mapping from the
sequences of ordinary moments onto sequences (p1, p2, . . .) whose elements vary independently
in the interval [0, 1]. For a given probability measure on the interval [−1, 1] the element pj of
the corresponding sequence is called the jth canonical moment of ξ. If j is the first index for
which pj ∈ {0, 1} then the sequence of canonical moments terminates at pj , and the measure is
supported at a finite number of points. The support points and corresponding masses can be
found explicitly by evaluating certain orthogonal polynomials [see Dette and Studden (1997),
Chapter 3]. The set of probability measures on the interval [−1, 1] with first k canonical moments
equal to (p1, . . . , pk) ∈ (0, 1)k−1 × [0, 1] is a singleton if and only if pk ∈ {0, 1}. Otherwise
there exists an uncountable number of probability measures corresponding to (p1, . . . , pk) [see
Skibinsky (1986)].
It turns out that the determinants in (2.10) can be described in terms of the canonical moments
p1, p2, . . . of the measure ξσ [see Studden (1982b)], that is

|Ak(ξσ)| = 2k(k+1)
k∏

�=1

(q2�−2p2�−1q2�−1p2�)
k−�+1(3.1)

|Bk(ξσ)| = 2k(k+1)

k∏
�=1

(p2�−2q2�−1p2�−1q2�)
k−�+1(3.2)

where p0 = 1, q0 = 1 and qj = 1 − pj for j ≥ 1. Observing (2.10), (3.1) and (3.2), we find that
the efficiencies are increasing functions of the terms p2j−1q2j−1, and consequently the canonical
moments of the projection ξσ∗ of the constrained optimal discriminating design σ∗ satisfy

p2�−1 =
1

2
� = 1, . . . , d.(3.3)

Therefore we can restrict ourselves to designs with this property, and (2.10) reduces to

effk(σ) =

{
22j−2p2j

∏j−1
�=1 q2�p2� if k = 2j

22j−2q2j

∏j−1
�=1 q2�p2� if k = 2j − 1

(3.4)

where p2, p4, . . . denote the canonical moments of even order of the design ξσ ∈∑[−1,1] satisfying

(3.3) and corresponding to the measure σ via (2.6). Our main result gives a characterization of
the canonical moments of ξσ∗ .

Theorem 3.1.
(a) If there exists a constrained optimal discriminating design for the vector c2d−2j−1, . . . , c2d−1
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in (2.4) , then there also exists a symmetric optimal discriminating design σ∗. The canonical
moments up to the order 2d of the corresponding projection ξσ∗ are determined by the system of
equations

p2n−1 =
1

2
n = 1, . . . , d

p2n =
1

2
n = 1, . . . , d − j − 1

p2d−2j+2n =

⎧⎪⎪⎨
⎪⎪⎩

1 − max{1

2
,

c2d−2j+2n−1

22n
∏d−j+n−1

l=d−j p2lq2l

}, if c2d−2j+2n−1 > c2d−2j+2n

max{1

2
,

c2d−2j+2n

22n
∏d−j+n−1

l=d−j p2lq2l

}, if c2d−2j+2n ≥ c2d−2j+2n−1

n = 0, . . . , j − 1

p2d = 1 − c2d−1

22j
∏d−1

l=d−j p2lq2l

.

(b) If there exists a constrained optimal discriminating design for the vector c2d−2j−1, . . . , c2d−2, c2d

in (2.5), then there also exists a symmetric constrained optimal discriminating design σ∗. The
canonical moments up to the order 2d of the corresponding projection ξσ∗ are determined by the
system of equations

p2n−1 =
1

2
n = 1, . . . , d

p2n =
1

2
n = 1, . . . , d − j − 1

p2d−2j+2n =

⎧⎪⎪⎨
⎪⎪⎩

1 − max{1

2
,

c2d−2j+2n−1

22n
∏d−j+n−1

l=d−j p2lq2l

}, if c2d−2j+2n−1 > c2d−2j+2n

max{1

2
,

c2d−2j+2n

22n
∏d−j+n−1

l=d−j p2lq2l

}, if c2d−2j+2n ≥ c2d−2j+2n−1

n = 0, . . . , j − 1

p2d =
c2d

22j
∏d−1

l=d−j p2lq2l

.

Proof. Because both parts are proved similarly, we restrict ourselves to a proof of part (a). By
the previous discussion the canonical moments of odd order 1, 3, . . . 2d − 1 must be 1/2. Note
that

eff2d−2j+2n(σ) = p2d−2j+2n22(d−j+n−1)

d−j+n−1∏
l=1

p2lq2l , n = 0 . . . , j.

In order to maximize these efficiencies we have to choose the canonical moments such that
the products p2lq2l are as large as possible. This can be accomplished by choosing p2l as close
as possible to the value 1/2 such that the constraints in (2.4) are satisfied. Since there are
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no restrictions on the efficiencies eff1(σ), . . . , eff2d−2j−2(σ) we obtain p2 = . . . = p2d−2j−2 = 1
2
.

Plugging this choice into the formulae for the higher order efficiencies, (3.4) reduces to

eff2d−2j+2n−1(σ) = q2d−2j+2n22n

d−j+n−1∏
l=d−j

p2lq2l

eff2d−2j+2n(σ) = p2d−2j+2n22n

d−j+n−1∏
l=d−j

p2lq2l.

We start with the case n = 0, for which the representations eff2d−2j−1(σ) = q2d−2j , eff2d−2j(σ) =
p2d−2j yield the constraints

p2d−2j ≥ c2d−2j , q2d−2j ≥ c2d−2j−1.

Consequently any design ξσ for which p2d−2j ∈ [c2d−2j , 1 − c2d−2j−1] satisfies the constraints of
order 2d − 2j und 2d − 2j − 1. We therefore assume that c2d−2j + c2d−2j−1 ≤ 1 in what follows
to ensure the existence of such a design. If 1

2
∈ [c2d−2j , 1 − c2d−2j−1] one can choose p2d−2j = 1

2

to maximize p2d−2jq2d−2j . Else we have either c2d−2j ≥ 1
2

or 1 − c2d−2j−1 ≤ 1
2
, and we choose

p2d−2j = c2d−2j or p2d−2j = 1 − c2d−2j−1, respectively.
If n > 0 we note that the constraints eff2d−2j+2n(σ) ≥ c2d−2j+2n and eff2d−2j+2n−1(σ) ≥ c2d−2j+2n−1

reduce to

p2d−2j+2n ≥ c2d−2j+2n

22n
∏d−j+n−1

l=d−j p2lq2l

=: c′2d−2j+2n

q2d−2j+2n ≥ c2d−2j+2n−1

22n
∏d−j+n−1

l=d−j p2lq2l

=: c′2d−2j+2n−1

Therefore the same arguments as presented for the case n = 0 yield the corresponding result for
p2d−2j+2n. Finally we consider the case n = j, where there is only one constraint eff2d−1(σ) ≥
c2d−1, which can be rewritten as

p2d ≤ 1 − c2d−1

22d−2
∏d−1

l=1 p2lq2l

.

In order to maximize this expression one has to choose p2d such that there is equality. This
proves the final assertion of part (a) in Theorem 3.1. �

Remark 3.2. Note that Theorem 3.1 characterizes the canonical moments up to the order
2d of the projection ξσ∗ of the (symmetric) constrained optimal discriminating design σ∗. In
general p2d �∈ {0, 1} and in these cases there exists an infinite number of probability measures on
the interval [−1, 1] with the canonical moments p1, . . . p2d [see Skibinsky (1986)]. Each of these
measures corresponds to a constrained optimal discriminating design by the projection (2.6).
Before we illustrate this phenomenon in the following section we present two further results,
where the solution of the constrained optimal design problem can be found explicitly. For this
purpose let Tj(x) and Uj(x) denote the jth Chebyshev polynomial of the first and second kind,
respectively [see Rivlin (1974)].
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Theorem 3.3. Consider the constrained optimal design problem in (2.4) where c2d−2j = . . . =
c2d−2 = c ∈ (0, 1), cl < c (l = 2d − 2j − 1, . . . 2d − 1). If there exists a constrained optimal
discriminating design, then there also exists a symmetric constrained optimal discriminating
design σ∗.
(a) If c > 1/2, define

κ = κ(c2d−1, c) =
1

2
− c2d−1

4c
+

2c − 1

2((2c − 1)j − 2c)
,

P ∗
d+1(x) = (xUj(x) − 2κUj−1(x))Td−j(x) − 2c(xUj−1(x) − 2κUj−2(x))Td−j−1(x),(3.5)

P
(1)
d (x) = (xUj(x) − 2κUj−1(x))Ud−j−1(x) − 2c(xUj−1(x) − 2κUj−2(x))Ud−j−2(x)(3.6)

The polynomial P ∗
d+1(x) has d + 1 distinct roots x0, . . . xd in the interval (−1, 1), and the design

ξσ∗ with masses

λk =
P

(1)
d (xk)

d
dx

P ∗
d+1(x)|x=xk

, k = 0 . . . , d(3.7)

at x0, . . . , xd corresponds to a constrained optimal discriminating design for the optimization
problem (2.4) by the projection (2.6).
(b) If c < 1/2, define

P ∗
d+1(x) = Td+1(x) − (1 − 2c)Td−1(x),

P
(1)
d (x) = Ud(x) − (1 − 2c)Ud−2(x).

The polynomial P ∗
d+1(x) has d + 1 distinct roots x0, . . . xd in the interval (−1, 1), and the design

ξσ∗ with masses (3.7) at x0, . . . , xd corresponds to a constrained optimal discriminating design
for the optimization problem (2.4) by the projection (2.6).

Remark 3.4. It will be shown in the proof of Theorem 3.3 that a necessary condition for the
existence of a symmetric constrained optimal discriminating design for the design problem (2.4)
is κ > 0, which ensures that the value of the canonical moment p2d will be within the interval
(0, 1). If κ ≤ 0 it is therefore recommended to modify the choices of c and c2d−1 accordingly so
that κ attains a positive value, before starting to calculate the optimal design.

Proof of Theorem 3.3. We only prove part (a) of the Theorem. Part (b) follows by similar
(and even simpler) arguments. Note that the canonical moments of the constrained optimal
discriminating design can be obtained by Theorem 3.1. The canonical moments of odd order
satisfy

p2n−1 =
1

2
, n = 1, . . . d,(3.8)

while the canonical moments of even order less or equal than 2d − 2j − 2 are given by

p2n =
1

2
, n = 1, . . . d − j − 1.(3.9)
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For the next canonical moment of even order we have from Theorem 3.1

p2d−2j = max{1

2
, c} = c,

and it can be shown by a straightforward induction that

p2d−2j+2t =
1

2

(2c − 1)t − 2c

(2c − 1)(t + 1) − 2c
, t = 0, . . . , j − 1.(3.10)

Note that this representation implies

1

2
< c <

j + 1

2j
,

because the canonical moments vary in the interval (0, 1). The remaining canonical moment of
order 2d is obtained by a direct calculation, that is

p2d = 1 − 1

2

c2d−1

c

(2c − 1)j − 2c

(2c − 1)(j + 1) − 2c
.(3.11)

It follows from a straightforward but tedious calculation that p2d ∈ (0, 1) ⇔ κ > 0, which proves
Remark 3.4. Note that (3.8) - (3.11) do not determine a design on the interval [−1, 1] (except in
the case c2d−1 = 0, which is excluded). In order to obtain a design with finite support we extend
this sequence by

p2d+1 =
1

2
, p2d+2 = 0,(3.12)

and note that the design ξ∗σ on the interval [−1, 1] with canonical moments (3.8) - (3.12) is
uniquely determined and has d + 1 support points [see Skibinsky (1986)]. For the calculation
of the support points and corresponding weights we apply Theorem 3.6.1 in Dette and Studden
(1997). By this result the design ξσ∗ has weights

λk =
P

(1)
d (xk)

d
dx

P ∗
d+1(x)|x=xk

(3.13)

at the roots x0, . . . xd of the polynomial P ∗
d+1(x), where P ∗

d+1(x) and P
(1)
d (x) are obtained from

the recursion

Wk+1(x) = xWk(x) − q2k−2p2kWk−1(x)(3.14)

(note that p2j−1 = 1
2

for j = 1, . . . , d + 1) with different initial conditions, that is

P ∗
d+1(x) = Wd+1(x) for W−1(x) ≡ 0, W0(x) ≡ 1(3.15)

P
(1)
d (x) = Wd+1(x) for W0(x) ≡ 0, W1(x) ≡ 1.(3.16)

We now calculate these polynomials using (3.9) - (3.12) and begin with P ∗
d+1(x). ¿From the

initial condition in (3.15) and (3.9) we obtain by a straightforward calculation

Wd−j(x) =
1

2d−j−1
Td−j(x) , Wd−j−1(x) =

1

2d−j−2
Td−j−1(x)(3.17)

9



Observing (3.10) and

q2l−2p2l =

(
1 − 1

2

(2c − 1)(l − 1 − d + j) − 2c

(2c − 1)(l − d + j) − 2c

)
1

2

(2c − 1)(l − d + j) − 2c

(2c − 1)(l − d + j + 1) − 2c

=
1

4

(2c − 1)(l − d + j + 1) − 2c

(2c − 1)(l − d + j + 1) − 2c
=

1

4

(d − j < l ≤ d − 1), we obtain the recursion

Wd−j+1 = xWd−j(x) − 1

2
cWd−j−1(x)

Wl+1(x) = xWl(x) − 1

4
Wl−1(x) if d − j < l ≤ d − 1.

Now a straightforward induction yields

Wd−j+l(x) =
1

2l+d−j−1
(Ul(x)Td−j(x) − 2cUl−1(x)Td−j−1(x)) , l = 1, . . . j.

We finally note that by (3.10) and (3.11) we have q2d−2p2d = κ, from which it follows that

P ∗
d+1(x) =

1

2d−1

[
(xUj(x) − 2κUj−1(x))Td−j(x) − 2c(xUj−1(x) − 2κUj−2(x))Td−j−1(x)

]
using (3.14) and (3.15). Observing the initial conditions in (3.16) it follows that the polynomial

P
(1)
d (x) can be calculated analogously, where (3.17) is replaced by

Wd−j(x) =
1

2d−j−1
Ud−j−1(x) , Wd−j−1(x) =

1

2d−j−2
Ud−j−2(x).

Consequently, by a straightforward induction we obtain

P
(1)
d (x) =

1

2d−1

[
(xUj(x) − 2κUj−1(x))Ud−j−1(x) − 2c(xUj−1(x) − 2κUj−2(x))Ud−j−2(x)

]
,

and the assertion (a) of Theorem 3.1 follows from Theorem 3.6.1 in Dette and Studden (1997).
�

We conclude this section with an analogue for the optimization problem (2.5). The proof is
similar and omitted for brevity.

Theorem 3.5. Consider the constrained optimal design problem in (2.5) where c2d−2j = . . . =
c2d−2 = c2d = c ∈ (0, 1), cl < c (l = 2d− 2j − 1, . . . 2d− 3). If there exists a constrained optimal
discriminating design then there also exists a symmetric constrained optimal descriminating
design σ∗

(a) If c > 1/2, define

κ = κ(c2d, c) =
c2d

4c
,

10



and consider for this κ the polynomials P ∗
d+1(x) and P

(1)
d (x) defined by (3.5) and (3.6), respec-

tively. The polynomial P ∗
d+1(x) has d+1 distinct roots x0, . . . , xd in the interval (−1, 1), and the

design ξσ∗ which has masses (3.7) at the points x0, . . . xd corresponds to a constrained optimal
discriminating design for the optimization problem (2.5) by the projection (2.6).
(b) If c < 1/2, define

P ∗
d+1(x) = Td+1(x) + (1 − 2c)Td−1(x),

P
(1)
d (x) = Ud(x) + (1 − 2c)Ud−2(x),

The polynomial P ∗
d+1(x) has d+1 distinct roots x0, . . . xd in the interval (−1, 1), and the design ξσ∗

with masses (3.7) corresponds to a constrained optimal discriminating design for the optimization
problem (2.5) by the projection (2.6).

4 Examples

To fix ideas we will give several examples for scenarios of practical relevance. Since trigonometric
regression models with degree greater than d = 3 are rarely considered in practice we restrict
ourselves to several cases where d = 2 and d = 3. Furthermore, we present only examples for
the design problem (2.4). The calculations for the problem (2.5) are similar, and examples for
this problem are therefore omitted for the sake of brevity.

Example 4.1. Let us first consider the situation where d = 2 and j = 1, and the goal is
to maximize the efficiency eff4(σ) for estimating the coefficient of the highest cosine frequency
cos(2x) in model g4(x). Let now the pre-specified minimal efficiencies for estimating the highest
coefficients in the lower order models be given by c2 = c = 0.6 and c3 = 0.5.
¿From Theorem 3.3 we learn that since c > 0.5 the support of the projection ξσ∗

1
of the optimal

design σ∗
1 can be found by calculating the roots of the polynomial P ∗

d+1(x) defined in (3.5),
whereas the weights follow from formula (3.7). Plugging our values in and transforming the
result back via (2.6) yields the following symmetric constrained optimal discriminating design

σ∗
1 =

(
−2.668 −1.571 −0.474 0.474 1.571 2.668

0.1895 0.121 0.1895 0.1895 0.121 0.1895

)
.

The corresponding value for eff4(σ
∗
1) is given by 0.46, which is the maximal value for this efficiency

under the given constraints. The efficiencies for estimating the highest coefficients in the lower
order models are obtained as eff1(σ

∗
1) = 0.4, and eff3(σ

∗
1) as well as eff2(σ

∗
1) attain the given

values for c3 and c2. If the constraint c3 ≥ 0.5 was relaxed to c3 ≥ 0.3 one would obtain the
value of 0.66 for the efficiency eff4(σ

∗∗
1 ) when using the corresponding optimal design σ∗∗

1 . In this
case the lower order efficiencies are given by eff1(σ

∗∗
1 ) = 0.4, and again eff3(σ

∗∗
1 ) and eff2(σ

∗∗
1 )

attain the given values for c3 and c2. A higher efficiency eff4 is thus bought at the expense of a
lower efficiency eff3.
If the other constraint was relaxed to c2 = c = 0.4 we could apply part b) of Theorem 3.3, which
yields the optimal design

11



σ̃1 =

(
−2.678 −1.571 −0.464 0.464 1.571 2.678

0.156 0.188 0.156 0.156 0.188 0.156

)

for this situation. The designs σ∗
1 and σ̃1, which are optimal for similar choices of constraints

in the same model, have almost the same support points but substantially different weights. It
turns out that σ̃1 has efficiencies eff4(σ̃

∗
1) = 0.6, eff3(σ̃

∗
1) = 0.4, eff2(σ̃

∗
1) = 0.5 and eff1(σ̃

∗
1) = 0.5.

In this case the lower boundary c2 = 0.4 for eff2(σ̃
∗
1) is not only attained but even exceeded.

Example 4.2. To illustrate the problem that (symmetric) constrained optimal discriminating
designs are not unique we will construct another optimal design (different from σ∗

1) for the
situation described in Example 4.1. The projection ξσ∗

1
has canonical moments p1 = 0.5, p2 =

c = 0.6, p3 = 0.5, p4 = 0.23/0.48 ≈ 0.479, p5 = 0.5 and p6 = 0 where the values of p1, . . . , p4

follow from Theorem 3.1, and p5 and p6 have been added so that this sequence of canonical
moments terminates and describes a design on 3 = d + 1 support points within the interval
[−1, 1]. If one starts with the same sequence p1, . . . , p4 of canonical moments but adds different
values for the higher order canonical moments, the corresponding design, which is transformed
back via (2.6), will be optimal for the same problem as σ∗

1. The efficiencies effk, k = 1, . . . , 4 = 2d,
will also be the same as for σ∗

1 since these values depend on the underlying design only through
the canonical moments up to order 4 = 2d.
Let us consider the sequence of canonical moments p1 = 0.5, p2 = c = 0.6, p3 = 0.5, p4 =
0.23/0.48 and add the values p5 = 0.5 and p6 = 1. From Corollary 4.2.2 in Dette and Studden
(1997) it follows that the corresponding design ξσnew

1
on the interval [−1, 1] is given by

ξσnew
1

=

(
−1 −0.559 0.559 1

0.209 0.291 0.291 0.209

)
.

Transforming this back via (2.6) we obtain the design

σnew
1 =

(
−π −2.164 −0.978 0 0.978 2.164 π

0.1045 0.1455 0.1455 0.209 0.1455 0.1455 0.1045

)
,

which is optimal for the design problem described in Example 4.1 with the same efficiencies effk,
k = 1, . . . , 4, as σ∗

1 .

Example 4.3. Let us now consider the design problem (2.4) in the situation d = 3, j = 1 and
the pre-specified minimal efficiencies are given by c4 = c = 0.6 and c5 = 0.5. Again, we can
apply part a) of Theorem 3.3, which yields the optimal design

σ∗
2 =

(
−2.793 −1.906 −1.235 −0.349 0.349 1.235 1.906 2.793

0.126 0.124 0.124 0.126 0.126 0.124 0.124 0.126

)

for this scenario. The efficiency for estimating the coefficient of the highest cosine frequency
eff6(σ

∗
2), which was to be maximized subject to the given constraints, turns out to be 0.46.

Moreover, the efficiencies for estimating the highest coefficients in the lower order models are
eff3(σ

∗
2) = 0.4, eff2(σ

∗
2) = eff1(σ

∗
2) = 0.5, and eff4(σ

∗
2) and eff5(σ

∗
2) attain the given values for c4

and c5, respectively.
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Example 4.4. Let us finally consider the design problem (2.4) where d = 3, j = 2, and the
constraints are given by c4 = c2 = c = 0.6 and again c5 = 0.5. So the only difference with respect
to Example 4.3 is the additional constraint on the efficiency eff2. From part a) of Theorem 3.3
we obtain the optimal discriminating design

σ∗
3 =

(
−2.831 −1.909 −1.232 −0.311 0.311 1.232 1.909 2.831

0.154 0.096 0.096 0.154 0.154 0.096 0.096 0.154

)
.

Compared with the optimal design σ∗
2 from Example 4.3 the design σ∗

3 has similar support points,
but the weights differ considerably. The efficiencies are given by eff6(σ

∗
3) = 0.4, eff3(σ

∗
3) = 0.36,

eff1(σ
∗
3) = 0.4, and eff2(σ

∗
3), eff4(σ

∗
3) and eff5(σ

∗
3) attain the values of c2, c4 and c5, respectively.

The higher value for the efficiency eff2 is therefore bought at the expense of smaller values for
the “most important” efficiency eff6(σ

∗
3) and the efficiencies eff3(σ

∗
3) and eff1(σ

∗
3).
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